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Universidade Federal do Rio de Janeiro - UFRJ

Rio de Janeiro - RJ, 21949-970, Brazil

e-mail: chaer@iq.ufrj.br

July 7, 2005

Abstract

The Hartree-Fock method is well known in quantum chemistry, and widely used to obtain atomic
and molecular eletronic wave functions, based on the minimization of a functional of the energy.
This gives rise to a multi-extremal, nonconvex, polynomial optimization problem. We give a novel
mathematical programming formulation of the problem, which we solve by using a spatial Branch-
and-Bound algorithm. Lower bounds are obtained by solving a tight linear relaxation of the problem
derived from an exact reformulation based on reduction constraints (a subset of RLT constraints).
The proposed approach was successfully applied to the ground-state of the He and Be atoms.

Keywords: Hartree-Fock method, global optimization, branch and bound, reduction constraints.

1 Introduction

The quantum behavior of atoms and molecules, in the absence of relativistic effects and external pertur-
bations, is determined by the time-independent Schrödinger equation:

HΨn = EΨn, (1)

where H, the Hamiltonian operator of the system, represents the total energy (kinetic + potential) of all
the particles of the system.
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Analytical solutions for this equation are only possible for very simple systems. Hence, for the majority
of problems of interest to chemists and physicists, one has to rely on some approximate model. In the
Hartree-Fock model, the electrons in atoms and molecules move independently of each other, the motion
of each one of the electrons being determined by the attractive electrostatic potential of the nuclei and
by a repulsive average field due to all the other electrons of the system. In this model, the approximate
solutions Φn of Eq. (1) are anti-symmetrized products of one-electron wave functions {ϕi} (also called
orbitals), which are solutions of the Hartree-Fock (HF) equations for the system under study. This
model gives rise to a set of coupled integro-differential equations which can only be solved numerically.
Alternatively, each orbital ϕi can be expanded in a complete basis set {χs}

∞
s=1. In order to transform the

HF equations into a less cumbersome algebraic problem, we only consider a finite subset {χs | s ≤ b} of
the basis, and we use it to approximate the orbitals. The larger we choose b, the better the approximation
is likely to become.

The optimization problem considered in this paper arises because we need to find a set of coefficients
csi, for s = 1, . . . , b and i = 1, . . . , n, such that for all i ≤ n the function

ϕ̄i =

b∑

s=1

csiχs, (2)

is a good approximation of the i-th spatial orbital ϕi. A further requirement on the approximating set
{ϕ̄i} is that it must be an orthogonal set. The Hartree-Fock method iteratively solves a set of linear
equations to find the coefficients csi. This method, however, has two main limitations: (a) it depends on
an initial solution being available, and (b) there is no guarantee that the set of coefficients csi found by
the method are a globally optimal such set. For more information about the Hartree-Fock method, see
[Lev00], p. 426.

We define the Hartree-Fock Problem (HFP) as the problem of finding a set of coefficients csi such that
the ϕ̄i are the best possible approximations of the spatial orbitals. The objective function (quality of the
approximation) is given by the energy function E associated with the approximating set {ϕ̄i}, which is
guaranteed to be an upper bound to the energy function associated with the spatial orbitals. Thus, we
need to minimize the energy function E subject to {ϕ̄i} being an orthogonal set. The decision variables
of this mathematical programming problem are the coefficients csi. The problem can be expressed as
follows:

minc E(c)
s.t. 〈ϕ̄i | ϕ̄j〉 = δij ∀i ≤ j ≤ n

cL ≤ c ≤ cU



 (3)

where δij is the Kronecker delta function, which is equal to 1 if i = j and 0 otherwise. Problem (3)
is a nonconvex, multi-extremal, polynomially constrained, polynomial programming problem. We solve
it by applying a spatial Branch-and-Bound (sBB) technique. Lower bounds are obtained by solving
a tight linear relaxation derived from an exact reformulation of problem (3). This reformulation is
based on the technique of reduction constraints [Lib04d], which are a subset of RLT constraints [SA92]
guaranteed to reduce the number of bilinear terms in the problem. The solution method has been applied
to two instances of this problem, namely to the Helium and Berillium atoms, with considerable success
as regards CPU time performance. A comparison with another interval-based sBB technique put the
balance in favour of the proposed method by at least an order of magnitude.

