Writing Global Optimization Software

Leo Liberti

DEI, Politecnico di Milano, P.zza L. da Vinci 32, 20133 Milano, Italy
liberti@elet.polimi.it

Summary. Global Optimization software packages for solving Mixed-Integer Non-
linear Optimization Problems are usually complex pieces of codes. There are three
main difficulties in coding a good GO software: embedding third-party local opti-
mization codes within the main global optimization algorithm; providing efficient
memory representations of the optimization problem; making sure that every part
of the code is fully re-entrant. Finding good software engineering solutions for these
difficulties is not enough to make sure that the outcome will be a GO software
that works well, of course. However, starting from a sound software design makes
it easy to concentrate on improving the efficiency of the global optimization algo-
rithm implementation. In this paper we discuss the main issues that arise when
writing a global optimization software package, namely software architecture and
design, symbolic manipulation of mathematical expressions, choice of local solvers
and implementation of global solvers.

Key words: MINLP, symbolic computation, multistart, variable neighbour-
hood search, branch-and-bound, implementation, software design.

1 Introduction

The object of Global Optimization (GO) is to find a solution of a given non-
convex mathematical programming problem. By “solution” we mean here a
global solution, as opposed to a local solution; i.e., a point where the objective
function attains the optimal value with respect to the whole search domain.
By contrast, a solution is local if it is optimal with respect to a given neigh-
bourhood. We require the objective function and/or the feasible region to be
nonconvex because in convex mathematical programming problems every lo-
cal optimum is also a global one. Consequently, any method solving a convex
problem locally also solves it globally.

In this paper we address Mixed-Integer Nonlinear Programming (MINLP)
problems in their most general setting:

212 Leo Liberti

min 'z + f(x)
TzER™
st. 1< Az+g(z) <u (1)
b < T < U
€L VieZ

In the above formulation, x are the problem variables; some of them (those
indexed by the set Z C {1,...,n}) are constrained to take discrete values.
The objective function and constraints consist of a linear and nonlinear part:
f : R = R is a possibly nonlinear function, g : R* — R™ is a vector of m
possibly nonlinear functions, ¢ € R", A is an m X n matrix, l,u € R™ are
the constraint bounds (which may be set to oo if a particular constraint is
never active), and z¥, 2V € R” are the variable bounds (again, some of these
bounds may be set to £oo). We limit the discussion to the case where f, g are
continuous functions of their arguments. Formulation (1) encompasses most
kinds of mathematical programming problems. For example, if f =0, g is a
constant (say —b), I = —oo, u =0, zF = 0, 2V = 00, and Z = () we have the
canonical formulation of a Linear Programming problem (LP).

At the time of writing this paper, there is no GO software established as
standard. In fact, the GO software market is still rather poor and definitely
belonging to the academic world; GO is not being used extensively in the
corporate environment yet. Part of the reason for this is that linear modelling
is often a sufficient approximation to real-life processes, so GO software is not
required. Even when a nonlinear model arises, a lot of effort is put into lineariz-
ing it by standard or novel modelling techniques. Finally, most GO algorithms
rely on calling a local optimization procedure as a black-box function, and the
fastest local optimization algorithms for Nonlinear Programming (NLP) prob-
lems are often inherently fragile: they may fail to converge for many different
reasons even when the problem itself is reasonably smooth and well-behaved.
This makes general-purpose robust GO software codes virtually non-existent
(by contrast, GO software targeted at solving one particular problem can be
made rather robust). Seeing as there are no standardized guidelines for de-
signing GO software, this paper attempts to fill the gap by discussing a set
of methods that should make general-purpose GO software robust and hope-
fully efficient. This work is based on two different “software frameworks” for
GO designed by the author during his Ph.D. One of these, 00OPS(object-
oriented OPtimization System) [48], can be tested via the on-line interface
at http://or.dhs.org/liberti/oo0PS. The other, MORON (MINLP Op-
timization and Reformulation Object-oriented Navigator), is still very much
work in progress.

Most published papers on GO proposing a novel algorithm or a variant
of an existing algorithm also include computational results which have been
derived from some kind of software implementation of the method being pro-
posed. This suggests that there should be quite a lot of working GO software
available. Unfortunately, this is not the case. Most of these implementations
are no more than prototypes designed to produce the computational results.

Chapter 8: Writing Global Optimization Software 213

Methodologically speaking, at least in the academic world, there is nothing
wrong about writing software with a view to publishing a paper and nothing
else. This is not the approach to software writing that we are proposing to
illustrate here, however. We are interested in reviewing software design meth-
ods and GO algorithms for general-purpose global optimization software. A
clarifying analogy could be that we mean to describe methods to write a
GO software akin to what CPLEX [30] is to mixed-integer linear program-
ming. CPLEX is a software that can potentially solve any MILP problem
which is thrown at it, regardless of problem structure. It would be desirable
to have a corresponding software for solving arbitrarily structured MINLP
problems. CPLEX owes much of its success to a period of intense research in
the field of solution methods for MILPs in their most general form (cutting
plane, branch-and-bound, branch-and-price), as well as algorithmic improve-
ments which made the proposed algorithm practically viable (new families of
cuts, polyhedral theory, automatic reformulation methods, hierarchies of con-
vex relaxations leading to the convex hull). CPLEX is by no means the only
MILP-solving software on the market: but its efficiency is widely recognized,
and we believe that it may be called a de facto standard software for solving
MILPs. In the last two decades, many precise and heuristic GO methods have
been proposed for solving MINLPs. The work on algorithmic improvements
for these methods, however, is lagging behind if compared to the MILP scene.
For instance, symbolic reformulation techniques for MINLPs are still largely
an unexplored world, at least as far as computer implementations go: the most
common way to proceed seems to be that the reformulation is carried out by
hand, and then the reformulated problem is hard-coded in a “single-purpose”
solver wrapper. By contrast, automatic symbolic reformulation algorithms are
a crucial part of the CPLEX pre-solver. One possible explanation for such a
different state of affairs is that software design for MILP solvers is inherently
simpler than that required by GO algorithms, and even a relatively careless
design can result in a robust, efficient MILP solver. The situation is very differ-
ent in GO algorithms where re-entrancy, good memory management, efficient
data passing, and the ability to treat complex pieces of software like an NLP
local solver as a black box are all of paramount importance. Yet, all of these
issues have hardly been addressed in the existing GO literature. This paper
attempts to move a few steps in this direction.

We propose a software design based on a framework that deals with the
basic tasks required by any optimization solver code: reading the problem into
memory, performing symbolic manipulation, providing and modifying prob-
lem structure data, wrapping the solvers into independent callable modules,
configuring and running the solvers. Each solver can be called by any other
solver on any given problem, effectively allowing the use of any solver (be it
local or global) as a black-box. Solvers usually provide a numerical solution
as output, but a solver in this framework may even be a specialized symbolic
manipulation routine whose job is to change the structure of the problem.

214 Leo Liberti

The rest of this paper is organized as follows. Section 2 is a review of three
existing algorithms that can be applied to optimization problems in form (1),
where Z (the set of integer variables) may or may not be non-empty; namely,
MultiStart (MS), Variable Neighbourhood Search (VNS) and spatial Branch-
and-Bound (sBB). Section 3 is a review of existing general-purpose GO soft-
ware packages. Section 4 lays the foundations for the software framework
where the GO solver codes are executed. Section 5 is an in-depth treatment
of the techniques used in the symbolic manipulation of the mathematical ex-
pressions in the objective function and constraints of the problem. Section 6 is
a review of some of the existing local LP and NLP solvers. Section 7 contains
descriptions of the global optimization solver implementations of MS, VNS
and sBB within the described framework.

2 Global Optimization algorithms

This section presents three of the the existing algorithms targeted at the
solution of problem (1): MultiStart (MS) (in fact a variant thereof called Multi
Level Single Linkage! (MLSL)), Variable Neighbourhood Search? (VNS) and
spatial Branch-and-Bound (sBB). The first two are classified as stochastic
algorithms, the latter as deterministic.

Most GO algorithms are two-phase. The solution space S is explored ex-
haustively in the global phase, which iteratively identifies a promising starting
point Z. In the local phase, a local optimum z* is found starting from each
Z. The local phase usually consists of a deterministic local descent algorithm
which the global phase calls as a black-box function. The global phase can be
stochastic or deterministic. Algorithms with a stochastic global phase are usu-
ally heuristic algorithms, whereas deterministic global phases often provide a
certificate of optimality, making the algorithm precise.

Stochastic global phases identify the starting points & either by some kind
of sampling in S (sampling approach), or by trying to escape from the basin
of attraction of the local minima z* found previously (escaping approach), or
by implementing a blend of these two approaches. Stochastic global phases
do not offer certificates of optimality of the global optima they find, and they
usually only converge to the global optimum with probability 1 in infinite
time. In practice, though, these algorithms are very efficient, and are, at the
time of this writing, the only viable choice for solving reasonably large-scale
MINLPs. The efficiency of stochastic GO algorithms usually depends on the
proper fine-tuning of the algorithmic parameters controlling intensification of
sampling, extent of escaping and verification of termination conditions.

Deterministic global phases usually work by partitioning S into smaller
sets Si,...,Sp. The problem is then solved globally in each of the subsets

1 Also see Chapter 5.
2 Also see Chapters 6, 11 (Section 1.1).

Chapter 8: Writing Global Optimization Software 215

S;. The global solution of each restriction of the problem to S; is reached
by recursively applying the global phase to each S; until a certificate of opti-
mality can be obtained for each S;. The certificate of optimality is obtained
by computing upper and lower bounds u,! to the objective function value. A
local optimum z* in S; is deemed global when |u — | < ¢, where ¢ > 0 is
a (small) constant. The convergence proofs for these algorithms rely on the
analysis of the sequence of upper and lower bounds: it is shown that these
sequences contain e-convergent subsequences. The certificate of optimality for
the global optimum of the problem with respect to the whole solution space S
is therefore really a certificate of e-global optimality. Such global phases are
called Branch-and-Select (the partitioning of the sets S; is called branching;
the algorithm relies on selection of the most promising S; for the computation
of bounds) [84]. Deterministic algorithms tend to be fairly inefficient on large-
scale MINLPs, but they perform well on small and medium-scale problems.
The efficiency of Branch-and-Select algorithms seems to depend strongly on
the particular instance of the problem at hand, and on the algebraic formu-
lation of the problem.

We note here, in passing, that not all solution methods for GO problems
follow such iterative approaches of finding candidate solution points Z and ap-
plying local descents to identify the closest local minimum z*. Where f, g are
very expensive to evaluate, the local phase is usually skipped (as it requires
many function evaluations) and z* is set to Z (thus, these GO algorithms
only consist of the global phase). There exist algebraic methods (based on the
computation of Grobner bases) that solve polynomially constrained polyno-
mial problems, which do not actually present either a global or a local phase
[26].

In the rest of this section, we shall give a short presentation of the follow-
ing stochastic algorithms: Multistart (MS), Variable Neighbourhood Search
(VNS); and of the deterministic algorithm called “spatial Branch-and-Bound”
(sBB). In fact, there are many other stochastic GO algorithms. To name but a
few which are not discussed in this paper: tabu search [38], genetic algorithms
[72], simulated annealing [44], differential evolution [74], adaptive Lagrange
multiplier methods [85], ant colony simulation [51], ruin and recreate [77],
dynamic tunnelling methods [65].

2.1 Multistart

Multistart (MS) algorithms are conceptually the most elementary GO al-
gorithms. Many local descents are performed from different starting points.
These are sampled with a rule that is guaranteed to explore the solution space
exhaustively (in infinite time), and the local minimum with the best objective
function value is deemed the “global optimum”. MS algorithms are stochastic
GO algorithms with a sampling approach. Their many variants usually differ
in sampling and local descent strategies.

216 Leo Liberti

One of the main problems that MS algorithms face is that the same local
optimum is identified many times when the sampling rule picks starting points
in the basin of attraction of the same local optimum. Since the local descent is
the most computationally expensive step of MS, it is important to control the
extent to which this situation occurs. Obviously, identifying a local optimum
many times is useless to the end of finding the global optimum. The most
common method used to inhibit multiple local descents to start in the same
basin of attraction is called clustering. Sampled starting points are grouped
together in clusters of nearby points, and only one local descent is performed in
each cluster, starting from the most promising (in terms of objective function
value) cluster point. One particularly interesting idea for clustering is the
Multi Level Single Linkage (MLSL) method [60, 61]: a point z is clustered
together with a point y if x is not too far from y and the objective function
value at y is better than that at x. The clusters are then represented by a
directed tree, the root of which is the designated starting point from where
to start the local optimization procedure (see Fig. 1).

® : Local minima,
O root node of the clustering tree

Fig. 1. Linkage clustering in the stochastic global phase. The points in the cluster
are those incident to the arcs; each arc (x,y) expresses the relation “z is clustered
to y”. The arcs point in the direction of objective function descent. The root of the
tree is the “best starting point” in the cluster.

One of the main problems with clustering is that as the number of problem
variables increases, the sampled points are further apart (unless one is willing
to spend an exponentially increasing amount of time on sampling, but this is
very rarely acceptable) and cannot be clustered together so easily.

Despite their conceptual simplicity, MS algorithms for GO usually perform
rather well on medium to large scale problems. The work of Locatelli and
Schoen on MS with random and quasi-random sampling shows that MS is,
to date, the most promising approach to solving the Lennard-Jones potential

Chapter 8: Writing Global Optimization Software 217

energy problem, arising in the configuration of atoms in a complex molecules
[46, 67, 68, 47, 69).

