
Alternating current optimal power flow with
generator selection?

Esteban Salgado1, Andrea Scozzari2, Fabio Tardella3, and Leo Liberti1
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Abstract. We investigate a mixed-integer variant of the alternating cur-
rent optimal flow problem. The binary variables activate and deactivate
power generators installed at a subset of nodes of the electrical grid. We
propose some formulations and a mixed-integer semidefinite program-
ming relaxation, from which we derive two mixed-integer diagonally dom-
inant programming approximation (inner and outer, the latter providing
a relaxation). We discuss dimensionality reduction methods to extract
solution vectors from solution matrices, and present some computational
results showing how both our approximations provide tight bounds.
Keywords: smart grid, semidefinite programming, diagonal dominance,
dimensionality reduction.

1 Introduction

The Alternating Current Optimal Power Flow (ACOPF) problem is as follows:
given an electric power network consisting of nodes (called buses) and links
(called lines) one seeks an optimal generation and distribution plan of active
and reactive power under physical constraints (Ohm’s and Kirchhoff’s laws), and
subject to power generation, voltage magnitude and current bounds on each line.

Not every bus can produce power. Those which can are called generators.
There is often a planning issue related to their activation and deactivation. This
is important because of two reasons. First, the minimum amount of power pro-
duced by a generator may be a (reasonably large) positive constant, so disabling
a generator is not equivalent to keeping it active at minimum levels. Secondly,
there can be a cost to keep it activated. Modelling this choice implies the addi-
tion of binary variables to the model, which yields a Mixed-Integer Quadratically
Constrained Quadratic Programming (MIQCQP) problem.

Most of the recent ACOPF literature [5,9,17,18] ignores the generator activa-
tion/deactivation issue: every available generator is always active. Equivalently,
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every binary variable is fixed to 1, which yields a continuous Quadratically Con-
strained Quadratic Programming (QCQP) formulation. We were drawn to the
mixed-integer ACOPF variant by [22], where the authors also consider the se-
lection of Phase-Shifting Transformers (PST), used to control the flow of real
power, as well as shunts, which are stabilizing devices. We do not consider PSTs
nor shunts in this paper: they require technical data (specifically, more informa-
tion about the admittance matrices) which we do not possess at this stage. From
a theoretical point of view, however, the activation/deactivation of generators
and the selection of PSTs yield formulations of the same MIQCQP class, that
are likely to require similar solution approaches.

In this paper we study the ACOPF with selection of generators (ACOPFG).
Based on the ideas in [1,2,3], we will derive Mixed-Integer Linear Programming
(MILP) formulations using Diagonally Dominant Programming (DDP) for inner
and outer approximations for the ACOPF with binary variables. More precisely,
we propose the following relaxations:

1. a Mixed-Integer Semidefinite Programming (MISDP) relaxation of the orig-
inal MIQCQP formulation of the ACOPFG;

2. an inner Diagonally Dominant Programming (DDP) [1, 10] approximation
of the MISDP relaxation;

3. an outer DDP relaxation obtained by replacing the primal DD cone in the
inner DDP approximation with its dual.

We shall exhibit some computational results showing that DDP yields tight
upper and lower bounds on the optimal objective function value of the original
MIQCQP.

One of the important reasons for the usefulness of a tight lower objective
function bound is that ACOPF/ACOPFG problems are sometimes solved as
lower-level subproblems of bilevel problems where the upper-level decisions con-
cern unit electricity prices. A non-guaranteed heuristic ACOPF/ACOPFG solu-
tion might be detrimental to finding good solutions of the upper-level problem
with cutting plane approaches. Since we cannot hope to find a guaranteed global
optimum in reasonable times, a tight lower bound represents a good trade-off.

1.1 Notation

We remark first that alternating currents are commonly modelled by means of
scalar and vector quantities over the complex field C. On the other hand, physi-
cists have always denoted current by i. The ambiguity with the usual notation for√
−1 is resolved by denoting the latter by j. Accordingly, we shall refrain from

using j as an index (as is common in Mathematical Programming). In agreement
with standard notation in complex numbers, we denote complex conjugation by
means of a bar over the corresponding quantity: ı̄, for example, is the complex
conjugate of the current, rather than −

√
−1. Complex conjugation is applied

componentwise to tensors.
We often neglect to explicitly mention matrix sizes in formulations, in order

to lighten the notation. Symbols denoting classes of matrices, such as S, D, etc.,
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really stand for “the subset of matrices of appropriate size with the corresponding
property”.

