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ABSTRACT
We consider the Discretizable Molecular Distance Geometry
Problem (DMDGP), which consists in a subclass of instances
of the distance geometry problem related to molecular con-
formations for which a combinatorial reformulation can be
supplied. We investigate the performances of two differ-
ent algorithms for solving the DMDGP. The first one is the
Branch and Prune (BP) algorithm, an exact algorithm that
is strongly based on the structure of the combinatorial prob-
lem. The second one is the Monkey Search (MS) algorithm,
a meta-heuristic algorithm that is inspired by the behavior
of a monkey climbing trees in search for food supplies, and
that exploits ideas and strategies from other meta-heuristic
searches, such Genetic Algorithms, Differential Evolution,
and so on. The comparison between the two algorithms is
performed on a set of instances related to protein conforma-
tions. The used instances simulate data obtained from the
Nuclear Magnetic Resonance (NMR), because the typical
distances provided by NMR are considered and a predeter-
mined number of wrong distances are included.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global optimization; G.2.1 [Comb-
inatorics]: Combinatorial algorithms; J.3 [Life and medi-
cal sciences]: Biology and genetics; I.2.8 [Problem Solv-
ing, Control Methods, and Search]: Graph and tree
search strategies, Heuristic methods
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1. INTRODUCTION
The distance geometry problem is the problem of finding

the coordinates of the points forming a three-dimensional
conformation when some of the relative distances between
such points are known. An interesting application of the
problem is to the protein conformations, in which the points
of the conformation represent the atoms of the protein molecule.
In such a case, the considered problem is usually referred to
as Molecular Distance Geometry Problem (MDGP).

Over the years, many methods have been proposed for
solving the MDGP. Most of them are based on a continuous
formulation of the problem. In its basic form, the MDGP
can be seen as a constraint satisfaction problem, where the
following constraints need to be verified:

||xi − xj || = dij ∀i, j.

In the formula, xi and xj are the coordinates in the space
of the ith and jth atoms of the protein conformation, and
dij is a known distance. The MDGP can be also seen as
a global optimization problem, in which the function to be
optimized is a penalty function that evaluates the differences
between known distances dij and computed distances ||xi −
xj ||. Different objective functions have been proposed, one
of the most used is Largest Distance Error (LDE):

LDE({x1, x2, . . . , xn}) =
1

|m|

∑

{i,j}

||xi − xj || − dij

dij

, (1)

where m is the total number of known distances. Note that,
in order to use the LDE function, none of the distances dij

can be exactly 0. Moreover, once a position is given to all
the atoms of the protein conformation, if the value of the
LDE function is 0, then the set of given distances is feasible
and the final conformation satisfies all of them. For a survey
on methods and algorithms for the MDGP refer to [7].

Recently, a new approach to the MDGP has been pro-
posed, that is tailored to particular geometric properties of
the protein conformations. Because of these properties, the
MDGP can be reformulated as a combinatorial optimization



problem in correspondence with a subclass of its instances.
This subclass contains all the instances in which the dis-
tances di−3,i, di−2,i and di−1,i are known and in which there
are no triplets of aligned atoms. If the backbones of the
protein molecules are considered, then most of the corre-
sponding instances of the MDGP can be reformulated as
a combinatorial problem. In this case, a solution to the
MDGP can be represented as a vector of binary variables.
The combinatorial reformulation of the MDGP is referred
to as Discretizable Molecular Distance Geometry

Problem (DMDGP).
The DMDGP can be solved by applying methods for com-

binatorial optimization, where the objective function is, for
example, the LDE function (1). However, if n is the number
of considered atoms, there are 2n−3 possible solutions: the
number of solutions is huge when n is large. This suggests
the use of meta-heuristic searches for solving the optimiza-
tion problem. A possible choice is the recently proposed
Monkey Search (MS) [11], a meta-heuristic method in-
spired by the behavior of a monkey climbing trees in its
search for food. MS has already been successfully employed
for solving difficult global optimization problems, including
combinatorial problems.

