
Mathematical Programming B manuscript No.
(will be inserted by the editor)

A Storm of Feasibility Pumps for Nonconvex MINLP

Claudia D’Ambrosio1,2 · Antonio Frangioni3 · Leo
Liberti4 · Andrea Lodi1

Received: ? / Accepted: ?

Abstract One of the foremost difficulties in solving Mixed Integer Nonlinear Programs,
either with exact or heuristic methods, is to find a feasible point. We address this issue
with a new feasibility pump algorithm tailored for nonconvex Mixed Integer Nonlinear Pro-
grams. Feasibility pumps are successive projection algorithms that iterate between solving
a continuous relaxation and a mixed-integer relaxation of the original problems; such ap-
proaches currently exist in the literature for Mixed-Integer Linear Programs and convex
Mixed-Integer Nonlinear Programs. Both cases exhibit the distinctive property that the con-
tinuous relaxation can be solved in polynomial time. In nonconvex Mixed Integer Nonlinear
Programming such a property does not hold and the main innovations in this paper are
tailored algorithmic methods to overcome such a difficulty. We present extensive computa-
tional results on the MINLPLib, showing the effectiveness and efficiency of our algorithm.

Keywords feasibility pump ·MINLP · global optimization · nonconvex NLP

1 Introduction

Mixed Integer Nonlinear Programming (MINLP) problems are Mathematical Programs (MP)
of the following form:

min f (x,y)
g(x,y) ≤ 0

x ∈ X ∩Zn ⊆ Rp

y ∈ Y ⊆ Rq,

 [P] (1)

where x are integer decision variables, y are continuous decision variables, X ,Y are two
polyhedra (which possibly include variable bounds), f : Rp+q → R and g : Rp+q → Rm.
We remark that f can be assumed convex without loss of generality (if it were not, we

This paper extends [12].

1: DEIS, Università di Bologna, Italy E-mail: {c.dambrosio,andrea.lodi}@unibo.it ·
2: ISyE, University of Wisconsin-Madison, USA E-mail: cdambrosio@wisc.edu ·
3: Dipartimento di Informatica, Università di Pisa, Italy E-mail: frangio@di.unipi.it ·
4: LIX, École Polytechnique, France E-mail: liberti@lix.polytechnique.fr

2

might replace it by an added variable v and adjoin the constraint f (x)− v ≤ 0 as a further
component of g).

The exact solution of nonconvex MINLP is only possible for certain classes of func-
tions f ,g (e.g. if f is linear and g involve bilinear terms xy [2,10]). In general, the spatial
Branch-and-Bound (sBB) algorithm is used to obtain ε-approximate solutions for a given
positive constant ε . The sBB computes upper and lower bounds to the objective function
value within sets belonging to an iteratively refined partition of the feasible region. The
search is pruned when the lower bound on the current set is worse than the best feasible so
far (the incumbent), when the problem restricted to the current set is infeasible, and when
the two bounds for the current set are within ε . Otherwise, the current set is partitioned and
the search continues recursively [29,5]. Heuristic approaches to solving MINLPs include
Variable Neighbourhood Search [24], automatically tuned variable fixing strategies [6], Lo-
cal Branching [25] and others; specifically, most exact approaches for convex MINLPs [16,
7] work as heuristic for nonconvex MINLPs. In heuristic approaches, however, one of the
main algorithmic difficulties connected to MINLPs is to find a feasible solution. From the
worst-case complexity point of view, finding a feasible MINLP solution is as hard as finding
a feasible Nonlinear Programming (NLP) solution, which is NP-hard [30].

