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1 Laboratoire de Physique et Chimie Théorique, CNRS UMR7019 et Université de
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Abstract. Since the first years of structural biology, the Ramachan-
dran map has provided a simple definition of the curvilinear geometry
of the protein backbone. This definition is mainly based on the values of
the dihedral angles ϕ and ψ measured between the heavy atoms of the
protein backbone. Nevertheless, angle value discontinuities are observed,
particularly in the region of the β-strand secondary structure. We intro-
duce new pseudo-dihedral angles involving hydrogen positions instead
of some of the positions of the heavy atoms. We determine simple nu-
merical relationships between the old and new dihedral angles. We show
that combining the old and new parameters allows us to overcome the
discontinuity problem encountered in the Ramachandran map.

Keywords: interval Branch-and-Prune · pseudo-dihedral angles · Ra-
machandran map.

1 Introduction

The flourishing development of structural biology has been conducted to the
availability of numerous protein structures. These structures can be consid-
ered as geometrical objects provided by nature and are therefore the subject
of ongoing interest [5,9,13]. A reasonable quantification of the geometry in pro-
teins is essential for a better definition of the biological function and activity of
these molecules. The approaches easing this quantification are thus crucial for
application-oriented developments in health and biotechnology.

For a decade, the development of the Branch-and-Prune (BP) and interval
Branch-and-Prune (iBP) algorithms has provided a theoretical framework for
the parametrization as well as a systematic enumeration of the atomic coor-
dinates [4]. Nevertheless, the practical application of these algorithms to ever
larger proteins requires further development. In this paper, we present a geo-
metric relationship between the protein backbone dihedral angles ϕ and ψ to
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versité de Lorraine.

Leo Liberti
Wagner Da Rocha, Carlile Lavor, Leo Liberti, Thérèse Malliavin, Pseudo-dihedral angles in proteins providing a new description of the Ramachandran map, in F. Nielsen and F. Barbaresco (eds.), Geometric Science of Information (GSI), LNCS 14072:511-519, Springer, Berlin, 2023



2 W. Da Rocha et al.

pseudo-dihedral angles defined from backbone atoms, including hydrogens. Fur-
thermore, we calibrate these formulas experimentally on data from sets of protein
structures. This new way to observe the curvilinear geometry of the backbone an-
gles allows us to solve a discontinuity problem present in the classical definition
of the Ramachandran map [10]. Removing the discontinuity helps to improve
the systematic enumeration of protein conformations in the iBP algorithm [6]
by avoiding the definition of multiple intervals due to the gaps in angle values.

2 Theory

The dihedral angles in protein structures are defined for sets of four atoms
A, B, C and D as the angles between the vectors normal to the planes {A,B,C}
and {B,C,D}. Considering two amino acid residues in a protein, consecutive in
the primary sequence, Ri and Ri+1, the backbone dihedral angles are defined as
[8]:

ϕi := Ci−1 − N i − Ciα − Ci, ψi := N i − Ciα − Ci − N i+1, (1)

and ωi := Ci−1
α − Ci−1 − N i − Ciα, where the ωi angle populates two sets of

values: ωi ≈ 0◦, in the case of the cis peptide bond, or |ω| ≈ 180◦ in the case of
the trans peptide bond.

By analogy with the definition from (1), and considering the amino acids
residues Rj , Ri, and Ri+1, we define the following pseudo-dihedral angles:

νκji := Ci−1 − N i − Ciα − Hj
κ, υκji := N i − Ciα − Ci − Hj

κ,

ξρi := Hi
ρ − N i − Ciα − Ci, ζϱi , := Hi+1

ϱ − Ciα − Ci − N i+1,

µκρji := Hj
κ − N i − Ciα − Hi

ρ, ηκϱji := Hj
κ − Ciα − Ci − Hi+1

ϱ ,

(2)

where ρ ∈ {α, α2}, ϱ ∈ {N, δ3}, and κ represents any character that names
a hydrogen atom in a protein. Two particular cases have to be considered: in
Glycine residues, two hydrogen atoms are bonded to the Cα atom, Hα2

and Hα3

[8], and we select Hα2 to play the role of Hα; in Proline residues, no HN atom
is present, and we choose the Hδ3 atom to play the role of HN .