Another approach for solving the DMDGP is the one pro-
posed in [9]. A Branch and Prune (BP) algorithm has
been developed for the solution of the combinatorial refor-
mulation of the MDGP. The algorithm mimicks the struc-
ture of the combinatorial problem closely. A tree of possible
solutions is explored starting from its top where the first
atom of the conformation is placed, and the search proceeds
by placing the following atoms one per time. As soon as a
branch of this tree is found to be infeasible, then it is pruned
and the search is backtracked. Because of the pruning phase,
the size of the tree is reduced quickly and therefore an ex-
haustive search on the remaining branches is not too com-
putational demanding. Hence, BP falls into the category of
the exact methods for solving the DMDGP.

The aim of this paper is to compare these two algorithms
for the solution of the DMDGP. The BP algorithm imple-
ments an exact method, whereas the MS algorithm imple-
ments a meta-heuristic search. Both methods are valid al-
ternatives for solving the problem. We will investigate the
performances of the two algorithms and we will discuss the
advantages and disadvantages in using the one or the other
algorithm.

The instances used in this paper will be chosen in order to
analyze how the two algorithms are able to manage experi-
mental errors. In fact, experimental techniques, such as the
Nuclear Magnetic Resonance (NMR), can provide a small
subset of distances that are completely wrong. Therefore,
the complete set of distances forming an instance is not fea-
sible in general if real data are used. We will investigate
how the two algorithms manage these data and if they are
able to find solutions in which only the good distances are
considered.

Our computational experiences will show that the two al-
gorithms can be considered as complementary. While the
performances of the BP algorithm are much better than the
performances of MS when the instances contain few wrong
distances, this situation is completely inverted when the
number of wrong distances is large. The evaluation of the
performances is made in terms of CPU time and quality of
the of the found solutions.

The paper is organized as follows. In Section 2, we in-
troduce the combinatorial reformulation of the distance ge-
ometry problem. In Section 3, we will briefly describe the
BP algorithm and a possible extension of this algorithm for
taking into account instances containing wrong distances.
In Section 4, we explain the basic structure of the meta-
heuristic MS algorithm. Computational experiences related
to the two discussed algorithms are presented in Section 5.
In particular, in Section 5.1 we describe the method we used
for generating instances of the problem in which a certain
percentage of distances is wrong. Finally, in Section 5.2 we
present the details of our computational experiments, and
we discuss the advantages and disadvantages in using the
one or the other algorithm for solving the DMDGP. Conclu-
sions are given in Section 6.

2. THE DISCRETIZABLE DISTANCE GE-
OMETRY PROBLEM

The distance geometry problem, and, in particular, the
Molecular Distance Geometry Problem (MDGP), can
be formulated as a combinatorial problem if some assump-
tions are satisfied. Given an instance,

• all the distances di−3,i, di−2.i and di−1,i must be known;

• each triplet of consecutive atoms {xi−2, xi−1, xi} can-
not be perfectly aligned.

If both these two assumptions are satisfied, then it is pos-
sible to prove that the cosine of the torsion angle among
four consecutive atoms {xi−3, xi−2, xi−1, xi} of the protein
can be computed. If the atoms xi−3, xi−2, xi−1 are already
placed into a fixed location, then, by exploiting all the known
distances and the value of the torsion angle, the exact po-
sition of the atom xi can be obtained. Unfortunately, the
value of the torsion angle is not available, but only its cosine,
which brings to two possible values for the angle. Because of
this uncertainty, each atom xi can be placed in two different
positions.

Once the first three atoms of a protein have been placed,
the cosine of the torsion angle among the first four atoms
can be computed and two possible positions for the fourth
atom, x4 and x′

4, can be identified. Then, in correspondence
with the two choices for the fourth atom, two different pairs
of possible atomic positions for x5 can be computed. Hence,
4 possible positions in total are possible for the atom x5. By
iterating this procedure, the generic atom xi can be assigned
to 2i−3 positions. Therefore, for a protein shaped as a chain
of n atoms, there are 2n−3 different three-dimensional con-
formations that can be solutions to the problem. We refer
to the combinational reformulation of the problem as Dis-

cretizable Molecular Distance Geometry Problem

(DMDGP). More details about the combinatorial reformu-
lation can be found in [9, 10].

A solution to the combinatorial problem can be seen as
a vector of n binary variables, where n is the number of
atoms in the molecule. The ith binary variable represents
the choice between the two possible positions for the atom
xi. The quality of the solutions can be evaluated through,
for example, the LDE function (1). The search domain can
be seen as a set of binary vectors, and also as a binary tree.
In the latter representation, all the possible atomic positions
correspond to a node of the binary tree, and a path from the
top of the tree (where it is placed the first atom) to its root



Figure 1: The graph GBP in correspondence with an
instance with 6 atoms.

represents a possible solution to the problem. Each vector of
binary variables corresponds to one and only one complete
path on the binary tree.