The rest of this paper is organized as follows. Section 2 briefly reviews the Hartree-Fock method
and derives the energy function. Section 3 presents the mathematical programming formulation of the
HFP. Section 4 describes the sBB algorithm we employed for the solution, as well as the linear relaxation.
Section 5 is about the reduction constraints-based reformulation. Section 6 considers the instances for the
He and Be atoms together with the exact reformulations. Section 7 discusses the computational results.
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2 The Hartree-Fock Method

Since this is a well known and established method we will only mention the basic equations needed for
other sections of the paper. The expression for the Hartree-Fock electronic energy E of an 2n-electron
molecule with closed shells is given by [Lev00]:

E = 2

n∑

i=1

Hcore
ii +

n∑

i=1

n∑

j=1

(2Jij − Kij) + VNN , (4)

where Hcore
ii contains the one-electron integrals, Jij is the Coulomb integral, Kij is the exchange integral,

and VNN is the nuclear repulsion term. The Hartree-Fock method is used to identify the spatial orbitals
{ϕi}, i = 1, ..., n, of an n-electron system that minimize (4). More precisely, the spatial orbitals {ϕi} are
expanded as linear combinations of a finite set of one-electron basis functions as per Eq. (2). Thus, we
obtain the HF equations [Lev00]:

b∑

s=1

csi (Frs − εiSrs) = 0, (5)

where Frs = 〈χr|F̂ |χs〉, Srs = 〈χr|χs〉, εi is the orbital energy, and F̂ is the Fock operator [Lev00].
Equations (5) form a set of b equations in the variables csi. These equations are in fact nonlinear, since

the F̂ operator depends on the orbitals {ϕi}, which in turn depend on the variables csi.

It is possible to obtain an expression for Frs in terms of the coefficients {csi} and a set of suitable
integrals over the basis functions {χs} [Lev00]:

Frs = Hcore
rs +

b∑

t=1

b∑

u=1

n∑

i=1

c∗ticui[2(rs|tu) − (ru|ts)], (6)

where (rs|tu) and (ru|ts) stand for the Coulomb and exchange integrals between pairs of electrons.
While the Coulomb integrals represent the quantum-mechanical equivalent of the classical Coulomb
interaction between two charged particles, the exchange integrals are purely quantum entities, resulting
from the fact that the total wave function for any multi-electronic system must be anti-symmetric (Pauli
principle). Also, the wave functions representing the behaviour of atoms and molecules can be real or
complex. However, since any observable (dynamic variable) must be real, the expectation value of the
corresponding operator, O, must be taken as 〈O〉 =

∫
φ∗Oφdv, which is the reason why the complex

product c∗ticui appears in Eq. (6).

To simplify the notation, we will write H(r, s) = Hcore
rs and X(r, s, t, u) = (rs|tu), where r = 1, ..., b,

s = 1, ..., b, t = 1, ..., b, and u = 1, ..., b. Also, it is possible to rewrite equation (4) in the form

E =

b∑

r=1

b∑

s=1

n∑

i=1

(c∗ricsi (Frs + H(r, s))) + VNN . (7)

Finally, using (6) and (7), we get

E =
1

2

b∑

r=1

b∑

s=1

b∑

t=1

b∑

u=1

(
P (r, s)P (t, u)

(
X(r, s, t, u) −

1

2
X(r, u, t, s)

))
+

+

b∑

r=1

b∑

s=1

(P (r, s)H(r, s)) + VNN , (8)

where

P (j, k) = 2
n∑

i=1

c∗jicki (j = 1, ..., b and k = 1, ..., b) .