A MS algorithm for GO problems in form (1) (called SobolOpt?) was
developed by Kucherenko and Sytsko [37]. The innovation of the SobolOpt
algorithm is that the sampling rule is not random but deterministic. More
precisely, it employs Low-Discrepancy Sequences (LDSs) of starting points
called Sobol’ sequences whose distributions in Euclidean space have very de-
sirable uniformity properties. Uniform random distributions where each point
is generated in a time interval (as is the case in practice when generating a
sampling on a computer) are guaranteed to be uniformly distributed in space
in infinite time with probability 1. In fact, these conditions are very far from
the normal operating conditions. LDSs, and in particular Sobol’ sequences,
are guaranteed to be distributed in space as uniformly as possible even in
finite time. In other words, for any integer N > 0, the first N terms of a
Sobol’ sequence do a very good job of filling the space evenly. One further
very desirable property of Sobol’ sequences is that any projection on any co-
ordinate hyperplane of the Euclidean space R™ containing N n-dimensional
points from a Sobol’ sequence will still contain N projected (n—1)-dimensional
Sobol’ points. This clearly does not hold with the uniform grid distribution
where each point is located at a coordinate lattice point (in this case the num-
ber of projected points on any coordinate hyperplanes is O(N "T_l), as shown
in Fig. 2). The comparison between grid and Sobol’ points in R? is shown in
Fig. 3.

Fig. 2. Projecting a grid distribution in R? on the coordinate axes reduces the
number of projected points. In this picture, N = 12 but the projected points are
just 4.

The SobolOpt algorithm has been used to successfully solve the Kiss-
ing Number Problem (KNP — determining the maximum number of non-
overlapping spheres of radius 1 that can be arranged adjacent to a central
sphere of radius 1) up to 4 dimensions, using a GO formulation proposed in

3 Also see Chapter 5, which is an in-depth analysis of the SobolOpt algorithm.

218 Leo Liberti

gri d Sobol’ points
° [J
[} [} [} L] °
[J
° [}
[} [} [} [} °
[]
° [J
[} [} [} [J °
]
[}
[J
[} [} [} [} °
[J
@ ® @ ® —0000 000000000000 —

Fig. 3. Comparison between projected distribution of grid points and Sobol’ points
in R,

[43]. The kissing number in 3 dimensions was first conjectured by Newton to
be equal to 12. Newton was proven to be right only 250 years later by Leech.
The 4D case was only very recently proved to be equal to 24 (a result by O.
Musin, still unpublished). The 5D case is still open. Unfortunately the prob-
lem formulation for the 5D case is too large to be solved by the SobolOpt
algorithm. Research in this field is ongoing.

A computational comparison of SobolOpt versus a spatial Branch-and-
Bound algorithm has been carried out and discussed in [41], showing that
SobolOpt performs well in box-constrained as well as equation and inequality-
constrained NLP problems. Some positive results have been obtained even for
modestly-sized MINLPs with a few integer variables®.

2.2 Variable Neighbourhood Search

Variable Neighbourhood Search® (VNS) is a relatively recent metaheuristic
which relies on iteratively exploring neighbourhoods of growing size to identify
better local optima [29, 28, 27]. More precisely, VNS escapes from the current
local minimum z* by initiating other local searches from starting points sam-
pled from a neighbourhood of z* which increases its size iteratively until a
local minimum better than the current one is found. These steps are repeated
until a given termination condition is met. VNS is a combination of both the
sampling and the escaping approaches, and has been applied to a wide va-
riety of problems both from combinatorial and continuous optimization. Its

4 Also see Chapter 5, Section 4 for computational experiments with the SobolOpt
algorithm.
5 Also see Chapters 6, 11 (Section 1.1).

Chapter 8: Writing Global Optimization Software 219

early applications to continuous problems were based on a particular problem
structure. In the continuous location-allocation problem the neighbourhoods
were defined according to the meaning of problem variables (assignments of
facilities to customers, positioning of yet unassigned facilities and so on) [12].
In the bilinearly constrained bilinear problem the neighbourhoods took advan-
tage of a kind of successive linear programming approach, where the problem
variables can be partitioned so that fixing the variables in either set yields a
linear problem; the neighbourhoods of size k& were then defined as the vertices
of the LP polyhedra that were k pivots away from the current vertex. In short,
none of the early applications of VNS was a general-purpose one.

The first VNS algorithm targeted at problems with fewer structural re-
quirements, namely, box-constrained NLPs, was given in [52]® (the paper fo-
cuses on a particular class of box-constrained NLPs, but the proposed ap-
proach is general). Since the problem is assumed to be box-constrained, the
neighbourhoods arise naturally as hyperrectangles of growing size centered at
the current local minimum z*.

1. Set k « 1, pick random point Z, perform local descent to find a local
minimum z*.
2. Until k > knax repeat the following steps:
a) define a neighbourhood Ny (z*);
b) sample a random point Z from N (z*);
c) perform local descent from Z to find a local minimum z';
d) if 2’ is better than z* set * < z' and k + 1; go to step 2;
e) set k< k+1

In the pseudocode algorithm above, the termination condition is taken to
be £ > kmax. This is the most common behaviour, but not the only one
(the termination condition can be based on CPU time or other algorithmic
parameters). The definition of the neighourhoods may vary. If N (z) is taken
to be a hyperrectangle Hy(x) of size. k centered at z, sampling becomes easy;
there is a danger, though, that sampled points will actually be inside a smaller
hyperrectangular neighbourhood. A way to deal with this problem is to take
Ni(z) = Hy(z)\Hg—1(z), although this makes it harder to sample a point
inside the neighbourhood.

Some work is ongoing to implement a modification of the VNS for GO so
that it works on problems in the more general form (1) (at least when Z = 0).
This was obtained by replacing the box-constrained local descent algorithm in
step (2c) with an SQP algorithm capable of locally solving constrained NLPs.

5 Also see Chapter 6, which is an in-depth analysis of the implementation of the
VNS algorithm for box-constrained global optimization in [52], together with a
presentation of computational results.

220 Leo Liberti
2.3 Spatial Branch-and-Bound

Spatial Branch-and-Bound (sBB) algorithms are the extension of traditional
Branch-and-Bound (BB) algorithms to continuous solution spaces. They are
termed “spatial” because they successively partition the Fuclidean space
where the problem is defined into smaller and smaller regions where the prob-
lem is solved recursively by generating converging sequences of upper and
lower bounds to the objective function value. Traditional BB algorithms are
used for finding the optimal solution of MILP problems. They work by gen-
erating subproblems where some of the integer variables are fixed and the
others are relaxed, thus yielding an LP, which is easier to solve. Eventually,
the solution space is explored exhaustively and the best local optimum found
is shown to be the optimal solution.

Central to each sBB algorithm is the concept of a conver relazation of
the original nonconvex problem; this is a convex problem whose solution is
guaranteed to provide an underestimation for the objective function optimal
value in the original problem. At each iteration of the algorithm, restrictions
of the original problem and its convex relaxations to particular sub-regions of
space are solved, so that a lower and an upper bound to the optimal value
of the objective function can be assigned to each sub-region; if the bounds
are very close together, a global optimum relative to the subregion has been
identified. The particular selection rule of the sub-regions to examine makes
it possible to exhaustively explore the search space rather efficiently.

Most sBB algorithms for the global optimization of nonconvex NLPs con-
form to the following general framework:

1. (Initialization) Initialize a list of regions to a single region comprising the
entire set of variable ranges. Set the convergence tolerance € > 0, the
best current objective function value as U := oo and the corresponding

solution point as z* := (00,...,00). Optionally, perform optimization-
based bounds tightening (see Section 7.3) to try to reduce the variable
ranges.

2. (Choice of Region) If the list of regions is empty, terminate the algorithm
with solution z* and objective function value U. Otherwise, choose a re-
gion R (the “current region”) from the list according to some rule (a
popular choice is: choose the region with lowest associated lower bound).
Delete R from the list. Optionally, perform feasibility-based bounds tight-
ening on R (see Section 7.3) to try to further reduce the variable ranges.

3. (Lower Bound) Generate a convex relaxation of the original problem in
the selected region R and solve it to obtain an underestimation [of the
objective function with corresponding solution Z. If I > U or the relaxed
problem is infeasible, go back to step 2.

4. (Upper Bound) Solve the original problem in the selected region with a
local minimization algorithm to obtain a locally optimal solution z' with
objective function value u.

Chapter 8: Writing Global Optimization Software 221

5. (Pruning) If U > w, set z* = 2’ and U := u. Delete all regions in the list
that have lower bounds bigger than U as they cannot possibly contain the
global minimum.

6. (Check Region) If u — [< g, accept u as the global minimum for this
region and return to step 2. Otherwise, we may not yet have located the
region global minimum, so we proceed to the next step.

7. (Branching) Apply a branching rule to the current region to split it into
sub-regions. Add these to the list of regions, assigning to them an (initial)
lower bound of I. Go back to step 2.

The first paper concerning continuous global optimization with a BB al-
gorithm dates from 1969 [22]. In the 1970s and 1980s work on continuous or
mixed-integer deterministic global optimization was scarce. Most of the pa-
pers published in this period dealt either with applications of special-purpose
techniques to very specific cases, or with theoretical results concerning conver-
gence proofs of BB algorithms applied to problems with a particular structure.
In the last decade three sBB algorithms for GO appeared, targeted at con-
strained NLPs in form (1).

e The Branch-and-Reduce algorithm, by Sahinidis and co-workers [62, 63],
which was then developed into the BARON software (see below), one of
the best sBB implementations around to date (see Section 3.1).

e The aBB algorithm, by Floudas and co-workers [9, 7, 3, 1, 5, 2], that
addressed problems of a slightly less general form than (1). This algorithm
was also implemented in a software which was never widely distributed (see
Section 3.2).

e The sBB algorithm with symbolic reformulation, by Smith and Pantelides
[71, 75]. There are two implementations of this algorithm: an earlier one
which was never widely distributed, called GLOP (see Section 3.3), and a
recent one which is part of the 00OPS system, and for which development
is still active.

All three algorithms derive lower bounds to the objective function by solving
a convex relaxation of the problem. The main algorithmic difference among
them (by no means the only one) is the way the convex relaxation is derived,
although all three rely on the symbolic analysis of the problem expressions.
The list above does not exhaust all of the sBB variants that appeared
in the literature fairly recently. As far as we know, however, these were the
main contributions targeted at general-purpose GO, and whose correspond-
ing implementations were undertaken with a software-design driven attitude
aimed at producing a working software package. Other existing approaches for
which we have no information regarding the implementation are Pistikopoulos’
Reduced Space Branch-and-Bound approach [17] (which only applies to con-
tinuous NLPs), Grossmann’s Branch-and-Contract algorithm [86] (which also
only applies to continuous NLPs) and Barton’s Branch-and-Cut framework
[32]. We do not include interval-based sBB techniques here because their per-
formance is rather weak compared to the algorithms cited above, where the

222 Leo Liberti

lower bound is obtained with a convex relaxation of the problem. Interval-
based sBB algorithms are mostly used with problems where the objective
function and constraints are difficult to evaluate or inherently very badly
scaled.

Convex relaxation

It is very difficult to devise an automatic method” for generating tight convex
relaxations. Thus, many algorithms targeted at a particular class of problems
employ a convex relaxation provided directly by the user — in other words,
part of the research effort is to generate a tight convex relaxation for the
problem at hand. The standard automatic way to generate a convex relax-
ation consists in linearizing all nonconvex terms in the objective function and
constraints and then replacing each nonconvex definition constraint with the
respective upper concave and lower convex envelopes. More precisely, each
nonconvex term is replaced by a linearization variable w (also called added
variable) and a defining constraint w = nonconvex term. The linearized NLP
is said to be in standard form. The standard form is useful for all kinds of sym-
bolic manipulation algorithms, as the nonconvex terms are all conveniently
listed in a sequence of “small” constraints which do not require complex tree-
like data structures to be stored [71, 39].
The defining constraint is then replaced by a constraint

lower convex envelope < w < upper concave envelope.

Since it is not always easy to find the envelopes of a given nonconvex term,
slacker convex (or linear) relaxations are often employed. This approach to
linearization was first formalized as an automatic algorithm for generating
convex relaxations in [75], and implemented in the the GLOP software (see
Section 3.3). The approach used by BARON is similar (see Section 3.1). The
aBB code avoids this step but is limited to solving problems in a given form
(which, although very general, is not as general as (1)).

The downside to using linearization for generating the convex relaxation is
that the standard form is a lifting reformulation, that is, the number of vari-
ables in the problem is increased (one for each nonconvex term). Furthermore,
even if envelopes (i.e. tightest relaxations) are employed to over- and under-
estimate all the nonconvex terms, the resulting relaxation is not guaranteed
to be the tightest possible relaxation of the problem. Quite on the contrary,
relaxations obtained automatically in this way may in fact be very slack.

Common underestimators for bilinear [50, 8], trilinear, fractional, frac-
tional trilinear, [5], convex univariate, concave univariate ([75], Appendix A .4)
and piecewise convex and concave univariate terms [45] are all found in the
literature.

" In fact, the work presented in Chapter 7 can also be seen as a first step in

this direction, providing automatic symbolic techniques to verify the convexity
properties of a given optimization problem and to generate new convex problems.

Chapter 8: Writing Global Optimization Software 223

3 Global Optimization software

This section is a literature review on the existing software for GO. The review
does not include software targeted at particular classes of problems, focusing
on general-purpose implementations instead.

