
Distance Geometry for Word Representations and
Applications✩

Sammy Khalifea,∗, Douglas S. Gonçalvesb, Leo Libertic

aDepartment of Applied Mathematics and Statistics, Johns Hopkins University
bMTM/CFM, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil

cLIX CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France

Abstract
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on text classification tasks in natural language processing as well as regression tasks in
bioinformatics.
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1. Introduction

Given a finite set V of symbols called vocabulary, the choice of vector or matrix
representations of sequences of values in the vocabulary poses a central problem in
data science. Such a representation is necessary to represent strings over V as input to
Machine Learning (ML) techniques. This need is particularly strong in ML applications
such as Natural Language Processing (NLP), which uses natural language sentences as
input, or bioinformatics, when it is concerned with protein sequences — i.e. amino acid
sequences — as input.

A sequence s of symbols in V naturally possesses a trivial vector representation,
namely the incidence vector of the sequence in V (which actually represents the under-
lying set of s), and the so-called “one-hot encoding”, a |V| × |s| matrix (where |s| is the
sequence length) bearing a 1 at position (i, j) if and only if the i-th word in V appears
in the j-th position in the sentence s, and 0 otherwise. We note that the incidence vector
is obtained from the one-hot encoding by applying the max operator on each row.

Because of their size and simplicity, these trivial representations are rarely sufficient
for today’s needs. The construction of more compact and informative representations is
often achieved using unsupervised learning approaches. The obtained representations —
also called embeddings in ML — are grouped in two categories: static and contextual
embeddings. A static embedding is a function f : x ∈ V 7→ v ∈ RK , where, usually,
K ≪ |V| holds. Traditionally, f is determined using co-occurrence data from large
training corpora [1, 2]. In this case, co-occurences of words are determined using
every “window” (i.e. subsequence) of w consecutive elements of the sequence, called
tokens. Contextual embeddings, which are popular in the Deep Learning community,
are functions defined over the set of sequences V∗ engendered by the vocabulary V .
Specifically, a contextual embedding is a mapping f : V∗ 7→ RN×K where N represents
the maximum number of words of a sequence (usually N ≤ 103 [3]). Unlike static
embeddings, the restriction of contextual embeddings to a single symbol may yield
different vectors for the same symbol when it appears in different sequences.

In this article, we present, adapt and apply Distance Geometry (DG) based methods
in order to develop faster word vectors construction algorithms. We provide a rigorous
computational complexity analysis of the proposed methods and compare with those of
standard methods for static word representation. Furthermore, we show empirically that
word vectors obtained by our DG-based methods behave well on extrinsic tasks, such as
text classification and regression, in natural language processing and bioinformatics.

To the best of our knowledge, apart from [4], the DG paradigm has not been exploited
for determining word vector representations. Differently from [4], where the graph-
of-words model [5] was considered and the corresponding graph realization problem
addressed with nonlinear programming methods and heuristics, here we consider a
probabilistic model relating pointwise mutual information (PMI) and inner products,
and solve the resulting Distance Geometry Problem (DGP) with methods based on
Euclidean Distance Matrices [6] and trilateration [7].

The rest of this paper is organized as follows. In Section 2 we introduce the problem
of determining word representations in natural language processing. Then, Section 3
reviews some useful DG concepts and presents two algorithms for DGP. Section 4
describes the word co-occurrence model and explain how the DG-based algorithms
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from Section 3 can be used to build word vectors. These methods are compared to the
state-of-the-art in terms of the training model (underlying optimization problem) and
computational complexity. Section 5 shows the performance of the methods on two
applications: intrinsic and extrinsic tasks in natural language processing, and regression
tasks based on protein sequences in bioinformatics. Conclusions are given in Section 6.

2. Preliminaries: natural language processing and word representations

Word embeddings naturally intervene in Natural Language Processing (NLP) tasks,
where many sub-problems (e.g. text classification, machine translation, named entity
recognition) rely on vector representations of words and sentences [8]. They are also
useful in bioinformatics, since proteins can be seen as a sequence of k-mers, for which
vector representations can be used for regression tasks, for example, in channelrhodopsin
localization, or thermostability prediction [9]. For both applications, we refer to a corpus
as a set of documents, where each document is a sequence of tokens that are symbols
from the vocabulary V . We refer to such symbols as “words”: language words in natural
language, or k-mers (short amino acid sequences) in protein sequences [9]. In this work,
we focus on static embeddings, namely, in methods for determining vector representions
of words, called word vectors, from co-occurence data.

In general, the construction of these static word vectors can be cast as the following
optimization problem:

min
v

∑
i

∑
j

ℓ(vi, vj , Cij), (1)

where v : V → RK , vi := v(i) and ℓ is a loss function which depends on the vectors
vi, vj and the co-occurrence Cij : the number of times words i and j occur in the same
window of w consecutive tokens in the corpus (by convention, our context windows do
not overlap between document boundaries). Since the objective function of (1) is the
sum of a large number of terms, usually Stochastic Gradient Descent (SGD) methods
[10, 11] are used to solve this problem.

It is interesting to notice that in many word embedding methods that can be described
by formulation (1), the loss function ℓ depends either on the Euclidean distance or on
the inner product between the vectors vi and vj . This motivates us to consider the
construction of word representations based on Euclidean Distance Geometry, where the
fundamental problem consists in identifying point positions from information about a
subset of their pairwise distances and/or inner products [7].

The DG literature provides several tools to address this problem in many situations.
When all pairwise distances and/or inner products are available and exact, a solution in
dimension K can be found from the top K eigenpairs of the corresponding Gramian [6].
Even when some pairwise information is missing, it is possible to solve the distance
geometry problem in linear time, in the size of the vocabulary, using a Geometric
Build-up algorithm [12].

In the next section we review key results from the theory of Distance Geometry
and discuss two algorithms that will be used latter to build word vector representations.
Even though these theoretical results are well-known, we decided to provide proofs for
those results that directly related to the algorithms we shall discuss.
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3. Distance geometry

Distance Geometry is the study of geometry based on the concept of distance rather
than points and lines. For a deep and comprehensive discussion on this subject and its
applications we recommend the survey [7] and references therein.

In this paper we focus on methods for solving the main problem in DG: given
a partial set of distances between entities, find positions for these entities in some
Euclidean space of dimension K so that they are compatible with the given distances. A
partial set of distances can be represented by a weighted graph where the vertices i ∈ V
represent the entities and an edge {i, j} with weight dij belongs to the edge set E if the
distance dij between i and j is known.

Definition 1 (Distance Geometry Problem). Given an integer K > 0 and a simple,
undirected graph G = (V, E) and an edge weight function d : E → R+, determine
whether there exists a realization v : V → RK , such that

∀{i, j} ∈ E , ∥v(i)− v(j)∥ = d({i, j}). (2)

In (2), ∥.∥ denotes the Euclidean norm. From Definition 1, we see that a DGP
instance is given by the triplet (G, d,K). From here on, we shall use the compact
notation vi := v(i), for all i ∈ V , and dij := d({i, j}), for all {i, j} ∈ E , so that we
can write (2) as

∀{i, j} ∈ E , ∥vi − vj∥2 = d2ij . (3)

The reason for squaring the distances will be clear soon. Let us denote the number
of vertices by n = |V|, and associate each element in V with an integer in {1, . . . , n}.
A sequence of vectors v1, . . . , vn ∈ RK satisfying (3) is called a valid realization. We
remark that a realization can also be represented by a short, fat matrix V ∈ RK×n, the
i-th column of which is the vector corresponding to vertex i ∈ V .