3 MATHEMATICAL PROGRAMMING FORMULATION OF THE PROBLEM 4

Note that expression (8) is actually a function of the coefficients csi, since the integrals H(r, s) and
X(r, s, t, u), as well as the value of VNN , can be calculated once the basis {χs} and the molecular geometry
are defined.

3 Mathematical Programming Formulation of the Problem

Throughout this section, we shall talk of the coefficients csi as “decision variables” of the problem, and by
“coefficients” we shall mean the numerical coefficients of the linear and nonlinear terms of the problem.
To further simplify the notation, we shall write the numerical coefficients as:

αtu
rs = X(r, s, t, u) −

1

2
X(r, u, t, s)

βrs = H(r, s)

γ = VNN .

After simple term rearrangement, the objective function of the problem becomes

E(c) = 2

b∑

r,s=1

(
n∑

i=1

cricsi

)(
b∑

t,u=1

αtu
rs

(
n∑

i=1

cticui

)
+ βrs

)
+ γ (9)

subject to the constraints
b∑

r=1

cricri = 1 (1 ≤ i ≤ n) (10)

and
b∑

r,s=1

Srscricsj = 0 (∀i ≤ j ≤ n). (11)

Constraint (10) expresses the normalization condition imposed to the atomic or molecular orbitals,
being a consequence of the probabilistic interpretation of the wave function. On the other hand, constraint
(11) expresses the orthogonality among the atomic or molecular orbitals. While not a necessary condition,
orthogonality is always imposed in the Hartree-Fock method because the resulting equations are much
easier to solve in an orthogonal basis of atomic or molecular orbitals. Conditions (10) and (11) can be
combined into a single expression:

b∑

r,s=1

Srscricsj = δij (∀i ≤ j ≤ n), (12)

where Srs is a numerical coefficient that is equal to 1 when r = s, and δij is the Kronecker delta (δij = 1
if i = j and 0 otherwise). Notice that if i = j, the bilinear term cricsj is invariant if we swap r and
s. We can therefore isolate a particular subset of constraints (12) which will be useful in the reduction
constraints reformulation of Section 5:

b∑

r=1

c2
ri +

∑

r<s

2Srscricsi = 1 ∀i ≤ n. (13)

The variable bounds
cL ≤ c ≤ cU (14)

depend on the instance. The HFP can be expressed as determining

min{E(c) | s.t. (12), (14)}.
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4 The sBB Algorithm

Spatial Branch-and-Bound algorithms locate the global optimum by generating converging sequences of
upper and lower bounds to the objective function. The upper bounds are obtained by locally solving the
original (nonconvex) problem. The lower bounds are obtained by locally solving a convex (in this case,
linear) relaxation of the original problem. The linear relaxation is generated according to a set of symbolic
manipulation rules on the problem equations, and is guaranteed to underestimate the value of the original
problem at each feasible point. Since any local solution of a convex problem is also global, locally solving
the linear relaxation yields a valid lower bound to the original problem. The implementation details are
given in [Lib04c].

The linear relaxation is built in two stages: first the problem is reduced to a standard form where the
nonlinear terms are linearized. This means that each nonlinear term is replaced by a linearizing variable,
and a constraint of type “linearizing variable = nonlinear term” is added to the problem formulation.
Such constraints are called defining equations, or defining constraints. In the second stage of the linear
relaxation each nonlinear term is replaced by the corresponding linear under- and over-estimators. Note
that this process is wholly automatic, and part of the global optimization algorithm.

5 Exact Reformulation

The convexification method explained in Section 4 usually generates linear relaxations yielding tight
lower bounds, yet for some classes of problems these bounds can be made even tighter. In particular,
it is often possible to reformulate problems with linear equality constraints and bilinear terms in such
a way that some of the bilinear (nonconvex) terms are replaced by linear constraints called reduction
constraints. Looking at the formulation given in Section 3 it is not immediately apparent that there are
linear equality constraints in the problem at hand; it turns out that linear equality constraints appear
in the problem as a consequence of the linearization of the bilinear terms of second degree, as explained
in Section 5.2 below. The net effect of this reformulation on the convex relaxation is that there are less
nonconvex terms to relax, and hence the relaxation is tighter. Reduction constraints are discussed at
length in [Lib04b, Lib04d, Lib04c, Lib04a], so a short introduction will suffice here.