1.2 Contents

The rest of this paper is organized as follows. In Sect. 2 we discuss formulations
of the ACOPFG. In Sect. 3 we introduce a MISDP relaxation. In Sect. 4 we
present our new inner and outer relaxations based on DDP. In Sect. 5 we briefly
discuss dimensionality reduction issues in order to retrieve a good solution from
the relaxation output. In Sect. 6 we report computational results.

2 ACOPF formulations

Consider an electric power network with set of buses N , set of generators G ⊆ N
and set of lines L ⊆ N ×N . The parameters of the problem are:

• ∀n ∈ N S
D

n , P
D

n + jQ
D

n active/reactive power demand at bus n

• ∀g ∈ G S
min

g , P
min

g + jQ
min

g lower bound on power generated at bus g

• ∀g ∈ G S
max

g , P
max

g + jQ
max

g upper bound power generated at bus g

• ∀n ∈ N v
min

n , v
max

n bounds on voltage magnitude at bus n

• ∀(n,m) ∈ L imax

nm upper bound on current on line (n,m)
• Y bus admittance matrix in C|N |×|N|

• Y
f
, Y

s
line admittance matrices in C|L|×|N|.

We want to find the optimal values of active and reactive power at each

generator g ∈ G that is switched on (S
G

g
∆
= P

G

g + jQ
G

g ). We must also decide the
current and the voltage for the nodes and lines of the system. Given that:

∀n ∈ N in =
∑
m∈N

Ynmvm

∀n ∈ N r G vn ı̄n = −S
D

n

∀n ∈ G vn ı̄n = S
G

n − S
D

n

we can model the problem by only using voltage variables vn ∈ C (for n ∈ N ) [23]
and binary variables zg (for g ∈ G) representing the activation of a generator to
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produce power. The formulation of the ACOPFG is as follows:

min
v∈C|N|

z∈{0,1}|G|

f(v, z)

∀n ∈ N r G
∑
m∈N

vnv̄mȲnm = −SD

n

∀g ∈ G
∑
m∈N

vg v̄mȲgm − S
max

g zg ≤ −S
D

g

∀g ∈ G
∑
m∈N

vg v̄mȲgm − S
min

g zg ≥ −S
D

g

∀n ∈ N vnv̄n ≤ v
max

n

∀n ∈ N vnv̄n ≥ v
min

n

∀(n,m) ∈ L
∑

k,`∈N
v̄kv`Ȳ

f

(n,m)kY
f

(n,m)` ≤ i
max

nm

∀(n,m) ∈ L
∑

k,`∈N
v̄kv`Ȳ

s

(n,m)kY
s

(n,m)` ≤ i
max

nm ,



(ACOPFGC) (1)

where f is a real-valued function that is commonly considered as a polynomial
on the total active power generated, i.e.:

f(v, z)
∆
=

∑
g∈G

cg,0zg +
∑

1≤`≤L

cg,`(P
G

g )
`

 =
∑
g∈G

cg,0zg +
∑
`≤L

cg,`

 Re

 ∑
m∈N

vg v̄mȲgm

` .

We shall consider polynomials which are quadratic in vg and linear in P
G

g

(e.g. L = 1). This makes (ACOPFC) a complex-valued MIQCQP.
By doubling the number of the variables (which implies quadrupling the sizes

of the matrices in each constraint), the problem can be exactly reformulated into
a real-valued MIQCQP:

min
v∈R2|N|

z∈{0,1}|G|

v>Cv + c>z

∀k ∈ E v>Akv = ak
∀` ∈ I v>B`v ≤ b`
∀w ∈ Z v>Qwv − qmax

w zdw/2e ≤ qw
∀w ∈ Z v>Qwv − qmin

w zdw/2e ≥ qw,


(ACOPFGR) (2)

where E is the set indexing the 2|NrG| equality constraints, Z is the set indexing
the 2|G| inequalities with binary variables and I is the set indexing the other
2(2|G|+ 2|N |+ 2|L|) inequality constraints.