Although DGP is known to be NP-Hard [13], some special cases can be solved in
polytime. The most relevant polynomial time case is that of complete graphs, which
corresponds to a fully defined Distance Matrix D = (d2ij).

Definition 2. We say that a symmetric matrix D ∈ Rn×n, with null diagonal and
non-negative entries is an Euclidean Distance Matrix (EDM) when (3) admits a solution
for some dimension K ≤ n − 1. The smallest positive integer K for which (3) has a
solution is called embedding dimension.

In this case of a complete graph G we can solve (3) or determine its infeasibility by a
process similar to Classic Multidimensional Scaling (MDS) and Principal Components
Analysis (PCA) [14], as detailed in the following.

Let 1 denote the vector of ones of appropriate dimension and ⟨·, ·⟩ the standard inner
product in RK . For a square matrix Z, diag(Z) denotes a column vector containing
the diagonal elements of Z. Let {vi}ni=1 ⊂ RK be a set of points and D ∈ Rn×n the
corresponding EDM such that Dij = ∥vi − vj∥2. Define the Gramian G ∈ Rn×n such
that Gij = ⟨vi, vj⟩. Without loss of generality, assume that the points are centered
around the origin:

∑
i vi = 0. Then, from the relation between the inner product and

Euclidean norm:

∥vi − vj∥2 = −2⟨vi, vj⟩+ ∥vi∥2 + ∥vj∥2, (4)
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one can show that

D = K(G) := −2G+ 1diag(G)⊤ + diag(G)1⊤. (5)

The linear map K when restricted from the space of symmetric centered matrices
SC = {Y ∈ Rn×n : Y = Y ⊤, Y 1 = 0} to the space of symmetric null diagonal
matrices SH = {Z ∈ Rn×n : Z = Z⊤, diag(Z) = 0}, is an isomorphism [15],
whose inverse is given by

K−1(D) = −1

2
JDJ (6)

where J = In − (1/n)11⊤ is known as centering matrix (In denotes the identity matrix
of order n).

Due to this one-to-one correspondence, we have the following equivalence.

Proposition 1. Let (G, d,K) be a DGP instance where G is a complete graph, D =
(d2ij) the corresponding Distance Matrix, G = K−1(D) and v : V → RK such that∑

i vi = 0. Then, v solves (3) if, and only if, it solves

∀ {i, j}, ⟨vi, vj⟩ = Gij . (7)

Proof. Let v be a solution of the DGP instance (G, d,K), such that
∑

i vi = 0. Since

G = −1

2
JDJ = −1

2

(
D − 1

n
1(1⊤D)− 1

n
(D1)1⊤ +

1

n2
(1⊤D1)11⊤

)
,

it follows that

Gij = −
1

2

d2ij −
1

n

n∑
k=1

d2kj −
1

n

n∑
k=1

d2ik +
1

n2

n∑
i=1

n∑
j=1

d2ij


= −1

2

d2ij −
1

n

n∑
k=1

∥vk − vj∥2 −
1

n

n∑
k=1

∥vi − vk∥2 +
1

n2

n∑
i=1

n∑
j=1

∥vi − vj∥2
 .

Now, by using
∑n

k=1 ∥vk − vj∥2 =
∑n

k=1 ∥vk∥2 + n∥vj∥2, we obtain

Gij = −
1

2

(
d2ij − ∥vi∥2 − ∥vj∥2

) (4)
= ⟨vi, vj⟩.

Conversely,

Dij = (K(G))ij = −2Gij +Gii +Gjj = −2⟨vi, vj⟩+ ∥vi∥2 + ∥vj∥2 = ∥vi − vj∥2.

A remarkable result in DG is Schoenberg’s theorem [16, 17, 6], which states neces-
sary and sufficient conditions for a Distance matrix to be Euclidean.

Theorem 1. A Distance Matrix D = (d2ij) is Euclidean if and only if G = (−1/2)JDJ
is positive semidefinite. Moreover, the embedding dimension is given by r = rank(G).
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We remark that if G = (−1/2)JDJ is positive semidefinite (PSD), then it is a
genuine Gram matrix, and therefore it follows the existence of V ∈ Rr×n such that
G = V ⊤V , where r = rank(G). Then, from Proposition 1, the columns of V are a
solution for (3) in dimension r.

The matrix V can be obtained as follows. Let G =
∑n

i=1 λiuiu
⊤
i = UΛU⊤ be the

spectral decomposition of G such that Λ is a diagonal matrix containing the eigenvalues
of G in non-increasing order. The columns of U contain the corresponding eigenvectors.
Then, V =

√
ΛrU

⊤
r , where Λr is a r × r diagonal matrix with the top r eigenvalues of

G, and the columns of Ur contain the corresponding eigenvectors.
Concerning the related DGP defined by (G, d,K) (with G being complete), if K ≥ r,

the columns of V give a valid realization. Otherwise, when K < r, the corresponding
DGP instance has no solution.

Even when the embedding dimension r of an EDM D is greater than the target
dimension K, one may still want a representation of the underlying point set in a lower
dimensional space, such that the interpoint inner products are preserved as most as
possible. For this, we can choose among the PSD matrices Y of rank at most K, one
that minimizes ∥Y −G∥F . A solution is given by UKΛKU⊤

K , where ΛK is diagonal
with top K eigenvalues of G and UK ∈ RK×n contains the corresponding eigenvectors
in its columns [18, 19]. Thus, we call V =

√
ΛKU⊤

K an approximate realization for (3),
in dimension K.

Last, but not least, if D is not an EDM (e.g. because some dij comes from a noisy
measurement), then G = (−1/2)JDJ is not PSD. Still, a solution in the least-squares
sense is provided by

V + =
√

Λ+
KU⊤

K , (8)

where Λ+
K = max(ΛK , 0) and the max(·, ·) is componentwise.

Proposition 2. Let G ∈ Rn×n be a symmetric matrix. A positive semidefinite matrix
with rank at most K that minimizes ∥Y −G∥2F is given by Y + = UKΛ+

KU⊤
K .

Proof. Since G is symmetric, it admits a spectral decomposition G = UΛU⊤ where U
is unitary and Λ is diagonal, containing the eigenvalues of G in non-increasing order
λ1 ≥ · · · ≥ λp > 0 ≥ λp+1 ≥ . . . λn.

Due to the Frobenius norm invariance under unitary transformations

∥Y −G∥2F = ∥U⊤Y U − Λ∥2F =

n∑
i=1

[
(U⊤Y U)ii − Λii

]2
+
∑
i ̸=j

(U⊤Y U)2ij

≥
n∑

i=1

[
(U⊤Y U)ii − Λii

]2
.