In this paper we address the issue of MINLP feasibility by extending a well-known ap-
proach, namely the Feasibility Pump (FP) to the nonconvex MINLP case. The FP algorithm
was originally proposed for Mixed-Integer Linear Programming (MILP) [15], where f ,g
are linear forms, and then extended to convex MINLPs [7], where g are convex functions. In
both cases the feasible region is partitioned so that two subproblems are iteratively solved: a
problem P1 involving the continuous variables y with relaxed integer variables x, and a prob-
lem P2 involving both integer and continuous variables x,y targeting, through its objective
function, the continuous solution of P1. The two subproblems are iteratively solved, gener-
ating sequences of values for x and y. One of the main theoretical issues in FP is to show
that these sequences do not cycle, i.e., are not periodic but converge to some feasible point
(x,y). This is indeed the case for the FP version proposed for convex MINLP [7] where P2
is a MILP, while cycling might happen for the original FP version proposed for MILP [15]
where randomization is effectively (and cheaply) used as an escaping mechanism. In the
FP for MILPs, P1 is a Linear Program (LP) and P2 a rounding phase; in the FP for convex
MINLPs, P1 is a convex NLP and P2 a MILP iteratively updated with Outer Approximation
(OA) constraints derived from the optimum of the convex NLP. In both cases one of the
subproblems (P1) can be solved in polynomial time; in the FP for convex MINLPs, P2 is
NP-hard in general. Extensions for both FPs exist, addressing solution quality in some cases
[1] and CPU time in others [8]. The added difficulty in the extension proposed in this paper
is that P1 is a nonconvex NLP, and is therefore NP-hard: thus, in our decomposition, both
subproblems are difficult.

The rest of this paper is organized as follows. In Section 2 we frame the FP algorithm
within the class of Successive Projection Methods, describing their convergence properties.
In Section 3 we discuss the use of different norms within the two subproblems of the FP
algorithm. In Section 4 we list our solution strategies for both subproblems. In Section 5
we present comparative computational results illustrating the efficiency of the proposed ap-
proach. Section 6 concludes the paper.

3

2 An Abstract Feasibility Pump

Let C ⊆ {1, . . . ,m} be the set of constraint indices such that gi(x,y) is a convex function of
x,y for all i ∈ C, and N = {1, . . . ,m}rC. We denote the list of all convex constraints by
gC, and let C = {(x,y) | gC(x,y)≤ 0} ⊆ Rp+q be a convex relaxation of the feasible region
of P. We also denote by gN the constraints indexed by N and let N = {(x,y) | gN(x,y) ≤
0}. We remark that deciding whether N is empty involves the solution of a nonconvex
NLP and is therefore a hard problem. This property, by inclusion, extends to the continuous
relaxation of the feasible region P = C ∩N . We now let I = C ∩{(x,y) | x ∈ Zp} be
a relaxation of the feasible region involving the convex and integrality constraints of P.
Deciding emptiness of I involves solving a convex MINLP and is therefore also hard, but
for different reasons than P . More specifically, solving nonconvex NLPs globally requires
solving nonconvex NLPs locally as a sub-step, whereas solving convex MINLPs involves
the solution of convex NLPs (globally) as a sub-step. The numerical difficulties linked to
these two tasks are very different, in particular with respect to the reliability of finding the
solution — with nonconvex NLPs, for example, Sequential Quadratic Programming (SQP)
algorithms might yield an infeasibile linearization step even though the original problem is
feasible. It therefore makes sense to decompose F = I ∩P , the feasible region of P, into
its two components I and P , in order to address each separately.

FP algorithms are instantiations of a more general class of algorithms called Successive
Projection Methods (SPM), targetting the problem of deciding emptyness of a set intersec-
tion A ∩B. This is equivalent to the following problem:

min{‖z−w‖ | z ∈A ∧w ∈B}. (2)

Given an initial point w0, an SPM generates a sequence of iterates (z1,w1),(z2,w2), . . . de-
fined as follows:

∀i≥ 1 zi ∈ argmin{‖z−wi−1‖ | z ∈A } (3)

∀i≥ 1 wi ∈ argmin{‖zi−w‖ | w ∈B}, (4)

where the norm is assumed Euclidean for now. The advantage of an SPM, compared to
solving (2) directly, is that it only requires optimization over A , B separately. By (3)-(4),

‖zi−1−wi−1‖ ≥ ‖zi−wi−1‖ ≥ ‖zi−wi‖,

i.e. the sequence given by δi = ‖zi−wi‖ for all i≥ 1 is nonincreasing, hence the method is
locally convergent (in the sense that δi→ δ∞ ≥ 0). The method is also globally convergent
to the unique optimal solution of (2) when A , B are convex, as ‖ · ‖ is strictly convex [18].
In the nonconvex MINLP case the involved sets are far from being convex; convergence of
an SPM applied to I ∩P is therefore an issue.

