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Summary. We discuss a mixed-integer nonlinear programming formulation for the
problem of covering a set of points with a given number of slabs of minimum width,
known as the bottleneck variant of the hyperplane clustering problem. We derive
several linear approximations, which we solve using a standard mixed-integer linear
programming solver. A computational comparison of the performance of the different
linearizations is provided.
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1 Introduction

We investigate some mathematical programming formulations for the follow-
ing optimization problem.

bottleneck Hyperplane Clustering Problem (bHCP). Given
integers n,m, d > 0 and a set N = {pi ∈ R

d | i ≤ n}, find a set M =
{(wj , w

0
j ) ∈ R

d × R | j ≤ m} and an assignment x : N × M → {0, 1}
of points to hyperplanes such that max

i≤n,j≤m

xij=1

|wj ·pi−w0
j |

||wj ||2
is minimum.

In other words, we want to partition N into m clusters whose points are
projected onto a (d − 1)-dimensional subspace in such a way that the maxi-
mum Euclidean distance between a point and its projection is minimized. Our
problem is a special case of a projective clustering problem in which all the
subspaces are of the same dimension. It is also known as the Hyperplane

Cover Problem [9], the m-Hyperplane Center Problem [15] and the
Slab Width Problem [7] in literature.

If we fix max
i≤n,j≤m

xij=1

|wj ·pi−w0
j |

||wj ||2
to some maximum tolerance, geometrically our

problem is that of finding slabs of minimum width that cover all the points —
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thus the name bottleneck. In the case when the slabs are of zero width, the
problem at hand is known as the k-line center problem in which lines are used
instead of slabs. The k-line center problem has been studied extensively in
literature: [15] reports a table with summarized complexities of the developed
algorithms. Most of the past work studied the problem from a computational
geometry point of view; most results are theoretical in nature. To the best of
our knowledge, mathematical programming based solution approaches for the
bHCP have not been extensively studied yet.

1.1 Previous work

Clustering techniques are widely studied in areas ranging from data mining to
information retrieval and pattern recognition to name a few. They also arise in
the context of shape fitting in geometric covering problems where given a set
of shapes the goal is to choose the one that covers the data points w.r.t. some
objective. Deciding whether a set of n points in R

2 can be covered with m
lines was shown to be NP-complete in [14]; trying to approximate the width
of the minimum slab that covers the point is also NP-complete.

A sublinear time randomized algorithm in which all but (1 − γ)n of the
points are covered is presented in [15]. They prove that the m-q-dimensional
hyperplane center problem (where q is the dimension of the subspace) can be

solved in Õ(dmq
γ

q+1). The described algorithm finds a collection of O(m log mdq
γ )

slabs of width at most 2q times the optimum.
For points in R

2 and R
3, [2] present randomized algorithms which compute

O(m log m) strips of bounded width that cover the data points. Their algo-
rithms have run times of O(nm2log4n) if m2 log m ≤ n and O(n2/3m8/3log4n)
for larger m when d = 2 and O(n3/2m9/4polylog(n)) for d = 3.

A coreset framework based approach was proposed in [7]. It was shown
that no coreset exists for the problem of covering a set of points with 2 slabs
in R

3; however, a (1 + γ) approximation algorithm for the same problem was
also presented.

In [9], some fixed-parameter tractable algorithms which are based on gen-
eral techniques of parameterized complexity are presented. The main argu-
ment of this work rests on the fact that certain parameters (such as the
dimension) can be used to limit the complexity of these problems.

Many variants of the bHCP have been proposed in the literature. [5]
adapted the k-means algorithm to the case of hyperplanes and treated the
problem of minimizing the sum of the Euclidean distances of points to the as-
signed hyperplanes (for fixed m). Another variant minimizes the total number
of hyperslabs of a fixed width used to cover a set of points [3].