We remark that this problem is non-convex. Eq. (2) therefore cannot gen-
erally be solved globally using local optimization methods (as a convex QCQP
would). Indeed, it is well known that the decision problem associated to Eq. (2)
is NP-hard [24]

3 MISDP relaxation

Semidefinite Programming (SDP) [4, 16] is widely employed in order to derive
relaxations of the continuous version of the ACOPF [5, 9, 18]. We derive a cor-
responding MISDP relaxation for the ACOPFG. First we rewrite Eq. (2) by
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replacing the products of the form v>Mv as 〈M,V 〉 = tr(M>V ) and adding the
rank constraint V = vv>:

min
V ∈S

〈C, V 〉+ c>z

∀k ∈ E 〈Ak, V 〉 = ak
∀` ∈ I 〈B`, V 〉 ≤ b`
∀w ∈ Z 〈Qw, V 〉 − qmax

w zdw/2e ≤ qw
∀w ∈ Z 〈Qw, V 〉 − qmin

w zdw/2e ≥ qw
V = vv>,


(ACOPFGR) (3)

where S is the set of all n× n symmetric matrices.
Given that V does not encode any integrality constraint, Eq. (3) is essentially

a MILP with the additional (non-convex) constraint V = v v>, which states that
V must be positive semidefinite (PSD) and have rank 1. The standard MISDP
relaxation is obtained by relaxing the rank 1 constraint to V − v v> � 0, i.e. by
requiring that the Schur complement of V and v, defined as

S (V, v) =

(
1 v>

v V

)
is PSD:

min
V∈S,v∈R2|N|

z∈{0,1}|G|

〈C, V 〉+ c>z

∀k ∈ E 〈Ak, V 〉 = ak
∀` ∈ I 〈B`, V 〉 ≤ b`
∀w ∈ Z 〈Qw, V 〉 − qmax

w zdw/2e ≤ qw
∀w ∈ Z 〈Qw, V 〉 − qmin

w zdw/2e ≥ qw
S (V, v) � 0


(ACOPFGMISDP) (4)

Most SDP solvers are unable to solve MISDP formulations directly (with
some exceptions, e.g. Pajarito [21] and PENLAB [11]). A possible workaround
consists in reformulating the binary constraints on z by ∀g ∈ G (z2

g = zg). These
can in turn be relaxed, within the SDP framework, with the constraints:

• diag(Z) = z
• S (Z, z) � 0,

This yields the following SDP relaxation:

min
V∈S,v∈R2|N|

Z∈S,z∈R|G|

〈C, V 〉+ c>z

∀k ∈ E 〈Ak, V 〉 = ak
∀` ∈ I 〈B`, V 〉 ≤ b`
∀w ∈ Z 〈Qw, V 〉 − qmax

w zdw/2e ≤ qw
∀w ∈ Z 〈Qw, V 〉 − qmin

w zdw/2e ≥ qw
diag(Z)− z = 0

S (V, v) � 0
S (Z, z) � 0.


(ACOPFGSDP) (5)
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While Eq. (5) can be tackled by an SDP solver, there are two issues with
it: (a) the fact that today, current SDP solver technology is far from allowing
the systematic solution of ACOPF instances of even moderate sizes (into the
hundreds or thousands of nodes and beyond); (b) the proposed SDP relaxation of
the binary variables usually yields very poor bounds. Instead, we shall investigate
below some MILP formulations derived from Eq. (5). While MILP is also NP-
hard, its state-of-the-art solvers are much faster than MIQCQP solvers.

4 Diagonal dominance

A real square symmetric matrix Y = (Yj`) is diagonally dominant (DD) if

∀j Yjj ≥
∑
` 6=j

|Yj`|. (6)

The main observation leading to our tight MILP relaxations of the MIQCQP
is the well-known fact that every diagonally dominant matrix is PSD [13]. This
means that by replacing the constraint S (V, v) � 0 with membership in the cone
of DD matrices (also called the DD cone) we obtain an inner approximation of
the SDP cone. We restrict our attention to two formulations of these Diagonally
Dominant Programs (DDP) applied to (ACOPFGMISDP): a formulation based on
the extreme rays of the DD cone [6], and the outer approximation obtained
by replacing the extreme rays of the DD cone with the extreme rays of the
dual DD cone. We devote particular attention to the latter, since it has two
desirable properties: (i) it provides a relaxation of the MISDP, and (ii) we found
empirically that it provides tight lower bounds.