5.1 Introduction to Reduction Constraints

Assume the feasible region of the problem is defined by a set of variable ranges and constraints which
include the linear equality system Ax = b (where A is an m×n matrix with full rank m ≤ n, x ∈ R

n, and
b ∈ R

m); assume further that all bilinear products xkxi (for k ≤ i ≤ n) appear in the problem (either
in the objective function, or in some of the constraints, or both). Define linearizing variables wi

k = xkxi

for k ≤ i ≤ n, and let wk = (w1
k, . . . , wn

k ). We can generate valid linear constraints by multiplying the
system Ax = b by each variable xk in turn and linearizing the bilinear terms:

∀k ≤ n (xk(Ax) − bxk = 0) ⇒ ∀k ≤ n (Awk − bxk = 0).

The linear system above, depending on x and w, is called a reduction constraints system (RCS). By
substituting b = Ax, we see that the above is equivalent to ∀k ≤ n (A(wk − xkx) = 0). If we set
zk = wk − xkx = (w1

k − xkx1, . . . , w
n
k − xkxn) = (z1

k, . . . , zn
k ), the RCS is easily seen to be equivalent to

the companion system

∀k ≤ n (Azk = 0).

The companion system can be written as Mz = 0 for a suitable matrix M , where z is the vector of all
zi
k. Now, let B be a maximal set of index pairs (i, j) such that z

j
i is a basic variable of the companion

system. Let N be the corresponding nonbasic index pair set (so that z
j
i is nonbasic for each (i, j) ∈ N).

By setting all the nonbasic variables to zero, for Mz = 0 to hold, the basic variables must also be zero.
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Thus, by setting w
j
i = xixj for all (i, j) ∈ N , the RCS implies w

j
i = xixj for all (i, j) ∈ B. In other

words, the RCS replaces those bilinear constraints corresponding to basic variables of the companion
system. Effectively, the original problem is equivalent to a reformulated problem containing the original
linear constraints, the RCS, and the bilinear defining constraints relative to nonbasics of the companion
system.

Notice that for any given linear system the choice for partitioning the variables in basic and nonbasic
is usually not unique. To any bilinear term we associate a measure, called the convexity gap, of how
tightly the convex relaxation approximates it. For any bilinear defining constraint wi

k = xkxi, the convex
relaxation of the set Di

k of points (xk, xi, w
i
k) satisfying the constraint consists in the set D̄i

k of points
(xk, xi, w

i
k) satisfying the following relaxed constraints [McC76, AKF83]:

wi
k ≤ ḡ(xk, xi) = min{xU

k xi + xL
i xk − xU

k xL
i , xL

k xi + xU
i xk − xL

k xU
i }

wi
k ≥ g(xk, xi) = max{xL

k xi + xL
i xk − xL

k xL
i , xU

i xi + xU
i xk − xU

k xU
i },

where ḡ is a concave overestimating envelope and g is a convex underestimating envelope of the function

g(xk, xi) = xkxi. Let µn(S) be the Lebesgue measure in R
n of the set S ⊆ R

n. The convexity gap V i
k

is defined as µ3(D̄
i
k) − µ3(D

i
k). For quadratic terms, i.e. when k = i, we use the chord as a concave

overestimator and the function itself as a convex underestimator:

ḡ(xk, xk) = (xL
k + xU

k )xk − xL
k xU

k

g(xk, xk) = x2
k.

In practice it is more convenient to solve linear relaxations, rather than nonlinear convex ones, so we
employ a linear estimation of the quadratic function consisting of the tangents at the endpoints and the
xk coordinate axis:

g(xk, xk) = max{2xL
k xk − (xL

k )2, 2xU
k xk − (xU

k )2, 0}.