Instances obtained by experimental techniques and re-
lated to the backbones of the protein conformations belong
to the subclass of instances of the DMDGP in most of the
cases. Indeed, in this case, the two aforementioned assump-
tions are almost always satisfied. The short range distances
di−3,i, di−2,i and di−1,i between the atoms of the protein
backbones are usually detected by experimental techniques.
Moreover, there is a very low probability that three consec-
utive atoms are perfectly aligned. Therefore, the problem of
finding the coordinates of the atoms of a protein backbone
is, in most of the cases, a combinatorial problem.

In the following two sections, we will discuss two possible
approaches for solving the combinational problem. The first
one is the Branch and Prune algorithm (Section 3), which
is an exact method that exploits the binary tree structure
of the combinatorial reformulation. The second one is the
Monkey Search, a meta-heuristic algorithm inspired by a
monkey in search for food resources, in which ideas from
other meta-heuristic algorithms are also employed.

3. THE BRANCH AND PRUNE ALGORITHM
The Branch and Prune (BP) algorithm has been re-

cently proposed in [9, 10]. It is a very efficient algorithm
for solving the combinatorial reformulation of the distance
geometry problem, and it is strongly based on the tree struc-
ture of the reformulated problem. As previously observed, a
binary tree containing all the possible atomic positions can
be defined and solutions to the problem can be found by
exploring such a tree. Formally, the binary tree can be rep-
resented as an undirected graph GBP = (VBP , E), where the
nodes in VBP represent possible atomic positions. Groups of
nodes represent positions for the same atom xi, and there-
fore the nodes in VBP can be organized in layers (see Figure
1). There is always an edge between one node in a layer and
two nodes of the following layer. Nodes are connected by an
edges in E if the two atomic positions depend on each other.
Figure 1 shows a path defined by the nodes marked by the
boxes. For example, the chosen position for x6 is connected
to a position for x5, because there are only two positions for
x6 for a given x5. Only paths in which the atomic positions
are connected to the previous and the following positions
are allowed, and each complete path represents a solution.

Algorithm 1 BP algorithm.

0: BP(i, n, d)
0: compute the first atomic position for the ith atom: xi;
0: check the feasibility of the atomic position xi:

if (| ||xi − xj || − dij | < ε,∀j < i) then
the atomic position xi is feasible;
if (i = n) then

a solution is found;
else

BP(i + 1,n,d);
end if

else
the atomic position xi is pruned;

end if
compute the second atomic position for the ith atom: x′

i;
check the feasibility of the atomic position x′

i:
if (| ||x′

i − xj || − dij | < ε,∀j < i) then
the atomic position x′

i is feasible;
if (i = n) then

a solution is found;
else

BP(i + 1,n,d);
end if

else
the atomic position x′

i is pruned;
end if

This is how the BP algorithm works [9, 10]. The first
three atoms are placed in the following three positions:

x1 = (0, 0, 0),
x2 = (−d12, 0, 0),
x3 = (d23 cos θ3 − d12, d23 sin θ3, 0),

where the generic dij represents the known distance be-
tween the ith and the jth atom, and where θi denotes the
generic bond angle (that can be computed from the known
distances).

Starting from the atom x4, two possible positions can be
obtained for each atom. During the generic step of the al-
gorithm, the possible positions xi and x′

i for the ith atoms
are computed, by exploiting the information obtained from
the distances di−3,i, di−2,i and di−1,i. In this way, a part
of the tree GBP is generated. However, this part of the
tree could contain only infeasible solutions. There can be
indeed known distances from the atom xi to any other atom
of the conformation that may result to be violated. There-
fore, the comparison between these known distances and the
distances computed by using one of the possible choices for
xi can reveal that some of the parts of the binary tree are
infeasible. In such a case, it is useless to continue generating
some parts of the tree, and they can be pruned as soon as
they are discovered to be infeasible.