The rest of this paper is organized as follows. The mathematical program-
ming formulation of the bHCP is given in Sect. 2. Some exact reformulations
are given in Sect. 3. Three model-based approximating linearizations are pro-
posed in Sect. 4. Our computational results are discussed in Sect. 5. Sect. 6
concludes the paper.
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2 Problem formulation

Given a set of n points pi ∈ R
d (i ≤ n) we seek a set of m hyperplanes

(wj , w
0
j ) ∈ R

d+1 (j ≤ m) and an assignment x ∈ {0, 1}nm (such that xij = 1

iff pi is assigned to the hyperplane (wj , w
0
j ) for all i ≤ n, j ≤ m) that mini-

mizes the maximum of the Euclidean distances between the hyperplanes and
their assigned points. The following Mixed-Integer Nonlinear Programming
(MINLP) formulation correctly describes the problem:

min max
j≤m

i≤n

|wjpi−w0
j |

||w||2
xij

s.t. ∀i ≤ n
∑

j≤m

xij = 1

w ∈ R
md

x ∈ {0, 1}nm.



























(1)

Computationally, the direct solution of (1) is problematic because (1) is non-
differentiable and has a singularity at w = 0.

3 Reformulations

Reformulations are symbolic transformations that are applied to the prob-
lem formulation and yield modified formulations with different mathematical
properties [11]. Within this paper, we shall make use of two types of reformu-
lations: opt-reformulations and approximations. Opt-reformulations guarantee
that there is an optimum of the reformulated problem corresponding to each
optimum of the original problem [12]. The precise definition of an approxima-
tion is given in [12]; for our purposes, it suffices to know that an approximating
reformulation yields a sequence of reformulated problems dependent on a nu-
merical parameter, which “tends” to the original problem when the parameter
tends to infinity. An approximation is simply a problem in the sequence.

We first provide opt-reformulations that yield a differentiable MINLP. We
remark that if we require all vectors w to be normalized to 1, there is no need
for dividing the objective function terms through by ||w||2: the objective thus
becomes

min max
j≤m

i≤n

|wjpi − w0
j |xij

subject to added constraints

∀j ≤ m ||wj ||22 = 1. (2)

We reformulate the maximum operator by introducing an added nonnegative
continuous variable ε ≥ 0: the objective becomes

min ε
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subject to added constraints

∀i ≤ n, j ≤ m ε ≥ |wjpi − w0
j |xij .

Secondly, we reformulate the absolute values by introducing added nonnega-
tive continuous variables t+ij , t

−
ij ≥ 0, which yield reformulated constraints

∀i ≤ n, j ≤ m ε ≥ (t+ij + t−ij)xij , (3)

subject to added constraints

∀i ≤ n, j ≤ m wjpi − w0
j = t+ij − t−ij .

This reformulation is exact as long as a complementarity constraint
∑

i,j t+ijt
−
ij =

0 is enforced; in this particular case, however, it is not necessary because of
the minimization direction of the objective function. Lastly, since the prod-
ucts t+ijxij and t−ijxij involve a binary variable, they can be linearized exactly

by replacing them with added nonnegative continuous variables y+
ij , y−

ij whilst
adding the following (linear) constraints:

∀i ≤ n, j ≤ m y+
ij ≤ min(Mxij , t

+
ij)

∀i ≤ n, j ≤ m y+
ij ≥ t+ij − M(1 − xij)

∀i ≤ n, j ≤ m y−
ij ≤ min(Mxij , t

−
ij)

∀i ≤ n, j ≤ m y−
ij ≥ t−ij − M(1 − xij),

where M is a large enough constant. We also remark that the intuitive meaning
of (3) is that ε should be bounded below by t+ij + t−ij if and only if xij = 1.
This can be written formally as:

∀i ≤ n, j ≤ m yij ≥ t+ij + t−ij ,

where yij is an added nonnegative continuous variable constrained to take
value ε if and only if xij = 1 (otherwise, it is free):

∀i ≤ n, j ≤ m yij ≤ ε + M(1 − xij)

∀i ≤ n, j ≤ m yij ≥ ε − M(1 − xij).