3.1 BARON

The BARON software (BARON stands for “Branch And Reduce Optimiza-
tion Navigator”), written by Sahinidis and co-workers, implements a sBB-type
algorithm called Branch-and-Reduce (because it makes extensive use of range
reduction techniques both as a preprocessing step and at each algorithmic iter-
ation) first described in [62, 63]. BARON aims at solving factorable nonconvex
MINLPs. At the outset (1991), BARON was first written in the GAMS mod-
elling language [11]. It was then re-coded in Fortran in 1994 and successively
in a combination of Fortran and C for a more efficient memory management in
1996. The code was enriched in the number of local solvers during the years,
and put online until around 2002, when it was decided that it would be dis-
tributed commercially as a MINLP solver for the GAMS system. Nowadays
it can be purchased from GAMS (www.gams. com); for evaluation purposes, it
is possible to download the whole GAMS modelling language, together with
all the solvers, and run it in demo mode without purchasing a license. Unfor-
tunately, the demo mode for global optimization solvers is limited to solving
problems of up to 10 variables.

BARON and the Branch-and-Reduce algorithm it implements are further
described in [66, 82, 83]. The documentation of the GAMS software contains
a document about the usage of the BARON solver within GAMS. BARON
is currently regarded as the state of the art implementation for a sBB solver,
and in this author’s experience the praise is wholly deserved.

The main feature in this Branch-and-Bound implementation is the range
reduction technique employed before and after solving the lower and the up-
per bounding problems. Because range reduction allows for tighter convex
underestimators, the algorithm has the unusual feature that a subproblem
can be solved many times in the same node. As long as the range reduction
techniques manage to find reduced ranges for at least one variable, the convex-
ification on the same node becomes tighter and the variable bounds in both
lower and upper bounding problems change. The subproblems are then solved
repeatedly until a) the range reduction techniques fail to change the variable
bounds or b) the number of times a subproblem is allowed to be solved in the
same node reaches a pre-set limit. Condition (b) is a fail-safe device to prevent
slow convergence cases from stopping the algorithm altogether. Let P is the
original problem and R its convex relaxation. Let L be a lower bound for the
objective function of R and U an upper bound for the objective function of
P. If the constraint z; —z§ < 0 is active at the solution (i.e. the solution has

224 Leo Liberti

z; = z¥ with Lagrange multiplier A} > 0) and if U — L < X(zY — z¥), then
increase the variable lower bound:

Similarly, if the constraint wf —z; < 0is active at the solution with Lagrange
multiplier p% > 0 and if U — L < p}(z¥ — «¥), then decrease the variable
upper bound:

—L
U, a:I-’—l—U .

"
J

The geometrical interpretation of these range reduction tests is illustrated in
Figure 4. It can be seen that the changes of the bounds effected by these
rules do not exclude feasible solutions of P with objective function values
which are lower than U. Even if the variable bounds are not active at the

i Active constraint

Fig. 4. Range reduction test. /() is the straight line Ajz; + L.

solution, it is possible to “probe” the solution by fixing the variable value

at one of the bounds, solving the partially restricted relaxed problem and
checking whether the corresponding Lagrange multiplier is strictly positive. If
it is, the same rules as above apply and the variable bounds can be tightened.

Another range reduction test is as follows: suppose that the constraint
gi(z) < 0 (where g is the relaxed convex underestimator for the original
problem constraint g) is active at the solution with a Lagrange multiplier
A7 > 0. Let U be an upper bound for the original problem P. Then the
constraint

Chapter 8: Writing Global Optimization Software 225

does not exclude any solutions with objective function values better than U
and can be added as a “cut” to the current formulation of R to tighten it
further.

As explained in Section 2.3, the lower bound to the objective function in
each region is obtained by solving a convex relaxation of the problem. The
techniques used by BARON to form the nonlinear convex relaxation of fac-
torable problems are based on a symbolic analysis of the form of the factorable
function. Each nonconvex term is analysed iteratively and then the convex-
ification procedure is called recursively on each nonconvex sub-term. This
approach to an automatic construction of the convex relaxation was first pro-
posed in [75] (also see the implementation notes for the sBB solver in Section
7.3), and makes use of a tree-like data structure for representing mathematical
expressions (see Section 5). The novelty of the BARON approach, and one of
the main reasons why BARON works so well, is that it employs very tight
linear relaxations for most nonconvex terms.

In particular, convex and concave envelopes are suggested for various types
of fractional terms, based on the theory of convex extensions [80, 81]. The

proposed convex underestimator for the term %, where z € [zL,2Y] and y €
[yE,yY] are strictly positive, is as follows:
EL T
z Z yL—a(]. -)\) +U;
Y <Y<Y
yh <y <yY (2)
y=01—=XNya+ My
z =2zt + (zV —)\
0<A<1
The underestimator is modified slightly when 0 € [z, zY]:
2> Sy v (1) 427y
Yy <ya<y’
y" <y <yY 3)

y=01—=XNya+ M
z =zl + (2V — z)A
0< <1

It is shown that these underestimators are tighter than all previously proposed
convex underestimators for fractional terms, in particular:

e the bilinear envelope:

oy¥ —yal + 2ty aylt —yaU 42Uyl
max 2 J)2
vY) (")

e the nonlinear envelope:

226 Leo Liberti

1 z+VzlgU ’
y \Val + VU)

The above convex nonlinear underestimators are then linearized using an outer
approximation argument.

Furthermore, there is a specific mention of piecewise convex and piecewise
concave univariate terms (called concavoconvex by the authors) and the re-
spective convex and concave envelopes [83]. The convexification of this type
of nonconvex term — an example of which is the term z® when the range
of x includes 0 — presents various difficulties, and it is usually not catered
for explicitly (see [45] for a detailed study). An alternative to this envelope
is suggested which circumvents the issue: by branching on the concavocon-
vex variable at the point where the curvature changes (i.e. the point where
the concavoconvex term changes from concave to convex or vice versa) at a
successive Branch-and-Bound iteration, the term becomes completely concave
and completely convex in each region.

Other notable features of the BARON software include: generating valid
cuts during pre-processing and and during execution; improving the branching
scheme by using implication lists which for each nonconvex term point out
the variable which most contributes to its nonconvexity [66, 83, 82, 64]; and
most importantly, targeting particular problem formulations with specialized
solvers [83]. These are available for:

mixed-integer linear programming;
separable concave quadratic programming;
indefinite quadratic programming;
separable concave programming;

linear multiplicative programming;
general linear multiplicative programming;
univariate polynomial programming;

0-1 hyperbolic programming;

integer fractional programming;

fixed charge programming;

problems with power economies of scale;

besides the “default” solver for general nonconvex factorable problems. BARON
runs as a solver of GAMS; therefore, it runs on all architectures where GAMS
can run.

3.2 BB

The aBB algorithm [9, 6, 3, 2] solves problems where the expressions in the
objective function and constraints are in factorable form. The convex relax-
ation of general twice-differentiable nonconvex terms is carried out by using a
quadratic underestimation (based on the o parameter, which gives the name to

Chapter 8: Writing Global Optimization Software 227

the algorithm). Quadratic underestimations work for any twice-differentiable
nonconvex term, but are usually very slack. In order to relax the original prob-
lem to a tight convex underestimator, the “usual” convex underestimators are
proposed for bilinear, trilinear, fractional, fractional trilinear and concave uni-
variate terms [5].

A function f(z) (where z € R") is underestimated over the entire domain
[zL,2U] C R™ by the function L(z) defined as follows:

L(@) = (@) + Y aslat — o)(a!)

where the a; are positive scalars that are sufficiently large to render the un-
derestimating function convex. A good feature of this kind of underestimator
is that, unlike other underestimators, it does not introduce any new variable
or constraint, so that the size of the relaxed problem is the same as the size
of the original problem regardless of how many nonconvex terms it involves.
Since the sum Y i, a;(zF — z;)(z{ — z;) is always negative, L(z) is an un-
derestimator for f(z). Furthermore, since the quadratic term is convex, all
nonconvexities in f(z) can be overpowered by using sufficiently large values
of the a; parameters. From basic convexity analysis, it follows that L(z) is
convex if and only if its Hessian matrix Hp,(z) is positive semi-definite. Notice
that:
Hp(z) = Hy(z) +2A

where A = Diag}r ;(«;) is the matrix with a; as diagonal entries and all ze-
roes elsewhere (diagonal shift matrix). Thus the main focus of the theoretical
studies concerning all BB variants is on the determination of the a; param-
eters. Some methods are based on the simplifying requirement that the «;
are chosen to be all equal (uniform diagonal shift matrix), others reject this
simplification (non-uniform diagonal shift matrix). Under the first condition,
the problem is reduced to finding the parameter « that makes Hy, () positive
semi-definite. It has been shown that Hp(z) is positive semi-definite if and
only if:)
a > max{0, —- Lo, Ai(z)}

where \;(z) are the eigenvalues of Hy(x). Thus the problem is now of finding
a lower bound on the minimum eigenvalue of Hy(z). The most promising
method to this end seems to be Interval Matrix Analysis. Various o(n?) and
o(n®) methods have been proposed to solve both the uniform and the non-
uniform diagonal shift matrix problem [20].

The aBB code itself is unfortunately not publicly distributed; refer to
http://titan.princeton.edu for further details. The aBB code is provided
with a front-end parser module which is accepts mathematical expressions and
generates corresponding “code lists”. The parser is capable of reading certain
types of quantifications in enumeration, summations and products, but is not

228 Leo Liberti

equivalent to a full-fledged modelling language like AMPL or GAMS. Follow-
ing parsing, automatic differentiation is applied to the code lists to generate
the first and second order derivatives. Code lists for the lower bounding prob-
lem are also automatically generated. The main sBB iteration loop can then
be started. BB runs on Unix architectures.

3.3 GLOP

GLOP is the implementation of the spatial Branch-and-Bound with symbolic
reformulation proposed in [71, 73, 75]. This was the first sSBB algorithm which
generated convex relaxations automatically for optimization problems in arbi-
trary form (1), using the linearization method explained in Section 2.3. Other
distinctive features of this algorithm are optimization and feasibility-based
range reduction procedures. The sBB solver in 00OPS is based around a
sBB derived directly from this algorithm. More information can be found in
Section 7.3.

The GLOP code is not distributed. Extensive information about this soft-
ware can be found in [71]. A brief description of this software is given here for
the following reasons:

e Some of the ideas for 00OPS were borrowed from GLOP. More precisely,
the software design and architecture are different, but the sBB algorithm
implemented in GLOP is the basis of the sBB algorithm in 00OPS.

e GLOP makes an interesting case study for an advanced software design,
with solvers calling each other, implemented with programming techniques
of about a decade ago. The first implementation was carried out mostly
in C, with some of the local solvers being coded in Fortran.

e GLOP was experimentally inserted in the integrated software environment
gPROMS for process synthesis [16]; in particular, a parallel version (which
can be called from gPROMS) was coded (in Modula-2). No other sBB
algorithm targeted at problems in form (1) ever had a working parallel
implementation, to the best of our knowledge.

e GLOP is one of the few general-purpose sBB codes which can generate
nonlinear, as well as linear, convex relaxation. Usually, the trade-off be-
tween tightness of convex relaxation and speed of solution is won by the
latter; thus, most sBB implementations only produce linear relaxation.
There are cases, however, where having a very tight convex relaxation
(which may be nonlinear) is advantageous.

GLOP uses the binary tree data structure to manipulate mathematical
expressions symbolically (see Section 5.1). Initially, GLOP reads a problem
definition file in a pre-parsed proprietary format which is basically a text de-
scription of the binary trees representing the mathematical expressions in the
problem, as well as the other numerical data defining the problem. Deriva-
tives are computed symbolically, and some degree of symbolic simplification

Chapter 8: Writing Global Optimization Software 229

is enforced. The user can select whether a nonlinear or a linear convex relax-
ation is desired, as well as the local upper and lower bounding solvers to use.
The selection includes CPLEX and MINOS for the lower bounding solver,
and CONOPT, together with various experimental local NLP codes, for the
upper bounding solver. E. Smith, the author of the software, also designed
and implemented a local NLP solver based on successive linear programming.

GLOP was not written according to object-oriented software design prin-
ciples. Some of the overall algorithmic control is carried out using global vari-
ables. Some care has been paid to the global variables not interfering with
parallel execution. However, this is not fully re-entrant software design. As
a stand-alone software, GLOP runs on Unix architectures. It was tested on
Solaris and Linux. As part of gPROMS, it runs on all architectures where
gPROMS runs.

3.4 000OPS

00OPS stands for object-oriented OPtimization System. It is a software
framework for doing optimization. As such, it contains a parser module, var-
ious reformulator modules, and various global and local solver modules; it
has full symbolic manipulation capabilities (with mathematical expressions
represented by binary trees) and is designed to tackle large scale global opti-
mization problems. Its software design is such that the code is fully re-entrant.
The architecture makes it possible for a number of modules to configure the
solver parameters, even at different stages of the solution process. Its parser is
interfaced with AMPL so that a full-fledged modelling language can be used to
input problems. The parser and the rest of the systems are separated, so that
000OPS can actually be used as an external library (with a well documented
API [48)).

000OPS was designed as the environment where an advanced sBB solver
code based on the spatial Branch-and-Bound with symbolic reformulation
(see Section 3.3) should have been executed. As such, solvers are largely in-
terchangeable, in the sense that they all bind to the same set of library calls.
Technically, it is even possible to call sBB itself as the local solver of another
sBB instance. With time, more global solvers were added to coOPS, so that
now it can be considered as a general-purpose global optimization software
of good quality, implementing sBB, MLSL and VNS algorithms targeted at
solving MINLPs in form (1). 0oOPS is fairly reliable, and was tested on
a number of different problem classes (bilinear pooling and blending prob-
lems, Euclidean location-allocation problems, the Kissing Number problem,
molecular distance geometry problems, and various other problem classes and
instances) with considerable success. 00OPS consists of over 40000 lines of
C++, in addition to the code of several local solvers (SNOPT [24], UCF from
the NAG library [53], 1p_solve [10]. The distribution package of 00OPS con-
tains all the source code for compiling the system. It was decided, at this stage,

230 Leo Liberti

to interface only to solvers whose source code is available (hence the promi-
nent exclusion of CPLEX from the list of local solvers). 0oOPS can be linked
as a static executable including all the solvers, or as a dynamically-linked
executable which loads the available solver modules as needed.