Local convergence of SPM is proved in [28] under mild assumptions; again, this requires
the Euclidean norm. The proof, as in the case of [18], actually works for the more general
case where the objective function of (2) is

L(z,w) = h(z)+Q(z,w)+ k(w),

where h : Rp→ R∪{+∞} and k : Rq→ R∪{+∞} are proper lower semicontinuous func-
tions, neither convex nor differentiable, and Q : Rp+q→ R is regular, i.e.:

Q′(z,w;dz,0)≥ 0∧Q′(z,w,0,dw)≥ 0⇒ Q′(z,w;dz,dw)≥ 0 (5)

4

for all feasible z,w, where Q′(z,w;dz,dw) is the directional derivative of Q at (z,w) along
the direction (dz,dw). Smooth functions are regular, while in general nonsmooth ones are
not. When Q is C1 the results can be extended [3] to the stabilized version:

∀i≥ 1 zi ∈ argmin{h(z)+Q(z,wi−1)+λi‖z− zi−1‖2
2 | z ∈A } (6)

∀i≥ 1 wi ∈ argmin{Q(zi,w)+ k(w)+ µi‖w−wi−1‖2
2 | w ∈B}, (7)

where the penalty terms are added to discourage large changes in the current z,w iterates.
The method (6)-(7) holds under mild assumptions such as upper and lower boundedness of
λi and µi; the sequence (zi,wi) is shown to converge to a critical point of L. In the noncon-
vex MINLP case, where h = k = 0 and Q is given by ‖z−w‖2

2, this means finding a local
optimum of the (nonconvex) problem (2). Thus, if δi → δ∞ > 0, then either A ∩B = /0
or the algorithm converges to a critical point which is not a global minimum. Telling these
two cases apart is unfortunately difficult in general; however, because we are proposing a
MINLP heuristic, rather than an exact algorithm, we shall typically assume the latter case
holds, and we shall therefore employ some Global Optimization (GO) techniques to reach a
putative global optimum.

The straightforward application of SPM in our setting is:

∀i≥ 1 (x̄i, ȳi) ∈ argmin{‖(x,y)− (x̂i−1, ŷi−1)‖ |g(x,y)≤ 0∧ x ∈ X ∩Rp∧ y ∈ Y ∩Rq} (8)

∀i≥ 1 (x̂i, ŷi) ∈ argmin{‖(x,y)− (x̄i, ȳi)‖ |gC(x,y)≤ 0∧ x ∈ X ∩Zp∧ y ∈ Y ∩Rq}. (9)

The corresponding FP algorithm alternates between solving the nonconvex NLP (8) and
the convex MINLP (9). In order to retain the local convergence property of (3)-(4), both
problems need to be solved exactly: a difficult task in both cases. In the rest of the paper, we
discuss several modifications to this approach in order to better exploit problem structure.

3 Using Different Norms

In this section we consider employing two different norms ‖ · ‖A and ‖ · ‖B in the two sub-
problems (3)-(4):

∀i≥ 1 zi ∈ argmin{‖z−wi−1‖A | z ∈A } (10)

∀i≥ 1 wi ∈ argmin{‖zi−w‖B | w ∈B}. (11)

The Euclidean norm is appropriate in (8) because of its smoothness property and because (8)
is already nonlinear. In the case of (9), however, the L1 or L∞ norms yield a convex MINLP
that can be reformulated exactly to a MILP by means of standard techniques [22], provided
the constraints indexed by C are linear. Replacing the norm in (9), however, prevents us from
establishing monotonicity of the sequence {δi | i ∈N}: assuming A = 2 and (say) B = ∞, for
example, one uses ‖ · ‖A ≥ ‖ ·‖B to derive

||zi−wi||A ≥ ||zi+1−wi||A ≥ ||zi+1−wi||B ≥ ||zi+1−wi+1||B,

but nothing ensures ||zi+1−wi+1||B ≥ ||zi+1−wi+1||A. We deal with this case by replacing
(10) by:

∀i≥ 1 zi ∈ argmin{‖z−wi−1‖A | z ∈A ∧‖z−wi−1‖B ≤ β‖zi−1−wi−1‖B}, (12)

5

for β ∈ (0,1]. This implies monotonicity for all β ≤ 1 and strict monotonicity for all β < 1:

||zi−wi||B ≥ β ||zi−wi||B ≥ ||zi+1−wi||B ≥ ||zi+1−wi+1||B.