The latter approach provides an alternative linearization of the products.
The reformulations above therefore provide two different twice-differentiable

MINLP formulations for the bHCP:

min ε

s.t.∀i ≤ n, j ≤ m ε ≥ y+

ij
+ y−

ij

∀j ≤ m ||wj ||
2
2 = 1

∀i ≤ n, j ≤ m wjpi − w0
j = t+

ij
− t−

ij

∀i ≤ n, j ≤ m y+

ij
≤ min(Mxij , t+

ij
)

∀i ≤ n, j ≤ m y+

ij
≥ t+

ij
− M(1 − xij)

∀i ≤ n, j ≤ m y−
ij

≤ min(Mxij , t−
ij

)

∀i ≤ n, j ≤ m y−
ij

≥ t−
ij

− M(1 − xij)

∀i ≤ n
P

j≤m

xij = 1

w ∈ R
md

x ∈ {0, 1}nm

y+, y−, t+, t− ∈ [0, M ]nm

9
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min ε

s.t.∀i ≤ n, j ≤ m yij ≥ t+
ij

+ t−
ij

∀j ≤ m ||wj ||
2
2 = 1

∀i ≤ n, j ≤ m wjpi − w0
j = t+

ij
− t−

ij

∀i ≤ n, j ≤ m yij ≤ ε + M(1 − xij)
∀i ≤ n, j ≤ m yij ≥ ε − M(1 − xij)

∀i ≤ n
P

j≤m

xij = 1

w ∈ R
md

x ∈ {0, 1}nm

y, t+, t− ∈ [0, M ]nm

9
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(5)

Proposition 1. If (w∗,x∗) is a global optimum of (4) (resp. (5)) then it is
also a global optimum of (1).

Proof. This follows by Defn. 2.3.10 and Lemma 2.3.11 in [11], because all the
reformulations involved are opt-reformulations.

Both (4) and (5) are extremely difficult problems to solve, due to the
high number of binary variables and the nonconvexity of (2). Exact solutions
of such MINLPs can be obtained via the spatial Branch-and-Bound (sBB)
algorithm [1, 16, 17, 10] only for very small instances (≤ 10 points, ≤ 3
hyperplanes, ≤ 2 dimensions). MINLP heuristics such as VNS [13] fare slightly
better but are far from being able to tackle realistically-sized instances.

4 Approximations

In this section we propose three different Mixed-Integer Linear Program-
ming (MILP) approximations for the problematic nonconvex constraints (2)
in terms of the ℓ1 and ℓ∞ norm, which can both be linearized exactly. We first
remark the following inclusion relationships:

U1 = {w | ||w||1 ≤ 1} ⊆ {w | ||w||2 ≤ 1} = U2

U2 = {w | ||w||2 ≤ 1} ⊆ {w | ||w||∞ ≤ 1} = U∞.

We shall exploit these inclusions to derive exactly linearizable approximations
for U2.

In the rest of this section, we shall discuss the exact linearization of both ℓ1
and ℓ∞ unit constraints. We shall then propose three different approximations
of (2): the ℓ∞ approximation, the ℓ1/ℓ∞ “sandwiching” approximation, and
the ℓ1/ℓ∞ “alternating” approximation (shown graphically in Fig. 1).

4.1 Linearization of ℓ1 unit constraint

The linearization of the ℓ1 unit constraint:

∀j ≤ m ||wj ||1 = 1, (6)
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which can also be written as
∑

k≤d |wjk| = 1 for j ≤ m, proceeds by repeated
application of the AbsDiff opt-reformulation [11] to each absolute value term
|wjk|: let w+

jk, w−
jk be added nonnegative continuous variables, replace (6) with:

∀j ≤ m
∑

k≤d

(w+
jk + w−

jk) = 1,

add the constraints:

∀j ≤ m, k ≤ d wjk = w+
jk − w−

jk,

and add the following exact reformulation of the linear complementarity con-
ditions w+

jkw−
jk = 0 (for j ≤ m, k ≤ d):

∀j ≤ m, k ≤ d w+
jk ≤ Mµjk

∀j ≤ m, k ≤ d w−
jk ≤ M(1 − µjk),

where for j ≤ m, k ≤ d µjk are added binary variables that are 1 if w+
jk has

nonzero value.