The public distribution of 00OPS is at the moment still being discussed
between Imperial College, who holds the rights to the code, and the author.
000PS runs on most Unix architectures. It has been tested on Linux and
Solaris; earlier versions had been produced to run on Windows, both under
the CYGWIN environment and under the MS Visual C++ compiler, but
maintenance of the Windows-based versions has been discontinued. 0oOPS
was mostly written by the author of this paper, but C. Pantelides, B. Keeping,
P. Tsiakis, S. Kucherenko of CPSE, Imperial College, London all contributed
to the software.

Sections 3.4 and 3.4 give some details about the inner working of 0c0OPS.
Please note that not all of the 00OPS system conforms to the guidelines
given in Section 4 for writing a good optimization software; many ideas given
in Section 4 were developed by considering the inefficiencies of the existing
000OPS implementation.

Object classes

000PS consists of 4 major classes of objects, each with its own interface.

1. The ops object.
An ops object is a software representation of a problem problem. The
corresponding interface provides the following functionality.
e It allows problem objects to be constructed and modified in a struc-
tured manner.
o It allows access to all numerical and symbolic information pertaining
to the problem in structured, flat (unstructured) and standard form.
2. The opssystem object.
This is formed by the combination of an ops object with a solver code.
The corresponding interface provides the following functionality.
e It allows the behaviour of the solver to be configured via the specifi-
cation of any algorithmic parameters that the solver may support.
e Tt permits the solution of the problem.
3. The opssolvermanager object.
This corresponds to a particular solver and allows the creation of an
opssystem object combining this solver with a given ops object. The
corresponding interface provides the following functionality.
e It allows the creation of many different opssystem objects, all of which
have the same solver parameter configuration.
4. The convexifiermanager object.
This embeds the convexification code. The corresponding interface pro-
vides the following functionality.

Chapter 8: Writing Global Optimization Software 231

o It allows the creation of the convex relaxation of the problem (in
000PS we only employ linear relaxations).

e Tt allows the on-the-fly update of the convex relaxation when the vari-
able ranges change.

Control flow

In this section, we describe how the user code (also called the client) calls the
objects described above to formulate and solve an optimization problem. This
involves a number of steps.

1. Construction of the problem ops object.

2. Creation of an opssolvermanager for the solver code to be used.

3. Creation of the necessary opssystem (by passing the ops object created
at step 1 to the opssolvermanager created at step 2).

4. Solution of the problem (via the opssystem’s Solve () method).

5. Solution data query (via the ops object’s interface).

Note that the opssystem’s Solve() method places the solution values back
in the ops object containing the original problem, so they can be recovered
later by the user code (also called the client code) by using a variable query
method.

3.5 Other GO software packages

There are a few other GO codes targeted at fairly large classes of NLPs and
MINLPs, which we do not discuss in detail either because of availability issues,
lack of stability or simply because they are “solvers” rather than “software
packages”.

e The LGO (Lipschitz Global Optimizer) solver, coded and marketed by
Jands Pintér [55], only requires function evaluation (no derivatives) as
external user-defined routines. Bounds on the objective function value
are obtained through Lipschitz analysis, and then employed in a spatial
Branch-and-Bound framework. Currently, several versions of this solver
exist: the core library object (for both Windows and Unix operating sys-
tems), an integrated development environment for Windows, and solver
engines for Microsoft Excel, GAMS, Mathematica and Matlab. See the
website http://www.pinterconsulting.com/1 s _d.html for more infor-
mation.

e The GlobSol solver, by Robert Kearfott [33], is based on interval arith-
metics to compute upper and lower bounds for a spatial Branch-and-Bound
framework. There is no integrated environment for this solver.

e The Coconut Environment. This is a large global optimization project
which is ongoing at Universitit Wien, headed by A. Neumaier. One of

232 Leo Liberti

the products of this project is a software framework for global optimiza-
tion, which offers an API [70] for external linking, and includes local and
global solvers. Unfortunately, the code is still too unstable to be used pro-
ductively. See the project website at http://www.mat.univie.ac.at/co-
conut—environment/.

e Lindo API [79]. This is an optimization framework for programmers. It
offers an API and several solvers, among which a global one. A lim-
ited version can be downloaded for evaluation purposes from the website
http://www.lindo.com.

¢ MORON stands for MINLP Optimization and Reformulation Object-
oriented Navigator. This project was started by the author of this pa-
per in order to produce a GO code that could be released to the public.
MORON is still very much work in progress, but it will offer substantial
improvements over 00oOPS, the main one being much more advanced sym-
bolic manipulation capabilities. MORON uses an n-ary tree representation
for mathematical expressions (see Section 5.3), which makes it possible
to simplify algebraic expressions much more effectively. The software ar-
chitecture is mostly borrowed from 0oOPS but the code is completely
re-written from scratch.

4 Optimization software framework design

As has been remarked, a general-purpose GO software is a complex program
requiring interactions among many software modules. One of the major dif-
ficulties, requiring a high degree of programming abstraction, is to be able
to replace a given software module with another one of the same type but
different mathematical properties. For example, as most GO algorithm call a
local optimization procedure as a sub-algorithm, we may wish to replace the
default local solver embedded in the GO solver with a sparse local solver when
solving large-scale problems to global optimality. Thus the local solver should
not be “hard-wired” in the GO solver, but rather be a pluggable software
module. Suppose further that we know the problem to be a bilinear one: then
we might wish to replace the standard pre-solver (reformulator module) with
one which is more apt to the task. With this philosophy, nearly every step
in the global solution of a problem is implemented as a pluggable software
module. This calls for a core software module where every other module can
be plugged in. The core module supplies the necessary Application Program-
ming Interfaces (APIs) so that the different modules can be called using the
same standard function calls.

This type of software design may, with a bit of tweaking, be implemented
in almost every programming language. Its proper semantic domain, however,
is within the object-oriented programming paradigm. We chose C++ [78] to
write implementations of the proposed software design, as it is widely available
on almost every hardware and Operating System platform.

Chapter 8: Writing Global Optimization Software 233
4.1 Control Flow

In this software description we follow a top-down approach, so that the reader
may find higher level requirements before reading about the consequent im-
plementation choices at lower level. The first thing that is necessary to know
about how a software works is the control flow.

At first, a file representation of problem (1) is read into memory, parsed,
and transformed into a memory representation of the problem. This task is
carried out by the parser module, and the memory representation of the prob-
lem is stored within the data fields of the core module, which exposes a com-
mon API for each solver module to retrieve the problem data. Subsequent to
parsing, the first task is to apply a symbolic reformulator to the problem. The
reformulator tries a number of standard symbolic manipulations to reduce the
number of variables and constraints, as well as reformulating the problem to
a simpler, or more convenient form, if required. Next, based on user request,
the control is passed to the solver module. Each solver is embedded into a
wrapper module which allows solver software written by different people with
different ad-hoc APIs to be interfaced with the core module uniformly. Solver
modules written natively for the core module may dispense with the wrapper
and directly use the core module’s API. Each solver may call other modules
(reformulators or solvers) as required by the algorithm being implemented.
Before the solver terminates its execution, it stores the optimal solution, the
optimal objective function value and other information regarding algorithmic
performance and solution reliability within the core module, so that this in-
formation can be accessed by other solvers. When the first-level solver (i.e.
the solver that was called first) terminates, the solution is output to the user
and program execution stops.

Fig. 5 shows the control flow of a first-level solver module requiring two
different second-level solvers, one for the main problem and the other to be
applied to an auxiliary problem derived from the main one by means of sym-
bolic reformulation (for example, consider a sBB algorithm requiring local
solutions to a nonconvex NLP problem and to its convex relaxation).

4.2 Data Flow

Since we are envisaging an object-oriented architecture and re-entrant cod-
ing, global variables may not be used. The data relating to the mathematical
formulation of the problem (i.e. the equations in (1)) are stored in the core
module, as has been remarked. In practice, these data are fields of a class
called Problem (more or less equivalent to what the class ops is in the 00OPS
software, see Section 3.4). Since the parser module builds the Problem object
corresponding to the main problem, it must have read/write permissions on
Problem objects. Consider also that some GO algorithms need to solve aux-
iliary problems at each step as part of the overall solution method (e.g. sBB
solves a lower-bounding problem at each step); since the auxiliary problems

234 Leo Liberti

Call the wrapper to the 1st local solver

Local solution algorithmn. 1

Call the GO solver

GO agorithm requiring two
different local solvers Call the wrapper to the 2nd local solver

Output solution

End Local solver n. 2

Local solution algorithm n. 2

Fig. 5. Example of control flow.

may in principle be solved by any of the available solvers, it makes sense to
embed them in an object of the Problem class. The reformulator module which
generates the auxiliary problem must therefore have read/write permissions
on Problem objects. Care must be taken to make the variable numbering con-
sistent between the main problem and the derived auxiliary problems. Solvers
need to read problem data rather than modify the problem, so they only need
read access to Problem objects.

The Problem class, implementing the core module, is the fundamental
class of the proposed GO framework. It stores information about variables,
constraints and objective function. A variable has the following basic prop-
erties: integrality (whether it is an integer or a continuous variable), bounds
and current value. A constraint has two basic properties: symbolic expression
of the constraint and bounds. The objective function also has two basic prop-
erties, namely the symbolic expression it consists of, and the optimization
direction (min or max). For simplicity, and without loss of generality, we shall

Chapter 8: Writing Global Optimization Software 235

thereafter assume that the optimization direction is that of minimization. The
Problem class offers an API containing methods for performing the following
actions:

e creation of problem entities
1. create a new variable (including integrality, bounds and current value)
2. create a new constraint (including constraint bounds)
3. create the objective function (including optimization direction)
e output of problem data
1. get problem sizes (number of variables, number of constraints, number
of integer variables, number of linear constraints)
2. get variable integrality, linearity, bounds and current values
get constraint symbolic expression and bounds
4. get the symbolic expression for the first (optionally second) order par-
tial derivative of each constraint with respect to each variable
5. get the symbolic expression and the optimization direction of the ob-
jective function
6. get the symbolic expression of the first (optionally second) order partial
derivative of the objective function with respect to each variable
e modification of problem data
1. modify a variable (including integrality, bounds and current value)
2. modify a constraint (including symbolic expression and bounds)
3. modify the objective function
e output of dynamic information (i.e. depending on the current variable
values)
1. evaluate the constraint at the current variable values
2. evaluate the constraint derivatives at the current variable values
3. evaluate the objective function at the current variable values
4. evaluate the objective function derivatives at the current variable val-
ues
test whether current variable values are a feasible solution
test whether a variable only occurs linearly in the problem or not
7. test whether problem has a particular structure (linear, bilinear, con-
vex)

w

o o

The part of the API that tests wether the problem has a particular struc-
ture is called the symbolic analyser, and can also be considered as a separate
module instead of being part of the Problem API. Testing whether a problem
is linear or bilinear is easy; devising an algorithmic convexity test is far from
trivial®.

Fig. 6 shows an example of data flow in the proposed framework. The
arrows represent the relationship “modifies the data of” between modules. It
appears clear that certain reformulators change the core modules (Problem
object), whilst others read the data from the core module to generate another

8 Some work is being carried out on such a task; see Chapter 7.

236 Leo Liberti

core module for an auxiliary problem. Each solver wrapper has to internally
store the data of the problem it is solving in order to pass these data to
the solver proper in its required format. Figure 6 describes a sBB solver: the

Core module for Reformulator for
the main problem auxiliary problem

| |

Core module for
auxiliary problem

|

Solver for main Solver for
problem auxiliary problem

Reformulator for
simplifying main p.

Fig. 6. Example of data flow. An arrow between modules A and B means that A
modifies the internal data of B.

core module for the main problem contains the data relative to the problem.
This data is modified when the problem is simplified by the simplifying re-
formulator. The core module then loads its data in the main solver module
(the global solver), which solves the problem. During the solution process,
the solver module tells the core module to create a reformulator for generat-
ing a convex relaxation. The core module loads its data in the reformulator,
which generates another core module for the auxiliary problem (the convex
relaxation). The main solver then instructs the core module of the auxiliary
problem to load its data in the auxiliary solver (the local solver), which solves
the convex relaxation. The implementation of this sequence of data exchanges
might be carried out so as to reduce the amount of transferred data.

4.3 Parser module

The ideal parser reads the mathematical formulation of an optimization prob-
lem, and transforms it in the appropriate data structures. Since optimiza-
tion problems are often expressed in terms of quantifiers, indices and multi-
dimensional sets of various kinds, to design such a parser is akin to crafting a
modelling language, which is an extremely difficult and time-consuming task.
Existing modelling languages (e.g. AMPL [19, 11]) usually provide an API
for external solvers. If the API goes as far as providing symbolic information

Chapter 8: Writing Global Optimization Software 237

for the equations, we can design our software framework as a “super-solver”
hooked to the modelling language software. The implementations described in
this paper use AMPL as a modelling language. The documented AMPL API
is very limited in its capabilities for passing structural problem information
to solvers. However, AMPL also offers an undocumented API [21, 23] which
makes it possible to read the mathematical expressions in the problem in a
tree-like fashion. Both 0oOPS and MORON work by using the undocumented
AMPL API for building the internal data structures.