Obviously, for quadratic terms we use the 2-dimensional Lebesgue measure µ2 instead of µ3 when com-
puting the convexity gap.

Since Di
k is a surface in R

3 (R2 if k = i), its Lebesgue measure is zero. Hence V i
k = µ3(D̄

i
k) (V k

k =
µ2(D̄

k
k) if k = i). Since we want to tighten the convex relaxation, we need to make sure that the set of

nonbasic variables of the companion system (i.e., those bilinear terms that have to remain in the problem
formulation) have the least total convexity gap. Equivalently, we need to choose a set of basic variables
with the largest total convexity gap

∑
all (i,k) V i

k . It can be shown [Lib04a] that V i
k depends on the widths

of the variable ranges of xk, xi: the larger the variable ranges, the larger the convexity gap. We therefore
choose the basic variables of the companion system to include all the bilinear terms whose associated
variables have large range.

5.2 Reformulating the HFP

As has been remarked, the problem constraints are not linear, therefore a straightforward application
of the reduction constraints reformulation is not possible. Note, however, that the objective function
E(c) (see Eq. (9)) is expressed in terms of the subset X2 of the homogeneous monomials of second
degree (cricsi for r ≤ s ≤ b, i ≤ n, each of them multiplied by 2βrs in E(c)), and the subset X4 of the
homogeneous monomials of fourth degree obtained by taking bilinear products of all the monomials in
X2 (these are multiplied by 2αtu

rs in E(c)). No other non-constant term appears in the objective function.
Note also that the subset of problem constraints in Eq. (13) is also a function of the bilinear terms in
X2 and of no other terms, and that all terms in X2 appear in the constraints. Suppose now we regards
the elements of X2 as single variables, instead of bilinear terms. Then constraints (13) are linear in the
terms in X2, and the objective function contains all bilinear terms that can be obtained as products of
terms in X2. In other words, if we linearize the bilinear terms in X2, setting

yi
rs = cricsi ∀r ≤ s ≤ b, i ≤ n, (15)
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the “sub-problem” given by {min E(c) | s.t. (13)} can be expressed as an objective function that contains
all bilinear terms in the y variables, subject to linear equation constraints in the y variables, as shown
below:

miny 2
∑

r≤s,t≤u

n∑
i,j=1

µ
ij
rstuyi

rsy
j
tu + 2

∑
r≤s

n∑
i=1

νi
rsy

i
rs + γ

s.t.
b∑

r=1
yi

rr +
∑
r<s

2Srsy
i
rs = 1 ∀i ≤ n

yL ≤ y ≤ yU ,





(16)

where the µ, ν are suitable coefficient vectors obtained from α, β, and the bounds yL, yU on the y variables
are obtained through simple interval arithmetics using the bounds on c and the bilinear relations (15).
It is now clear that we can reformulate problem (16) using reduction constraints. We define linearizing
variables together with their defining constraints, as follows:

w
ij
rstu = yi

rsy
j
tu ∀r ≤ s ≤ b, t ≤ u ≤ b, i ≤ n, j ≤ n. (17)

In fact, some of the w variables, as defined above, are redundant: when i = j, for example, we should
also enforce r ≤ t and s ≤ u. The linearized problem becomes

miny 2
∑

r≤s,t≤u

n∑
i,j=1

µ
ij
rstuw

ij
rstu + 2

∑
r≤s

n∑
i=1

νi
rsy

i
rs + γ

s.t.
b∑

r=1
yi

rr +
∑
r<s

2Srsy
i
rs = 1 ∀i ≤ n

w
ij
rstu = yi

rsy
j
tu ∀r ≤ s ≤ b, t ≤ u ≤ b, i ≤ n, j ≤ n

yL ≤ y ≤ yU

wL ≤ w ≤ wU ,





(18)

where the bounds wL, wU on w can be computed by interval arithmetic on the bounds of y.

