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Distance geometry: too much is never enough
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Abstract Two years after presenting the distance geometry problem (DGP) as "the most beautiful problem I
know" at the last Global Optimization Workshop in Malaga, one of the authors of this abstract (LL)
confirms his DGP-mania by proposing a dearth of fun, weird, innovative, elegant and sometimes
also practically useful methods for solving this problem, while drawing an unsuspecting Ph.D. stu-
dent (GD) in the addiction. We present counterintuitive results which only make sense in very high
dimensional spaces, adapt the celebrated Isomap heuristic to the DGP setting, and apply some re-
cent techniques for finding feasible solutions of semidefinite programs using a linear programming
solver. In short, we do all we can to solve very large DGP instances, albeit approximately.
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1. Introduction

The Distance Geometry Problem (DGP) consists of “drawing” a weighted graph in a Eu-
clidean space of given dimension, so that a drawn edge is as long as its weight. More pre-
cisely, given an integer K > 0 and a simple undirected weighted graph G = (V,E, d), where
d : E → R+, the DGP asks whether there exists a realization x : V → RK such that:

∀{i, j} ∈ E ‖xi − xj‖22 = d2ij . (1)

This problem is NP-hard [13] but is not known to be in NP [2] for K > 1.
A deceptively similar problem called Euclidean Distance Matrix Completion Problem (ED-

MCP), where K is not given, and the problem asks whether there exists a K > 0 such that
Eq. (1) holds, is currently not known to be in P nor NP-hard.

The DGP arises in all applications where one can measure the distances but not the posi-
tions of entities: clock synchronization protocols (where K = 1 represents the timeline, and
one is given time differences but needs to compute absolute clock times), localization of wire-
less sensors (whereK = 2 represents e.g. a city block, or an office floor, and pairwise distances
are estimated by the amount of battery power consumed in communication), protein confor-
mation (where K = 3, and distances are estimated using Nuclear Magnetic Resonance exper-
iments, and the protein binds to a site according to the relative position of its atoms), control
of unmanned underwater vehicles (where again K = 3, distances are estimated by sonar, and
the position cannot be verified directly since GPS signal does not reach underwater). See [8]
for more information.

Our favorite method for solving DGPs is Branch-and-Prune (BP) [7]. It scales up to huge
sizes [12], is blazingly fast, incredibly accurate [5], polynomial-time “on proteins” [9], and
potentially finds all incongruent solutions. But it does not gracefully adapt to distance errors
[3] and, most importantly, only works on graphs with a special structure [4]. And so we turn
to approximate methods, heuristics, and relaxations.
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In this abstract we summarize some of the recent efforts in solving very large DGP instances
approximately. We accept approximate solutions because (a) applications usually provide us
distances with some errors, and (b) because exact methods do not necessarily scale up to large
sizes.

2. Random projections

High dimensional spaces are host to some weird, counterintuitive and somewhat magical-
looking phenomena [6]. The one we are specifically interested in is the Johnson-Lindenstrauss
Lemma (JLL), which states that if you have a realization x of n points in RK and some ε ∈
(0, 1), then there exists a k = O((1/ε2) log n) and a k ×K matrix T such that:

∀i, j ∈ V (1− ε)‖xi − xj‖22 ≤ ‖Txi − Txj‖22 ≤ (1 + ε)‖xi − xj‖22. (2)

In fact, if you sample each component of T from N(0,
√

1/k), Eq. (2) holds with probability
which approaches 1 exponentially fast as k grows. If you try this out in small dimensional
spaces, you will soon see that this is hopeless, which adds a touch of magic to the JLL. We find
it even more surprising that the target dimension k is independent of the original dimension
K.

Note that the JLL provides a dimensionality reduction mechanism, rather than a solution
method for the DGP. Finding a DGP solution in a high dimensional space, however, is easier
than finding one with fewer degrees of freedom. So we can project high-dimensional solutions
to lower dimensions while keeping the pairwise distances approximately equal. Note that the
target dimension k cannot be given: so the JLL applies to the EDMCP rather than the DGP.

Other types of random projections exist, such as Matoušek’s, which we also consider.