It is, of course, very easy to write a parser that reads optimization problems
in flat form, i.e., where no quantifier appears in any of the problem expressions
(for example, a constraint like Vi € N(z;+x1 < 1) would be written in the flat
form as a list of | V| constraints where all the indices have been made explicit).
Such parsers can be written by using standard programming tools like LEX
and YACC [42] or from scratch: one good starting point can be found in the
first chapters of [78]. Again, both 00OPS and MORON are equipped with
such flat form parser modules. Interfacing with AMPL was actually carried
out with a small external program which uses the undocumented AMPL API
to produce a flat form representation of the problem that the optimization
software can read.

A standard MINLP description file format

The widespread adoption of a standard, flat-form problem definition file for
MINLPs (akin to what the MPS and LP file formats are to linear program-
ming) would be a very desirable event. AMPL is capable of producing .nl
ASCII files which are complete descriptions of MINLP problems. However,
they are so cryptic to the human eye that suggesting their adoption as stan-
dard would pose serious problems. Unfortunately, the same goes for the rather
widespread SIF format [4], which also has more stringent limitations: for exam-
ple, it is impossible to express arbitrary compositions of nonlinear functions.

000OPS and MORON currently read flat-form definition files in the fol-
lowing format.

238 Leo Liberti

a comment
variables =
LowerBound; < VarName; < Upper Bound, [V arTypey,

Lower Bound,, < VarName,, < UpperBound,, [V arTypen;
objfun =

[cTz + f(2));
constraints =

[Lower Bound; < a1z + g1(z) < UpperBound,],

[Lower Bound, < am® + gm(x) < UpperBound,,];

startingpoint =

! I

Tiyenny Ty
options =

Parameter Name; ParameterValuey,

Parameter Namey, ParameterV alueg;

The symbols are the same as in (1). Here, ay, ..., a,, are the rows of the ma-
trix A. The symbol “<” has been employed instead of “<” because the text
file is less cluttered with just one ASCII symbol (<) instead of two (<=), but
the semantics of the (<) symbol is actually “less than or equal to”. VarType
is a string (Integer or Continuous) describing the type of variable. Although
objective function and constraints are separated in linear and nonlinear parts
in the format description above, there is no reason why this task should not
be performed directly by the software. Indeed, MORON separates linear and
nonlinear parts automatically. 00OPS, which relies on a less advanced sym-
bolic manipulation library, requires the linear parts to be made explicit in
the description file, with the special character “|” syntactically separating
linear and nonlinear parts (with the semantics of “sum”). The nonlinear func-
tions f(x),91(x),.-.,9m(x) are strings describing the mathematical expres-
sions. The only really non-trivial piece of code required for reading the above
problem description file is therefore a small parser that, given a string con-
taining a mathematical expression (containing just variable names, numbers,
and operators, without indices or quantifiers), builds a binary (or n-ary) tree
representing the expression. As has been remarked in Section 4.3, this task is
actually fairly easy.

Below is an example of a problem expressed in the format described in
this section.

problem: Yuan 1988 (MINLP)
variables =
0 <yl <1/ Integer,

Chapter 8: Writing Global Optimization Software 239

< y2 < 1 / Integer,
< y3 < 1 / Integer,
< x4 < 10 / Continuous,
0 < x5 < 10 / Continuous;
objfun =
[2xx4 + 3*x5 + 1.5%yl + 2xy2 - 0.5xy3 1;
constraints =
[1.256 < y1 + x472 < 1.25],
[3 < 1.5%y2 + x571.5 < 3],
[MinusInfinity < y1 + x4 < 1.6],
[MinusInfinity < y2 + 1.3333*x5 < 3],
[MinusInfinity < -yl - y2 + y3 < 0];
startingpoint =
0, 0,1, 1, 1;
options =
MainSolver sBB,
sBBLowerBoundSolver lp_solve,
sBBUpperBoundSolver snopt;

o O o

Although a starting point is usually not required for most GO algorithms, it
was decided to include the possibility of passing this information to the solver,
since this standard might be used as input for a local NLP solver.

We suggest that a suitable extension of this file format (encompassing an
arbitrary number of objective functions and other minor adjustments) should
be used as a standard MINLP problem description file format.

4.4 Data structures

The most important data structures in the Problem class refer to the main
problem entities: variables, objective function and constraints. The mathemat-
ical expressions defining objective function and constraints are stored symbol-
ically in a tree-like fashion, as explained in Section 5 below. Many of the other
properties of the problem entities, like names, bounds and so on, can be im-
plemented as desired, as they do not pose any particular practical problem.
000OPS and MORON use the C++ STL string class [78] for names and the
basic double type for real numbers.

The most puzzling issues in designing data structures for problem entities
are to do with indexing of variables and constraints, and usually give rise to
the worst bugs. Since many global optimization algorithms work by reformu-
lating the problem symbolically, and since each reformulation is conveniently
stored in a separate object, it is important to retain the identity of each
variable and constraints, even when they undergo symbolic transformations.
Variable IDs are the most critical pieces of information: a sBB algorithm has
to act alternately on the original problem and on its convex relaxation. Since
the convex relaxation may be the result of a complex symbolic manipulation
(involving adding and removing problem variables as needed), a mapping be-
tween variables in the original and in the convexified problem is of the utmost

240 Leo Liberti

importance. After much coding experimentation, the most practical solution
seems to be the following:

e the original problem is first simplified as much as possible, and as many
variables as possible are deleted from the problem;

e the variables in the simplified problem are flagged “unchangeable” to all
subsequent reformulator modules;

e reformulators which perform liftings, i.e. which add variables to the prob-
lem, flag the added variables as “changeable”, so that subsequent refor-
mulators can remove them if required.

Each variable is assigned a unique ID when the problem is first read by the
parser. These IDs are stored in lists. Deletion of a variable is equivalent to
removing the corresponding ID from the list; no other variable is re-indexed
(obviously, deleting a variable can only be done if the variable does not appear
in any of the problem expressions). A variable can be added by finding an
unassigned variable ID and inserting it into the list. Cycling over all variables
is equivalent to traversing the list. Similar lists containing variable names,
bounds, values and other properties are easily kept synchronized with the
“basic” ID list.

Constraints can be dealt with similarly, although symbolic manipulation
of constraints is usually much less problematic.

4.5 Configuration of solver parameters

The performance of most solver codes is usually hugely conditioned by proper
parameter settings (like tolerances, limits on the number of iterations and so
on). If a GO algorithm relies on a cascaded sequence of solvers being called,
each solver must be properly configured; this, however, poses some problems,
because whilst some configuration parameters can be set by the user, others
are better left to the higher-level solver, which will set them based on the
current performance of the algorithm run. Thus, solvers are first created in
memory by a solver manager, which pre-configures them; subsequently, the
solver and the problem object being solved are bound together in a solver sys-
tem, which offers further configuration capabilities and finally offers the API
for starting the solution process. A parameter list is stored both in the solver
manager and in the solver system (which inherits a pre-configured parameter
list from the solver manager). This treatment of parameter setting follows
the guidelines of the Global CAPE-Open consortium for chemical engineering
software [36, 57, 56].

5 Symbolic manipulation of mathematical expressions

Symbolic computation is usually something that the mathematical practi-
tioner employs dedicated software for; software like Maple, Mathematica, Mat-
lab and so on. Numerical methods, and in particular optimization, have always

Chapter 8: Writing Global Optimization Software 241

been taught in the spirit of number crunching, the most notable exception be-
ing linear algebra, for the simple reason that doing symbolic manipulation on
linear expressions is very easy. It is difficult to even envisage how to write
a symbolic computation program on a computer whose basic data types are
integer and floating point numbers. The following books provide good intro-
ductions to symbolic computation methods [76, 15, 14].

Symbolic computation relies on a machine representation of mathemati-
cal operations on some numbers or literal symbols (constants, variables, or
expressions involving constants and variables). Usually, one of the following
techniques is employed to represent these operations:

e binary trees;
o lists;
e n-ary trees.

5.1 Binary Trees

Binary trees have been proposed as a way of representing mathematical ex-
pressions by Knuth [34] and made their way in computational engineering and
other fields of scientific computing [13]. This representation is based on the
idea that operators, variables and constants are nodes of a digraph; binary
operators have two outcoming edges and unary operators only have one; leaf
nodes have no outcoming edge. One disadvantage is that binary tree repre-
sentation makes it cumbersome to implement associativity. For example, the
expression y + x + 2z + 3x is represented as (((y + z) + 2z) + 3x), so it would
require three recursive steps to lower tree ranks to find out that it is possible
to write it as (y+6x). Another disadvantage is that different parsers may have
different representations for the same expressions. With the example above, a
“left-hand-side-first” parser would create (y + (z + (22 + 3z))) instead of the
“right-hand-side-first” (((y + z) + 2z) + 3x).

Where symbolic manipulation is only desired to compute symbolic deriva-
tives and performing little or no symbolic manipulation, this approach may
be the best, as it is simpler to implement than the other techniques and gen-
erally performs very efficiently [54, 48]. 00OPS uses binary trees to store
expressions.

5.2 Lists

The representation of algebraic expressions by lists dates back to the AI-
type languages Prolog and Lisp. Lisp, in particular, was so successful at the
task that a lot of CASes, today, are still based on Lisp’s list manipulation
abilities. Prolog has some interesting features in conjunction with symbolic
computation, in particular the “computation-reversing” ability, by which if
you compute a symbolic derivative and do not bother to simplify it, Prolog
lets you integrate it symbolically performing virtually no calculation at all.

242 Leo Liberti

Any symbolic computation library written in Prolog/Lisp faces the hard
problem of implementing an API which can be used by procedural languages
like Fortran, C or C++. Whilst technically not impossible, the architectures
and OSes offering stable and compatible Lisp and C/C++ compilers are few.
GNU/Linux actually has object-compatible Lisp and C/C++ compilers; how-
ever, the GNU Lisp compiler uses an array of internal data structures which
are very difficult to read from a C/C++ program, making data interchange
between the different modules hard to implement.

There are two other problems faced by Prolog/Lisp programs: portability
(many Prolog/Lisp compilers implement different dialects of the languages)
and a reduced user base.

5.3 m-ary Trees

Expression representation by n-ary trees can be seen as a combination of the
previous two techniques. MORON makes use of this representation. In order
to characterize this representation formally, we need some definitions.

An operator is a node in a directed tree-like graph. Let L be the set

{+,—,%,/,7,(=1)x,log, exp, sin, cos, tan, cot, VAR, CONST}

of operator labels. An operator with label VAR is a variable, an operator with
label CONST is a constant. Operator nodes may generally have any number
of outcoming edges; variables and constants have no outcoming edges and are
called leaf nodes. A variable is also characterized by a non-negative integer
index 4, and a constant by a value which is an element of a number field
F. We shall assume F' = R (or at least, a machine representation of R) in
what follows, but this can vary. Let V' be the set of all variable-type operator
nodes. Let Ty = V UR. This is the set of the terminal (or leaf) nodes, i.e.
the variables and constants. Now for each positive integer ¢, define recursively
T; = L x (T;_1 UT,)<*. Elements of T; are operator nodes having rank i.
Basically, an element of T; is made up of an operator label [€ L and a finite
number of subnodes. A subnode s of n is a node s in the digraph so that there
is an edge leaving node n and entering s.

The biggest advantage of n-ary tree representation is that it makes it very
fast and easy to perform expression simplification. Another advantage is that
expression evaluation on n-ary trees is faster than that obtained with a binary
tree structure [40].

5.4 Main symbolic manipulation algorithms

In this section we discuss the most important algorithms for symbolic manipu-
lation: allocation and deallocation of memory for recursive data structures like
trees, evaluation of an expression at a point, symbolic differentiation and basic
simplification rules. Many more symbolic algorithms are actually used in both

Chapter 8: Writing Global Optimization Software 243

000OPS and MORON, including a standard representation for mathematical
expressions, equality tests, advanced simplification routines and separation of
linear and nonlinear parts of an expression. The latter is particularly impor-
tant as most nonlinear local solvers require the linear parts of the constraints
to be input separately from the nonlinear parts.

Allocation and deallocation

One of the biggest challenges in tree handling is memory allocation/deallocation.
A tree-node class normally consists of its own semantic data and two (or more,
in the case of n-ary trees) references to its children subnodes. In this setup,
the following memory-related problems arise.

e When a node is allocated, the subnodes are not automatically allocated,
so they have to be allocated manually when the need arises (see fig. 7).

NULL NULL

Fig. 7. Allocation of a node does not allocate subnodes.

e When a node is copied, the question arises whether all the subnode hier-
archy should be copied or just the references to the immediate subnodes
(see fig. 8). The two cases must be treated separately.

e Supposing a tree has been allocated, with some of its nodes copied hier-
archically and some others just copied as references, how does one deallo-
cate the tree? Just deleting all the nodes will not work because the nodes
copied as references are still in use by other trees. A node cannot hold the
information about all the trees it belongs to, as it may belong to a huge
number of trees. The standard way to deal with this situation is to store
a counter in each node that counts the number of times it is copied as a
reference. Each time the deallocation of the node is requested the counter
is decreased. The node is truly deallocated only when the counter is zero.

Evaluation

Normal mathematical operations on expressions amount to the manipulation
of nodes. These can be copied to form new expressions, replaced by other
nodes to achieve symbolic simplification and so on. Two expressions can be

244 Leo Liberti

Subnodes reference copy

Original tree Subnodes hierarchical copy

Fig. 8. Copy of subnodes and copy of references.

summed (or in fact acted on by any other binary operator) just by creating
a new top node and setting the top nodes of the two expressions as its two
subnodes. Substitution of a variable can be obtained by replacing the relevant
variable indices in the terminal nodes; special care must be taken if these
terminal nodes are in use in other trees within the program. If they are, then
new terminal nodes should be created before the changes occur. Evaluation
of an expression tree is obtained by recursing on each node in the following
way.

evaluate(node, variable_values) {
if (node is terminal) {
return variable value corresponding to variable index;
} else {
result = 0;
for each subnode in node {
partial_result = evaluate(subnode, variable_values);
result = result (node.operator) partial_result;
}

return result;
}
}

Both result and partial result in the above pseudocode indicate real
numbers. If the same tree has to be evaluated several times, it may be conve-
nient to store the linear order of recursive evaluation of each node and then
call a modified evaluation procedure which is linear in nature rather than
recursive. This avoids the computational overhead of recursiveness (although
optimizing compilers reduce that overhead considerably nowadays). The de-
tails of this strategy are analysed in [35].