4.2 Linearization of ℓ∞ unit constraint

The linearization of the ℓ∞ unit constraint:

∀j ≤ m ||wj ||∞ = 1, (7)

which can also be written as maxk≤d |wjk| = 1 for j ≤ m, is a reformulation
of the narrowing type [12] denoted by InfNorm, and was proposed in [6].
In full generality it works as follows. Consider a mathematical programming
formulation P with a d-vector of variables x = (x1, . . . , xd) ∈ R

d bounded in
[−α, α] (for some α > 0) with the property that if x∗ is a feasible solution of
P then −x∗ is also a feasible solution of P with the same objective function
cost; and a constraint ||x||∞ = α. The InfNorm reformulation is as follows:

• for all k ≤ d, add a binary decision variable uk to P ;
• delete the constraint ||x||∞ = α;
• add the following constraints:

∀k ≤ d xk ≥ α(1 − 2(1 − uk)) (8)
∑

k≤d

uk = 1. (9)

This reformulation being a narrowing, it guarantees that at least one optimum
of the original problem is mapped into an optimum of the reformulation.

Proposition 2. There exist an optimum of P which is also an optimum of
InfNorm(P ).
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Proof. Constraint (9) ensures that there is at least an index k ≤ d such that,
by (8) and the fact that the upper bound for xk is α, the value of xk is
exactly α: this forces ||x||∞ to be precisely α. Suppose now there is a feasible
values of x with ||x||∞ = α such that xk 6= α for all k. Since ||x||∞ = α, this
implies there is at least an index k ≤ d for which xk = −α. By the symmetry
assumption, −x is feasible and has the same objective function value as x.

4.3 Pure ℓ∞ approximation

This approximation is based on simply replacing (2) by (7) and applying
the InfNorm narrowing. Geometrically, we replace a hyperspherical feasible
region with its hypercubical overapproximation, as shown graphically in Fig. 1
(A).

A B C

Fig. 1. Three types of approximation: pure (A), sandwich (B), and alternating (C).

An equivalent pure ℓ1 approximation (where (2) was replaced by (6) and
subsequently linearized) was tested but found to yield markedly inferior per-
formances, and thence discarded.

4.4 Sandwiching ℓ1/ℓ∞ approximation

This approximation, depicted graphically in Fig. 1 (B), consists of replacing
(2) by the following constraints:

∀j ≤ m 1 ≤ ||wj ||1 ≤
√

d

∀j ≤ m
1√
d
≤ ||wj ||∞ ≤ 1.

The above constraints can be linearized exactly by applying the reformulations
of Sections 4.1 and 4.2.
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4.5 Alternating ℓ1/ℓ∞ approximation

This approximation, depicted graphically in Fig. 1 (C), consists of replacing
(2) by the following disjunction:

∀j ≤ m (||wj ||∞ = 1 ∨ ||wj ||1 =
√

d).

This is modelled by introducing added binary variables µj ∈ {0, 1} for j ≤ m
which have value 1 if the constraint ||wj ||∞ = 1 is active and 0 otherwise, and
serve the purpose of alternating between ℓ1 and ℓ∞ unit norm constraints.

5 Computational experiments

We considered a set of 8 instances whose statistics are given in Table 1.
The cancer instance is taken from the Wisconsin Prognostic Breast Cancer
(WPBC) Database [4]. The other instances are randomly generated. All in-
stances were solved using 6 different MILP formulations: (4) and (5) with the
“pure ℓ∞” (Sect. 4.3), “sandwich” (Sect. 4.4) and “alternating” (Sect. 4.5)
approximations. All results were obtained on one core of a quad-CPU Intel
Xeon 2.4GHz with 8GB RAM using ILOG CPLEX 11.0 [8].

Instance n m d
cancer 194 3 2
cluster3 8 2 2
esr 150 8 10 150 8 10
esr 210 8 10 210 8 10
hsynt 1500 8 3 1500 8 2
synt 35 2 3 35 3 2
synt 60 2 3 60 3 2
synt 70 2 3 70 3 2

Table 1. Instance statistics.

