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Abstract2

Protein structure predictions face sampling problems due to the large conforma-3

tional space to be explored. The use of long-range distance restraints is essential to4

overcome these problems. Such restraints can be derived from the knowledge of a tem-5

plate structure, or from the analysis of protein sequence alignment in the framework6

of models derived from the physics of disordered systems. The accuracy of approaches7

based on sequence alignment, however, is limited in the case that the number of aligned8

sequences is small. Moreover, these approaches are unable to handle the disordered9

regions of proteins. To address these issues, we evaluate protein conformations ob-10

tained by a local approach, based only on the knowledge of local conformations, which11

bypasses the knowledge of long-range restraints. The interval Branch-and-Prune algo-12

rithm, which systematically enumerates conformations, is particularly well-suited for13
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the task of exploring the conformational space from local information. To improve14

its success rate, we provide it with supplementary input about the variations of pro-15

tein stereochemistry along the sequences. This is particularly impactful in the case of16

protein topologies defined from numerous long-range restraints.17

Introduction18

The approaches for predicting protein structures from the knowledge of their primary se-19

quence have undergone enormous developments during the last decades. One of the most20

recent steps of this progress is the use of deep learning approaches.1–4 These in silico pre-21

dictions pave the way towards protein function prediction and drug design and can be thus22

considered as founding steps towards a reasoned interference with physiological processes,23

health problems, or plant engineering.24

In the domain of protein structure prediction, part of the input of template-free in silico25

approaches consists of local structural information on the one hand, and long-range proxim-26

ity on the other.5 The relative importance of these two pieces of information is essential for a27

successful prediction, as pointed out by Skolnick et al6 already long ago. Using the develop-28

ment of covariance approaches for multiple sequence alignments,7–9 the scientific community29

found a consensus on the fact that prediction methods must be based on information on30

local secondary structures coupled to the use of long-range restraints.1031

The recently flourishing deep learning approaches1–4 have followed the same path, cap-32

italizing on the availability of huge databases of protein structures and sequences.11,12 The33

success of all prediction methods is thus quite dependent on the availability of long-range34

restraints and consequently on the availability of multiple sequence alignment. Prediction35

methods for the torsion angles ϕ and ψ, however, may rely on a unique protein sequence.13–1736

Consequently, local structure prediction can be inferred independently of alignment infor-37

mation.38

In several cases, long-range proximity information cannot be obtained because the size of39
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the corresponding sequence alignments is insufficient. An obvious case arises in the presence40

of disordered regions involving many conformations, which prevents the determination of41

precise proximities. Besides, for some protein families, the number of aligned sequences is42

too small for statistically determining the long-range restraints.18 Proteins for which expres-43

sion frameshift conducts to the expression of various polypeptides are also cases where the44

multiple sequence alignment does not provide reliable information.1945

In this paper, we investigate whether local structure information is sufficient to deter-46

mine the protein fold. Of course, local and global structural pieces of information are closely47

linked: we are aware of the artificial nature of their separation. The present work should48

be considered a geometric investigation of the relative importance of local and global infor-49

mation for calculating protein conformations. Our work is motivated by a previous analysis50

(performed by some of us),20 where we had identified some particular situations in which the51

local geometry seems to have a larger impact on the protein folds than long-range distances.52

Some initial investigations in line with the present have already been conducted.2153

For our purpose, we employ a purely geometric approach, the interval Branch-and-Prune54

(iBP) algorithm, proposed some years ago to solve the problem of distance geometry in the55

frame of protein structure.22–25 The adaptation of iBP to intrinsically disordered proteins56

and regions is known as Threading-Augmented interval Branch-and-Prune (TAiBP:25,26). It57

systematically enumerates protein conformations while heuristically overcoming the intrinsic58

combinatorial barrier. Since then, TAiBP has been shown to allow the analysis of the59

conformational space of various flexible or disordered proteins.27–2960

In the present work, we test many variants of the iBP algorithm with different levels61

of knowledge of the local geometry information. Our input consists of a database of 30862

protein structures smaller than 100 residues. These high-resolution X-ray crystallographic63

structures were selected in particular because they contain at least two secondary structural64

elements, α helices or β strands.65

The present study shows that the efficiency of reconstructing the protein fold is very sen-66
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sitive to the knowledge of stereochemistry variations. In the present work, unless otherwise67

noted, the stereochemical analysis focuses on the bond angle values between the heavy back-68

bone atoms and the torsion angle ω. These stereochemistry variations depend more on the69