Algorithm 1 provides a sketch of the BP algorithm. The
algorithm is invoked iteratively, starting from the atomic
position 4. The input parameters are i, the current atom
whose position is searched, n, the total number of atoms,
and d, the set of known distances. One of the solutions to the
problem is found when BP(n,n,d) finds a feasible position at
least for the last atom of the conformation. The condition
| ||xi − xj || − dij | < ε, for all j < i and where ε > 0 is a
given tolerance, represents a pruning test, which we employ
for discovering infeasible atomic positions. Actually, more



than one pruning test can be used, but we will consider
only one of them in the experiments described in this paper.
Other pruning tests and their effectiveness are discussed in
[8].

If a given instance contains a set of distances that are
feasible, then the BP algorithm is able to find all the solu-
tions to the problem. Each solution is obtained when the
last atom of the conformation is placed in its position: this
means that all the previous atoms were placed in a possible
position and that they were all feasible. Note that an opti-
mization problem is solved by BP and no objective function
is used. The symmetry results proved in [10] suggest that,
if the DMDGP has solutions, then it has an even number
of solutions. Then, an objective function (such as the LDE
function (1)) could be employed for discriminating among
the found solutions. However, due to the symmetry, pairs
of solutions can have the same objective function value.

In the hypothesis that the set of given instances is infea-
sible, then the BP algorithm, as it is described above, can
provide no solutions to the problem. This hypothesis is re-
alistic, because data obtained from experimental techniques
often contain a small percentage of wrong measurements.
Since the BP algorithm prunes all the branches containing
at least an infeasible position, the basic algorithm needs to
be extended for dealing with wrong distances.

A possible extension is the following. At each step of the
algorithm, the two possible positions xi and x′

i are computed
and the pruning test is applied. Instead of pruning the cur-
rent branch as soon as it is discovered to be infeasible, a
counter of violated distances can be set up and updated ev-
ery time an atomic position is found to be infeasible. Then,
when the number of violated distances gets greater than a
certain predetermined threshold, the corresponding branch
can be pruned.

This variant of the BP algorithm is able to deal with set
of distances that are infeasible. If an estimate of the wrong
distances is available, an accurate threshold VD on the vi-
olated distances can be set, so that the BP algorithm is
able to find solutions in which at most VD distances are
violated, corresponding to the wrong ones. The choice of
the threshold play an important role. Indeed, too small
thresholds could force the BP algorithm to prune too early,
and no solutions are found. For example, if there are 10
wrong distances, and VD = 9, the algorithm cannot find so-
lutions. On the other hand, if the threshold is too large, then
the infeasible branches are pruned too late. This brings to
two consequences. First, the computational cost grows with
TD because the branches are pruned later and later as the
threshold increases. Second, the number of found solutions
grows, because more violated distances are allowed. If no
estimates on the number of wrong distances are available,
then more executions of the algorithm can help in locating
the optimal TD value.

4. THE MONKEY SEARCH ALGORITHM
The Monkey Search (MS) is a meta-heuristic method

for global optimization [11]. It mimicks the behavior of a
monkey climbing trees in its search for food resources. The
trees the monkey climbs contain solutions to the optimiza-
tion problem to be solved, and the quality of the solutions
reflects the quality of the food discovered by the monkey.
The branches connecting two solutions on the trees repre-
sent the perturbation that can be applied to one solution

Figure 2: Two representations of the monkey be-
havior. The monkey climbs a tree for the first (a)
and the second (b) time.

for obtaining another solution. The monkey climbs the trees
and it is able to remember where it previously found good
food. This allows it to come back on the same tree and ex-
plore close branches, with the hope of improving the quality
of the discovered food.

Formally, each tree the monkey climbs can be represented
as a weighted directed graph GMS = (VMS, A, w). VMS is
the set of nodes of the tree, representing feasible solutions.
There is an arc (u, v) between two nodes u, v ∈ VMS of the
tree if v can be obtained by applying a specific perturba-
tion to the solution u. The associated weight wuv ∈ < is
the difference in objective function value between v and u.
This information is used during the search, because, while
climbing GMS, the monkey will prefer paths that optimize
the objective function value. Paths bringing from the root
to the top of the tree can be located if particular sets of arcs
are chosen to be climbed.