For B = ∞, the required reformulation for (10) only amounts to restricting variable bounds;
as this restricts the feasible region, it also facilitates the task of solving (12). Local con-
vergence — that is, no cycling — of the sequence of iterates generated by the FP algorithm
given by (12) and (11) can be established by ensuring that the sequence ‖zi−wi‖B converges.
A convergence failure might occur if (12) becomes infeasible because of the restricted vari-
able bounds. This shows that:

min{||z−wi−1||B | z ∈A } ≥ β ||zi−1−wi−1||B,

which in turn implies that, for β ≈ 1, zi−1 is a good candidate for a local minimum, leading
to the choice zi = zi−1. If the mixed-integer iterate (11) also cannot improve the objective,
then (zi,wi) can be assumed to be a local minimum; this case will be dealt with later.

We remark that the fact that

∀z ∈A ||z− w̄||B ≥ ||z̄− w̄||B
∀w ∈B ||z̄−w||B ≥ ||z̄− w̄||B

(13)

is not sufficient to ensure that (z̄, w̄) is a local minimum: this is because ‖ · ‖B is not reg-
ular in the sense of (5) if B = 1 or ∞. Indeed, it is clear that for Q(z,w) = g(z−w), one
has Q′(z,w;dz,dw) = g(z−w;dz− dw), which means that Q′(z,w;dz,0) = g(z−w;dz) and
Q′(z,w;0,dw) = g(z−w;−dw). Thus, for (z,w) such that || · ||B is not differentiable at z−w,
it is not difficult to construct a counterexample to (5). One is shown in Figure 1 for the case
B = 1, where Q′(z,w;dz,0) = Q′(z,w;0,dw) = 0, but Q′(z,w;dz,dw) =−1.

-
x

6
y

z̄bw̄ b
z′ = w′r

�
�
�
�
�
�
�
�
�
�
�

��
��
��@@
��@@

Fig. 1 Non-reguarity of || · ||1

Example 1 Based on Figure 1, we construct an example of nonconvergence of the FP with
A = 2 and B = 1: we define A = {(x,y) | x ≥ 3} and B = {(x,y) | 2x ≤ y} and consider
z̄ = (3,4) and w̄ = (2,4). It is easy to verify that

z̄ ∈ argmin{‖(x,y)− (2,4)‖2 | (x,y) ∈A }
w̄ ∈ argmin{‖(3,4)− (x,y)‖1 | (x,y) ∈B},

which implies that (z̄, w̄) is a fixed point for the sequence generated by the FP. However,
(z̄, w̄) is not a local minimum of (2): by moving a step of length 2 along the feasible direction

6

(dz,dw) = (0,1,1/2,1) we obtain z′ = (3,6) and w′ = (3,6), and ‖z′−w′‖1 = ‖z′−w′‖2 =
0 < 1 = ‖z̄− w̄‖1 = ‖z̄− w̄‖2. ut

Hence, the modification (12) of the FP still guarantees convergence of the δi sequence,
and therefore (at least for β < 1) ensures that no cycling can occur. Convergence may occur
to a local minimum when using “nonsmooth” norms such as L1 and L∞ even if A and
B were convex, but this is not a major issue since the sets are nonconvex, and therefore
there is no guarantee of convergence to a global minimum anyway. Other mechanisms in
the algorithm are designed to take care of this.

3.1 Partial Norms

A structural property of the specific nonconvex MINLP setting is that whenever z = (x,y) ∈
A has the property that there exists some z̃ = (x, ỹ) ∈B, then z ∈F ; in other words, the
difficulty of optimizing over B is given by the integer constrained variables x. Thus, for our
purposes we will consider

(x̄i, ȳi) ∈ argmin{||x− x̂i−1||A | (x,y) ∈A } (14)

(x̂i, ŷi) ∈ argmin {||x̄i− x||B | (x,y) ∈B}. (15)

instead of (10)-(11). This means that we need only to consider the distance between the
projection of A and B on the x-subspace.