position of the residues in the Ramachandran diagram than on the type of individual amino70

acid residues. From these statistics, different types of stereochemistry were investigated, in71

particular, the case where the stereochemistry parameters are averaged on the regions of72

the Ramachandran diagram defined by Hollingsworth et al30 and that we will denote in the73

following by Hollingsworth stereochemistry. Two other stereochemistry types we analyze are74

the uniform one, in which the parameters are taken from Engh and Huber,31 and the pdb one75

in which the stereochemistry parameters are extracted from each studied PDB entry. Using76

the Hollingsworth stereochemistry, the exact knowledge of the ω backbone angles allowed77

us to recover most of the protein folds. Even a discretized knowledge of ω allowed us to78

achieve decent reconstruction levels. The enumeration of conformations using the iBP ap-79

proach improves the fold reconstruction whenever uniform stereochemistry is used. Looking80

at the origin of ω variability, some connection with the position of rare DNA codons was81

emphasized, in agreement with recent literature results.32–3482

Materials and Methods83

Data and Software Availability84

The list of PDB entries of X-ray crystallographic structures with identity between sequences85

smaller than 20%, resolution better than 1.6 Å and R factor better than 0.25, has been86

downloaded from the server dunbrack.fccc.edu/pisces35 providing 3757 protein chains.87

From this list, 308 protein chains were selected, smaller than 100 residues, not containing88

cis peptide bonds, and for which more than two secondary structure elements (α-helix or89

β-strand) are present (Table S1).90

The proteins forming the database display a size mostly in the range of 60-90 residues,91
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with a smaller number of proteins containing 20 to 60 residues (Figure S1). The percentage92

of α helices is uniformly distributed among the proteins, whereas the β-strand and the loops93

display more concentrated distributions in the 0-20% for β strands and 20-40% for loops.94

The interval Branch-and-Prune (iBP) approach is available at: github.com/tmalliavin.95

The initial version of iBP25 modified to handle variable steroechemistry was deposited as96

the version 2 of iBP on github. For the other software, not developed by the authors, the97

literature references are given.98

interval Branch-and-Prune approach99

The interval Branch-and-Prune approach (iBP) algorithm was initially proposed by Mucherino100

and coworkers22,23,25,36–39 to enumerate the conformations of proteins verifying sets of dis-101

tance constraints. The space of all possible protein structures is described as a tree and the102

available geometric information permits tree branching and pruning. This branch-and-prune103

description of the problem makes possible a discrete enumeration of solutions, and conse-104

quently strongly contrasts with most of the optimization approaches usually employed for105

the determination of biomolecular structure.106

If not otherwise stated, the conformations of the proteins have been recalculated using107

one-shot iBP runs, in which the run was stopped after producing the first solution. The108

branching part was performed on ϕ and ψ torsion angles using intervals of 5 degrees centered109

around the true ϕ and ψ values. The torsion angles are converted into distance intervals,110

which are discretized with a maximum of four branches separated by at least 0.1 Å, which111

defines the discretization factor ϵ.112

The ω values of the torsion angle of peptidic planes were used as pruning restraints as well113

as the χ1 torsion angle defining L amino acid residues. A last pruning restraint is related to114

all interatomic distances which should be larger than the sum of van der Waals radii, using115

a scale factor of ρ = 0.8 on the radii for the one-shot runs. This approach is reminiscent of116

the reduction of the van der Waals interactions during the simulated annealing procedure in117
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NMR structure calculation.40118

Variations of stereochemistry during iBP calculations119

Several definitions of protein stereochemistry focusing on the backbone bond angles and ω120

torsion angles were used as inputs for the calculations. Uniform stereochemistry was defined121

using the values from the force field PARALLHDG (version 5.3)31 (Table S2). Two variations122

of the stereochemistry are explored: (i) pdb stereochemistry in which the bond angles and123

ω torsion angle were extracted from the PDB conformation of the considered protein, (ii)124

Hollingsworth stereochemistry in which the bond angles and the ω torsion angle are taken as125

the average stereochemistry values calculated from the regions of the Ramachandran diagram126

defined by Hollingsworth et al from the analysis of high-resolution X-ray crystallographic127

structures.30128

For pdb stereochemistry, each protein residue is defined by a 3-letter name, the alphabetic129

order of the names coding for the positions of the residues in the primary sequence, the first130

residue being AAA, the second one AAB, and so on. The topology files in CNS format41131

were modified by using this residue code to define the amino acid residues along the primary132

sequence as well as the different atom types for each residue. Using these atom types, and133

the stereochemistry values in the PDB structure, values of bond lengths and angles are then134

generated for each residue along the sequence and stored in the CNS parameter file. This135

allows us to take into account any possible variations of protein stereochemistry (pdb or136