By choosing Y = UΣU⊤, where Σ = diag(σ1, . . . , σn), the above inequality holds as
equality and

∥Y −G∥2F =

p∑
i=1

(σi − λi)
2 +

n∑
i=p+1

(σi − λi)
2.
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The constraint that Y must be positive semidefinite forces σi = 0, i = p+ 1, . . . , n, in
order to minimize the second term in the sum above. In case K < p, we also need to set
σi = 0, for i = K + 1, . . . , p to ensure that the rank of Y is at most K, and σi = λi,
i = 1, . . . ,K for minimizing the first term. Therefore

Y + = U diag(max{λ1, 0}, . . . ,max{λK , 0}, 0, . . . , 0)U⊤

= UK diag(max{λ1, 0}, . . . ,max{λK , 0})U⊤
K = UKΛ+

KU⊤
K .

We remark that the approximate realization given by (8) is a solution of the following
optimization problem

min
V ∈RK×n

∥V ⊤V −G∥2F =
∑
i

∑
j

(⟨vi, vj⟩ −Gij)
2. (9)

3.1. Geometric Build-up
If all pairwise distances are available, then we can solve (3) by computing an

eigendecomposition in O(n3) operations. In fact, it is possible to do better than O(n3)
under certain assumptions. Assume the graph G admits a vertex order (<) such that: (i)
the first m ≥ K + 1 vertices form a clique; (ii) for all other vertices i > m, vertex i has
at least K + 1 adjacent predecessors. Then, when all available distances are exact, a
solution to the corresponding DGP can be found in linear time O(n) by a Geometric
Build-up algorithm [12] that we shall describe ahead. We remark that such vertex orders,
also known as (K + 1)-lateration orders [20], can be found in polynomial time by a
greedy algorithm [21].

For every vertex i > m, let U(i) := {j ∈ V : {j, i} ∈ E and j < i} be the set of
all adjacent predecessors of i (with “<” being defined by the vertex order). Any subset
δ(i) of U(i), with cardinality |δ(i)| ≥ K + 1 is called a set of reference vertices for
vertex i.

The first m vertices can be realized using the process described in Section 3, leading
to a cost bounded by O(m3). Assuming |δ(i)| = K + 1, for every i > m, then,
following the vertex order, the position of every other vertex i = m+ 1, . . . , n can be
found by solving the quadratic system:

∀j ∈ δ(i), ∥vj − vi∥2 = d2ji (10)

where δ(i) = {j1, . . . , jK+1} and vj1 , . . . , vjK+1
are the position vectors of K + 1

(already placed/localized) adjacent predecessors of vertex i. It is not hard to show that
when (10) admits a solution, it coincides with the one of a K×K linear system Ax = b,
where A is nonsingular, provided vj1 , . . . , vjK+1

are affinely independent. See [12, 7]
for further details.

This approach is known in the DG literature as Geometric Build-Up (GBU) [12, 22].
The total cost of GBU is given by O(m3) + (n−m)O(K3), if the involved matrices
show no special structure. In the following, we discuss how this complexity can be
further improved when the set of references δ(i) is fixed and how to used inner products
instead of distances. These requirements will meet our application of determining word
representations from co-occurrence data in Section 4.
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3.2. GBU with inner products and fixed references
If all pairwise distances between vertices in δ(i) ∪ {i} = {j1, . . . , jM , i}, with

M ≥ K + 1, are known, then, due to Proposition 1, the system in (10) is equivalent to

∀j ∈ δ(i), ⟨vj , vi⟩ = Gij (11)

where Gij denotes an entry of the Gram matrix G which, if not directly available,
can be computed from the linear isomorphism between distance and Gram matrices:
by applying (6) to a submatrix of D containing the squared distances corresponding
to the subset of vertices δ(i) ∪ {i}. Notice that (11) is also a linear system of the
form Ax = b, with A⊤ = (vj1 . . . vjM ) ∈ RK×M and b = (Gj1,i, . . . , GjM ,i)

⊤.
Let us suppose that the reference vertices for every vertex i > m ≥ K + 1 are

Algorithm 1 Geometric Build-up with fixed references
Input: (Pseudo-) Gramian G ∈ Rn×n, integer K (dimension), integer m (number of
references)
Output An approximate realization matrix V ∈ RK×n

1: G0 ← G(1 : m, 1 : m)
2: V ← 0 ∈ RK×n

3: Compute the top K eigenvalues (and eigenvectors) of G0: ΛK , UK

4: Set A⊤ = (v1 . . . vm) =
√
Λ+
KU⊤

K and V (:, 1 : m) = A⊤

5: Compute QR decomposition: A = QR
6: for i = m+ 1, . . . , n do
7: bi = G(1 : m, i)
8: Solve Rvi = Q⊤bi
9: V (:, i) = vi

10: end for
11: return V

fixed as δ(i) = {1, . . . ,K + 1, . . . ,m}, which implies |δ(i)| = M = m, for each
i > m. In this case, in the linear system of (11), although the right hand side vector
b = (G1,i, . . . , Gm,i)

⊤ changes for each i, the coefficient matrix A⊤ = (v1 . . . vm) is
the same for every i > m. Thus, concerning the solution of linear systems Avi = bi,
for i = m + 1, . . . , n, we can factor the matrix A ∈ Rm×K only once and exploit its
factorization to actually solve triangular systems of order K for each i > m.

Since the measurements Gij can be noisy, in fact we consider a least-squares
solution for the aforementioned linear systems. Recall that the least-squares solution of
an overdetermined, full-rank system of linear equations Ax = b, i.e x that minimizes
∥Ax−b∥2, is given by the solution of the triangular system Rx = Q⊤b, where A = QR,
with R ∈ RK×K and Q ∈ Rm×K is the “economy size” QR decomposition of A [23].

This scheme leads to a cost of O(m3)+(n−m)O(K2), where G0, the first submatrix
of G of order m is realized using spectral decomposition (see Section 3), followed by
QR decomposition of A = (v1 . . . vm)⊤, and the positions of the remaining n −m
vertices are found by solving the triangular systems Rvi = Q⊤bi, for i = m+1, . . . , n.

Since A = UK

√
Λ+
K , where the columns of UK are the eigenvectors corresponding
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to the top K eigenvalues of G0, Avi may be interpreted as the projection of bi =
(G1,i, . . . , Gm,i)

⊤ onto the eigenspace spanned by these eigenvectors.
These ideas are summarized in Algorithm 1. We have used the notation A(:, j) and

A(i, :) for the j-th column and i-th row of a matrix A, respectively, and 1 : m means
that an integer index varies from 1 to m. We remark that whenever the values Gij are
exact and the affine dimension of v1, . . . , vm is K, the above procedure yields an exact
solution to (3) [24].

3.3. Vertex order and loss function

The DGP we aim to solve with this particular version of GBU can also be cast as
the following unconstrained optimization problem:

min
V ∈RK×n

m∑
i=1

m∑
j=i

(⟨vi, vj⟩ −Gij)
2 + L(V,G) := g(V ), (12)

where L(V,G) =
∑n

i=m+1

∑
j∈δ(i)(⟨vi, vj⟩ −Gij)

2 and m ≥ K +1 is the size of the
initial clique (number of references/anchors). We remark that, when |E| = n(n− 1)/2
and δ(i) = U(i), problem (12) is equivalent to (9).