As the backbone angles are defined in the interval (−180◦, 180◦], all pseudo-
dihedral angles expressed in this paper are also in this interval, and obey the
same orientation: the counter-clockwise sense is positive and clockwise sense
is negative. Concerning equations (1) and (2), the angles νκji, ξ

ρ
i , and µκρji are

associated to the angle ϕi and the others to the angle ψi. We note that all angle
definitions share the same two central atoms.

We present some examples about pseudo-dihedral angles in a protein struc-
ture. If Ri is neither a Proline nor a Glycine amino acid residue, assuming i = j,
then κ = N and ρ = α in the pseudo-dihedral angles defined in (2). To simplify
the notation in this case, we consider νi ≡ νNii , ξi ≡ ξαi , and µi ≡ µNαii . In Fig.
1, the case where |νi| ≈ 180◦ and ξi ≈ −120◦ is presented.

The dihedral angles are represented in 2D in Fig. 1 (d) to (f) without loss
of generality, because we can always define an isometric function to switch the
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Fig. 1. (a) Spatial positions for the atoms Ci−1, N i, Hi
N , C

i
α, H

i
α, and C

i whether
νi = 180◦, ξi = −120◦, and ϕi = 30◦. The numerical values bond length and bond an-
gles are taken from [1]; (b) Definition of the planes {Ci−1, N i, Ci

α} (green), {N i, Ci
α, C

i}
(blue), and {N i, Ci

α, H
i
α} (red) on the image (a) structure; (c) Rotation of image (b)

structure identifying a pertinent point of view; (d) Orthogonal projection of the image
(c) structure to the plane perpendicular to the bond N i − Ci

α. The dihedral angle ϕi

(black) and the pseudo-dihedral angles νi (orange), ξi (red), and µi (light gray) are
identified as planar angles and obey the angular relationship: ϕi = νi + ξi + µi; (e)
Planar approach of image (a) structure concerning νi = 175◦ with the angular rela-
tionship described by ϕi = νi + ξi +µi; (f) Analogous case of image (e), though in this
case νi = −175◦ and the angular relationship is expressed by ϕi = νi + ξi + µi + 360◦.

rotation axis defined by atoms N i and Ciα to the z-axis of the Cartesian coor-
dinate system [7]. In this case, the angular information required to rotate any
point around the z-axis is the same as needed to rotate a point of the plane xy
around its origin [7].

The relationship between the dihedral and pseudo-dihedral angles changes
depending on the values of the pseudo-dihedral angles involved. Any relationship
described from those angles can be considered a composition of rotations in the
plane. Indeed, as R2 ∼= C(R) [12], we assume without loss of generality that
Cα = 0 of C and the atoms Ci−1, Ci, Hi

α, and H
i
N are points of C in a unitary

circle. Then, the following rotations in C allow the definition of the relative
atomic positions:

Ci = eiϕiCi−1, Ci = eiξiHi
α, H

i
α = eiµiHi

N , and H
i
N = eiνiCi−1, (3)

where i is the imaginary unity. From the rotations of (3), we can write:

eiϕiCi−1 = eiξiHi
α = eiξieiµiHi

N = eiξieiµieiνiCi−1 = ei(ξi+µi+νi)Ci−1 ⇔(
eiϕi − ei(ξi+µi+νi)

)
Ci−1 = 0 ⇔ eiϕi = ei(ξi+µi+νi).

(4)
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The solution for the complex number equation presented in (4) is given by

ϕi = νi + ξi + µi +m× 360◦, (5)

such that m ∈ Z. As all angles from (5) lie in the interval (−180◦, 180◦], only
m ∈ {−1, 0, 1} must be considered in this solution.

A similar reasoning can be applied to describe the general case solution,
which has pseudo-dihedral angles defined in atoms from the residues Rj , Ri and
Ri+1, providing the equation (5):

ϕi = νκji + ξρi + µκρji +m× 360◦, such that m ∈ {−1, 0, 1}. (6)

For a unique characterization of the result presented in (6), we must specify
which value of m has to be considered in each circumstance. Theorem 1 provides
a complete analysis.