Hollingsworth) along the protein sequence.137

Analysis of obtained conformations138

The analysis of protein conformations obtained with iBP has been performed using the139

MDAnalysis package42 and STRIDE.43 Sidechains were added to the protein backbone using140

the Relax procedure44 of Rosetta45 for the refinement of a one-shot iBP run, in the case of141

uniform and Hollingsworth stereochemistry. During the Relax procedure, 10 conformations142
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were generated and the procedure was repeated 5 times.143

Results144

Analysis of protein stereochemistry145

The stereochemistry of the 3757 protein chains downloaded from the server dunbrack.fccc.146

edu/pisces35 has been analyzed by calculating the average values of the backbone bond147

angles N−Cα−C, Cα−C−N, C−N−Cα, Cα−C−O, and O−C−N (Figure 1). The negative148

torsion angles ω were shifted by 360◦ in order to obtain ω value variations around 180◦. The149

averaged and standard deviation values of these bond and torsion angles are plotted according150

to the type of amino acid (Figure 2, left column) and to the region of the Ramachandran151

diagram defined by the backbone torsion angles ϕ and ψ (Figure 2, right column). The152

Ramachandran regions were taken from the definition given in the work of Hollingsworth et153

al30 (Figure S2).154

Almost all average angle and standard deviation values display flat profiles along the155

type of amino acid (Figure 2, left column). The standard deviations for ω angles display156

slight variations among the amino acids, especially for Glycine, Tryptophan, and Tyrosine.157

Unsurprisingly, the dashed line indicating the Engh and Huber31 values is close to the average158

values of angles. The bond angles Cα−C−N and C−N−Cα display the smallest standard159

deviations, whereas the bond angles N−Cα−C and Cα−C−O display the largest ones. The160

averaged values of the angle C−N−Cα display one outlier for Proline residues, with a shift161

of around 2◦. The averaged values of the angle N−Cα−C display four outliers, all shifted by162

around 2◦: two are shifted towards larger values for amino acids Glycine and Proline, and163

two are shifted towards smaller values for amino acids Isoleucine and Valine. The outliers164

positions of Isoleucine and Valine have been recently observed46 for the propensity scales of165

the Ramachandran regions. In addition, Proline and Glycines have been known for decades166

to influence local geometry.47,48167
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Interestingly, the profiles along the Hollingsworth regions (Figure 2, right column) are168

much more variable for the average as well as for the standard deviation values. Among169

the bond angles, the angle N−Cα−C and Cα−C−O display the most variable profiles. The170

region A (Figure S2, red), corresponding to the regular α helix, produces angles close to the171

Engh and Huber values, with the smallest standard deviations. The region D (Figure S2,172

green), corresponding to the 3-10 helix, displays standard deviations similar to the region173

A, but average values shifted to upper values for bond angles Cα−C−N and N−Cα−C and174

to lower values for bond angle Cα−C−O. The region B, corresponding to the regular β175

strand (Figure S2, blue), and P, corresponding to the polyproline region (Figure S2, brown),176

displays also average values mostly close to the Engh and Huber values except for the angle177

N−Cα−C, but the standard deviations are larger, especially for the angle ω. The regions g,178

Z, located between the α and β regions of the Ramachandran diagram, the regions G, d, p,179

located in the loop region of positive ϕ value, and the region E, all display large standard180

deviations and shifted average values.181

The right column of Figure 2 permits the definition of protein stereochemistry depending182

on the Ramachandran region by averaging over each Hollingsworth region (Figure S2), the183

values of bond angles and ω angles. Due to the profile variations of Figure 2, one may184

expect that this Hollingsworth stereochemistry will be more variable than a stereochemistry185

based on the amino-acid type. This is not surprising as the amino acid type is defined186

by the sidechains which are more far apart from the backbone than the ϕ and ψ torsion187

angles. In the following, the protein stereochemistry will be modeled as uniform ie. uniquely188

defined from the atom type, following the measurements of Engh and Huber31 (Table S2),189

as Hollingsworth with averaged values determined from the ϕ, ψ torsion angles (Figure 2),190

and as a pdb, using angles measured on the PDB structure of the considered protein.191
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Effect of stereochemistry on the protein conformations generated192

with iBP193

Several experiments were performed on the database of proteins to reconstruct the confor-194

mations using iBP with the previously chosen types of stereochemistry. First, one-shot runs195

were realized with calculations stopping after obtaining the first conformation (Table 1).196