From Eq. (4) we derive the inner approximation:

min
V ∈S , v∈R2|N| , z∈{0,1}|G|

〈C, V 〉+ c>z

∀k ∈ E 〈Ak, V 〉 = ak
∀` ∈ I 〈B`, V 〉 ≤ b`
∀w ∈ Z 〈Qw, V 〉 − qmax

w zw ≤ qw
∀w ∈ Z 〈Qw, V 〉 − qmin

w zw ≥ qw
V ∈ D,


(ACOPFGinner) (7)

where D denotes the DD cone. Given that the decision variable vector v only
appears in the conic constraint S (V, v) � 0, we can replace the latter by V � 0
without modifying the feasible region. We then inner-approximate it by means
of the constraint V ∈ D, which is equivalent to Eq. (6) and can be written as
follows using linear constraints:

∀j Vjj ≥
∑̀
6=j
Zj`

−Z ≤ V ≤ Z.

}
(8)
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By [6] and [2, Lemma 3.2], we know that the extreme rays of D are square
matrices defined as follows: ∀ j, ` such that j < `,

• Ej = e>j ej
• E+

j` = (ej + e`)
>

(ej + e`)

• E−j` = (ej − e`)>(ej − e`)
(9)

In other words, the rays either have one nonzero entry in the diagonal which is
equal to 1 or have a single nonzero principal minor(

1 ±1
±1 1

)
where, for j < `, the ones on the diagonal are in positions (j, j) and (`, `), and
the ±1 components are in positions (j, `) and (`, j). The main relevant result is
that every matrix M ∈ D can be written as a non-negative combination of these
extreme rays:

∃ δj , δ+
j`, δ

−
j` ≥ 0 M =

∑
j

δjEj +
∑
j<`

(δ+
j`E

+
j` + δ−j`E

−
j`). (10)

This allows us to write membership of a square symmetric matrix M in the
dual DD cone D∗ by means of linear constraints as stated in the following result.

Lemma 4.1 (From paper [23]). The dual DD cone D∗ can be written as
follows:

D∗ = {M ∈ S | ∀x ∈ X (x>Mx ≥ 0)}, (11)

where X = {(ej)j , (ej ± e`)j<`} is a set of |N |+ 2
(|N |

2

)
= |N |2 elements.

From Eq. (4) we derive the outer approximation:

min
V∈S,v∈R2|N|

z∈{0,1}|G|

〈C, V 〉+ c>z

∀k ∈ E 〈Ak, V 〉 = ak
∀` ∈ I 〈B`, V 〉 ≤ b`
∀w ∈ Z 〈Qw, V 〉 − qmax

w zdw/2e ≤ qw
∀w ∈ Z 〈Qw, V 〉 − qmin

w zdw/2e ≥ qw
V ∈ D∗.


(ACOPFGouter) (12)

By our description of the extreme rays of D, the constraint V ∈ D∗ can be
written using Lemma 4.1. Eq. (12) is an outer approximation of Eq. (4) because
D ⊆ S+ = (S+)∗ ⊆ D∗, where S+ is the cone of PSD matrices.

4.1 Iterative inner approximation

There are two potential issues with the inner approximation Eq. (7): (a) given
that we are modifying the conic constraints of Eq. (4) by an inner approximation
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of the original cone, the resulting problem may be infeasible; (b) even if the
problem turns out to be feasible, the solution may not be a good approximation
of the MISDP.

The authors of [1, 2] introduce a possible way around these issues by means
of iteratively solving a sequence of auxiliary problems, until a cone C ⊆ S+ is
found on which Eq. (4) is feasible when replacing the conic constraint V ∈ D
by V ∈ C. The auxiliary problems are obtained by varying the (square matrix)
parameter U in the formulation below:

min
V∈S,z∈{0,1}|G|

δ∈(R+)4|N|2

〈C, V 〉+ c>z

∀k ∈ E 〈Ak, V 〉 = ak
∀` ∈ I 〈B`, V 〉 ≤ b`
∀w ∈ Z 〈Qw, V 〉 − qmax

w zdw/2e ≤ qw
∀w ∈ Z 〈Qw, V 〉 − qmin

w zdw/2e ≥ qw
U>

( ∑
x∈X

δxxx
>
)
U = V.