Chapter 8: Writing Global Optimization Software 245
Differentiation

Derivatives of the objective function and constraints are used (or can be used)
by most nonlinear deterministic local solvers, so an efficient way to calculate
these derivatives gains good computational savings. Ordinarily, derivatives
are computed by finite differences or by hard-coding the symbolic derivative
inside the program at compile-time. The first method has huge associated
computational costs, whilst the second method only targets programs devised
to solve one particular optimization problem, which is not suitable for our
purposes.

There are two alternatives: automatic differentiation (AD) [25] and sym-
bolic derivative computation. A. Griewank, in his fascinating 1989 paper on
AD, claims that AD is better than symbolic differentiation. However, the
limitation of the symbolic differentiation methods he was referring to were
twofold: hardware-wise, in lack of RAM (he was using a Sun3 with 16MB
ram); and software-wise, in having to pass the output of a symbolic derivative
computed by Macsyma 1 or Maple 1 to a Fortran compiler before the evalu-
ation, apparently with the overhead of shell-piping mechanisms. Besides, AD
inherently has one very stringent limitation which makes it unsuitable for use
in a software framework: namely, that AD algorithms automatically generate
derivative evaluation code, which must be compiled before it can be useful.
This would make the optimization framework dependent on a compiler and
a linker, which is not usually an acceptable choice for a stand-alone software.
For this reason we chose to employ symbolic differentiation techniques.

Once the symbolic derivatives are calculated for the objective function and
constraints, they only need to be evaluated in order to produce the derivative
value at a point. Other advantages of this approach are that (a) by using
expression trees and recursive procedures, symbolic derivatives are not com-
putationally expensive to construct; and (b) the derivative values they provide
are exact, whereas finite difference methods can only approximate the values
at best.

The following pseudocode shows how to construct a node representing the
symbolic derivative of node with respect to variable.

diff (node, variable) {
retnode = 0;
for each subnode in node {
if (subnode depends on variable) {
if (subnode is terminal) {
retnode = 1;

} else {
case of node.operator {
case ’+7:
retnode = retnode + diff(subnode, variable);
case ’-’:

retnode = retnode - diff(subnode, variable);
case ’%x7:

246 Leo Liberti

retnode = retnode + diff(subnode, variable) * node / subnode;
// and all the other derivative rules...
}
}
}
}

return retnode;

}

Notice that retnode in the above pseudocode indicates a node, so all the
operations that act on retnode (addition, subtraction, multiplication, division
and so on) are to be implemented as procedures which manipulate expression
trees.

Derivative rules are the usual ones; the rule for multiplication is expressed
in a way that allows for n-ary trees to be correctly derived:

n

0 of;
%l:llfz=z %Hf]

i=1 j#i

All valid algebraic simplifications can be used to simplify symbolic expres-
sions. However, all simplifications have an associated computational cost so
it is essential to find a balance between the degree of simplification of each
expression and the cost of the simplification itself. Simplifying sin®(f(z)) +
cos?(f(z)) = 1, for example, involves a tree search that spans 7 nodes (ad-
dition, exponentiation and “2” as a constant in two nodes, sine and cosine
operators) and is of limited use, so it is not advisable to employ it unless it is
known in advance that most of the expressions will involve sines and cosines.

Simplification

The basic simplifications which should be carried out are the following;:

Chapter 8: Writing Global Optimization Software 247

constant (operator) constant = constant(resultofoperation)
—(=f(z)) = f(=z)
f(2) +0 = f(z)

f(&) 0= f(z)
0— f(z) = ~f(2)
f(@) x 1= f(z)

72) _ fa
() =1
(@) = f(z)

f(@) + f(2) = 2/ (2)

f(z) - fla) =0

f(z) % f(z) = (f(z))’

@)

should also be carried out. Note also that after a tree has been simplified
once there is scope for further simplification. For example applying the above
rules in succession to #2Y=2Y — 1 would gather z° — 1, but it is evident that
the expression can be simplified even more. A second application of the rules
would gather 1 — 1 and a third application would finally gather 0. Ideally,
thus, simplification should be carried out repeatedly until the expression does
not change under the simplification rules. Where this is too computationally
expensive, a compromise may be enforced.

6 Local solvers

By “local solvers” we mean here those solvers which decide on the local or
global optimality of a point by performing an analysis of a point neighbour-
hood. As such, local solvers may implement local solution algorithms (for
NLPs) and global solution algorithms (for LPs). Mostly, local solvers are used
within global solvers as black-box calls to solve the main problem, or auxil-
iary problems, locally. In most GO algorithms, the global phase has a limited
numerical knowledge of the problem structure; the “dirty work” is usually per-
formed by the local solvers. In the case of LPs, the local solver needs to know
the linear coefficients of all the variables in the objective and the constraints,

248 Leo Liberti

as well as the variable and constraint bounds. In the case of NLPs, the lo-
cal solver needs to evaluate objective function, constraints, first derivatives of
both, and optionally also second derivatives, for any given point. Large-scale
local NLP solvers need to be explicitly told about linear and nonlinear parts
of each expression in the problem. As most local solvers are in fact “solver
libraries”, with varying degrees of user-friendliness, sometimes the problem
variables and/or the constraints need to be re-ordered. This is very time-
consuming and error-prone, as the inverse re-ordering needs to be applied to
the solution vector.

The task of interfacing a local solver with the rest of the optimiza-
tion system is carried out by the solver wrapper. In this author’s experi-
ence, solver wrappers for existing local NLP solvers (specially those requir-
ing variable and constraint re-ordering) are the most frustrating source of
software bugs. Interfacing with local LP solvers is easier; however, since
many local LP solvers do not accept constraints in “double bounded for-
mat” (Lower Bound < g(z) < Upper Bound), preferring the “single bounded
format” instead (g(z) = Bound), some of the constraints might have to be

. . . < .. .
replicated with different directions and bounds.

One word should be spent about the reliability of local solver codes.
Whereas LP solvers are next to 100% reliable, some of the most efficient
algorithms for the local solution of nonconvex NLPs are inherently unreliable.
Sequential Quadratic Programming (SQP), for example, is a standard and
widely used technique for locally solving constrained NLPs in general form.
SQP might fail (rather spectacularly in certain cases) if a feasible starting
point cannot be provided, or if the linearized constraints are infeasible (even
though the original nonlinear constraints may be feasible). Both these occur-
rences are far from rare, so local NLP solvers are rarely reliable. Since most
GO algorithms delegate the numerical work to the local solvers, a global solver
is only as reliable as its local sub-solver, that is to say, not very reliable at all.
Therefore, it is always a good idea for the wrapper to be able to deal properly
with all the return messages of the local solver; in our opinion, it is also a
good idea to have the wrapper double-check on the feasibility of the solution
provided by the local solver.

000OPS at the moment has three local solvers: NPSOL (or rather, the
VCF optimization code in the NAG library), a rather old version of SNOPT
(which is a large-scale modification of NPSOL), and 1p_solve, which is a free
LP solver.

MORON is interfaced to a recent version of SNOPT and the GLPK [49]
local LP solver.

7 Global solvers

GO algorithms mostly require very high-level steps, like local solution of sub-
problems, symbolic manipulation of mathematical expressions, and so on.

Chapter 8: Writing Global Optimization Software 249

Embedding global solvers within optimization environment which offer these
possibilities makes it possible to implement and test a global solver in a very
short time. In this section we shall describe the three global solvers found in
00OPS. At this stage, MORON only has a very preliminary version of a sBB
solver, which is not discussed here.

7.1 SobolOpt multistart algorithm

SobolOpt? (also see Section 2.1) is an implementation of a Multi-Level Sin-
gle Linkage (MLSL) algorithm; its main strength is that it employs certain
Low-Discrepancy Sequences (LDSs) of sampling points called Sobol” sequences
whose distributions in Euclidean space have very desirable uniformity proper-
ties. Let @ be the set of pairs of sampled points ¢ together with their evaluation
f(q) (where f is the objective function). Let S be the list of all local minima
found up to now.

1. (Initialization) Let @ =0, S =0, k = 1 and set € > 0.

2. (Termination) If a pre-determined termination condition is verified, stop.

3. (Sampling) Sample a point g from a Sobol’ sequence; add (gx, f(gx)) to
Q.

4. (Clustering distance) Compute a distance ry (which is a function of k and
n; there are various ways to compute this distance, so this is considered
as an “implementation detail” — one possibility is r, = Bk_%, where 3
is a known parameter and n is the number of variables).

5. (Local phase) If there is no previously sampled point ¢; € Q (with j < k)
such that ||gx — ¢;|| < rx and f(g;) < f(gx) — ¢, solve problem (1) locally
with ¢ as a starting point to find a solution y with value f(y). If y ¢ S,
add y to S. Set k «+ k + 1 and repeat from step 2.

The algorithm terminates with a list .S of all the local minima found. Find-
ing the global minimum is then a trivial matter of identifying the minimum
with lowest objective function value f(y). Two of the most common termina-
tion conditions are (a) maximum number of sampled points and (b) maximum
time limit exceeded. A discussion of how Sobol’ sequences can be generated
is beyond the scope of this paper. A good reference is [59], p.311.

The implementation of the SobolOpt algorithm, which is very robust, was
carried out by S. Kucherenko and Yu. Sytsko and successively adapted to the
000OPS framework. For more details about this algorithm, see [37].

9 The SobolOpt solver within 00@PS shares the same code as the implementation
described in Chapter 5.

250 Leo Liberti
7.2 Variable Neighbourhood Search

In this section we discuss the implementation of the Variable Neighbourhood
Search!® algorithm for GO presented in Section 2.2. The search space is de-
fined as the hypercube given by the set of variable ranges ¥ < z < 2V. At
first we pick a random point & in the search space, we start a local search
and we store the local optimum z*. Then, until k£ does not exceed a pre-set
kmax, we iteratively select new starting points & in a neighbourhood Ny (z*)
and start new local searches from Z leading to local optima z'. As soon as we
find a local minimum 2’ better than z*, we update z* = ', re-set k = 1 and
repeat. Otherwise the algorithm terminates.

For each k < kmax consider hyper-rectangles Ry (z*) similar to ¥ < z <
2V, centered at z*, whose sides have been scaled by & More formally, let

Ri(z*) be the hyper-rectangle y* < z < yU where, for all i < n:

* k *
Yy =3 — A (xi _"EzL)
max
k
W=t @)
max

This construction forms a set of hyper-rectangular “shells” centered at z*.
For k > 0, we define the neighbourhoods Ny (z*) as Ry(z*)\Ry_1(z*) (ob-
serve that Ro(z*) = 0). The neighbourhoods are disjoint, which gives the
VNS algorithm a higher probability not to fall in local optima that have al-
ready been located. Furthermore, the union of all the neighbourhoods Ny, (z*)
is the whole space ¥ < z < 2V. This is a rather unusual features in VNS im-
plementation, specially when VNS is applied to combinatorial problems. Here
it is justified by the (partial) continuity of the search space. The neighbour-
hoods are obviously just used for sampling; the local search itself is performed
in the whole space.

Sampling in the neighbourhoods Ni(z*) is a non-trivial task. Since sam-
pling in hyper-rectangles is easy, one possible solution would be to sample a
point in Ry (z*) and reject it if it is in Ri—4(z*), but this would be highly
inefficient. A different strategy was preferred in this implementation.

1. Choose an index j < n randomly.

2. Sample a random value a:; in the one-dimensional interval given by pro-
jection of Ry(z*) on the j-th coordinate.

3. Let the projection of Rj_;(z*) on the j-th coordinate be the interval
p =y}, yY] If 2} € p, then: if |z — yf| < |zf —y| let 2 =y}, else let

4. For all 4 <n such that ¢ # j, sample a random value z} in the projection
of Ry(z*) on the i-th coordinate.

10 The implementation of the VNS solver in 00O PS is fundamentally different from
the GLOB implementation described in Chapter 6.

Chapter 8: Writing Global Optimization Software 251

The above procedure generates a point &' = (21, ...,) which is guaranteed
to be in Ng(z*). Evidently, ' € Ry(x*). Now suppose, to get a contradiction,
that o' € Ry—_1(z*). But then for each i < n we have y < z! < y¥. Since
we specifically set one of the z} to be outside this interval in steps 1-3 of
the algorithm, =’ ¢ Ry_1(z*) as claimed. Therefore ' € Ny (z*). The only
problem with this method is that the sampling is not uniformly distributed
anymore, as there are areas of Ny(z*) where there is zero probability of sam-
pling z'. This, unfortunately, affects the convergence proof of the algorithm,
since there are unexplored areas. A simpler, more robust strategy is to define
each neighbourhood N (z*) as the hyper-rectangle Ry (x*). This is wasteful (a
point might be sampled in Ny_1(z*), which had already been explored at the
previous iteration), but the convergence proof holds. Both approaches have
been coded in the solver, and selection occurs by modifying an appropriate
parameter.

The other main solver parameters control: the minimum k to start the
VNS from, the number of sampling points and local searches started in each
neighbourhood, an € tolerance to allow moving to a new z* only when the
improvement was sufficiently high, and the maximum CPU time allowed for
the search.