Then, the protein targets were submitted to a full exploration of the tree, using narrow in-197

tervals of ϕ and ψ in the secondary structure elements, and larger intervals in the connecting198

loops.199

Figure 3 displays the distributions of the root-mean-square deviation (RMSD, Å) between200

the atomic coordinates of the iBP solution and of the initial PDB conformation for the one-201

shot runs using the definitions of stereochemistry described in Table 1. In the case where202

the stereochemistry is defined from the initial PDB conformation (pdb stereochemistry in203

Table 1), coordinate RMSD around 0.5 Å are observed (Figure 3a). This provides a floor204

value for the maximum possible precision which can be obtained using the discretization of205

the ϕ and ψ intervals in iBP. It is interesting to note that if the bond lengths are also taken206

variable from the PDB conformation, the same distribution of RMSD values is obtained (data207

not shown). The bond length variations have thus much less influence on the variations of208

conformations obtained by iBP than the bond angle variations.209

As soon as the ω angle is set to 178◦ with pdb stereochemistry (Figure 3b), the RMSD210

distributions are switched towards much larger values, up to 10-12 Å. Such behavior is also211

observed for Hollingsworth (Figure 3c,d) or for uniform (Figure 3e) stereochemistry. Inter-212

estingly, quite different RMSD distributions are observed according to the type of secondary213

structures. The shift is smaller for proteins folded mostly as α helices (blue curves) or mostly214

as loops (red curves), producing an RMSD value smaller than 3 Å for at least half of the215

structures. By contrast, the structures containing mostly β strands (green curves) display216

distributions centered at RMSD values between 5 and 6 Å.217

The coordinate RMSD values are known to display some limitations for precisely measur-218
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ing the accuracy of a protein structure prediction.49 Thus, the TM score distribution50 have219

been calculated here (Figure S3) using the software code downloaded from zhanggroup.org/220

TM-score. For pdb stereochemistry (Figure S3a), the TM scores are close to the optimal221

value of 1. Similarly to Figure 3, the TM-score values are getting worse if ω values of 178◦222

are used (Figure S3b,d) or in the case of uniform stereochemistry (Figure S3e). Most of223

the calculated conformations display TM-scores larger than 0.5, if the bond angles are taken224

from the PDB entry and the ω values are set equal to 178◦.225

An interesting difference between the TM score and RMSD is observed for Hollingsworth226

stereochemistry. Indeed, the TM scores are worse for Hollingsworth stereochemistry (Fig-227

ure S3c,d) than for any other calculation, whereas the RMSD values are similar between228

Hollingsworth (Figure 3c,d) and uniform (Figure 3e) stereochemistry. This is probably due229

to a distortion in interatomic distance distribution, which is the main ingredient for calcu-230

lating the TM score produced by the use of bond and ω angles averaged on Hollingsworth231

regions. Additional distortions may arise from the use of the van der Waals scaling of ρ = 0.8232

used during the iBP calculation to avoid pruning of conformations.233

To investigate more precisely the relationship between stereochemistry variations and the234

efficiency in conformer generation, the global variation of bond angles along a structure has235

been calculated as:236

∆θ =
N−1∑
i=1

|θi+1 − θi| (1)

where | · | stands for the absolute value, and N is the number of residues with residue number237

indexed from 1 to N . A similar global variation for the torsion angle ω was defined as:238

∆ω =
N−1∑
i=1

|δωi+1 − δωi| (2)

where:239
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δω =

 180◦ + ω if sgn(ω) < 0,

−180◦ − ω if sgn(ω) > 0,
(3)

with sgn(·) being the sign function, i.e., sgn(x) = 1 if x > 0 or sgn(x) = −1 if x < 0.240

The ∆θ values calculated on bond angles C−N−Cα, N−Cα−C and Cα−C−N and the ∆ω241

values calculated on torsion angle ω were compared to the coordinate RMSD values between242

the iBP and initial conformations (Figure S4). The global variations and the coordinate243

RMSD display an obvious correlation which is also driven by the length of the protein244

chains. In agreement with Figure 2, the largest global variations are obtained for ∆ω (blue245

points) and ∆θ of the N−Cα−C bond angle (green points).246

For the calculations performed using: (i) Hollingsworth stereochemistry for bond angles247

with ω values taken from the initial PDB structure (Figure 3d) and (ii) uniform stereo-248

chemistry (Figure 3e), the protocol Relax44 of Rosetta45 was applied on the iBP outputs,249

to add the residue sidechains. The minimal RMSD value with respect to the initial PDB250

conformations (Figure S5a,b) shifts towards smaller values which is the sign of a conforma-251

tion drift towards the correct solution. Indeed, the comparison of RMSD distribution with252