3. Isomap

The Isomap method [14] is a heuristic method best known for dimensionality reduction, much
like the JLL. It works as follows: from a set of n points X ⊆ RK we derive a weighted graph
G = (V,E, d) from all distances smaller than a given threshold (chosen so as to make the graph
connected and reasonably sparse). Note that every edge is weighted with the corresponding
Euclidean distance. Next, we complete G to a clique Ḡ by computing the missing distances
using an all (weighted) shortest path algorithm such as Floyd-Warshall. The complete graph
Ḡ is encoded in a symmetric matrix D̄ which is an approximation of the (squared) Euclidean
Distance Matrix of X . Then we perform classic Multi-Dimensional Scaling (MDS) on D̄:

G = −1

2
JD̄J, (3)

where G is an approximation of the Gram matrix of X , J = I − 1/n, and 1 is the all-one n× n
matrix. Since Gram matrices are positive semidefinite (PSD), their eigenvalue matrix Λ has
non-negative diagonal, and they can be factored into Y Y > where Y = P

√
Λ. G is not a Gram

matrix, however, but only an approximation: so we zero all the negative eigenvalues in Λ (so√
Λ is real). Finally, we perform a Principal Component Analysis (PCA) step, and discard all

but the first K largest eigenvalues of Λ. This yields a set Y of n points in RK .
Note that Isomap is almost a method for solving the DGP. Our “adaptation” consists in a

simpe remark: just start Isomap from the weighted graph G.

4. Diagonally dominant programming

In a ground-breaking result, Ahmadi and Hall [1] showed that it is possible to find feasible
Semidefinite Programming (SDP) solutions using a Linear Programming (LP) solver. Since
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SDP solution technology has a considerable computational bottleneck, this result has the po-
tential for unlocking more SDP power. This result is based on the observation that a diagonally
dominant (DD) n× n matrix X = (Xij), namely one such that

∀i ≤ n Xii ≥
∑
j 6=i
|Xij |, (4)

is also PSD. Note that Eq. (4) can be written linearly by introducing a matrix Y and the con-
straints:

∀i ≤ n
∑
j 6=i

Yij ≤ Xii

−Y ≤ X ≤ Y.

This means that the PSD constraint X � 0 in any SDP can be replaced by the LP constraints
above. Programming over those constraints is known as Diagonally Dominant Programming
(DDP).

Note that DD implies PSD but not vice-versa. Hence a DDP formulation provides an inner
approximation of the SDP feasible region. If the original SDP is used to compute bounds,
the guarantee is lost; but since SDP has strong duality, it suffices to apply DDP to the SDP
dual. Moreover, the DDP might be infeasible even if the original SDP is feasible. To overcome
this issue, Ahmadi and Hall provide an iterative improvement algorithm which enlarges the
feasible region of the DDP at each step.

We provide and test DDP formulations for the DGP and EDMCP.

5. The DGSol algorithm

This algorithm was proposed around 20 years ago [10], but it is still very competitive in terms
of speed (also thanks to a very good implementation). For smaller scale instances the accuracy
of the solutions is not impressive. What is impressive, however, is how well DGSol scales with
size in both speed and accuracy. In this sense, DGSol is a truly “big data” kind of method.

The algorithm behind DGSol has an outer and an inner iteration. The outer iteration starts
from a smoothed convexified version of the penalty objective function,

f(x) =
∑

{i,j}∈E

(
‖xi − xj‖22 − d2ij

)2
obtained via a Gaussian transform

〈f〉λ(x) =
1

πKn/2λKn

∫
RKn

f(y) exp(−‖y − x‖22/λ2)dy,

which tends to f(x) as λ→ 0.
For each fixed value of λ in the outer iteration, the inner iteration is based on the recursion

x`+1 = x` − α`H`∇f(x`),

for ` ∈ N, where α` is a step size, and H` is an approximation of the inverse Hessian matrix of
f . In other words, the inner iteration implements a local NLP solution method which uses the
optimum at the previous value of λ as a starting point.

Overall, this yields a homotopy method which traces a trajectory depending on λ → 0,
where a unique (global) optimum of the convex smoothed function 〈f〉λ for a high enough
value of λ (hopefully) follows the trajectory to the global minimum of the multimodal, non-
convex function 〈f〉0 = f .

We use DGSol as a benchmark for comparison. We also borrow its local NLP subsolver for
efficiently improving the approximate methods discussed above in a post-processing phase.
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6. Conclusion

Our investigations in alternative methods for the DGP are focused towards identifying the
best methods for solving very large scale instances of the DGP and EDMCP. Aside from being
interesting in their own right, we eventually plan to use them within the BP algorithm in order
to provide a better extension for dealing with imprecise data.
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