7.3 Spatial Branch-and-Bound

The overall sBB algorithm was discussed in Section 2.3. Below, we consider
some of the key steps of the algorithm in more detail.

Bounds tightening

These procedures appear in steps 1 and 2 of the algorithm structure outlined
in Section 2.3. They are optional in the sense that the algorithm will, in
principle, converge even without them. Depending on how computationally
expensive and how effective these procedures are, in some cases convergence
might actually be faster if these optional steps are not performed. In the great
majority of cases, however, the bounds tightening steps are essential to achieve
fast convergence. Two major bounds tightening schemes have been proposed
in the literature: optimization-based and feasibility-based.

The optimization-based bounds tightening procedure identifies the small-
est range of each variables subject to the convex relaxation of the problem to
remain feasible. This ensures that the sBB algorithm will not have to explore
hyper-rectangles which do not actually contain any feasible point. Unfortu-
nately, this is a computationally expensive procedure which involves solving
at least 2n convex NLPs (or LPs if a linear convex relaxation is employed)
where n is the number of problem variables. Let a < g(z) < 8 be the set of
constraints in the relaxed (convex) problem (a, are the constraint limits).
The following procedure will construct sequences 1%, zY* of lower and up-
per variable bounds which converge to new variable bounds that are at least

as tight as, and possibly tighter than 2%, zU.

252 Leo Liberti

1. Set 270 « gl 2U0 « 2V k « 0.
2. Repeat

Azbkt < g < gV VG <y

AgBP 1l < < U1 VG <y

zP* min{z; | a < g(z) < B
szk +— max{z; |a<glz) <
k«Fk+1.

until zlk = gLk=1 gnd Uk = fUk-1

Because of the associated cost, this type of tightening is normally performed
only once, at the first step of the algorithm.

Feasibility-based bounds tightening is computationally cheaper than the
one described above, and as such it can be applied at each and every re-
gion considered by the algorithm. Variable bounds are tightened by using the
problem constraints to calculate extremal values attainable by the variables.
This is done by isolating a variable on the left hand side of a constraint and
evaluating the right hand side extremal values by means of interval arithmetic.

Feasibility-based bounds tightening is trivially easy for the case of linear
constraints. Given linear constraints in the form [< Az <wu where A = (a;5),
it can be shown that, for all 1 < j < n:

z; € lmax <m]L,mini <i (li — k%e:] max(aikx{;“,aikwklj))>> ,

min (w?,max,- (% (u, - k; min(axzE, aikka)>))] ifa;; >0
z; € lmax (arf,mini (% (li A lgjmin(aikmﬁ,aikwg)> >) ,

min (m?,ma,xi (% (ui - kgj max(aikxﬁ,aikx,ﬂj)>>>] if a;; < 0.

As pointed out in [71] p.202, feasibility-based bounds tightening can also be
carried out for certain types of nonlinear constraints.

Choice of region

The region selection at step 2 follows the simple policy of choosing the region
in the list with the lowest lower objective function bound as the one which
is most promising for further consideration (recall that the lower bound I
calculated in each region is associated to the subregions after branching —
see step 7 of the sBB algorithm).

Chapter 8: Writing Global Optimization Software 253
Local solution of the original problem

The most computationally expensive step in the sBB algorithm is typically the
call to the local NLP solver to find the upper bound to the objective function
value relative to the current region. The two methods described below should
at least halve the number of upper bounding problems that are solved during
the sBB algorithm. Note that a distinction is made between the variables that
are present in the original NLP (“original variables”) and those added by the
standardization procedure (“added variables” — see Section 2.3).

1. Branching on added variables. Suppose that in the sBB algorithm an
added variable w is chosen as the branch variable. The current region
is then partitioned into two sub-regions along the w axis, the convex re-
laxations are modified to take the new variable ranges into account, and
lower bounds are found for each sub-region. The upper bounds, however,
are found by solving the original problem which is not dependent on the
added variables. Thus the same exact original problem is solved at least
three times in the course of the algorithm (i.e. once for the original re-
gion and once for each of its two sub-regions). The obvious solution is
for the algorithm to record the objective function upper bounds in each
region. Whenever the branch variable is an added variable, avoid solving
the original (upper bounding) problem and use the stored values instead.

2. Branching on original variables. Even when the branching occurs on an
original problem variable, there are some considerations that help avoid
solving local optimization problems unnecessarily. Suppose that the origi-
nal variable z is selected for branching in a certain region. Then its range
[z, zY] is partitioned into [zL, z'] and [z', zU]. If the solution of the upper
bounding problem in [z¥, 2V] is z*, and x* € [z, 2'], then it is unneces-
sary to solve the upper bounding problem again in the sub-region [z, z']
as an upper bound is already available at z*. Of course, the upper bound-
ing problem still needs to be solved for the other subregion [z, zV] (see
Fig. 9).

Branching

There are many branching strategies [18] available for use in spatial Branch-
and-Bound algorithms. Generally, branching involves two steps, namely deter-
mining the point (i.e. set of variable values) on which to branch, and finding
the variable whose domain is to be sub-divided by the branching operation.
Here, we use the solution # of the upper bounding problem (step 4) as the
branching point, if such a solution is found; otherwise the solution of the
lower bounding problem % (step 3) is used. We then use the standard form
to identify the nonlinear term with the largest error with respect to its con-
vex relaxation. By definition of the standard form (see Section 2.3), this is
equivalent to evaluating the defining constraints at Z and choosing the one

2564 Leo Liberti

Fig. 9. If the locally optimal solution in [z% zY]

be at z*, solving in [¢”, 2] is unnecessary.

has already been determined to

giving rise to the largest error in absolute value. In case the chosen defining
constraint represents a unary operator, the only variable operand is chosen
as the branch variable; if it represents a binary operator, the branch variable
is chosen as the one whose value at the branching point is nearest to the
midpoint of its range (see [71], p. 205-207).

Generation of convex relaxation

As has been explained in Section 2.3, the automatic generation of the convex
relaxation entails putting the problem in standard form and then replacing
each nonlinear defining constraint with a linear convexification thereof.

The problem in standard form consists of:

e the objective function, consisting of one linearizing variable only (a defin-
ing constraint for this equation also exist in the problem, obviously);
the linear constraints, represented by a matrix;
the nonlinear constraints, represented by triplets of variable indices and
an operator label;
the constraint bounds;
the variable ranges;
the variable values.

Since the nonlinear constraints are isolated in the form z; = z; ® zy where
® is an operator, they can be efficiently represented by the triplet (4, 4, k) and
an operator label, A, which indicates what operator acts on x;, z) to produce
x;. If Ais a unary operator, the index k is set to a dummy value representing
“not a variable”. If one of the operands is a constant, the respective variable
index is set to “not a variable” and the constant value should be stored in a
special purpose data field. If both operands are constants, the triplet can be

Chapter 8: Writing Global Optimization Software 255

evaluated and discarded. The result of the evaluation replaces all instances of
the variable with index %; this implies the elimination of the problem variable
with index .

The procedure that transforms a problem in standard form is based on
the following steps:

1. copy original variable values and bounds, original constraint bounds and
linear constraint coefficients from the original problem to initialize the
respective standard form data structures;

2. add a constraint x; = objective function to the problem (separating lin-
ear and nonlinear parts) and set ¢ as the variable index representing the
objective function;

3. cycle over the original nonlinear parts of the constraints:

a) recursively split the nonlinear part of the current constraint into
triplets;

b) check if the current triplet already exists. If not, store it, otherwise
use the existing triplet and discard it;

4. store all linear triplets (i.e. all triplets where the operand is linear) as linear
constraints into the linear constraint matrix and then discard them;

5. eliminate the one-variable constraints (i.e. constraints where the algebraic
expression only consists of a one-variable term) and use the bounds to
update the respective variable range;

6. eliminate constraints of the form 0 < z; — z; < 0 and substitute the
variable z; by the variable z; throughout.

Note that the variable elimination schemes are applied to added variables
only. The original variables remain unchanged. This is an important issue as it
makes it easy to map original problem variables to relaxed problem variables
throughout the sBB execution.

Note also that when linear triplets are stored in the linear constraint ma-
trix, particular care should be taken that the minimum amount of new linear
constraints is added to the problem. This is best explained with an example.
Let w; = we + w3, wy = —ws and we = wg — wy; the first triplet is refor-
mulated as the linear constraint 0 < w; — we — w3 < 0; the second triplet is
reformulated as a new linear constraint 0 < w4 + ws < 0 because it is inde-
pendent of the first one. But the third triplet should not be reformulated as
a new constraint because ws already appears in the first constraint. Instead,
ws in the first constraint is replaced by we — w7 and the variable wo (if it does
not appear anywhere else in the problem) is eliminated.

The convexified problem can be described by the same data structure used
to represent the original problem. In 00OPS, because the implementation uses
linear relaxations only, the structure can be simplified by removing all refer-
ences to nonlinear expressions; also note that since the convexified problem
is actually of a different type to that of the original problem, it is stored in a
separate object instance. The convexification algorithm is as follows:

256 Leo Liberti

1. copy variable bounds, constraint bounds and linear constraint matrix from
the problem in standard form;
2. cycle on the standard form triplets:
a) analyse the current triplet and add its convex envelope constraints to
the convexified problem.

Although the above process explained in this section involves quite a lot
of data copying between data structures, it is not in fact data replication as
the procedures operating on the structures may need to change some of the
copied values. The purpose of having different sets of copied values is to allow
for full code re-entrancy.

Region storage scheme

In abstract terms, a region in the sBB algorithm is a hypercube in Euclidean
space; thus, it is characterized by a list of n variable ranges. However, this
characterization means that, to store n variable ranges explicitly one must
allocate and manage memory of size 2n. This means that to create a new
region, we have to repeatedly copy 2n memory units from the old region to the
new one. Because the partitioning always acts on just one branch variable, all
of the other variable ranges would be copied unchanged. Furthermore, because
the partitioning always produces two subregions, the waste would be doubled.

In view of the above, we only store the new range for each child subregion
together with a pointer to the parent region in order to retrieve the other
ranges. This gives rise to a tree of regions where each node contains:

a pointer to the parent region;

the branch variable when the region was created;

the branch variable range of this region;

the branch point of the parent variable range (one of the endpoints of the
branch variable range, it indicates whether this is the “upper” region or
the “lower” region);

the objective function lower and upper bounds;

a flag that signals whether an upper bound is already available for the
region prior to calculation (see Section 7.3).

Starting from any particular region, we can derive the complete set of variable
bounds for it by ascending the tree via its parent. In order also to allow
traversing the tree in a downwards direction (see below), we add another
piece of information:

e pointers to the children subregions.

Also note that some of the regions in the list may be discarded from further
consideration at some point in the algorithm. However, we cannot just delete
the discarded regions from the tree because they hold information about the
variable ranges, so we need a discarding scheme which involves no actual

Chapter 8: Writing Global Optimization Software 257

deletion. This is very easy to accomplish with a boolean flag that indicates
whether a region is active or inactive (discarded):

e a flag that indicates whether the region is active or not.

Control flow in the sBB solver

This section refers to the control flow of the sBB solver in 00OPS (also see
Sections 3.4, 3.4). At the outset, we assume that the user code has created
an opssolvermanager for the sBB solver and an opssystem binding the sBB
solver and the problem. The list below starts after the Solve() method has
been called.

1. Creation of the opssolvermanager for the local solver that will be used
to solve the upper bounding problem.

2. Creation of an opssystem using the opssolvermanager just created and

the original problem.

Creation of the convexifiermanager acting on the original problem.

4. Generation of the convex (linear) relaxation. This is held in a modified
ops class object which only includes data structures for storing linear
objective function and coefficients.

5. Creation of the opssolvermanager for the local solver used to solve the
lower bounding problem.

6. Creation of the opssystem using the opssolvermanager just created and
the convex relaxation.

7. Tterative process:

a) Follow the sBB algorithm repeatedly calling the opssystem acting on
upper and lower bounding problems.

b) On changing the variable ranges update the lower bounding problem
on-the-fly (via the UpdateConvexVarBounds () method in the convex-
ifiermanager).

8. Deallocation of objects created by the global solver code.

@

8 Conclusion

In this paper we discussed various aspects of writing general-purpose global
optimization software. We first performed a literature review of existing global
optimization algorithms and existing global optimization software packages
targeted at solving problems in general form (1). The most important issue
is that of a sound software architecture and design, which makes it possi-
ble to implement very high-level algorithms (including those that call whole
sub-algorithms as black box procedures, and those based on symbolic ma-
nipulation of mathematical expressions) fairly easily. We suggested a possible
standard file format for describing MINLP problems in flat form. Various

258 Leo Liberti

symbolic computation algorithms have been discussed. We then discussed lo-
cal solvers generally, and performed an in-depth analysis of the three global
solvers implemented within 0oOPS.

Acknowledgments

I would like to express the deepest thanks to Dr. Maria Elena Bruni (author
of Chapter 4) for valuable suggestions, and to Dr. Sonia Cafieri for detailed
information about the SIF format file. Prof. M. Drazi¢ (co-author of Chapter
6) helped with some parts of the implementation of the VNS solver within
000OPS.

References

1. C.S. Adjiman, I.P. Androulakis, and C.A. Floudas. Global optimization of minlp
problems in process synthesis and design. Computers €& Chemical Engineering,
21:5445-S450, 1997.

2. C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. A global optimiza-
tion method, abb, for general twice-differentiable constrained nlps: Ii. imple-
mentation and computational results. Computers € Chemical Engineering,
22(9):1159-1179, 1998.

3. C.S. Adjiman, I.P. Androulakis, C.D. Maranas, and C.A. Floudas. A global opti-
mization method, abb, for process design. Computers & Chemical Engineering,
20:5419-S424, 1996.