Hollingsworth (Figure S5a versus Figure 3d) and uniform (Figure S5b versus Figure 3e) stere-253

ochemistry reveals a shift of 1-2 Å and even of 4 Å for the mostly β folded proteins (green254

curve). The Rosetta scores have been also plotted along the coordinate RMSD and display255

a similar variation towards more negative values for smaller RMSD values (Figure S5c,d).256

The iBP procedure presented here for reconstructing a protein complete fold could also257

have an application for the reconstruction of missing parts of a given protein structure. To258

evaluate this approach, the sub-chains for which coordinate RMSD to initial protein structure259

was smaller than 2.5 Å were extracted and their lengths are plotted as the percentage of the260

length of the full chain (Figure S6a,b,c) as well as numbers of residues (Figure S6d,e,f). The261

distribution of the percentages (Figure S6a,b,c) agrees with the distribution of RMSD values262

(Figure 3), with percentages close to 100% when RMSD values close to 0.5 Å are observed. As263
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soon as the stereochemistry becomes less variable, the distributions of percentages become264

wider, but display very similar shapes in all runs, with two maxima located around 50%265

and 90% (Figure S6b,c). The distribution of the numbers of residues are all larger than 30266

residues and are mostly distributed in the range of 20-60 amino acids. These values compare267

well with the results of the literature.51 In addition, similar distributions are observed for the268

different types of secondary structures in protein folds. These results are quite encouraging269

in the perspective of reconstructing missing parts of protein structures.270

In the presence of Hollingsworth stereochemistry, the effect of different input ω values on271

the reconstruction of protein folds was analyzed (Figure 4). If exact values are known for272

ω torsion angle (Figure 4a), the majority of structures containing mostly α helices or loops273

display RMSD values smaller than 3 Å, corresponding to a good reconstruction of the protein274

fold. On the other hand, the structures containing mostly β strands display a shift in RMSD275

values, but their RMSD is still mostly smaller than 3 Å. Thus, knowing the exact values for276

torsion angles ω is essential for building the protein structure from local information.277

Then, the effect of several discretizations of ω was tested on the reconstruction of protein278

structures. In that case, the ω continuous values are replaced by ωk values corresponding279

to different discretization classes k. In the first discretization, the absolute value of the280

parameter δω previously introduced in Eq 3 was used to define four classes of ω values:281

ωk =

 173◦sgn(ω) if 5◦ < |δω| < 10◦,

177◦sgn(ω) if |δω| < 5◦
(4)

This discretization induces a shift in RMSD values (Figure 4b). The mostly α and loop282

structures are still correctly reconstructed, and half of the mostly β structures display RMSD283

values larger than 3 Å.284

A more crude discretization is used where ωk is set equal to 178◦sgn(ω). This two-285

class discretization (Figure 4c) shifts the RMSD distribution to values larger than 3 Å for β286

structures, but about the two third of α and one-half of loop structures display RMSD values287

12



smaller than 3 Å. But, even this crude discretization allows us to obtain better RMSD values288

than those observed for uniform stereochemistry (Figure 3e). The effect of ω discretization289

on the fold reconstruction proves that classification approaches52 could be interesting for290

predicting protein conformations.291

Effect of the enumeration by iBP to the reconstruction of protein292

fold293

The iBP approach has the advantage of allowing a systematic enumeration of all possible294

solutions. This enumerating scheme was thus used here to improve the coordinate RMSD295

of solutions with respect to the initial PDB structure. The inputs of the iBP runs were296

intervals around the ϕ and ψ angles with intervals widths of 5◦ in α helices and β strands,297

and of 40◦ in other protein regions. The number of branches is 4.298

A disadvantage of the iBP approach is that execution can take a very long time and299

ultimately prune all solutions. In order to quickly determine input values avoiding the full300

pruning of solutions, short iBP runs were launched with an upper limit of 2 minutes, varying301

systematically the values of the discretization factors ϵ and of the van der Waals scaling302