Usually DGP graphs arising from many problems are quite sparse in practice. Even
if they admit a (K+1)-lateration order, the set of reference vertices δ(i) usually changes
for each i > m ≥ K + 1. However, when the underlying graph G is complete, any
vertex order is in fact a (K + 1)-lateration order. We highlight that this will be our
case, since we know all entries of the co-occurrence (or empirical PMI) matrix (see
Section 4), from which we obtain the adjacency information. Thus, we shall be able to
apply GBU with fixed references, where δ(i) = {1, . . . ,m}, for every i > m ≥ K + 1.

Therefore, in the GBU-based methods discussed in this paper, the proposed vertex
(word) orders are simply aimed at improving the quality of the word vectors. These
orders will determine which entries of the Gram matrix G (≈ PMI matrix) are taken
into account in the GBU method. Thus, in the objective function of (12), the vertex
order determines the weight of the terms (⟨vi, vj⟩ −Gij)

2: 1 for edges {i, j} used in
the sequential build-up process and 0 for the others.

In the problem of determining word vector representations, one possible vertex
(word) order is to consider words in decreasing order of their frequency in the corpus.
Another candidate for vertex ordering can be coreness. We remind the reader that the
k-core of a graph is the maximum cardinality subgraph such that each vertex has an
induced degree at least k. Then, the coreness of a vertex is defined as the maximum
integer k such that it belongs to a k-core and not to a (k + 1)-core. Computing k-
cores can be done in linear time [25]. High coreness intuitively corresponds to words
belonging to a dense community of frequent words, hence suggesting a natural vertex
order both for GBU and the Divide and Conquer (DC) algorithm presented in the next
subsection. In the experiments presented in Section 5, the results using word frequencies
or coreness were very similar.
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G =



• • • • · · · ·
• • • • · · · ·
• • • • • • · ·
• • • • • • · ·
· · • • • • • •

· · • • • • • •

· · · · • • • •

· · · · • • • •



Figure 1: Example for the divide step (|I1| = |I2| = 2, n = 8, K = 1).

3.4. Divide and conquer (DC)

Given a candidate Gram matrix G ∈ Rn×n, another approach for solving the
corresponding DGP is to split the problem in P subproblems, solve each subproblem
by spectral decomposition (as described in Section 3) and merge the partial solutions
together by solving a sequence of Procrustes problems [26].

This approach is called Divide and Conquer (DC) and consists in the two following
steps:

Divide: consider submatrices Gi (for i ≤ P ) of G, each having size ni × ni, such
that the following conditions hold. (i) Each Gi is centered along the diagonal; (ii) Gi and
Gi+1 have at least K+1 points in common indexed by Ii; (iii)

∑P−1
i=1 (ni−|Ii|)+nP =

n. The division is illustrated in Figure 1. Each submatrix defines a DGP sub-instance
which is solved with a method such as matrix factorization or GBU to realize the
corresponding points.

Conquer (Merge): after the solution of each sub-instance, we have to combine the
partial realizations consistently in order to obtain a realization of the whole graph. This
operation is carried out sequentially as follows. The solution of the first sub-instance is
saved. Then, for an instance i+ 1, for i ≥ 1, the number I of common points between
sub-instances i and i+ 1 must be at least K + 1 in order to define unique translations
and rotations for the common points to be aligned. Let Xi+1 be the current solution
obtained in the divide step, Vi ∈ RK×ni be aligned vectors obtained at the previous
step i, and let A(:, j) denote the j-th column of a matrix A. Then Xi+1 can be aligned
by using Procrustes analysis [26]: the best alignment rotation Q̂i and translation T̂i are

Q̂i, T̂i = argmin
Q∈OK ,T∈RK

I∑
k=1

∥Vi(:, ni − I + k)− (QXi+1(:, k) + T )∥22,

where OK is the set of orthogonal matrices of order K. We recall that the solution
for this orthogonal Procrustes problem, assuming

∑I
k=1 Xi+1(:, k) = 0, is given by

T̂i = (1/I)
∑I

k=1 Vi(:, ni−I+k) and Q̂i = Û V̂ ⊤, where VcXi+1(:, 1 : I)⊤ = Û Σ̂V̂ ⊤

is the Singular Value Decomposition (SVD) of the K ×K matrix VcXi+1(:, 1 : I)⊤,
with Vc = Vi(:, (ni − I + 1) : ni) − T̂i1⊤. The aligned vectors are then given by
Vi+1 = Q̂iXi+1 + T̂i 1⊤.

The pseudo-code for DC is presented in Algorithm 2. Although the computational
cost of DC may be higher than the cost of GBU with fixed references, the DC approach
may take into account more terms Gij than GBU does and still be less expensive than
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Algorithm 2 Divide and conquer
Input: (Pseudo-) Gramian G ∈ Rn×n, integer K (dimension), subproblem sizes
n1, . . . , nP .
Output An approximate realization matrix V ∈ RK×n

1: G1 = G(1 : n1, 1 : n1)
2: Compute the top K eigenvalues (and eigenvectors) of G1: ΛK , UK

3: V ← 0 ∈ RK×n

4: Set V (:, 1 : n1) = V1 =
√
Λ+
KU⊤

K , ℓ = n1

5: for i = 2, . . . , P do
6: Îi = {ℓ−K, . . . , ℓ−K + ni − 1}
7: Gi = G(Îi, Îi)
8: Compute the top K eigenvalues (and eigenvectors) of Gi: ΛK , UK

9: Set Xi =
√
Λ+
KU⊤

K

10: Align common points of Gi−1 and Gi with Procrustes analysis: Q̂i−1, T̂i−1

11: Vi = Q̂i−1Xi + T̂i−1 1⊤

12: V (:, Îi) = Vi

13: ℓ← ℓ−K + ni − 1
14: end for
15: return V

the spectral decomposition of the whole Gramian G (see Table 3 and the discussion in
the Subsection 4.2). Besides, the Divide and Conquer method is more flexible than GBU
with fixed references, since it is not mandatory to use the first m vertices as references.
Also, it allows to increase the size of sub-instances, taking in account more inner product
terms of the objective function of (9).

3.5. Stochastic Gradient Descent for DGP
In Section 2 we mentioned that most of the standard methods for static word repre-

sentations solve an optimization problem similar to (1) by employing SGD (Stochastic
Gradient Descent). It turns out that problem (12) is a particular case of (1) and thus it
raises the question of whether it is advantageous to use DG-based methods instead of
simply applying SGD to (12).

To answer this question, we report some numerical experiments on synthetic datasets
to illustrate the difference in performance between GBU and SGD.

We generate random datasets varying the number of points n, the dimension K
and the noise level η, following the procedure described in Algorithm 3 (see Appendix
A). After generating n random points V1, . . . Vn in RK , corresponding to columns of a
matrix V , we build the true Gramian Gtrue = V ⊤V and perturb its entries Gtrue

ij by a
random noise ϵij ∼ N (0, η ×Gtrue

ij ) to obtain Gij = Gtrue
ij + ϵij .