(ACOPFGinner(U)) (13)

We remark that, while U>
(∑

x∈X δxxx
>)U is an appropriate description of

V ∈ D∗, implementation performances improve if we use an additional auxiliary
matrix variable:

∀i Wii = δi +
∑
j 6=i

(δ+
ij + δ−i,j)

∀i, j Wij = δ+
ij − δ

−
ij

V = U>WU

(14)

The iterative procedure is the following:

1. Solve (ACOPFGinner), obtaining the solution V ∗;

2. Define U = chol(V ∗);

3. Solve (ACOPFGinner(U)) to obtain V ∗. While the solution is improving, re-
peat from Step 2.

At the k-th iteration of this procedure, we consider the parametrization matrix
Uk and the optimum V ∗k of (ACOPFGinner(Uk)). Then the following holds [1, 2].

Proposition 4.2. V ∗k is feasible for (ACOPFGinner(Uk+1)) and cannot worsen
the current objective value: val(ACOPFGinner(Uk+1)) ≤ val(ACOPFGinner(Uk)).
Moreover, if V ∗k is PSD and val(ACOPFGinner(Uk)) is not optimal, then V ∗k is
improving, i.e. val(ACOPFGinner(Uk+1)) < val(ACOPFGinner(Uk)).

In particular, we know that if we start from a feasible problem, the iterated prob-
lems will always remain feasible. To find an initial U such that the parametrized
problem is feasible, we solve a slightly different formulation, where we add a
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slack variable that we minimize in order to attempt to achieve feasibility:

min
V∈S,z∈{0,1}|G|

δ∈(R+)4|N|2 ,α∈R4|N|2

α

∀k ∈ E 〈Ak, V + αI〉 = ak
∀` ∈ I 〈B`, V + αI〉 ≤ b`
∀w ∈ Z 〈Qw, V + αI〉 − qmax

w zw ≤ qw
∀w ∈ Z 〈Qw, V + αI〉 − qmin

w zw ≥ qw
U>

( ∑
x∈X

δxxx
>
)
U = V + αI.


(ACOPFGph1(U)) (15)

Algorithmically, we start with U = I. While α∗ > 0, we set U = chol(V ∗ +α∗I).
We solve (ACOPFph1(U)) using the procedure previously stated.

The pseudocode for our inner approximation algorithm is given in Alg. 1.

Algorithm 1 Iterative inner approximation

1: procedure innerACOPFMI
2: ε← 10−5, aux← 1, U ← I
3: # Achieve feasible U first
4: while aux > 0 do
5: (V ∗, z∗, α∗)← optimal solution of (ACOPFGph1(U))
6: aux← α∗, U ← chol(X + α∗I)
7: valf← +∞, vali← 0
8: # Now improve the approximation
9: while |vali− valf| > ε do

10: vali← valf
11: ((V ∗, z∗),valf )← optimal solution and value of (ACOPFGinner(U))
12: U ← chol(V ∗)

return ((V ∗, z∗),valf)

4.2 Negative rank of outer approximation

One of the issues with Eq. (12) is that, being an outer approximation of Eq. (4),
it does not ensure that V � 0. In fact, we empirically found that, although the
bound was often tight, the solution V ∗ had a considerable number of negative
eigenvalues. We therefore propose to add the following cutting planes to the
formulation: for each eigenvector p of V ∗ corresponding to a strictly negative
eigenvalue we add the following inequality to the formulation Eq. (12):

p>V p ≥ 0. (16)

These cuts make V ∗ infeasible since, by definition of negative eigenvector, we
have that p>V ∗p < 0. Unfortunately, we found that in practice these cuts, by
themselves, do not yield a PSD solution. Nevertheless, this procedure decreases
the the number and/or the sum of the strictly negative eigenvalues.
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The pseudocode for our outer approximation algorithm is given in Alg. 2.
The function SpectralDecomposition() returns the spectral decomposition
of its argument.

Algorithm 2 Iterative outer approximation

1: procedure outerACOPFMI
2: P ← ∅
3: λ− ← 1
4: while λ− > 0 and time < maxtime do
5: ((V ∗, z∗),valf)← optimal solution of (ACOPFGouter)
6: (W,Λ)← SpectralDecomposition(V ∗)
7: λ− ← number of negative eigenvalues
8: P− ← eigenvectors associated to the negative eigenvalues
9: P ← P ∪ P−

return (X∗, z∗,valf)

5 Dimensionality reduction

All our methods solve either inner or outer matrix approximations of the original
MIQCQP Eq. (2), derived from Eq. (3) by relaxing the rank constraint. As such,
they will not provide a solution vector v∗ for the voltage in the original problem
Eq. (2), but rather a solution matrix V ∗, which will be very unlikely to have
rank 1.