4 Approximate solution of the subproblems

In practice, solving (8) and (9) pose different challenges; both should be solved to global
optimality in order for the FP to have good convergence properties, yet both are difficult
problems. Thus, in the following we discuss several options and strategies we used to solve
both (8) and (9). We conducted extensive computational tests with all possible configura-
tions. The results are reported in Section 5, either in detail for the most successful algorithms
or in summary for the unsuccessful ones.

4.1 Addressing the Nonconvex NLP (8)

As already mentioned solving (8) to global optimality is difficult in itself. Although applying
GO would be too time consuming, we still attempt to solve the problem globally by using
two different approaches:

1. a simple stochastic multi-start approach [27] in which the NLP solver is provided with
different randomly generated starting points in order to try to escape from possible local
minima;

2. a Variable Neighborhood Search (VNS) [19] scheme [23,24].

In general, finding any feasible solution for (8) such that ||x̄− x̂i−1||A < ||x̄i−1− x̂i−1||B is
enough to retain the monotonicity property of the sequence; thus, the solution process to
(8) can be terminated as soon as this happens. Failure to obtain this condition may lead to
declare the failure of a local phase, without identifying a feasible solution, even if one could

7

•0

•̄1,...•̂1,... •̂1,...

•0

•̄1 •̂1

•̄2•̂2

•∗

Fig. 2 Solving (8) heuristically (left) or to global optimality (right): helping to prevent cycling.

be found if a globally optimal (or, at least, better) solution for (8) be determined, as shown
in Figure 2.

However, sometimes both strategies 1 and 2 might fail in finding a feasible solution for
(8) (for example due to a time limit, see Section 5) and that can happen even if they claim
the returned solution is NLP feasible. In such case we experimented two options:

a. we define (9) by using any infeasible solution of (8) ;
b. we fix the integer variables x and we solve again (locally) a modified version of problem

(8) in which the objective function is replaced by the original objective of (1).

The fixing strategy b might prevent slow convergence, as shown in Figure 3.

•0

•̄1 •̂1•̄2 •̂2•̄3 •̂3

•̄4

•0

•̄1 •̂1

•̄2

Fig. 3 Solving (8) without (left) and with (right) the fixing strategy b: accelerating convergence.

Finally, as discussed in Section 3, one might implement the overall FP scheme by using
the Euclidean norm for (8) and a different norm in (9), like L1 or L∞, to simplify it (see next
section). If this is the case, two options can be implemented:

i. we forget about such a difference in norms and we hope for the best;

8

ii. we amend (8) by the norm constraint ‖x− x̂i−1‖B ≤ β‖x̄i−1− x̂i−1‖B (see (12)), and
solve it as usual1.

In summary, three main decisions have to be taken to define and solve (8):

I. solution algorithm: multi-start (1. above) versus VNS (2. above),
II. additional fixing step: NO (a. above) versus YES (b. above), and

III. norm correction: NO (i. above) versus YES (ii. above).

4.2 Addressing the Convex MINLP (9)

The first decision that has to be taken for addressing problem (9) concerns the norm to use
in the objective function, i.e., how to formulate (9) in practice.

1. Of course, the most trivial option is to keep the Euclidean norm so as (9) is a convex
MINLP.

2. As discussed in Section 3, the main alternative is to employ either the L1 or the L∞

norm in the objective function so that it can be linearly reformulated in standard ways
(via the introduction of a few auxiliary continuous variables). This is in the attempt to
replace (9) with a MILP relaxation, because MILP solution technology is currently more
advanced than its convex MINLP equivalent. In addition, we also make use of partial
norms as detailed in Section 3.1 so as to take into account in the objective function only
its integral part.
As for the constraints, we partition the index set C of convex constraints into CL and
CN , where g` is an affine form for all ` ∈CL, and g` is a nonlinear convex function for
all ` ∈ CN . For all iteration indices k ∈ N we let C̄k

N ⊆ CN be the set indexing convex
nonlinear constraints that are active at (x̄k, ȳk).
Thus, the MILP relaxation of (9) at iteration i ∈ N reads as follows:

min‖x̄i− x‖1 (16)

∀k ≤ i, ` ∈ C̄k
N g`(x̄k, ȳk)+∇g`(x̄k, ȳk)

(
x− x̄k

y− ȳk

)
≤ 0 (17)

∀` ∈CL g`(x,y) ≤ 0 (18)

x ∈ X ∩Zp (19)

y ∈ Y, (20)

where the norm in (16) has been selected to be L1 (instead of L∞) due to preliminary
computational experiments. Constraints (17) are the classical Outer Approximation cuts
[14].