We now multiply constraints (13), expressed in the y variables, by all problem variables yi
rs, and

linearize the resulting constraints using the defining relations (17). We obtain a RCS

b∑

r=1

w
ij
rrtu +

∑

r<s

2Srsw
ij
rstu = y

j
tu ∀t ≤ u ≤ b, j ≤ n. (19)

We now compute the rank of the derived companion system and the set of basic variables with highest
associated convexity gap: the associated defining constraints are then replaced by the RCS (this compu-
tation has to be carried out on each separate instance). Suppose that at the end of the reformulation we
obtain a set of index tuples N corresponding to the nonbasics of the companion system. Problem (18)
can be reformulated as:

miny 2
∑

r≤s,t≤u

n∑
i,j=1

µ
ij
rstuw

ij
rstu + 2

∑
r≤s

n∑
i=1

νi
rsy

i
rs + γ

s.t.
b∑

r=1
yi

rr +
∑
r<s

2Srsy
i
rs = 1 ∀i ≤ n

b∑
r=1

w
ij
rrtu +

∑
r<s

2Srsw
ij
rstu = y

j
tu ∀t ≤ u ≤ b, j ≤ n

w
ij
rstu = yi

rsy
j
tu ∀(r, s, t, u, i, j) ∈ N

yL ≤ y ≤ yU

wL ≤ w ≤ wU .





(20)

Problem (20) is an exact reformulation (with less bilinear terms) of the sub-problem (16) of the main
problem (3). By adding back the rest of the constraints (12) (i.e. those that were not in Eq. (13)) together
with the y-defining constraints (15), we obtain an exact reformulation (with fewer bilinear terms) of the
whole problem. This reformulation becomes the basis for obtaining a tighter convex relaxation: we
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replace each bilinear defining constraint, both for the y and w variables, with the corresponding linear
under- and over-estimators; see Section 5.1.

As some steps in this process depend on the instance, we give a detailed derivation of two small
instances in Section 6 below.

6 Test Instances

To illustrate the method we present the results obtained when the algorithm was applied to the ground-
state of Helium (He) and Berillium (Be) atoms.

6.1 He atom

For the He atom, the energy function considering an uncontracted Gaussian basis set consisting of two s

functions with the exponents ζ1 = 0.532149 and ζ2 = 4.097728 is given by

EHe = −3.059912c2
11 − 7.016380c11c21 − 0.62798c2

21

+0.823136170c4
11 + 2.139139440c3

11c21

+3.972805480c2
11c

2
21 + 3.955260680c11c

3
21 + 2.28416050c4

21 .

The constraint
c2
11 + c2

21 + 2c11c21S12 = 1,

where S12 = 0.509475 is the overlap integral, must be imposed to preserve the normalization condition.
Thus, the problem is:

min
−1≤c≤1

EHe(c11, c21)

s.t. c2
11 + c2

21 + 2c11c21S12 = 1. (21)

We now discuss the reduction constraints reformulation applied to this instance. First, we linearize
all the nonlinear terms. The defining constraints are as follows:

y1
11 = c2

11 y1
22 = c2

21 y1
12 = c11c21

w11
1111 = (y1

11)
2 w11

2222 = (y1
22)

2 w11
1212 = (y1

12)
2 w11

1112 = y1
11y

1
12 w11

2212 = y1
22y

1
12.

}
(22)

Notice that in this problem the bilinear terms we take into account are those in the linearizing variables
y rather than those in the original problem variables c. Since the w variables linearize all bilinear terms
in the y variables and the equation constraint (21) becomes the linear equation constraint y1

11 + y1
22 +

2S12y
1
12 = 1 upon substitution of the y variables in place of the bilinear terms in the c variables, the

following linearized problem can be tightened via reduction constraint techniques:

min
c,y

EHe(y, w)

s.t. y1
11 + y1

22 + 2S12y
1
12 = 1

defining constraints (22)
0 ≤ y1

11, y
1
22, w

11
1111, w

11
2222, w

11
1212 ≤ 1

−1 ≤ y1
12, w

11
1112, w

11
2212, c11, c21 ≤ 1.