In order to heuristically extract a vector v∗ from a matrix V ∗ with higher rank
we considered two options for a dimensionality reduction algorithm: (a) Principal
Component Analysis (PCA) [15] and (b) Barvinok’s naive algorithm [7, §5]. Both
produce some estimate v′ of v∗ according to different analyses. We then used v′ as
a starting point for a local descent carried out by a local Nonlinear Programming
(NLP) solver.

Both options are simple and effective in different settings. PCA is well known
and needs no introduction. Barvinok’s algorithm is as follows:

1. factor V ∗ into V ∗ = F F>;

2. sample a random vector y componentwise from a standard Gaussian distri-
bution N(0, 1);

3. let v′ = Fy.

The analysis carried out by A. Barvinok shows that v′ has high probability of
being “not too far” from the feasible set. We remark that we applied Barvinok’s
algorithm to a wrong setting (in general), since the analysis only holds whenever
V ∗ is a solution of an SDP, and some of our algorithms do not ensure PSD
solutions. This being “just a heuristic”, we proceeded nonetheless, based on the
fact that the formulations that produce V ∗ are themselves derived from SDP
formulations.



Alternating current optimal power flow with generator selection 11

Some empirical tests showed a promise of superiority of Barvinok’s naive al-
gorithm to PCA (also see [19]), which was therefore our dimensionality reduction
method of choice in obtaining computational results (Sect. 6).

6 Numerical results

We tested our approach using Cplex-12.6.3 [14] on YALMIP [20] for the inner
and outer approximations. The MIQCQP was solved with Bonmin-4.8.4 [8] on
AMPL [12]. Our results were obtained on an Intel i7 dual-core CPU at 2.1GHz
with 15GB RAM.

The time limits for decreasing the negative rank (outer approximation) and
feasible solution improvement (inner approximation) were set to 300 seconds.
The limit of time for solving MIQCQPs was set to 1200 seconds.

Inner-approximation Outer-approximation MIQCQP

Instance
feasible sol optimal sol first

value
time

final
value

itn time rank best value
itn time

first
value

time value itn time rank

WB2 2 1.34 880.97 0.63 877.78 6 3.42 1 876.92 0.52 877.75 57 26.50 2 878.182

WB3 18 10.52 445.56 0.54 417.30 15 8.01 1 398.71 0.64 417.17 52 26.45 2 417.244

WB5 5 2.17 1209.96 0.42 946.69 76 31.82 1 676.76 0.42 945.96 115 72.93 2 946.584

6ww 50 37.55 3156.02 0.76 3156.02 1 0.76 2 2639.93 0.70 3009.20 155 224.86 2 3018.52

case9 18 12.90 2041.87 0.76 1272.64 45 33.89 2 980.00 0.87 994.96 135 301.00 11 1021.26

case14 46 62.96 10742.05 1.50 5778.53 37 55.56 2 4746.00 1.41 4746.00 67 301.72 28 5265.39

case30 - - - - - - - - 285.77 4.69 285.78 13 317.62 60 344.11

case57 - - - - - - - - 25460.00 16.91 25460.00 4 682.35 114 25460.00

case89pegase - - - - - - - - 5730.15 60.24 5730.15 3 643.17 178 (x)

case118 - - - - - - - - 96520.00 110.52 96520.00 2 807.43 192 (x)

case300 - - - - - - - - 392021.18 2944.12 392021.18 1 2944.12 430 (x)

Table 1. ACOPF inner and outer MILP relaxations.

As we can observe the bounds we obtained are tight with respect to the
feasible solution we obtained for the MIQCQP formulation. In general, inner
approximations seem to provide solutions with a smaller rank than outer ones.
Unfortunately, we could not scale these experiments to larger sizes because of
the slow convergence of the loop from Step 4 to Step 6 of Alg. 1. It is for this
reason that we write “-” on some instances for the inner approximation. When
we write “(x)” we mean that the local solver was not able to find a local optimum
in the time limit.
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