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Abstract

This is a short account of various notes and opinions about Goédel’s theorems I found
in my books. It should ease the task of actually writing something about Godel’s First
Incompleteness Theorem.



Citations about Godel’s Theorems

1 Introduction

The idea for this short account was born when I stumbled upon an apparent “contradic-
tion in terms”, or syntactical contradiction, while reading Godel’s First Incompleteness
Theorem. This is not to say that I found the contradiction in Godel’s proof. Rather, while
trying to reconstruct the proof to see if I had correctly understood it, I followed a train
of thought that brought me to construct a reasoning which had to be correct for Godel’s
proof to work, but was apparently faulty. I was sure I had made a mistake somewhere,
and of course I had. Nonetheless I think my understanding of Godel’s theorem is better
now than it was before, and this is part of the reason of this mémoure.

On the other hand, as I wrote in the abstract, this is also a neat way for me to collect
in one single place all those quotes and citations by Godel and about Godel that T would
otherwise have to hunt about in my ever-chaotic shelves.

2 Godel’s opinion

I understand sources are a good point to start from. The following excerpts come from
[Sha91], which is an antology of writings by and about Godel. In particular T am quoting
from Kurt Gaodel, Over formally undecidable propositions of Principia Mathematica and
other similar systems, which is the original article that Godel wrote about undecidability
of self-referential propositions.

The goal Godel aims at is to prove that the theories described in Russell and White-
head’s Principia Mathematica, in Zermelo and Frankel’s ZF system and generally all in
formal systems that embed the natural numbers and are consistent (that is, the system
doesn’t prove any contradiction) are incomplete. A precise definition of “incompleteness”,
that can be expressed inside the theory, is the following.

2.1 Definition
The theory T is incomplete if and only if there exists a sentence ¢ in T' such that T does
not prove ¢ and T does not prove —¢.

This definition is sound only as long as the concepts of “theory”, “proof” and “existence
of a sentence in a theory” are precisely defined. I shall postpone the discussion of those
definitions to another paper.

Before quoting Godel’s proof let me add that the source of my confusion when I first
read the proof stems from defn. (2.1). I had read [Hof80] many years before, and I had
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formed the opinion that a theory is incomplete if it can express a true statement but
cannot prove it. In fact, this is expressed on the very last page of part I of [Hof80].

2.2 Definition
A theory T is incomplete if and only if there exists a ¢ in T such that ¢ is true and T
does not prove ¢.

As we shall see, (2.1) implies (2.2), even though they exist in different contexts. In
the first there is no reference whatsoever to the concept of “truth”, while it is present in
the second. Hence, the first can be expressed and used in the theory, whilst the second
needs to be “seen” from outside the theory, and thus can lead to confusion if it is applied
without careful thought.

2.3 Proposition
Definition (2.1) implies (2.2).

Proof. Suppose we find ¢ in T such that Tt ¢ and T I —=¢. By dichotomy, exactly one
of ¢ and —¢ must be true. Hence there is a true sentence that 7" cannot prove. O

If one assumes that “a contradiction” and “a false sentence” are the same thing, it
is also possible to show the full equivalence of the two definitions, for let ¢ be true
and unprovable, then —¢ is false. Since T is consistent, T' can’t prove —¢, qualis erat
demonstrandum. This is an important point. A “contradiction” is something that can be
expressed inside T (as in 1 = 0), whilst the concept of “falseness”, like that of “truth”,
involves an interpretation of the symbols, and may not necessarily be expressed in T'.

The proof that PM is incomplete, as given by Godel, extends for the whole of his
article, which is lengthy, so I will quote the unrigorous description of the proof found in
the first pages of his article.

2.4 Theorem (Godel’s proof of incompleteness of PM)

Formulae of a formal system (take PM) are finite sequences of primitive symbols (variables,
constants, brackets or separation signs), and it is easy to define rigorously which sentences
are valid and which aren’t. Similarly proofs are finite sequences of formulae. From a
metamathematical point of view the choice of the symbols to be used is irrelevant, so we
shall take the natural numbers. Consequently, a formula is a finite sequence of natural
numbers, and a formal proof is a finite sequence of finite sequences of natural numbers.
[ ... ] One can show that PM can express the concepts of “formula”, “formal proof”
and “provable sentence”. In particular it is possible to find a formula F(v) in PM (with
exactly one free variable v) which, when interpreted with the meaning of the terms in PM,
asserts: “v is a provable sentence”. This allows us to construct an undecidable proposition
in PM, that is, a sentence A for which neither A nor —A are provable from PM.

Proof. Suppose we have ordered all formulae of PM with exactly one free variable in a
sequence R(n). We observe in passing that both concepts “formula with exactly one free
variable” and the well-ordering R can be defined in PM. We shall express with [R(n), m]
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the sentence obtained when substituting m in the free variable of the formula R(n).
[R(n), m] can also be expressed in PM. We now define a class K such that

Vn € N(n € K < —Prv([R(n),n])) (1)

where Prv(¢) means: ¢ is a provable sentence. Since everything we have written can be
expressed in PM, so can K; in other words, there exists a formula with exactly one free
variable S such that [S,n], when interpreted with the meaning of the terms of PM, says
“n € K”. Since S has exactly one free variable, there must be a natural number ¢ such
that S = R(q). Let ¢ be the sentence [R(q), q], and we show that ¢ is undecidable in PM.