The second decision is how to formulate the feasibility space of problem (9), i.e., how
to deal with the original set of constraints and relaxing them if needed. This depends on the
first decision as well, i.e., on the objective function, either 1. or 2. above, which has been
selected. Of course, such a decision is inherently linked to the solution algorithm.

a. If the Euclidean norm is used in (9), then we investigate three options:
1 we solve the convex MINLP as is by means of a sophisticated general-purpose MINLP

solver, in our case BONMIN solver [9],

1 Preliminary computational experiments have shown that the value of β does not strongly influence the
results, thus we used β = 1 in the computational results of Sect. 5.

9

2 we solve a convex mixed integer quadratic problem (MIQP) relaxation of the MINLP.
Precisely, the MIQP is obtained by using the objective function2 min‖x̄i− x‖2 instead
of (16) but with the same set of (linear) constraints (17)-(20). This is done to simplify
the problem and being able to use a sophisticated general-purpose MIQP solver, in our
case CPLEX [20].

3 we remove all constraints (17)-(20), only keeping x ∈ Zp and bound constraints, and
solve (9) by rounding. This is in the spirit of both [15] and [8].

b. If instead the L1 norm is used and the MILP relaxation (16)-(20) is defined, we solve
the MILP as is by means of a sophisticated general-purpose MILP solver, in our case
CPLEX [20],

The third decision is how to address the issue of cycling. Indeed, because problem (9)
only takes into account the subset of convex constraints (or a relaxation of them in the MILP
case) the resulting FP algorithm might cycle, i.e., visit the same mixed-integer solution more
than once. Note that if (1) is instead a convex MINLP, OA cuts are shown to be sufficient to
guarantee that the FP algorithm does not cycle [7] as shown for example in Figure 4.

•0 •̄1,...•̂1,... •0 •̄1 •̂1

Fig. 4 Solution of (9) without (left) and with (right) OA cuts: helping to prevent cycling.

In the nonconvex case, however, OA cuts are not enough, as discussed in Example 2.
In addition, in the testbed we used to computationally test our approach, the number of OA
cuts we could generate is somehow limited as discussed in detail in Section 5.1.

Example 2 In Figure 5 a nonconvex feasible region and its current linear approximation are
depicted. Let us consider x̄ being the current solution of subproblem (8). In this case, only
one OA cut can be generated, i.e., the one corresponding to convex constraint γ . However,
it does not cut off x̂, i.e., the solution of (9) at the previous iteration. In this example, the FP
would not immediately cycle, because x̂ is not the solution of (9) which is closest to x̄. This
shows that there is a distinction between cutting off and cycling. In general, however, failure
to cut off previously visited integer solutions might lead to cycling, as shown in Figure 6.

ut

One elegant possibility to prevent cycling is that of adding no-good cuts at iteration i
to make (x̂k, ŷk) infeasible for all k < i. This is possible if (as it happens in some of the

2 Note that again the objective function is defined in the MIQP case only on the integer variables.

10

xhat

x2

x1

OAcut

convexcon

xbar

Fig. 5 The OA cut from γ does not cut off x̂.

•0

•̄1 •̂1,... •̄2,...

Fig. 6 OA cuts may not prevent the FP from cycling.

variants) any of the minimum distance problems is solved (even if approximately) with an
exact approach, which not only provides good feasible solutions, but also a lower bound
on the optimal value of the problem to provide a guarantee of the accuracy. Indeed, if the
solution method proves that the inequality

||x− x̂i||A ≥ ε (21)

is satisfied for all (x,y) ∈A , then one has

A ∩B = (A ∩{ (x,y) : (21) })∩B = A ∩ (B∩{ (x,y) : (21) }) .