ρ. Two stereochemistry inputs were used: uniform and Hollingsworth stereochemistry. A303

conformation was stored only if the coordinate RMSD between the newly generated and the304

previous solution was smaller than 3.5 Å.305

The number of accepted solutions is mostly around 104 and up to 105 and around 20% of306

the calculations display no solutions (Figure S7a). The number of solutions, rejected because307

of the RMSD criterion (Figure S7b), is much larger than the accepted solutions in the range308

of 106-107. An RMSD of 2 Å is thus quite discriminating for selecting solutions. The tree309

size is mostly in the range of 105 to 1015 (Figure S7c). Previous experiments realized with310

TAiBP showed26 that a tree size of about 109 permits systematic enumeration of the tree311

solutions for protein fragments. The size of the trees, as well as the numbers of accepted and312

rejected solutions, display the same distribution for the Hollingsworth or the uniform stereo-313
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chemistry. The discretization factors ϵ vary uniformly in the range 0.15-0.17 (Figure S7d) for314

Hollingsworth (black curve) as well as for uniform (red curve) stereochemistry. By contrast,315

the van der Waals scaling ρ varies in the 0.2-0.6 range for Hollingsworth stereochemistry and316

in the 0.3-0.6 range for the uniform stereochemistry (Figure S7e). This shows that smaller317

ρ values were sometimes used to avoid pruning in the case of Hollingsworth stereochem-318

istry and agrees with the worse TM score observed for conformations with Hollingsworth319

stereochemistry generated by iBP (Figure S2).320

Based on the fast exploration described above, input values for enumerating runs are321

selected using the following rules: (i) the largest possible van der Waals scaling ρ for max-322

imizing the pruning by steric hindrance, (ii) the largest possible discretization factor ϵ for323

obtaining the smallest possible tree size to facilitate its full exploration. The corresponding324

trees were then completely parsed using iBP. During the enumeration, the number of asked325

conformations was set to 109. All calculations produced a smaller number of conformations,326

which proves that the corresponding trees were fully explored. Tree sizes centered around327

104, discretization factors ϵ around 0.17, and van der Waals scaling factors ρ around 0.5 were328

used for these full runs (Figure S8). The discretization factor displays similar distributions329

for Hollingsworth and uniform stereochemistry. In contrast, the tree size and the van der330

Waals scaling factor ρ are slightly shifted towards higher values for Hollingsworth stereo-331

chemistry. Indeed, the larger tree observed for this stereochemistry, which requires greater332

van der Waals scaling to reduce the number of solutions by pruning.333

The effect of the enumerating scheme for calculating structures was evaluated using334

the distribution of coordinate RMSD between iBP and PDB target conformations (Figure335

5). For each processed protein, the smallest RMSD value between the iBP solution and the336

initial structure was selected and the corresponding RMSD distribution was compared to the337

corresponding RMSD distributions for the one-shot runs (Figure 3c,e). For both uniform338

(Figure 5a) and Hollingsworth (Figure 5b) stereochemistry, the use of enumeration induces a339

shift of the RMSD values towards smaller values. Interestingly, this shift is more pronounced340
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in the case of uniform stereochemistry, as shown by the comparison of Figures 5b and 3e.341

Thus, using the enumeration of conformations potentially improves the efficiency of the fold342

reconstruction.343

A possible origin of the variability of stereochemistry344

During the previous sections, the effect of variability of stereochemistry on the calculation of345

protein conformation based on local conformational restraints has been examined in various346

situations. In this section, we intend to investigate the relationship between the distribution347

of synonymous mRNA codons and the variability of stereochemistry.348

We will first focus on the variability of bond angle values. The standard genetic code53349

was used to determine the number of synonymous codons for each amino acid residue. The350

number of possible synonymous codons for each residue was summed along each of the 308351

protein primary sequences to produce the cumulative number of synonym codons. Plotting352

the global variations ∆θ of the bond angles C−N−Cα, N−Cα−C and Cα−C−N compared353

to this cumulative number (Figure S9) reveals a correlation between the stereochemistry354

variation and the number of synonymous codons similar to those previously observed in355

Figure S4. As in Figure S4, the correlation is driven by the protein size. The 13 proteins356

from E coli and expressed in E coli for structure determination are marked with green crosses357

and display the same tendency as the whole set of proteins.358

These 13 E coli proteins are drawn in cartoon and the residues displaying global variations359

∆θ of bond angles larger than 6◦ are drawn in licorice and colored in green (Figure S10).360