Theorem 1. Let Rj and Ri be amino acid residues of a protein, indexed by
their positions in the primary sequence; ϕi, ν

κ
ji, ξ

ρ
i , and µκρji be the dihedral

and the three pseudo-dihedral angles defined in (1) and (2), respectively. The
dihedral angle ϕi ∈ (−180◦, 180◦] can be written in the function of the other

three pseudo-dihedral angles by ϕi = fmϕ

(
Φκρji + µκρji

)
, where Φκρji := νκji + ξρi ,

mϕ :=

{
1 −if− −180◦ < νκji ≤ −ξρi ,

−1 if −ξρi < νκji ≤ 180◦,
and

fm(τ) :=


τ −if− |τ |. < . 180◦,

τ +m× 360◦ if |τ | > 180◦,

180◦ if |τ | = 180◦.

(7)

Proof. As the pseudo-dihedral angles νκji and µ
κρ
ji can assume any value in the

interval (−180◦, 180◦], to analyze all possibilities for these angles, conveniently,
we consider the intervals: i : −180◦ < νκji ≤ −ξρi and ii : −ξρi < νκji ≤ 180◦;

1 : −180◦ < µκρji ≤ 0◦ and 2 : 0◦ < µκρji ≤ 180◦. As it is mentioned in the
examples, −180◦ < ξρi < 0◦; then:

i + 1 ⇒ −360◦ < νκji + µκρji ≤ −ξρi ⇔
{
−360◦ + ξρi < Φκρji + µκρji ≤ −180◦,

−180◦ < Φκρji + µκρji ≤ 0◦.

i + 2 ⇒
{
−180◦ + ξρi < Φκρji + µκρji ≤ −180◦,

−180◦ < Φκρji + µκρji ≤ 180◦.

(8)
So, for case i , we remark:{
−360◦ + ξρi < Φκρji + µκρji < −180◦

−180◦ ≤ Φκρji + µκρji ≤ 180◦
⇔

{
ξρi < Φκρji + µκρji + 360◦ < 180◦

−180◦ ≤ Φκρji + µκρji ≤ 180◦

(9)
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Observing the result from (9) in (6), we can say:{
ϕi = Φκρji + µκρji + 360◦ if Φκρji + µκρji < −180◦,

ϕi = Φκρji + µκρji if
∣∣Φκρji + µκρji

∣∣ ≤ 180◦.
(10)

With similar arguments from (8), for case ii , we can write:{
ϕi = Φκρji + µκρji if

∣∣Φκρji + µκρji
∣∣ ≤ 180◦,

ϕi = Φκρji + µκρji − 360◦ if Φκρji + µκρji > 180◦.
(11)

The results from (10) and (11) can be resumed by ϕi = fmϕ

(
Φκρji + µκρji

)
,

where fm and mϕ are defined as the theorem presented them.

To determine the relationship among the angles ψi, υ
κ
ji, ζ

ϱ
i , and ηκϱji , we

can employ an identical strategy to the one presented to derive (6). As in the
previous case, this result is given in Theorem 2, which can be proved similarly
to Theorem 1.

Theorem 2. Let Rj , Ri, and Ri+1 be the amino acid residues of a protein,
indexed by their positions in the primary sequence; ψi the dihedral angle defined
in (1); υκji, ζ

ϱ
i , and η

κϱ
ji the pseudo-dihedral angles defined in (2). The dihedral

angle ψi ∈ (−180◦, 180◦] can be written in the function of the other three pseudo-

dihedral by ψi = fmψ

(
Ψκϱji + ηκϱji

)
with, Ψκϱji := υκji + ζϱi , f given by (7), and

mψ :=

{
1 if −180◦ < υκji ≤ −ζϱi ,

−1 if −ζϱi < υκji ≤ 180◦.

In the next section we experimentally provide the numerical expressions
proved by the theorems 1 and 2. Our experiments yield the association of the
dihedral angles ϕ and ψ with the pseudo-dihedral angles µ and η, respectively,
defined in two consecutive amino acid residues of a protein primary sequence.
The results propose an estimation for the angular constants Φϱρii and Ψρϱii , with
ρ ∈ {α, α2} and ϱ ∈ {N, δ3}.

3 Numerical experiments

A dataset of 226 protein structures was extracted from the list of NMR structures
related to the training of the neural network TALOS-N [11], by picking up the
first conformer of each structure, as explained in [3].

On the protein structures database, the angles ϕ, ψ, µ, and η are calculated
using the python library MDAnalysis [2]. The amino acid residues are sorted
into the following types: Glycines, Prolines, and Others. A linear regression is
used to determine numerical slopes and intercepts of lines. For each case, at most
two lines are observed. Fig. 2 shows the results of the plot µ× ϕ; the regression
parameters for this case are presented in Table 1. The numerical calculation of
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η×ψ is given in Table 2. These numerical results allowed us to determine errors
on the slopes and intercepts of the linear relationships presented in the theorems.