The optimization formulation we consider, which is equivalent to (12), is:

min
V ∈RK×n

1

N

 m∑
i=1

m∑
j=i

(⟨vi, vj⟩ −Gij)
2 + L(V,G)

 , (13)

11



Table 1: GBU vs. SGD to solve Problem 13 with m = K + 1

η Method Performance (K = 3) Performance (K = 50) Performance (K = 200)

Score Time Score Time Score Time

n = 500

0
GBU 4.480e-32 1.930e-02 1.931e-28 4.652e-02 7.437e-29 1.20e-01
SGD 1.224e-03 1.485e+01 1.009e-02 1.593e+01 1.266e-02 1.719e+01

0.01
GBU 7.181e-07 1.950e-02 9.932e-06 2.149e-02 * *

SGD 1.500e-03 1.394e+01 1.069e-02 1.595e+01 1.306e-02 1.706e+01

0.02
GBU 3.762e-06 2.013e-02 6.148e-06 4.089e-03 * *

SGD 1.182e-03 1.364e+01 1.055e-02 1.599e+01 1.416e-02 1.705e+01

n = 1000

0
GBU 1.794e-32 4.598e-02 5.105e-30 9.387e-02 6.757e-29 2.99e-01
SGD 1.121e-03 4.596e+01 1.335e-02 5.543e+01 2.680e-02 5.943e+01

0.01
GBU 3.360e-07 4.568e-02 4.960e-06 1.898e-02 * *

SGD 1.167e-03 5.054e+01 1.367e-02 5.600e+01 2.743e-02 5.990e+01

0.02
GBU 1.757e-06 4.809e-02 * * * *

SGD 1.434e-03 5.189e+01 1.336e-02 5.774e+01 2.892e-02 5.939e+01

where N = m(m+1)/2+m(n−m), L(V,G) =
∑n

i=m+1

∑
j∈δ(i)(⟨vi, vj⟩−Gij)

2

and m ≥ K + 1 is the size of the initial clique.
We used ADAM procedure for the stochastic gradient implementation, available

from Pytorch [27]. We set a maximum number of epochs to 1000 or stop when the
objective function reaches a value smaller than 10−3.

First, we consider problem (13) with m = K + 1 which is also the (minimum)
number of references in GBU. Table 1 presents the performance of GBU and SGD
for n = 500, 1000, K = 3, 50, 200 and η = 0, 0.01, 0.02 in terms of running time
(in seconds) and final value of the loss function (score). These figures are averages
over 10 runs for each triplet (n,K, η). A symbol “*” means that a method fails due to
numerical instability. As one can see, GBU systematically performs better than SGD
when the data are exact, both in time and score. However, GBU ran into numerical
problems for K = 200 on instances with noise. We observed that the matrix R, from
the QR decomposition of A (see Section 3.2), happens to be near singular in these
cases. A possible explanation is that the volume of the convex hull of the m = K + 1
reconstructed points v1, . . . , vm in RK is close to zero. Thus, the main advantage of
SGD over GBU for these problems (with m = K + 1) is its resistance to noise and
numerical stability.

Nevertheless, by increasing the number of references m, it is more likely that the
volume of the convex hull of v1, . . . , vm is sufficiently positive or, in other words, that
the matrix R is not so ill-conditioned. This claim is corroborated by the experiments
in Table 2 where we increased a bit more the number of references m (to 1.5 × K
instead of K + 1). We can see that GBU becomes stable, and outperforms SGD in
all instances with noise level η = 0.02. This empirical analysis partially explains our
choice m = 4K for GBU in the experiments of Section 5.

Further discussion comparing the computational complexity of SGD and GBU is
provided in Appendix B.
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Table 2: GBU vs. SGD to solve Problem 13 with m = ⌈1.5K⌉

η Method Performance (K = 3) Performance (K = 50) Performance (K = 200)

Score Time Score Time Score Time

n = 500 0.02
GBU 3.617e-06 1.948e-02 5.275e-04 5.246e-02 5.609e-03 1.21e-01
SGD 1.350e-03 1.470e+01 1.230e-02 1.592e+01 1.621e-02 1.711e+01

n = 1000 0.02
GBU 2.203e-06 4.591e-02 5.587e-04 1.070e-01 7.524e-03 3.67e-01
SGD 1.061e-03 4.541e+01 1.646e-02 5.647e+01 3.525e-02 6.039e+01

4. Distance Geometry for Word Representations

In this section, we explain how the main concepts and methods of Distance Geometry
can be used to determine word vector representations from co-occurrence data extracted
from a text corpus.

A natural question is whether there exists a pertinent distance between words of
the vocabulary. For instance, in the case of natural language, one wishes to consider a
distance between words that measures their “semantic difference”. One could expect that
such a distance, even if only partially defined, would yield a set of word vectors satisfying
the property: (A) two words are semantically correlated if their corresponding vectors
are close. Here, semantic correlation can be interpreted loosely (e.g synonymy, antonym,
or more complicated forms of semantic correlation). However, a function verifying
the property (A) may not satisfy the distance axioms. Furthermore, as discussed in
[28], co-occurrence rates also do not satisfy metric constraints. Then, according to
[29], it is more reasonable to consider the statistical nature of the co-occurrence data,
and to interpret observed object (word) pairs i and j as drawn from a joint distribution
that is determined by distances or inner products between vectors of the underlying
low-dimensional embedding.

Let p(i, j) be the probability of finding words i and j in the same window (a
sequence of w consecutive tokens in a corpus), and p(i), p(j) denote the marginal
probabilities. The Pointwise Mutual Information (PMI):

PMI(i, j) := log
p(i, j)

p(i)p(j)

is an information theoretic measure that can be used to model associations between
words [30] and is widely used in count-based and matrix factorization based word
embeddings [31]. In this work, we shall focus on word vectors that approximately solve
the following optimization problem:

min
vi,vj∈RK

∑
i

∑
j

(⟨vi, vj⟩ − PMI(i, j))2 . (14)

The reasoning behind (14) is that if the “similarity” between vectors vi and vj is mea-
sured by their inner product ⟨vi, vj⟩, then two words with a high degree of association
(high PMI), should have a high value of ⟨vi, vj⟩, and vice-versa. Similar models based
on cossine-similarity were previously used in the literature [32].
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Comparing (14) with (9) (or with (12)) suggests to consider Gij ≈ PMI(i, j).
However, recent works [33, 34] have shown that the symmetric PMI matrix obtained
from word-word co-occurrences fails to be positive semidefinite. Thus, we do not
expect the PMI matrix to be a Gram matrix, i.e, the optimal value of (14) to be zero.
Nevertheless, we observe that the solution of (14) provides the best rank-K positive
semidefinite approximation for the PMI matrix (see Proposition 2). Furthermore, there
is empirical evidence in the literature [33, 34] that the K largest eigenvalues of PMI
(for K ≤ 1000, at least) are positive.

Therefore, our approach to determine word vectors consists in applying the Distance
Geometry methods of Section 3.2 (GBU) and Section 3.4 (DC) to approximately solve
the DGP expressed by (7) using PMI(i, j) in place of Gij .

4.1. Co-occurrences and PMI estimator

Our input will be the word-word co-occurrence matrix C. Following [31], we
use an information theoretic measure, the pointwise mutual information PMI(i, j) =
log(p(i, j)/(p(i)p(j))) as a measure of association between words [30].