(23)

We derive a RCS by multiplying the linear equation constraint by each of the y variables in turn. We
obtain a RCS Mw = y where

M =




1 0 1 2S12 0
1 1 0 2S12

2S12 1 1


 .
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Consider the companion system Mz = 0 (see Section 5.1). Since M has full rank 3, we have |B| =
3, |N | = 2. The obvious set of nonbasic variables is N = {z11

1111, z
11
2212}. Observe, however, that these

variables have high convexity gap, since both depend on the variable y1
12 which has range −1 ≤ y1

12 ≤ 1.
By applying the permutation (4152) to the columns of M , after Gaussian elimination we get the following
matrix:

M ′ =




2S12 0 1 0 0
2S12 1 1 0

2S12 −
1

S12

− 1
S12

− 1
S12


 .

The nonbasics for M ′z = 0 are N ′ = {z11
1111, z

11
2222}. This choice minimizes the convexity gap, as both w4

and w5 depend on variables with range [0, 1]. Finally, we end up with the following exact reformulation:

min
c,y

EHe(y, w)

s.t. y1
11 + y1

22 + 2S12y
1
12 = 1

y1
11 = c2

11, y
1
22 = c2

21, y
1
12 = c11c21

w11
1111 = (y1

11)
2, w11

2222 = (y1
22)

2

Mw = y

0 ≤ y1
11, y

1
22, w

11
1111, w

11
2222, w

11
1212 ≤ 1

−1 ≤ y1
12, w

11
1112, w

11
2212, c11, c21 ≤ 1.





(24)

Observe that we have three fewer nonlinear terms in (24) than in (23), and that the convexity gap is
minimized; therefore the convex relaxation of the reformulated problem is guaranteed to yield have a
tighter lower bound than the convex relaxation derived directly from the original problem.

The globally optimal solution of the above problem has objective function value E∗
He = −2.7471h and

solution c11 = 0.8256 and c21 = 0.2832.

6.2 Be atom

For the Be atom, the energy function considering a contracted minimal basis set with the following
parameters

function exponents (ζi) contraction coefficients

30.1678707 0.154328967295
1s 5.4951153 0.535328142282

1.4871927 0.444634542185

1.3148331 −0.099967229187
2s 0.3055389 0.399512826089

0.0993707 0.700115468880

is given by

EBe = −15.734260c2
12 − 15.734260c2

11 + 0.5721648000c12c22c
2
21

+1.568145040c2
12c11c21 + 1.568145040c2

11c12c22

−7.7290488c11c21 − 7.7290488c12c22 − 4.204318c2
21

−4.204318c2
22 + 2.298830600c4

11 + 4.597661200c2
11c

2
12

−1.329488452c11c21c12c22 + 0.8353663000c2
21c

2
22

+0.4176831500c4
21 + 0.4176831500c4

22 + 2.124875442c2
11c

2
22

+2.124875442c2
12c

2
21 + 1.460131216c2

12c
2
22 + 0.5721648000c11c

3
21

+0.5721648000c12c
3
22 + 0.5721648000c11c21c

2
22

+1.568145040c3
12c22 + 1.460131216c2

11c
2
21

+1.568145040c3
11c21 + 2.298830600c4

12 .
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In this case the orthogonality constraints are:

c2
11 + c2

21 + 2c11c21S12 = 1

c2
12 + c2

22 + 2c12c22S21 = 1

c11c12 + c21c22 + (c11c22 + c21c12) S12 = 0.

Thus, the problem is:
min

−1≤c≤1.5
EBe(c11, c21, c12, c22)

subject to





c2
11 + c2

21 + 2c11c21S12 = 1
c2
12 + c2

22 + 2c12c22S21 = 1
c11c12 + c21c22 + (c11c22 + c21c12) S12 = 0,

where S12 = S21 = 0.259517.