Algorithm 2 shows how the monkey climbs each tree GMS .
The inputs given to Algorithm 2 are the following ones: the
graph GMS , which is empty at this stage because it is built
as the search proceeds; a feasible solution to the problem v0,
which is used as seed for the tree; the parameter maxpaths,
which specifies how many paths on the tree the monkey is
allowed to explore; and, finally, the parameter maxlevels,
which specifies the predetermined maximum possible length
of each tree path. At the end of the algorithm, ybest contains
the best solution found during the exploration of the tree
GMS . It is worth noting that this procedure produces trees
GMS with probability 1 because of the likelihood to recover
exactly the same solution.

Figure 2 gives graphic representations of the monkey be-
havior described in Algorithm 2. In Figure 2(a), the monkey
climbs a new tree for the first time. At each step, two new
solutions are generated and placed on two nodes of the tree.
The dashed arcs are the ones the monkey rejects, and all the
others form a path on the tree. When the top of the tree is
reached (level = maxlevels), the monkey climbs the chosen
arcs in the opposite direction and marks them (the weights
w are modified with the best improvement available in the
direction of the corresponding arc). At a certain point, the
monkey restarts climbing up (see the node marked by a box
in Figure 2(b)). Then, new solutions are generated and one
of them is chosen, until the top of the tree is reached again.



Algorithm 2 MS algorithm.

0: MS(GMS = (VMS, A, w),v0,maxpaths,maxlevels)
0: let V = {v0};
0: let y = v0, ybest = y;
0: let level = 0, npaths = 0;
0: let termination = false;

while (termination = false) do
# climbing up new tree branches

let npaths = npaths + 1;
while (level <= maxlevels) do

x′ = random perturb(y);
x′′ = random perturb(y);
if (f(x′) < f(ybest)) then

let ybest = x′;
end if
if (f(x′′) < f(ybest)) then

let ybest = x′′;
end if
let V = V ∪ {x′, x′′};
let A = A ∪ {(y, x′), (y, x′′)};
let wyx′ = f(y) − f(x′);
let wyx′′ = f(y) − f(x′′);
choose arc(wyx′ ,wyx′′);
let y = chosen(x′,x′′);
let level = level + 1;

end while
if (npaths < maxpaths) then

# climbing down

let wbest = wylevel,ylevel−1
;

let p = 0;
while (level ≥ 0 and p < 0.90) do

let level = level − 1;
let wcurrent = wylevel,ylevel−1

;
if (wcurrent > wbest) then

let wbest = wcurrent;
else

let wylevel,ylevel−1
= wbest;

end if
let p = uniform random number in [0, 1];

end while
# climbing up pre-visited tree branches

let y = ycurrent

while (y is not a leaf node) do
choose arc(wyx′ ,wyx′′);
let level = level + 1;

end while
else

let termination = true
end if

end while

When the tree has been climbed the maximum number of
times (maxpaths), GMS is completely generated.

In this paper, the MS algorithm is used for solving in-
stances of the DMDGP. A solution to the problem is given by
a vector of binary variables whose length equals the number
of atoms forming the considered protein conformation. So-
lutions to the DMDGP will be considered as food resources
and their quality will be evaluated through the LDE func-
tion (1).

The perturbations used in MS for generating new solu-
tions are taken from other meta-heuristic methods for global

optimization. In the implementation of MS used in this pa-
per, 8 different perturbations are employed. For instance,
new solutions are generated by applying the crossover op-
erator to the current solution y and to the current best so-
lution ybest. This perturbation is taken from the Genetic
Algorithms [3]. Other perturbations are taken in the same
way from methods such as Simulated Annealing [5], Har-
mony Search [2], Differential Evolution [15], and so on. Lo-
cal perturbations are also employed, where the value of a
single variable is modified in order to explore close solu-
tions. Other perturbations are also inspired by the problem
to be solved. For instance, our implementation considers
the following perturbation. A subset of consecutive binary
variables representing a part of a solution is chosen, and all
the values of such variables are inverted. This perturbation
is inspired by the studies on the symmetries of the solutions
of the DMDGP [10]. The most successful perturbations are
adaptively chosen during the search.