Actually, since the true probabilities are unknown, we consider an empirical PMI
matrix G0 whose entries are G0

ij = log ρij , where

ρij =
Cij∑

k Ckj

∑
k Cik

∑
k,l

Ckl (15)

recalling that Cij is the number of windows in which words i and j co-occurred.
However, notice that entries of G0 corresponding to zero co-occurrences Cij = 0

are not well defined. An alternative, commonly used in NLP [30, 31], is to consider the
corrected empirical PMI matrix G, where

Gij =

{
log ρij , Cij > 0

0, Cij = 0
(16)

which is, moreover, a sparse matrix.
As we shall see in Section 4.2, many methods for word embeddings employ the

empirical PMI between words i and j as a surrogate model for the inner product ⟨vi, vj⟩,
at least implicitly [31, 35, 36].

4.2. Connections with other PMI-based methods and their complexities

In this section, we perform a theoretical comparison between the DG methods
proposed in this paper and other popular word embedding methods. To assess similarities
and differences between them, we analyze their underlying optimization problems and
also provide the computational complexity of each method.

We recall that the empirical PMI matrix defined by (15) and (16) is used as a rough
approximation of the Gram matrix G [31, 35].

PMI-eigs. Word vectors obtained from the Singular Value Decomposition (SVD)
of an empirical word-context asymmetric PMI matrix have been used in NLP literature
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[31]. For a symmetric word-word empirical PMI matrix, in view of (9), the word vectors
are obtained from

min
V ∈RK×n

∥V ⊤V −G∥2F =
∑
i

∑
j

(⟨vi, vj⟩ −Gij)
2. (17)

The solution of (17) is constructed from the top K eigenpairs of G as discussed in Sec-
tion 3. We refer to this approach as “PMI-eigs”. Due to the sparsity of G ∈ Rn×n, such
eigenpairs are usually computed by an Implicitly Restarted Lanczos method (IRLM)
[37] as implemented, for example, in the Matlab routine eigs. Its cost per iteration is
given by qγn+(6K+9)qn+4q2n+2K2n+O((K+ q)3), where q is the number of
shifts and γ is the average number of nonzero elements of rows of G. See [38] for details.
If we denote m̃ = K + q, then the cost can be written as qγn + nO(K2) + O(m̃3).
Therefore, considering γq ≪ K2, the computation of the top K eigenpairs of the PMI
matrix requires O((nK2 + m̃3)niter) operations, where niter is the number of IRLM
iterations.

GBU. By considering the GBU method of Section 3.2 with m fixed references, where
δ(i) = {1, . . . ,m}, for all i > m, we aim at solving the optimization problem (12).
In this case, the objective function is similar to (17), but the sum is not over all pairs
{i, j}, but only those implied by the vertex order. We consider a vertex order in which
words are sorted in decreasing order of frequency in the corpus. Thus, according to
the discussion in Section 3.2, word vectors v1, . . . , vm for the m most frequent words
are obtained from the top K eigenpairs of the corresponding m × m Gramian G0

whereas, for i > m, word vectors vi come from projecting bi = (G1,i, . . . , Gm,i)
⊤

onto the subpace spanned by such eigenvectors. As already mentioned in Section 3.2,
the complexity of GBU with m fixed references is given by O(m3 + (n−m)K2).

DC. The underlying objective function of DC is a variation of (17) but summing
over the pairs {i, j} corresponding to rows and columns of at least one of the subma-
trices G1, . . . , GP in the divide step. Let us consider exactly K + 1 anchors (as in our
experiments), i.e |I1| = ... = |IP−1| = K + 1 and let n′(i)

iter represent the number of
IRLM iterations to solve each sub-instance i of size ni. Also, denote m̃i = K + qi,
where qi is the number of shifts in IRLM to solve a sub-instance. Then, the cost of DC
can be estimated by O(

∑P
i=1(niK

2 + m̃3
i )n

′(i)
iter + (K + 1)3(P − 1)), where the last

term represents the cost of solving P − 1 orthogonal Procrustes problems (merge step).

Notice that the above methods try to fit the inner products ⟨vi, vj⟩ to the empirical
PMI Gij . In [35], the relation between ⟨vi, vj⟩ and PMI(i, j) is studied based on a
generative model, whereas in [36] the authors suggest that when the corpus size tends
to infinity, for a window of size w sufficiently large, for each {i, j}, there exists ai and
bi, such that ∥vi − vj∥2 ≈ − log(Cij)− ai − bj . Both models claim to be consistent
with matrix factorization methods [31] and others based on regression [2] under certain
assumptions. In the following we mention three word embedding methods that fit into
this class.
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GloVe. In [2], the goal is to find embeddings v, ṽ : V → RK , by solving a weighted
least-squares regression problem

min
v,ṽ,b,b̃

∑
i

∑
j

f(Xij)
(
⟨vi, ṽj⟩+ bi + b̃j − log(Xij)

)2

(18)

where Xij is the number of times word j occurs in the context of word i, f(Xij) =

min(Xij , 100)
3/4. Therefore, if the “bias terms” bi and b̃j were known, one could see

(18) as a variant of (17) weighted by f(Xij), by using Gij ≈ log(Xij)− bi − b̃j and
assuming ṽi = vi. Furthermore, if bi = log(Xi/

√
S) and b̃j = log(Xj/

√
S), where

Xi =
∑

j Xij and S =
∑

i

∑
j Xij , we have Gij ≈ log ρij , for Xij > 0, i.e our

empirical approximation for PMI(i, j) but using the counts Xij rather than Cij . We
remark that whenever Xij = 0, the corresponding term does not appear in (18), but in
(12), it may contribute to the objective function if either the pair {j, i} is in the initial
clique or j ∈ δ(i).

word2vec & doc2vec. The skip-gram with negative sampling (SGNS) introduced
in [1] aims at predicting the surrounding context words given a center word, using the
maximum likelihood principle on the probability of the surrounding context words,
given a word at position t. The objective of the skip-gram model is to maximize the
empirical log-likelihood of the form

∑p
t=1

∑
c∈C(t) log p(wc|wt), where C(t) is the

set of indices of words surrounding the word wt, and p is the number of tokens (size
of the training set). Therefore, using the binary logistic loss, the following negative
log-likelihood is to be minimized:

p∑
t=1

 ∑
c∈C(t)

h(⟨vt, vc⟩) +
∑

η∈N(t,c)

h(−⟨vt, vη⟩)

 (19)

where h(x) := log(1 + exp(−x)) and N(t, c) is a set of negative examples (words that
do not occur at context c of word t) sampled from the vocabulary. Usually, this opti-
mization problem is solved approximately using Stochastic Gradient Descent [10, 11].
The doc2vec method also follows the same idea, except that each document is seen as a
supplementary word for each context, and then attributed a vector as well. Therefore,
these formulations are different from ours, or PMI-eigs and GloVe for that matter, but
meet in the sense that they consider co-occurrences information as input (see [31] for a
deeper discussion on the connection of (19) with the above optimization problems and
implicit matrix factorization).

fastText. In [39], an extension of SGNS is proposed. This extension takes into account
the morphology of words: a vector representation is associated to each character s-gram
and words are represented as the sum of these vectors.