The distribution plots of the angles calculated on the database of protein
structures are plotted (Fig. 3) using couples of dihedral backbone angles: ϕ/ψ
(corresponding to the classical view of Ramachandran plots), µ/η, ϕ/η, and µ/ψ.
Depending on the choice of the angle variable, the main secondary structure re-
gions (α-Helix, β-Strand, and Loop) are displaced. For each secondary structure
type, there is a combination of angles for which this region is connected in the
modified Ramachandran map. This connectedness can simplify the application
of the iBP algorithm, as the discontinuity due to the periodicity of angle values
disappear for the considered secondary structure region.
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Fig. 2. Plots of ϕ× µ calculated on the protein database. The data are drawn in blue
markers, and its linear regression by continuous lines in red and magenta. In the label
of angle names, the first name denotes the x-axis label, and the second one the y-axis
label.

Table 1. Linear Regression Parameters (L.R.P.), slope and intercept values, of the
plot ϕ × µ regarding the equations ϕ1(µ) = a1µ + a0, ϕ2(µ) = b1µ + b0 analyzed on
the protein data set.

L.R.P. GLY PRO Others

a1 1.0003± 0.0015 0.8739± 0.0137 0.9974± 0.0010

a0 59.4967± 0.1477 16.2654± 1.3211 60.3836± 0.1375

b1 0.9937± 0.0186 —– 0.9767± 0.0060

b0 −299.4858± 2.7960 —– −295.3706± 0.9490

4 Conclusions

The backbone dihedral angles ϕ and ψ were proposed in the 1950s to describe
the curvilinear geometry of the protein backbone in the context of the newly
developed X-ray crystallography approach for which the hydrogen positions were
not visible in protein structures. Among the three main secondary structure
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Table 2. Linear Regression Parameters (L.R.P.), slope and intercept values, of the
plot ψ × η regarding the equations ψ1(η) = a1η + a0, ψ2(η) = b1η + b0, analyzed on
the protein data set.

L.R.P.
Ri

Ri+1
cis PRO trans PRO Others

a1

GLY

—– 0.9900± 0.0189 0.9992± 0.0013
a0 —– 139.2018± 0.8024 120.4346± 0.1393
b1 —– 0.9886± 0.0170 0.9999± 0.0042
b0 —– −219.8191± 1.6198 −239.6703± 0.4781

a1

Others

0.9163± 0.0805 1.0011± 0.0063 1.0004± 0.0003
a0 81.5530± 5.2555 137.6785± 0.2224 119.3149± 0.0389
b1 —– 0.9896± 0.0187 0.9981± 0.0026
b0 —– −221.6108± 2.9543 −240.2788± 0.3526
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Fig. 3. Distribution of ϕ/ψ (upper left panel), µ/η (upper right panel), ϕ/η (lower
left panel), and µ/ψ (lower right panel) angles. The first angles are plotted along the
horizontal axes and the second along the vertical axes. The labels α-Helix, β-Strand,
and Loop allow us to follow the displacements of the main secondary structures region
on the Ramachandran plot according to the change of variables in angles.

regions, the β-Strand spread on regions in which ψ values display discontinuities
jumping from 180◦ to −180◦.

Extending the dihedral relationships to angles also involving hydrogen atoms,
we proposed here new angles µ and η to describe the curvilinear geometry of the
backbone angles. We proved precise relationships between ϕ and µ, and ψ and
η. Analyzing the database of protein structures presented above, we obtained
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numerical values and errors for slopes and intercepts describing the relation-
ships between the angles ϕ, ψ, µ, and η. Combining new and old angles, the
discontinuities present in the classical Ramachandran map can be suppressed.

During an iBP calculation, depending on the considered region of the map,
the branching can be performed on-the-fly on dihedral angle combinations avoid-
ing discontinuities. A similar approach could be derived, including long-range
pseudo-dihedral angles involving atoms located in residues located far apart in
the primary protein sequence, and would provide a new point of view on the
description of protein structure. Indeed, most of the long-range descriptors are
nowadays inter-atomic distances, and an angular perspective could bring new
insights into protein geometry.
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