MS uses the following strategy for avoiding that the search
gets stuck at local minima. The monkey is allowed to climb
the same tree only a predetermined number of times (max-
paths). When a tree cannot be climbed anymore, a new tree
GMS is started. As a consequence, Algorithm 2 is invoked
several times during the execution of the MS algorithm, and
every time with a different seed solution v0. Changing the
tree GMS allows to explore completely new solutions. More-
over, a list containing the best solutions found while explor-
ing an entire tree is kept during the search. At the start
of the algorithm, each tree is started from a totally random
seed, in order to spread the search in different parts of the
domain. Then, after a predetermined number of trees, seeds
start to be taken from the list of best solutions. Thus, the
size of the list of best solutions and the number of trees that
are started from a random seed represent two parameters of
the MS algorithm. The MS algorithm is stopped when the
monkey is not able to find any better solutions after having
climbed a predetermined number of trees.

The generation of a random feasible solution to be used
as seed solution is, in general, a difficult task. When there
are indeed constraints to be satisfied, it can be quite hard to
find solutions satisfying all the constraints. As for example,
in the application of MS presented in [13], the optimization
problem to be solved have been reformulated before applying
the search: the constraints have been removed and penalty
terms have been added to the objective function. In the case
of DMDGP, there are not constraints, and a random solution
is generated by creating a random sequence of values 0 and
1.

The MS algorithm has been successfully applied for solv-
ing different global optimization problems. In [12], opti-
mal clusters of molecules governed by the Lennard Jones
and Morse potential energies were found by MS. In [4], the
MS algorithm was used for solving instances of the Multi-
dimensional Assignment Problem (MAP). Finally, in [13],
MS was employed for solving a global optimization problem
arising from a geometric model for the simulation of protein
molecules. The reader is referred to the quoted paper for
other details about the MS algorithm.

In this work, the MS algorithm is applied to the DMDGP,
in order to compare this meta-heuristic search to the exact
algorithm BP. If the instance given as input to MS contains
a set of distances which is feasible, then the best solutions
to the problem corresponds to values of the LDE function



(1) equal to 0. If the distances are instead infeasible, then
the optimal solutions are the ones in which the minimum
number of distances are violated (the wrong ones).

5. COMPUTATIONAL EXPERIENCES
The performances of the MS and the BP algorithms are

compared on a set of instances of the DMDGP. Both the
algorithms have been implemented in C programming lan-
guage. All tests have been carried out on an Intel Core 2
CPU 6400 @ 2.13 GHz with 4GB RAM, running Linux. The
codes implementing the BP and the MS algorithm have been
compiled by the GNU C compiler v.4.1.2 with the -O3 flag.

5.1 Generation of the instances
The instances we use in the computational experiences

are generated from the known conformations of some pro-
tein molecule. The protein conformations are downloaded
from the Protein Data Bank (PDB) [1, 14]. We consider a
small set of monomeric proteins having a different number of
amino acids. Once downloaded, we extracted all the atoms
N , Cα and C belonging to the backbone of a protein and
computed all the possible distances between them. Then,
all the distances dij that are smaller than 6Å are considered
to form an instance of the DMDGP. All the short range dis-
tances di−3,i, di−2,i and di−1,i are included in the generated
instances, because they all fall below the threshold of 6Å.

In order to simulate data containing a small part of com-
pletely wrong distances, a predetermined percentage of dis-
tances are arbitrarily modified and changed to a randomly
chosen value. In our experiments, we never modify the
distances di−3,i, di−2,i and di−1,i, for two reasons. First,
shorter distances can be obtained with a greater precision,
and hence the probability that these distances are wrong is
lower. Second, the extension of the BP algorithm for con-
sidering wrong distances is not able to manage errors on the
distances di−3,i, di−2,i and di−1,i. In fact, these distances
are used for building the tree GBP : if some of these dis-
tances are wrong, then errors propagate on all the branches
of the tree, and no solution to the problem can be found.

5.2 Experiments
We consider a small set of instances of the DMDGP gen-

erated by using the procedure detailed above. The pro-
teins 1brv, 1ppt, 2erl and 1dv0 have been selected from
the PDB. In correspondence with each of them, an instance
of the DMDGP has been generated which contains no er-
rors. Then, different percentages of wrong distances have
been introduced, ranging from 1% to 10% of the total num-
ber of available distances. The instances are labeled with
the name of the original protein and the percentage of wrong
distances. For example, the instance 2erl 01 corresponds to
the protein 2erl, and contains the 1% of wrong distances.
In Table 1, some properties of the considered proteins are
shown, such as the number n of backbone atoms they con-
tain, and the number of distances m contained in the in-
stances generated by the method which is described in Sec-
tion 5.1.