The complexity of the co-occurrence based methods discussed above are summed
up in Table 3. Recall that n = |V| is the size of the vocabulary and K the dimension.
Concerning DC and PMI-eigs, it should be noted that usually n′

iter ≪ niter hence PMI-
eigs complexity is not necessarily lower than that of DC. The number of shifts q, qi is
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Table 3: Computational complexity for several word vectors realization algorithms

Method Complexity

PMI-eigs O((nK2 + m̃3)niter)

GBU O(m3 + (n−m)K2)

DC O(
∑P

i=1(niK
2 + m̃3

i )n
′(i)
iter + (K + 1)3(P − 1))

GloVe O(p0.8nepochsK)

internally set in the implementation of eigs in Matlab and it is difficult to estimate,
even though it is likely that K ≤ q ≪ n and K ≤ qi ≪ ni. Besides, the number of
iterations n′

iter, niter depends on the distribution of the eigenvalues of the corresponding
matrices. For these reasons, we do not know how to compare their theoretical complexity.
However, we will compare their empirical running times in Section 5.

The complexity study for Glove is detailed in [2, Section 3.2] and indicates O(p0.8nepochs)
where p is the total number of tokens in the corpus, and nepochs the number of epochs
of the stochastic gradient descent (SGD) [10, 11]. For a fair comparison with other
methods, we consider that this complexity also depends linearly on the dimension. Since
fastText, word2vec and doc2vec rely on SGD for solving the corresponding underlying
optimization problems, we will assume that their complexity is similar to GloVe.

For the first three methods of Table 3, the dimension seems to be a drawback,
but their complexities are good in practice. For example, for a corpus composed of
p = 2.66× 108 tokens (corpus described in Section 5), nepochs = 15 (standard corpus
size and parameters for SGD), containing about n = 105 different words, dimension
K = 50, we have CGlove = p0.8nepochsK ≈ 4.13×109 and CGBU = m3+(n−m)K2 ≈
2.50× 108, with m = 200 references. These complexity estimates are consistent with
running times in our experiments. It should be noted that these estimates do not take
pre-processing of the corpus into account, which is O(p) in all cases: this corresponds
to one pass through the corpus in order to construct the vocabulary, and possibly ignore
low-frequency terms.

5. Experiments

In order to assess the performance of word representations obtained by the proposed
methods as input to machine learning algorithms for an end-task, as well as to compare
training times with well established methods in the literature, we consider two sets
of experiments: (i) protein sequence embeddings in bioinformatics and (ii) natural
language processing. The first set was chosen to illustrate the usefulness of our methods
in applications where pre-trained representations are rarely available whereas the second
aims to contrast the training time with well-known methods for word representation in
the NLP literature.
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Table 4: Results for Channelrhodopsin localization (Localization) and Thermostability (T50) regression tasks.
All embeddings have dimension K = 64. First and second best are in bold and underline, respectively.

Localization T50

Representation R2 MAE R2 MAE

doc2vec (k = 3, w = 3) 0.52 0.756 0.35 3.02

doc2vec (k = 3, w = 7) 0.47 0.787 0.45 2.94

GBU (k = 3, w = 3) 0.54 0.728 0.42 3.00

GBU (k = 3, w = 7) 0.61 0.667 0.48 2.69

The codes and data are available in our repository1. All experiments were carried
out in a personal laptop with CPU of 2 cores Intel(R) Core i5 1.8Ghz with 8 Gb of Ram.

5.1. Protein sequence embeddings

An interesting application in bioinformatics is the determination of vector represen-
tations for protein sequences in order to infer physical or biological properties of unseen
sequences through machine-learning models [9]. Differently from natural language pro-
cessing, pre-trained representations for protein sequences are not commonly available
and thus we need to train representations from the scratch.

Here, following the study in [9], a sequence of amino acids is divided into k
lists of non-overlapping k-mers. For example, for k = 3, the amino acid sequence
“ADTIVAVET” gives rise to 3 lists of 3-mers: “ADT, IVA, VET”, “DTI,VAV” and “TIV,
AVE”. In this way, each amino acid sequence is viewed as a document whose phrases
are the lists and words are the k-mers.

In [9], doc2vec [40] embedding models were trained on 524,529 protein sequences
from UniProt database [41] and used to infer encondings of sequences for input to
machine-learning algorithms for the end-task. Embeddings for the task sequences (not
present in the training) were obtained by averaging the embeddings for the k lists of
k-mers.

We consider two regression tasks named in [9] as “Localization” and “T50” (see
[9] and references therein for details). For these tasks we used Gaussian process (GP)
regression models [42] trained on the sequence embeddings given by doc2vec and com-
pare its performance against the same GP model (using Matérn kernels with parameter
ν = 5/2) trained on embeddings obtained by the proposed DG-based methods.

We have used the same training and test sets2 as in [9]. The context windows are
defined by w k-mers before and after the central k-mer. We have used doc2vec from
the Python library Gensim [43], with 25 epochs. In Table 4 we evaluate the predictions
based on the coefficient of determination (R2) and the mean absolute error (MAE). As

1Repository link
2The datasets and scripts are available at https://github.com/fhalab/embeddings_

reproduction/
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we can see, the results for embeddings obtained by GBU (with parameters K = 64,
m = 4K) are slightly better than those from doc2vec with respect to these two measures.
When it comes to training time, we remark that doc2vec spent more than 5 hours whereas
GBU computed k-mers vector representations in less than 30 seconds.

5.2. Word embeddings in Natural Language Processing

The aim of this section is to contrast the training time of the proposed methods
with those of popular ones for word representation while assessing their performance
in intrinsic and extrinsic tasks. We shall see that the DG-based algorithms enjoy
a remarkable reduction in training time and can reach competitive performances in
extrinsic tasks (e.g. text classification).

To construct word representations, we used a corpus of 106 documents from
Wikipedia 2016, which was cleaned using standard pre-processing methods in NLP (stop
words and punctuation removal). The corpus is composed of 266, 561, 061 tokens and
the resulting vocabulary has 81, 653 distinct words. For the proposed DG-based meth-
ods, we used a window of w = 10 consecutive tokens for counting the co-occurrences.

The word vectors for PMI-eigs, GBU and DC were generated using Matlab [v.2018.b].
GloVe3 and fastText4 were compiled using GCC Apple LLVM version 10.0.0 (clang-
1000.10.44.4) with the default parameters from the official code and trained in the
corpus described above. We also compare these word representations with a baseline of
random word vectors whose components are drawn from a standard Gaussian.

Table 5: Intrinsic evaluation (QVEC). First and second best are in bold and underline, respectively.

Dimension K 100 200 300

Random 14.89 21.82 27.08

GBU (m = M = 4K) 30.01 37.41 42.45

DC (n1 = 2× 104, ni≥2 = 800) 34.21 41.42 45.69

PMI-eigs 36.55 43.74 48.35
Glove 35.43 42.06 46.25

fastText 36.06 43.51 47.87

Two experimental evaluations of word vectors were considered. First, an intrinsic
evaluation, using QVEC [44], which was shown to have good correlation with the
performance of the word vectors on semantic evaluation tasks, based on alignment of
features extracted from lexical resources. These evaluations are reported in Table 5.
Second, we evaluate the quality of these representations over three text classification
tasks. Our implementation includes 3 datasets: WebKb (Multiclass), Subjectivity
(Binary) and Amazon (Binary). Results are reported in Table 6.

3https://github.com/stanfordnlp/GloVe
4https://github.com/facebookresearch/fastText/
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Table 6: F1 score - Text classification. First and second best are in bold and underline, respectively.