Most of these protein structures display a topology inducing interactions between secondary361

structure elements located apart in the protein sequence. Also, the residues with the largest362

local variation of bond angles are mostly located in loops or at the extremity of secondary363

structure elements. In several structures (1C4Q, 1GYX, 1Q5Y, 3CCD, 4MAK, 4Q2L), most364

variable residues are close to each other in the 3D structure, displaying even long-range365

physico-chemical interactions. The variations of bond angle stereochemistry can be thus366
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related to the long-range interactions participating to the fold definition. The positions of367

variable residues in the loops might be related to the importance of loop conformations for368

orienting the protein backbone with the folded topology. In addition, the long-range inter-369

actions of some variable residues suggest a cooperative effect between bond angle variations370

arising during the protein folding.371

In the second step, we will focus on the relationship between the ω torsion angle vari-372

ability and the individual corresponding DNA sequences. Among the 308 protein structures,373

the proteins issued from the organisms Homo sapiens, Escherichia coli and Saccharomyces374

cerevisiae were selected using the descriptor SOURCE: ORGANISM SCIENTIFIC. The rel-375

ative codon usage observed in three organisms: Escherichia coli, Saccharomyces cerevisiae376

and Homo sapiens (Table 1 of54) was used to extract the different numbers of synonymous377

codons for each amino-acid of these proteins. The PDB entries were then entered as a query378

in the European Nucleotide Archive (ENA) www.ebi.ac.uk/ena. The corresponding DNA379

sequences were programmatically downloaded and filtered to keep those corresponding to380

the considered protein chain in the PDB entry.381

The DNA sequence codons were then analyzed using the statistics on codons from54 on382

the organisms Homo sapiens, Escherichia coli and Saccharomyces cerevisiae. From each383

amino acid, the codons displaying statistics of presence smaller than the average presence of384

all codons coding for the amino acid were considered rare codons. Then, the ω angle values385

of all protein residues were analyzed (Figure 6) by calculating their average µ and standard386

deviation σ2 values on each considered protein sequence. The ω angle values were then387

centered and normalized using µ and σ2, producing a global averaged ω value on each protein388

equal to zero. The ω values averaged on protein residues corresponding to rare codons, as389

well as to protein residues corresponding to neighbors or second-neighbors of rare codons390

were centered and normalized using the µ and σ2 values obtained for the corresponding391

PDB entry. The distributions of these centered and normalized ω values display slight shifts392

towards positive or negative values (Figure 6a). Looking at these distributions, the ω values393
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are more apart from zero for residues corresponding to rare codons than for neighbor and394

second-neighbor residues (Figure 6a). All standard deviation values (Figure 6b) are centered395

around 1◦, similarly to the normalized standard deviation values.396

The rare codons have been pointed out to be related to the kinetics of protein folding397

during the protein synthesis in the ribosome.53,55,56 In addition, recent bioinformatics analysis398

has shown the relationship between the genetic coding and the protein structure.32,33 In that399

frame, the relationship put in evidence here between the variability of ω values, the rare400

codons, and the reconstruction of the protein structure connects the protein folding and the401

kinetics of protein synthesis in the ribosome.402

In that respect, it is interesting to observe that mostly β folded proteins are specifically403

sensitive to the variability of ω values. Indeed, their folding requires intricate cooperation404

between the establishment of long-range interactions forming the β sheets. This may be405

related to the analysis of Figure S10 performed above.406

The analyses performed here point out the importance of mRNA in the variability of407

stereochemistry in proteins. They complement the relationships put in evidence in the408

literature32 between the mRNA sequence and populations of α and β regions, as we have409

also shown here that the variations of stereochemistry are related to the Hollingsworth regions410

of the Ramachandran diagram (Figure 2).411

Discussion412

The present work has been investigating the exclusive use of local conformational informa-413

tion, namely the values of the torsion angles ϕ and ψ for calculating protein conformations.414

The results obtained here were made possible in an essential way by the development of415

the interval Branch-and-Prune approach (iBP),37 providing a framework for the systematic416

enumeration of conformations. The analyses performed here have put in evidence the essen-417

tial impact of the variability in stereochemistry and represent, to the best of our knowledge,418
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the first attempt to relate these stereochemistry aspects to the calculation and prediction of419

protein conformations.420

The variations of stereochemistry are certainly influenced by the refinement protocols421

used for determining X-ray crystallographic structures, in which the application of long-422

range restraints can produce effects in variations of local stereochemistry, in a way that is423

not mastered in the details. During the last decades, the stereochemistry aspects have not424

been taken into account during the protein structure prediction thanks to the use of long-425

range distance/angle restraints.57 On the other side, the use of long-range restraints might426

influence the appearance of stereochemistry outliers. The relative weights of the different427

types of information in the protein structure calculation should be further investigated for428

example using a Bayesian approach.58,59429

To alleviate the impact of variability, a Ramachandran-based definition of the bond430

angle stereochemistry, the Hollingsworth definition, has been proposed. The efficiency of431

this definition is improved with the use of enumeration during the iBP approach or by the432

knowledge of ω values. The combination of these aspects provides thus a way to overcome433

the variability problem for most of the protein structures examined here, especially in the434

case of α proteins.435

The calculations performed here have been scored with respect to reference protein con-436

formation, using coordinate RMSD and TM-score. In most of the calculations, TM-scores437

display better values than RMSD, in agreement with the general knowledge on this score.50438