The results are given in Table 2. Each group of 5 columns describes the
results obtained by solving all instances in the test set with a particular for-
mulation. Within each group, we recorded: the value of objective function of

the original problem (1) ε = max
j≤m

i≤n

|wjpi−w0
j |

||w||2
xij computed using the solution

given by the approximation; the CPU time (limited to 1800 seconds of user
time); the Branch-and-Bound (BB) node index F where the recorded opti-
mum was found; the total number N of BB nodes explored within the allowed
time; and the final optimality gap reported by CPLEX (opt=0%). For each
approximation type, boldface is used to emphasize the original problem ((4)
or (5)) yielding better results for a particular measure (for F,N the compar-
ative measure is F/N). Underlined figures emphasize draws. Values marked
by ∗ indicate a winning method for a particular instance: this is chosen by
looking at (in order of priority): ε, CPU, gap, F/N .
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Instance (4)+Pure ℓ∞ (5)+Pure ℓ∞
ε CPU F N gap ε CPU F N gap

cancer 0.73∗ 1800.21 677574 760654 12.33% 0.915 1800.11 7671 209071 67.65%
cluster3 0.3046 0.02 50 91 opt 0.3046∗ 0.02 10 90 opt
esr 150 8 10 0.0744∗ 1800.21 13879 13980 100.00% 0.0896 1800.26 10164 11264 100.00%
esr 210 8 10 0.1704 1800.32 7874 8075 100.00% 0.1503∗ 1800.34 5371 5472 100.00%
hsynt 1500 8 3 0.4497 1800.89 511 812 100.00% 0.4368 1800.46 1911 2129 100.00%
synt 35 2 3 0.0561 6.33 5103 7500 opt 0.0556 31.53 10211 41062 opt
synt 60 2 3 0.0614 125.81 27001 52389 opt 0.071 275.4 84071 142184 opt
synt 70 2 3 0.0749 47.52 8661 10238 opt 0.0741 163.43 24223 62325 opt

Instance (4)+Sandwich (5)+Sandwich
ε CPU F N gap ε CPU F N gap

cancer 0.8922 1800.07 104385 119285 52.53% 0.9286 1800.12 105540 243340 53.52%
cluster3 0.3046 0.04 44 86 opt 0.3046 0.03 90 91 opt
esr 150 8 10 0.1121 1800.28 18411 18612 100.00% 0.1006 1800.2 8841 8942 100.00%
esr 210 8 10 0.1593 1800.56 11158 11175 100.00% 0.157 1800.43 5964 6165 100.00%
hsynt 1500 8 3 0.5103 1801.88 860 1962 100.00% 0.416∗ 1800.6 1701 2002 100.00%
synt 35 2 3 0.0473 6.7 891 3314 opt 0.0482 127.63 28025 117132 0.27%
synt 60 2 3 0.0639 88.06 19320 24685 2.37% 0.0647 223.15 36521 105342 opt
synt 70 2 3 0.0656 199.78 84489 84490 opt 0.0664 648.44 71625 334408 opt

Instance (4)+Alternating (5)+Alternating
ε CPU F N gap ε CPU F N gap

cancer 0.73 1800.11 131488 163688 51.47% 0.82 1800.11 168988 269689 50.82%
cluster3 0.32 0.25 38 682 opt 0.318 0.2 120 774 opt
esr 150 8 10 0.1511 1800.2 15374 15875 100.00% 0.1076 1800.26 11060 11161 100.00%
esr 210 8 10 0.2184 1800.29 14284 14685 100.00% 0.1871 1800.29 7374 7575 100.00%
hsynt 1500 8 3 0.4741 1800.75 478 879 100.00% 0.4713 1800.65 501 2204 100.00%
synt 35 2 3 0.0462 155.08 86293 90612 opt 0.0462∗ 85.31 12201 50181 opt
synt 60 2 3 0.0579 165.72 20568 40212 opt 0.0579∗ 113.27 45208 50551 opt
synt 70 2 3 0.0584∗ 206.55 14715 45222 opt 0.0596 259.43 50931 73956 opt

Table 2. Computational results.

6 Conclusion

We presented several approximate MILP formulations for the bHCP. In par-
ticular, we discussed some techniques for linearizing a unit ℓ2 norm constraint
approximately. We evaluated the performance of the linearizations on an in-
stance test set. Although there was no clear winner, and all linearization vari-
ants yielded good results on at least some instance, approximations derived
from (5) seemed to be marginally better than those derived from (4).
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