4. P.L. Toint A.R. Conn, N.I.M. Gould. The sif reference report.
http://www.numerical.rl.ac.uk/lancelot/sif/.

5. C.S. Adjiman, S. Dallwig, C.A. Floudas, and A. Neumaier. A global optimiza-
tion method, abb, for general twice-differentiable constrained nlps: I. theoretical
advances. Computers €& Chemical Engineering, 22(9):1137-1158, 1998.

6. C.S. Adjiman. Global Optimization Techniques for Process Systems Engineering.
PhD thesis, Princeton University, June 1998.

7. C.S. Adjiman and C.A. Floudas. Rigorous convex underestimators for general
twice-differentiable problems. Journal of Global Optimization, 9(1):23-40, July
1996.

8. F.A. Al-Khayyal and J.E. Falk. Jointly constrained biconvex programming.
Mathematics of Operations Research, 8(2):273-286, 1983.

9. I. P. Androulakis, C. D. Maranas, and C. A. Floudas. alpha bb: A global
optimization method for general constrained nonconvex problems. Journal of
Global Optimization, 7(4):337-363, December 1995.

10. M. Berkelaar. LP_SOLVE: Linear Programming Code.
http://www.cs.sunysb.edu/ algorith/implement/lpsolve/im-
plement.shtml, 2004.

11. A. Brook, D. Kendrick, and A. Meeraus. Gams, a user’s guide. ACM SIGNUM
Newsletter, 23(3-4):10-11, 1988.

12

13.

14.

15.

16.

17.

18.

19.
20.
21.
22.
23.
24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Chapter 8: Writing Global Optimization Software 259

. J. Brimberg and N. Mladenovié. A variable neighbourhood algorithm for solving
the continuous location-allocation problem. Studies in Location Analysis, 10:1-
12, 1996.

I.D.L. Bogle and C.C. Pantelides. Sparse nonlinear systems in chemical process
simulation. In A.J. Osiadacz, editor, Simulation and Optimization of Large
Systems, Oxford, 1988. Clarendon Press.

J.S. Cohen. Computer Algebra and Symbolic Computation: Mathematical Meth-
ods. AK Peters, Natick, Massachussetts, 2000.

J.S. Cohen. Computer Algebra and Symbolic Computation: Elementary Algo-
rithms. AK Peters, Natick, Massachussetts, 2002.

Process Systems Enterprise. gPROMS v2.2 Introductory User Guide. Process
Systems Enterprise, Ltd., London, UK, 2003.

T.G.W. Epperly and E.N. Pistikopoulos. A reduced space branch and bound
algorithm for global optimization. Journal of Global Optimization, 11:287:311,
1997.

T.G.W. Epperly. Global Optimization of Nonconvex Nonlinear Programs using
Parallel Branch and Bound. PhD thesis, University of Winsconsin — Madison,
1995.

R. Fourer and D. Gay. The AMPL Book.

C.A. Floudas. Deterministic Global Optimization. Kluwer, Dordrecht, 2000.
R. Fourer. Personal communication. 2004.

J.E. Falk and R.M. Soland. An algorithm for separable nonconvex programming
problems. Management Science, 15:550-569, 1969.

S. Galli. Parsing ampl internal format for linear and non-linear expressions,
2004. Didactical project, DEI, Politecnico di Milano, Italy.

P.E. Gill. User’s Guide for SNOPT 5.3. Systems Optimization Laboratory,
Department of EESOR, Stanford University, California, February 1999.

A. Griewank. On automatic differentiation. In Iri and Tanabe [31], pages 83—
108.

K. Hagglof, P.O. Lindberg, and L. Svensson. Computing global minima to
polynomial optimization problems using grébner bases. Journal of Global Op-
timization, 7(2):115:125, 1995.

P. Hansen and N. Mladenovié. Variable neighbourhood search: Principles and
applications. European Journal of Operations Research, 130:449-467, 2001.

P. Hansen and N. Mladenovié. Variable neighbourhood search. In P. Parda-
los and M. Resende, editors, Handbook of Applied Optimization, Oxford, 2002.
Oxford University Press.

P. Hansen and N. Mladenovié. Variable neighbourhood search. In F.W. Glover
and G.A. Kochenberger, editors, Handbook of Metaheuristics, Dordrecht, 2003.
Kluwer.

ILOG. ILOG CPLEX 8.0 User’s Manual. ILOG S.A., Gentilly, France, 2002.
M. Iri and K. Tanabe, editors. Mathematical Programming: Recent Develop-
ments and Applications. Kluwer, Dordrecht, 1989.

P. Kesavan and P.I. Barton. Generalized branch-and-cut framework for mixed-
integer nonlinear optimization problems. Computers & Chemical Engineering,
24:1361-1366, 2000.

R. B. Kearfott. GlobSol User Guide. http://interval.louisiana.edu/GLOB-
SOL/what_is.html, 1999.

D.E. Knuth. The Art of Computer Programming, Part II: Seminumerical Algo-
rithms. Addison-Wesley, Reading, MA, 1981.

260

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Leo Liberti

B.R. Keeping and C.C. Pantelides. Novel methods for the efficient evaluation
of stored mathematical expressions on scalar and vector computers. AIChE
Annual Meeting, Paper #204b, nov 1997.

B. Keeping, C.C. Pantelides, James Barber, and Panagiotis Tsiakis. Mixed
integer linear programming interface specification draft. Global Cape-Open De-
liverable WP2.3-08, October 2000.

S. Kucherenko and Yu. Sytsko. Application of deterministic low-discrepancy se-
quences to nonlinear global optimization problems. Computational Optimization
and Applications, (to appear) 2004.

V. Kovacevié-Vujéié, M. Cangalovié, M. Agié, L. Ivanovié, and M. Drazi¢. Tabu
search methodology in global optimization. Computers and Mathematics with
Applications, 37:125-133, 1999.

L. Liberti. Reformulation and Convez Relazation Techniques for Global Opti-
mization. PhD thesis, Imperial College London, UK, March 2004.

L. Liberti. Performance comparison of function evaluation methods. Progress
in Computer Science Research, (to appear) 2004.

L. Liberti and S. Kucherenko. Comparison of deterministic and stochastic ap-
proaches to global optimization. DEI, Politecnico di Milano, Technical report
n. 2004.25, July 2004.

R. Levine, T. Mason, and D. Brown. Lez and Yace. O'Reilly, Cambridge, second
edition, 1995.

L. Liberti, N. Maculan, and S. Kucherenko. The kissing number problem: a new
result from global optimization. In L. Liberti and F. Maffioli, editors, CTW0/
Workshop on Graphs and Combinatorial Optimization, Menaggio, Italy, June
2004, volume 17, Amsterdam, 2004. Electronic Notes in Discrete Mathematics,
Elsevier.

M. Locatelli. Simulated annealing algorithms for global optimization. In Parda-
los and Romeijn [58], pages 179-229.

L. Liberti and C.C. Pantelides. Convex envelopes of monomials of odd degree.
Journal of Global Optimization, 25:157-168, 2003.

M. Locatelli and F. Schoen. Simple linkage: Analysis of a threshold-accepting
global optimization method. Journal of Global Optimization, 9:95-111, 1996.
M. Locatelli and F. Schoen. Random linkage: a family of acceptance/rejection
algorithms for global optimization. Mathematical Programming, 85(2):379-396,
1999.

L. Liberti, P. Tsiakis, B. Keeping, and C.C. Pantelides. 00oOPS. Centre for Pro-
cess Systems Engineering, Chemical Engineering Department, Imperial College,
London, UK, 1.24 edition, jan 2001.

A. Makhorin. GNU Linear Programming Kit. Free Software Foundation,
http://www.gnu.org/software/glpk/, 2003.

G.P. McCormick. Computability of global solutions to factorable nonconvex
programs: Part i — convex underestimating problems. Mathematical Program-
ming, 10:146-175, 1976.

M. Mathur, S.B. Karale, S. Priye, V.K. Jayaraman, and B.D. Kulkarni. Ant
colony approach to continuous function optimization. Industrial and Engineer-
ing Chemistry Research, 39:3814-3822, 2000.

N. Mladenovié, J. Petrovié, V. Kovacevié-Vuj¢ié, and M. Cangalovi¢. Solv-
ing a spread-spectrum radar polyphase code design problem by tabu search
and variable neighbourhood search. FEuropean Journal of Operations Research,
151:389-399, 2003.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Chapter 8: Writing Global Optimization Software 261

Numerical Algorithms Group. NAG Fortran Library Manual Mark 11. 1984.
C.C. Pantelides. Symbolic and Numerical Techniques for the Solution of Large
Systems of Nonlinear Algebraic Equations. PhD thesis, Imperial College of
Science, Technology and Medicine, University of London, May 1988.

Janés Pintér. LGO: a Model Development System for Continuous Global Opti-
mization. User’s Guide. Pintér Consulting Services, Halifax, NS, Canada, 1999.
C.C. Pantelides, L. Liberti, P. Tsiakis, and T. Crombie. Minlp interface speci-
fication. CAPE-OPEN Update, 2:10-13, March 2002.

C.C. Pantelides, L. Liberti, P. Tsiakis, and T. Crombie. Mixed integer lin-
ear/nonlinear programming interface specification. Global Cape-Open Deliver-
able WP2.3-04, February 2002.

P.M. Pardalos and H.E. Romeijn, editors. Handbook of Global Optimization,
volume 2. Kluwer, Dordrecht, 2002.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes in C, Second Edition. Cambridge University Press, Cambridge, 1992,
reprinted 1997.

A H.G. Rinnooy-Kan and G.T. Timmer. Stochastic global optimization meth-
ods; part i: Clustering methods. Mathematical Programming, 39:27-56, 1987.
A H.G. Rinnooy-Kan and G.T. Timmer. Stochastic global optimization meth-
ods; part ii: Multilevel methods. Mathematical Programming, 39:57-78, 1987.
H.S. Ryoo and N.V. Sahinidis. Global optimization of nonconvex nlps and
minlps with applications in process design. Computers € Chemical Engineering,
19(5):551-566, 1995.

H. S. Ryoo and N. V. Sahinidis. A branch-and-reduce approach to global opti-
mization. Journal of Global Optimization, 8(2):107-138, March 1996.

H. Ryoo and N. Sahinidis. Global optimization of multiplicative programs.
Journal of Global Optimization, 26(4):387-418, 2003.

P. RoyChowdury, Y.P. Singh, and R.A. Chansarkar. Hybridization of gradient
descent algorithms with dynamic tunneling methods for global optimization.
IEEE Transactions on Systems, Man and Cybernetics—Part A: Systems and
Humans, 30(3):384-390, 2000.

N.V. Sahinidis. Baron: Branch and reduce optimization navigator, user’s man-
ual, version 4.0. http://archimedes.scs.uiuc.edu/baron/manuse.pdf, 1999.

F. Schoen. Random and quasi-random linkage methods in global optimization.
Journal of Global Optimization, 13:445-454, 1998.

F. Schoen. Global optimization methods for high-dimensional problems. Euro-
pean Journal of Operations Research, 119:345-352, 1999.

F. Schoen. Two-phase methods for global optimization. In Pardalos and Romeijn
[58], pages 151-177.

H. Schichl. The Coconut API: Reference Manual. Dept. of Maths, Universitat
Wien, October 2003.

E.M.B. Smith. On the Optimal Design of Continuous Processes. PhD thesis,
Imperial College of Science, Technology and Medicine, University of London,
October 1996.

J.E. Smith. Genetic algorithms. In Pardalos and Romeijn [58], pages 275-362.
E.M.B. Smith and C.C. Pantelides. Global optimisation of nonconvex minlps.
Computers & Chemical Engineering, 21:S791-S796, 1997.

R. Storn and K. Price. Differential evolution — a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization,
11:341-359, 1997.

262

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.
85.

86.

Leo Liberti

E.M.B. Smith and C.C. Pantelides. A symbolic reformulation/spatial branch-
and-bound algorithm for the global optimisation of nonconvex minlps. Comput-
ers & Chemical Engineering, 23:457-478, 1999.

T.K. Shi, W.H. Steeb, and Y. Hardy. An Introduction to Computer Algebra
Using Object-Oriented Programming. Springer-Verlag, Berlin, second edition,
2000.

G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record break-
ing optimization results using the ruin and recreate principle. Journal of Com-
putational Physics, 159:139-171, 2000.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,
MA, third edition, 1999.

Lindo Systems. Lindo API: User’s Manual. Lindo Systems, Inc., Chicago, 2004.
M. Tawarmalani and N.V. Sahinidis. Semidefinite relaxations of fractional pro-
gramming via novel techniques for constructing convex envelopes of nonlinear
functions. Journal of Global Optimization, 20(2):137-158, 2001.

M. Tawarmalani and N. Sahinidis. Convex extensions and envelopes of semi-
continuous functions. Mathematical Programming, 93(2):247-263, 2002.

M. Tawarmalani and N.V. Sahinidis. Exact algorithms for global optimization
of mixed-integer nonlinear programs. In Pardalos and Romeijn [58], pages 1-63.
M. Tawarmalani and N.V. Sahinidis. Global optimization of mixed integer non-
linear programs: A theoretical and computational study. Mathematical Pro-
gramming, 99:563-591, 2004.

H. Tuy. Conver Analysis and Global Optimization. Kluwer, Dodrecht, 1998.
B.W. Wah and T. Wang. Efficient and adaptive lagrange-multiplier methods
for nonlinear continuous global optimization. Journal of Global Optimization,
14:1:25, 1999.

J. M. Zamora and I. E. Grossmann. A branch and contract algorithm for
problems with concave univariate, bilinear and linear fractional terms. Journal
of Global Optimization, 14:217:249, 1999.