But, if Hollingsworth stereochemistry is used, better RMSD values are obtained than the439

TM-score values, probably because the deformation of local stereochemistry impacts the440

distribution of inter-atomic distances used in the TM-score calculations. Indeed, the TM-441

score was derived to correct the bias of coordinate RMSD on structures determined in the442

framework of uniform stereochemistry and should be adapted to the case of Hollingsworth443

stereochemistry.444

Two approaches have been used to reduce the conformational drift produced by the445
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lack of precision in the modeling of stereochemistry: the enumeration of conformation in446

the framework of iBP, and the Relax procedure44 of Rosetta.45 Both approaches permit to447

improve the results.448

The analyses carried out here make it possible to propose that the origin of stereochemical449

variations could be linked to the information contained in the mRNA sequence. The finer450

investigation of this aspect is out of the scope of the present work but could provide a more451

integrated modeling of protein structure and folding.452
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Figure 1: Scheme of the succession of protein backbone heavy atoms N, Cα, C, and O
along with definitions of angle parameters. Bond angles are: N−Cα−C (θ1, grey), Cα−C−N
(θ2, red) and C−N−Cα (θ3, blue), Cα−C−O (θ4, green) and O−C−N (θ5, magenta). The
backbone torsion angles ϕ, ψ, and ω are indicated by circular arrows.
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Figure 2: Average and standard deviation values calculated on the bond angles and ω
dihedral angle, defining the stereochemistry of protein backbone. The regions of the Ra-
machandran diagram were taken from30 and are displayed in Figure S2. The dashed lines
correspond to the angle values in the parameters of Engh and Huber31 (Table S2). Asterisk
indicate the most variable bond angles along the amino acid type.
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Figure 3: Distribution of the root-mean-square deviation (RMSD, Å) of atomic coordinates
between the initial PDB conformation and the conformation reconstructed using iBP. The
following stereochemistry inputs (Table 1) were used: (a) pdb stereochemistry taken from
the PDB input, (b) pdb stereochemistry with ω values of 178 deg, (c) Hollingsworth stereo-
chemistry with bond and ω angles averaged along the Hollingsworth regions (Figure S2), (d)
Hollingsworth stereochemistry with ω values of 178 deg, (e) uniform stereochemistry31 (Ta-
ble S2). The vertical dashed line indicated the RMSD value of 3 Å. The curves are colored
depending on the percentage of residues belonging to α-helices, to β-strands, or to loops as
described in the legend. The secondary structures were determined using STRIDE.43
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Figure 4: Distribution of the root-mean-square deviation (RMSD, Å) of atomic coordinates
between the initial PDB conformation and the conformation reconstructed using iBP with
the Hollingsworth stereochemistry for bond angles along with various definitions of the ω
angles: (a) ω values taken from the PDB initial conformation, (b) discretization of ω values
among four classes (Eq 4), (c) discretization of ω to 178◦sgn(ω), where sgn(ω) is the sign of
ω in the initial PDB structure.
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Figure 5: Distribution of the root-mean-square deviation (RMSD, Å) of atomic coordinates
between the initial PDB conformation and the conformation reconstructed using enumerating
iBP runs with Hollingsworth (a) or uniform (b) stereochemistry. The coordinate RMSD was
taken as the smallest RMSD value obtained among all iBP solutions.
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Figure 6: Distribution of the variations of δω (Eq 3) (a) and of the standard deviations
σ2(δω) (b) for various positions in the protein sequences: at the residues for which the rare
codons are observed (black curve), at the residues neighboring the rare codon (green curve)
and at the residues second neighbor of the rare codon (blue codon).
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Table 1: Definitions of stereochemistry inputs.

name origin of
stereochemistry

pdb initial conformation from the Protein Data Bank
Hollingsworth averaged angle values from the Ramachandran regions30

uniform stereochemistry parameters from Engh and Huber31 (Table S2)
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