In other words, the nonlinear and nonconvex “cut” (21) can be added to B without changing
the feasible set of the problem. The interesting part is that, of course, x̂i violates (21), and
therefore (21) provides–at least in theory–a convenient globalization mechanism.

11

No-good cuts [13] were originally introduced in [4] with the name of “canonical” cuts
and recently used within the context of MINLP [13,26]. If x are binary variables and ‖ · ‖ is
the L1 norm, we can take ε = 1 and reformulate (21) linearly as

∑
j≤p

x̂ j=0

x j + ∑
j≤p

x̂ j=1

(1− x j)≥ 1. (22)

For general integer variables, an exact linear reformulation is given, for example, in [13]
and involves adding 2p new continuous variables, p new binary variables and adding 3p+1
linear equations to the problem.

It is not difficult to see that the size of such a reformulation is unfortunately excessive
in the context of an iterative method like FP. This is why no-good cuts are used in a limited
form in our scheme and we instead implement two alternative, less elegant, approaches.

i. We employ a tabu list in order to prevent a MILP solver from finding the same solutions
(x̂, ŷ) at different iterations.

ii. We configure our solver to find a pool of solutions from which we choose the best
non-forbidden one.

Clearly, the issue of preventing the FP scheme to cycle is not confined to the solution
of problem (9) but is more a globalization strategy. Indeed, problem (8) could in turn be
amended by no-good cuts in the form ||x− x̂i−1||22 ≥ ε which are reverse-convex constraints
not different from those already in (8). However, we decided to concentrate our attention to
(9) for two reasons. On the one side, this is the way both previous FP algorithms worked,
namely the one for MILP, through random flipping of the rounding step, and that for convex
MINLP, by means of OA cuts. On the other hand, the value to be assigned to ε would be any
lower bound greater than 0 on the optimal solution of (9). However, we never really solve
such a problem to optimality and in at least one case, the rounding option a3 above, we do
not compute any lower bound either.

In summary, three main decisions have to be taken to define and solve (9):

I. the norm to be used in the formulation of (9): L2 (1. above) versus L1 (2. above),
II. how to define the feasible region of (9) and solve it: MINLP (a1 above) versus MIQP

(a2 above) versus rounding (a3 above) or MILP (b above) , and
III. how to avoid cycling: tabu list (i. above) versus solution pool (ii. above).

5 Computational Results

In this section we discuss the outcome of our extensive computational investigation.

5.1 Computational Setting

The algorithms were implemented within the AMPL environment [17]. We chose to use this
framework to make it easy to change subsolver. In practice, the user can select the preferred
solver to solve NLPs, MINLPs, MIQPs or MILPs, exploiting their advantages.

We also use a new solver/reformulator called ROSE (Reformulation Optimization Soft-
ware Engine, see [22]), of which we exploit the following features.

12

– Model analysis: getting information about nonlinearity and convexity of the constraints
and integrality requirements of the variables, necessary to define subproblems (8) and
(9).

– Solution feasibility analysis: necessary to verify feasibility of the provided solutions.
– OA cut generation: necessary to update (9). In order to determine whether a constraint

is convex, ROSE performs a recursive analysis of its expression tree [21] to determine
whether it is an affine combination of convex functions. We call such a function “ev-
idently convex” [22]. Evident convexity is a stricter notion than convexity: evidently
convex functions are convex but the converse may not hold. Thus, it might happen that
a convex constraint is labeled nonconvex; the information provided is in any case safe
for our purposes, i.e., we generate OA cuts only from constraints which are certified to
be convex. Unfortunately, the number of problems in the testbed (see next section) in
which we are able to generate OA cuts is pretty limited, around 15% of them, surely
because of such a conservative (but safe) policy adopted by ROSE.