We now discuss the reduction constraints reformulation. The linearizing variables for the second
degree bilinear terms are

y1 = c2
11, y2 = c2

12, y3 = c2
21, y4 = c2

22, y5 = c11c21, y6 = c12c22

(we dispense from full indexing for simplicity and readability). The other linearizing variables are
w1, . . . , w18, and there exist defining constraints linking w1, . . . , w18 to all the bilinear products among
the variables {y1, . . . , y6}. The reduction constraints reformulation of this instance involves a RCS matrix
M having rank 11. The set of nonbasic variables of the companion system which minimizes the convexity
gap is:

w3 = y2
3 , w4 = y2

4 , w5 = y1y2, w7 = y1y4,

w8 = y2y3, w9 = y2y4, w10 = y3y4.

Since |B| = 11, this exact reformulation has 11 bilinear terms fewer than the original problem.

The globally optimal solution has objective function value E∗
Be = −14.3519h, with solution c11 =

0.9929, c21 = 0.02614, c12 = −0.2939, and c22 = 1.035.

7 Computational Results

All computational results have been obtained by running global solvers within the ooOPS optimization
software framework [LTKP01] executed on a PIII 850MHz with 384 MB RAM running Linux. All
algorithms converged to the global optimum for both the He and Be instances.

The computational results, expressed in seconds of user CPU time, are reported in Table 1, and
organized as follows. The first three columns relate to deterministic methods. In the first column we report
on sBB solving the reformulated instances. In the second column we report on sBB solving the original
instances. In the third column we report on sBBIA (a sBB algorithm where the lower bounds have been
computed with an interval arithmetic approach) solving the original instances. The last two columns refer
to heuristic methods. The fourth column contains results obtained with an implementation of Variable
Neighbourhood Search (VNS) [MPKVv03]. The fifth column contains results obtained with a variant
of the Multi Level Single Linkage (MLSL) algorithm called SobolOpt [KS04], which uses deterministic
low-discrepancy Sobol’ sequences to generate a uniform sampling of starting points.

Since in energy minimization problem it is important to obtain a guarantee of global optimality, the
main computational result is that relating to sBB methods, where it appears clear that the reformulation
gives rise to a much faster solution process. The fact that the heuristic methods are faster than sBB is to
be expected (however, they do not provide any certificate of global optimality, even within ε). The extent
to which the timings for sBB have the same order of magnitude as those for SobolOpt (and partially
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also VNS) comes as somewhat of a surprise, showing that that sBB approach is a valid alternative to the
more widely employed heuristic methods for global optimization, even though just for small and medium
scale problems.

Atom sBB sBB(noRCS) sBBIA VNS SobolOpt
He 0.26s 3.43s 6s 0.116s 0.14s
Be 10s 223s 220s 0.3s 14s

Table 1: Computational results for the He and Be atoms.

It is worth pointing out that the problem discussed in this paper offers some computational validation
to the reduction constraints method, as solving both the original (unreformulated) instances of Section
6 and the reformulated instances with a non-optimal (in the sense of the convexity gap) set of nonbasic
variables of the companion system yields considerably higher CPU times than solving the optimally
reformulated instances.

8 Conclusion

The Hartree-Fock method is used to determine the molecular spatial orbitals which minimize a given
energy function E, by directly solving the Hartree-Fock equations. The solution of the method depends
heavily on the supplied initial values and there is no guarantee that the global minimum value of the
energy function will be achieved. In this paper, we propose a nonconvex mathematical programming
formulation for the Hartree-Fock Problem, which we solve to global optimality with a spatial Branch-and-
Bound algorithm. The lower bounds to the objective function are obtained as solutions of a tight linear
relaxation of the problem, based on an exact reformulation generated with the technique of reduction
constraints. By using global optimization techniques, we overcome the limitation of the Hartree-Fock
method regarding the initial values of the coefficients. The fact that global optimality is guaranteed (at
least to within ε > 0) makes the presented methodology particularly useful to treat systems which exhibit
Hartree-Fock instabilities. The computational results presented in this paper refer to rather small test
cases, but are nonetheless very promising. Computational work on larger cases is ongoing.
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