Preliminary experiments have been carried out in order
to tune the parameters of the meta-heuristic MS to the
DMDGP. In the experiences presented in this section, the
parameters maxpaths and maxlevels are set to 90 and 40,
respectively. Moreover, the list containing the best solutions
found during the search contains 10 conformations, and the

protein name n m

1brv 57 476

1ppt 108 912
2erl 120 1136

1dv0 135 1290

Table 1: Number n of atoms and number m of dis-
tances in correspondence with the considered pro-
teins.

BP MS

Instance LDE #Sol CPU LDE CPU

1brv 00 1.39e-14 2 0.00 1.39e-14 ˜21

1ppt 00 1.97e-14 2 0.05 1.97e-14 ˜16

2erl 00 1.33e-14 2 0.08 1.33e-14 ˜16
1bv0 00 8.63e-15 2 0.16 8.63e-15 ˜41

Table 2: Comparisons between BP and MS on in-
stances without wrong distances.

first 40 trees have as seed a randomly generated solution.
The search is stopped after that the monkey climbed 40
trees without improving any of the solutions in the list.

In Table 2, computational experiences are shown in which
only the instances without wrong distances are considered.
The basic BP algorithm is therefore used here, where a
branch is pruned as soon as one atomic position is found
to be infeasible. For each experiment, the LDE value of the
best found solution, the total number of solutions #Sol and
CPU time (in seconds) are reported in correspondence with
the BP algorithm, whereas the LDE of the best found so-
lution over 10 runs and the average CPU time are given in
correspondence with the MS algorithm. As the table shows,
the BP algorithm performs much better in terms of CPU
time. The efficiency of BP is probably due to the fact that
entire parts of the binary tree GBP are soon pruned away
when an infeasible atomic position is discovered. In this way,
the domain of the search is reduced very quickly. The MS al-
gorithm, instead, has a constant domain, whose cardinality
is 2n−3. This makes the search much more computationally
expensive.

In Table 3, instances with a given percentage of wrong
distances are considered. All the information provided in
the previous table are shown in Table 3 as well. In the ex-
periments related to the MS algorithm, the threshold TD

represents an estimate of the wrong distances contained in
the instance. Even though the exact number of wrong dis-
tances is known because they are artificially generated, an
estimated TD value is used in order to simulate a realistic
experiment. For example, the instances related to the pro-
tein 1brv have 476 distances, and then about 4.8 distances
should be wrong when it is supposed that the 1% of the
distances are wrong. The estimated TD values are approx-
imated by the closer larger integer number. Note that an
understimation of TD could bring the algorithm to provide
no solutions. The CPU time for the BP algorithm is limited
to 1 hour: the experiments in which BP takes exactly one
hour have been stopped before that BP ended. Therefore,
the number of solutions #Sol, in this case, does not include
all the possible solutions. Finally, the LDE value is com-
puted by considering all the available distances, including
the wrong ones. This could be avoided when BP is used,



BP MS

Instance LDE #Sol CPU LDE CPU

1brv 01 3.43e-04 2 0.02 3.43e-04 ˜35

1brv 02 9.78e-04 2 0.03 9.78e-04 ˜42
1brv 03 2.37e-03 4 0.28 2.37e-03 ˜33

1brv 04 2.17e-03 12 0.30 2.17e-03 ˜33

1brv 05 2.75e-03 10 0.43 2.75e-03 ˜36
1brv 10 7.44e-03 4 8.08 7.44e-03 ˜38

1ppt 01 4.55e-04 2 6.07 4.55e-04 ˜25

1ppt 02 1.05e-03 2 274.32 1.05e-03 ˜25

1ppt 03 2.36e-03 3 1h 2.36e-03 ˜35

1ppt 04 2.36e-03 1 1h 2.30e-03 ˜30
1ppt 05 - 0 1h 2.71e-03 ˜29

1ppt 10 - 0 1h 7.93e-03 ˜38

2erl 01 3.34e-04 2 0.29 3.34e-04 ˜87

2erl 02 1.01e-03 2 1.42 1.01e-03 ˜139

2erl 03 2.68e-03 2 24.14 2.68e-03 ˜143
2erl 04 2.28e-03 2 27.86 2.28e-03 ˜136

2erl 05 2.65e-03 2 29.51 2.65e-03 ˜114

2erl 10 - 0 1h 8.21e-03 ˜129

1dv0 01 3.53e-04 2 0.57 3.53e-04 ˜89
1dv0 02 1.08e-03 2 5.60 1.08e-03 ˜108

1dv0 03 2.78e-03 2 66.20 2.78e-03 ˜135

1dv0 04 2.57e-03 54 79.91 2.57e-03 ˜151

1dv0 05 3.09e-03 8 120.35 3.09e-03 ˜189
1dv0 10 - 0 1h 8.26e-03 ˜206

Table 3: Comparisons between BP and MS on in-
stances containing wrong distances.