1. Suppose that ¢ is provable: then ¢ should be true. In this case ¢ € K by definition
of R(q), and hence —Prv(¢) by definition of K. Contradiction.

2. Suppose that —¢ is provable: then —¢ should be true, hence ¢ ¢ K and Prv(¢).
That is, both ¢ and —¢ are provable, which is impossible because PM is consistent!.

Hence we must conclude that ¢ is undecidable in PM, that is, PM is incomplete (as
defined in (2.1)). O

It is not quite correct to say that this is a “proof”. As Goédel himself puts it, this is
the idea of the proof. The proof goes on at length to show that all of the concepts used
in the reasoning can in fact be expressed in the terms of PM. Nonetheless, the basic idea
contained in the proof is to employ a sentence ¢ that says: “¢ cannot be proved”.

3 Hofstadter’s Opinion

If one stops for a moment to think, it is evident that instead of the points 1. and 2. in
the proof of theorem (2.4), one could have argued in the following way.

3.1 Theorem
PM is incomplete.

Proof. Let ¢ stand, as above, for [R(q),q|. Suppose Prv(¢). Then ¢ € K and hence
—Prv(¢), contradiction. Now, instead of saying “suppose then Prv(—¢)”, we use the
dichotomy of every logical assertion (in this case Prv(¢)). Since we have proved that
assuming Prv(¢) leads to a contradiction, we must conclude that the only possible way
out is =Prv(¢), that is, that ¢ is not provable. We now interpret ¢ and we notice that it
says: “¢ is not provable”. Since we have just proved that ¢ is not provable, we must infer
that ¢ is true. Hence we have found a sentence (namely ¢), for which we have proved
that:

T.e. no contradiction can be proved from PM.



1. ¢ is not provable

2. ¢ is true

Consequently we have shown that PM is incomplete (as defined in (2.2)). O

So, summing up, we have this situation.
We have proved ¢ cannot be proved to be true. Then we have proved that ¢ is true.

This is a contradiction in terms. This does not work. This is the whole thing blowing
up and then falling apart! This has been my Big Doubt. I don’t think anyone can object
to the proof given in (3.1), but there must be a mistake somewhere. I first thought the
mistake was in the proof, but couldn’t find it, and then I stumbled upon the following
passage from [Hof80]:

TNT? incorporates valid methods of reasoning, and therefore TNT never has
falsities for theorems. In other words, anything which is a theorem of TNT
expresses a truth. So if> G were a theorem, it would express a truth, namely
“Gis not a theorem”. [ ... ] By being a theorem, G would have to be a falsity.
Relying on our assumption that TN'T never has falsities for theorems, we’d
be forced to conclude that G is not a theorem. This is all right; it leaves us,
however, with a lesser problem. Knowing that G is not a theorem, we’d have
to concede that G expresses a truth. [ ... | We have found a string which
expresses a true statement yet the string is not a theorem.

Lord knows, one tries to be humble, and so do I (people who love me say otherwise):
I don’t doubt Gédel, Escher and Bach by Hofstadter. There is no mistake in the proof
given above. The mistake resides in the phrase in italics:

We have proved ¢ cannot be proved to be true. Then we have proved that ¢ is true.

It is true that we have proved ¢ cannot be proved to be true. But we have not proved,
at least not inside PM, that ¢ is true. We have interpreted the meaning of ¢ in order
to decide that it is true, we haven’t employed any mechanically logical method. I must
thank my friend Fabio Roda, a distinguished philosopher who thinks self-reference is at
least as important as a neural network to describe the human brain, for the solution of
my doubt, which is expressed in [Rod99]:

Godel doesn’t prove that ¢ is unprovable and true ... You have never “written
down on paper” the proof that ¢ is true.

I must admit that before disturbing Prof. Roda I should have read [Hof80] a bit more
thoroughly, for he says exactly the same thing.

2By TNT Hofstadter means a system which is equivalent to the Peano Arithmetics.
3@ is the Hofstadter’s construction of the self-referential sentence [R(q), q].
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A string of TNT has been found; it expresses, unambiguously, a statement
about certain arithmetical properties of natural numbers; moreover, by rea-
soning outside the system we can determine not only that the statement is a
true one, but also that the string fails to be a theorem of TNT.

The phrase “by reasoning outside the system” is crucial. Strangely enough, we should
only speak about truth when we interpret sentences, not when we use mechanical rules
of derivation. In the latter case, we should talk about “provability”. When the proof of
a theorem is expressed inside the theory then that theorem is provable. As it turns out,
there is a better definition of “truth” than that of interpreting a phrase, but it seems to
be less general than the concept of truth every human being possesses. It is possible to
define truth inside a system by posing limitations to the truth. A sentence might be true
inside a certain model and false inside another model, even while using the same language
and the same axioms! Professor Andretta, in [And99], speaks about Gédel’s theorem and
concludes:

Note that I have NEVER used the word “true” but only “provable”. The two
concepts are different. In order to speak about “true” I have to consider a
model inside which to work. This assumes a certain quantity of set theory.
w is a model* for PA® but it is not the only one. There are non-standard
models of PA, some of which satisfy “PA + PA is w-inconsistent®”, and other
curiosities.
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4w is the same as N + {0}.

5Peano Arithmetics.

6A system T is w-inconsistent if there is a formula ) (n) such that, for any fixed n, T proves 1 (n) but
T can’t prove the sentence Vni(n).