K = 100 K = 200 K = 300

Representation Subject WebKB Amazon Subject WebKB Amazon Subject WebKB Amazon

Random 80.09 91.12 74.26 81.34 91.84 76.33 81.63 92.37 76.24

GBU (m = M = 4K) 88.21 93.04 80.58 88.05 93.68 81.39 88.31 93.40 82.36

DC (n1 = 20000, ni≥2 = 800) 87.86 92.03 80.61 88.28 92.65 82.49 87.97 92.80 82.54

PMI-eigs 88.17 92.19 80.0 88.10 92.52 81.86 87.66 92.21 81.95

Glove 87.96 93.07 79.75 87.62 93.24 79.76 87.81 93.22 81.57

fastText 87.71 93.37 80.64 88.02 93.57 81.57 88.03 93.82 82.64

Table 7: Computing times (Left: Word Vectors, Right: Total). First and second best are in bold and underline,
respectively.

Dimensions (K = 200) Datasets

Representations 100 200 300 Represent. + Classif. Subject Amazon WEBKB

Glove 1h07m 2h07m 2h42m Glove + CNN 7815s 8640s 9120s

fastText 30m 48m 1h04m fastText + CNN 3075s 3900s 4380s

PMI-Eigs 412s 836s 1088s PMI-Eigs + CNN 1031s 1856s 2336s

DC (n1 = 20000, ni≥2 = 800) 348s 452s 618s DC + CNN 602s 1368s 1952s

GBU (m = M = 4K) 168s 188s 211s GBU + CNN 383s 1208s 1688s

For our classification experiments, we use an implementation of a Convolutional
neural network (CNN) [45] using Tensorflow library [46] version 1.12. Overall, the
performance in terms of F1-score between our word vectors, GloVe and fastText are
very similar. A noticeable result is the performance of random embeddings on the
WebKB dataset, which perform as well as the other representations. The reason for this
behavior is that WebKB is made up of documents sharing lots of words in common
when they belong to the same class. Therefore, the quality of the embeddings have less
impact than the other tasks we consider.

We also provide some practical computing times, in the line of our complexity study.
Table 7 reports the times for obtaining the word vectors (left) only, for dimensions
K = 100, 200, 300, and the total time including the CNN training for K = 200
(right); parsing time is not included. Besides, for PMI-eigs, DC and GBU, we added the
time for computing the matrix G (whose entries are given in (16)) from co-occurrence
counts (≈ 120s) and for DC and GBU we also consider the time for computing the
corresponding vertex order (≈ 90s and ≈ 30s, respec.). The parameters used in GBU
were M = m = 4K and the ones of DC were n1 = 20000 and np≥2 = 800.

From Table 7 we observe that the training times for the DG based methods are
remarkably smaller than those of standard word vectors construction methods. They
also improve the computational time with respect to the spectral decomposition of the
whole PMI matrix. The price to be paid for these extremely fast word vectors, whose
performance in text classification is close to well-established word embeddings such
as GloVe and fastText (Table 6), is possibly an inferior performance in intrinsic tasks
(Table 5).
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6. Conclusion and perspectives

We proposed a formulation and methods based on Distance Geometry (DG) to gen-
erate vector representations of words from co-occurrence data. The resulting Geometric
Build-up and Divide and Conquer algorithms are considerably faster than popular word
embedding algorithms, as GloVe and fastText. Although the word vectors obtained by
DG methods have performance inferior than the benchmarks in our intrinsic evaluation
(QVEC), when combined with a convolutional neural network, DG word vectors lead to
F1 scores among the best in three text classification tasks, but demanding about half to
a quarter of the computing time, depending on the dataset. Concerning the regression
tasks on protein sequences, the results obtained by DG-based methods were slightly
better than those of doc2vec whereas the training time was extremely reduced. In our
experiments, we considered a vertex order obtained by two heuristics: ranking the
frequency of words in decreasing order for the GBU algorithm, and an order based
on K-cores for the DC algorithm. The study of other vertex orders and their impact
in the results of the GBU and DC algorithms are subject of future studies. Another
question we would like to investigate is if the use of DG methods can also be extended
for contextual embeddings.

Our approach based on distance geometry seems suitable for representation learning
in low resources languages, or tasks in bioinformatics where pre-trained embeddings
are not publicly available. Since the employed DG algorithms to obtain word vector
representations scale well with the vocabulary size and dimension, they are adapted
when working with limited computing resources. Therefore, Distance Geometry seems
a promising paradigm for representation learning and perhaps other applications in data
science.
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Appendix A. Random instances for GBU and SGD

The algorithm below describes how the synthetic data for experiments in Section 3.5
was generated.

Algorithm 3 Synthetic data generation for problem (12)
Input: integer n (number of points), integer K (dimension), float η (noise relative
amplitude)
Output (Pseudo-) Gram Matrix G ∈ Rn×n

1: V = (V1, · · · , Vn)← n samples from N (0, IdK×K)
2: Center V : ∀i ∈ {1, · · · , n}, V (:, i)← V (:, i)− 1

n

∑n
j=1 V (:, j)

3: Gtrue ← V TV
4: G← 0 ∈ Rn×n

5: for i = 1, . . . , n do
6: ϵii ← sample from N (0, η ×Gtrue

ii )
7: Gii ← max(0, Gtrue

ii + ϵii)
8: for j = i+ 1, . . . , n do
9: ϵij ← sample from N (0, η ×Gtrue

ij )
10: Gij ← Gtrue

ij + ϵij
11: Gji ← Gij

12: end for
13: end for
14: return G

Appendix B. Complexity of SGD for DGP

One may wonder about the complexity of SGD when applied to problem (12),
the same problem to be solved by GBU. According to [47], for non-convex smooth
objectives, SGD ensures a ε-stationary point V , i.e E[∥∇g(V )∥2] ≤ ε, in O(1/ε2)
iterations5 [48]. Better iteration complexities are possible if the objective function g
satisfies the Polyak-Łojasiewicz (PL)6 or other growth conditions [49]. Unfortunately,
although the objective g(V ) in (12) has Lipschitz gradient, it fails to verify the PL
condition. Thus, considering the O(1/ε2) iteration complexity, if we work with a
moderate tolerance, e.g ε = 10−6 (∥∇g(V )∥ ≤ 10−3), then in the worst case we
need O(1012) calls to the first order oracle (SGD iterations), which for dimension
K = 50, incurs in computational cost of CSGD ≈ 5× 1013 (five orders of magnitude
greater than CGBU in the same setting). Even if variance reduction versions of SGD are
considered, the computational complexity may still be higher than that of GBU. For
instance, if SVRG [47] is used, with complexity O(N +N2/3/ε), for the objective in
(12), N = m(m + 1)/2 + (n −m)m ≈ O(mn), implying, for m = 200, n = 105,

5calls to the incremental first-order oracle;
6g satisfies the PL growth condition if there exists µ > 0 such that g(V )− g(V ⋆) ≤ (1/2µ)∥∇g(V )∥2,

where V ⋆ is a global minimizer.
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K = 50 and ε = 10−6, that N2/3/ε = 5
3
√
202 × 1011, which is already three orders

of magnitude greater than CGBU . These numbers are consistent with the experiments
reported in Section 3.5.
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