because it is known which ones are the violated distances.
However, all the distances are considered even in this case
for an easier comparison with the results obtained by MS. As
for example, if the violated distances are not considered in
the computation of the LDE function, then the LDE value
for the solution found by BP in correspondence with the
instance 1brv 01 and percentage 1% is 1.37e-14.

The results showed in Table 3 suggest that BP performs
better than MS when the percentage of wrong distances is
small. As this percentage increases, the CPU time related
to BP increases much more than the CPU time related to
MS. Therefore, starting from a certain percentage, which
depends on the considered protein molecule, the MS algo-
rithm starts to perform better than BP. As for example, BP
is able to obtain the same solution in a much smaller amount
of time in correspondence with the instance 1dv0 01. In-
versely, when the instance 1ppt 05 is considered, then MS
provides a better solution in less time. In this case, BP
is stopped after one hour of execution, and this is why it
cannot provide the same solution as MS. The best found
solutions for the instances 1dv0 01 and 1ppt 05 are shown
in Figure 3.

The obtained results are due to the fact that the branches
of the tree GBP are pruned later during the BP algorithm
as the threshold TD increases. In this way, larger parts of
the tree are in fact exhaustively explored. Therefore, the
CPU time for carrying BP out strongly depends on TD, and
hence on the number of wrong distances that are included
in the considered instance. Inversely, MS is less sensible
to the number of wrong distances. Then, when there are
many wrong distances, BP can be too slow, and MS could
be preferable. On the other side, BP can always provide all
the solutions to the problem, whereas MS is a meta-heuristic
algorithm, and therefore it is able to provide a solution only
after that a given number of runs are performed. The two

Figure 3: Two solutions: (a) the solution found by
BP for the instance 1dv0 01; (b) the solution found
by MS for the instance 1ppt 05.

methods can therefore be considered as complementary.

6. CONCLUSIONS
We presented a comparison between two algorithms for

solving the DMDGP. The first one is the BP algorithm,
which implements an exact method that is strongly based on
the structure of the combinatorial problem to be solved. The
second one is the MS algorithm, a meta-heuristic inspired by
the behavior of a monkey in search for food supplies. The in-
stances used during the comparison simulate data obtained
by experimental techniques, because they contain the typi-
cal distances these techniques are usually able to detect, and
a certain percentage of wrong distances is included.

Our comparison showed that the BP algorithm performs
much better than MS on instances where the percentage of
wrong distances is low. Indeed, the pruning phase of BP
allows to quickly reduce the domain of the search, so that
an exhaustive search on the remaining feasible solution is
not computationally expensive. However, as the number of
wrong distances increases, the possibility for BP to prune is
reduced, and the computational cost grows. The MS algo-
rithm is instead not dependent on the percentage of wrong
distances contained into the instances. Even though it is
slower than BP on instances with few wrong distances, it is
much faster than BP when the number of wrong distances is
larger. Obviously, since MS is a meta-heuristic, there are no
guarantees that the found solutions are the optimal ones,
and usually more than one execution of the algorithm is
needed.

The two considered algorithms are complementary. When
the performances of one of them are excellent, the perfor-
mances of the other are poor, and vice versa. This suggests
that better results, in general, could be obtained by exploit-
ing the features of both exact and meta-heuristic algorithms.
The study of hybrid strategies can lead to the development
of new algorithms which are in part exact and in part meta-
heuristic, that could perform better than the two algorithms
compared in this paper. As the performances of the MS al-
gorithm are due to several strategies and ideas borrowed
from other meta-heuristic searches, new algorithms could
be developed that are based on the combination of different
strategies, such as the ones exploited in BP and MS. Future



research can be devoted in this direction, for solving the
DMDGP and other difficult global optimization problems.
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