5.2 FP Variants and Preliminary Results

Because of the multiple options which can be put in place to solve both (8) and (9), we had to
implement and test more than twenty FP versions/variants to assert the effectiveness of each
of the algorithmic decisions discussed in the two previous sections. Some of these options
have been ruled out after a preliminary set of experiments involving 243 MINLP instances
from MINLPlib [?] and used among others in [24,12]. Only 65 among such 243 instances
are those in which the open-source Global Optimization solver COUENNE 0.1 [5] (available
from COIN-OR [?]) is unable to find a feasible solution within a time limit of 5 minutes on
an Intel Xeon 2.4 GHz with 8 GB RAM running Linux. Thus, the goal of the preliminary
set of computational experiments was twofold. On the one side, we wanted to be quick and
competitive on the “easy” instances, i.e., the 178 instances on which COUENNE is able to
find a solution within 5 minutes of CPU time. This is because FP can clearly be used as a
stand-alone heuristic algorithm for nonconvex MINLP. On the other hand, we also wanted
to be effective, in longer computing times, on the 65 “hard” instances, thus suggesting a
fruitful integration of FP within COUENNE or any other GO solver (as happened for FP
algorithms in MILP).

The FP variants which did not “survive” the preliminary tests3 are those that, at the same
time, did not perform particularly well in the “easy” instances and did not add anything
special on the “hard” ones. Namely,

1. solving (8) by VNS was always inferior with respect to solve it by the stochastic multi-
start approach. Such a poor performance of the VNS approach might be due to its iterative
implementation within AMPL: at each iteration, a different search space is defined, start-
ing from a small one and incrementing it so that at the last iteration the entire feasible
region is considered. In particular, this approach seems to be too “conservative” with
respect to the previous solution.

2. the additional fixing step which can be performed in case of fail when solving (8) by
fixing the integer variables has a slight positive effect when the norm constraint is added
while turns out to be crucial in case it is not. In a sense the theoretical convergence
guaranteed by the use of norm constraints seems to make problems (8) easier, thus the

3 No detailed computational results are reported for the preliminary computational investigation.

13

benefit of the fixing step is particularly high if such constraints are not added. We then
decided to always include the fixing step as well;

3. in case the Euclidean norm is kept in problem (9), we decided to solve the convex MIQP
instead of the convex MINLP. The main reason (besides some technical issues related
to modify a convex MINLP solver like BONMIN to implement mechanisms to prevent
cycling) is that the number of evidently convex constraints as discovered by ROSE is very
limited in the testbed. Thus, if the constraints in (9) are linear, then the MIQP solver of
CPLEX is clearly more efficient than a fully general convex MINLP solver line BONMIN.

4. preventing cycling by using a pool of solutions was always inferior with respect to use
the tabu list. Again, this might be due to the lack of flexibility of the (nice) solution
pool feature of CPLEX 11 that we used in our experiments. Every time we need to solve
(9), we ask CPLEX to produce a number of solutions equal to the number of tabu list
solutions plus one. Once obtained the solutions pool, we analyze the solutions starting
from the first and set (x̂i, ŷi) as the first solution of the pool which is not present in the
tabu list. However, we have to consider the two following drawbacks: (i) the solution
pool is populated after the branch and bound is finished. Because we have a time limit
for solving (9), it is not guaranteed that we would have a number of solutions sufficient to
provide a non-forbidden solution (especially because providing a solution pool is a time-
consuming feature); (ii) we cannot force CPLEX to measure the diversity of the solutions
in the pool by neglecting the continuous part of the problem. Unfortunately, CPLEX can
provide us a set of solutions which has the same integer values, but different continuous
values. More generally, it might happen that only forbidden solutions are generated, for
example if the continuous relaxation of (9) is integer feasible but forbidden. In this case
the solution would be discarded, but no further solution can be generated.

Due to the above discussion, the only surviving subproblems to be solved are nonconvex
NLPs and convex MILPs and MIQPs. The NLP solver used is IPOPT 3.5 trunk [11], while
the MILP and MIQP solvers are those of CPLEX 11 [20]. Before ending the section we
need to specify two more implementation details for the surviving FP variants.

Implementing a tabu list in CPLEX. Discarding a solution in the tabu list within the CPLEX
branch and bound is possible using the incumbent callback function. The tabu list is stored
in a text file which is then exchanged between AMPL and CPLEX. Every time CPLEX finds
an integer feasible solution, a specialized incumbent callback function checks whether the
new solution appears in the tabu list. If this is the case, the solution is rejected, otherwise the
solution is accepted. CPLEX continues executing until either the optimal solution (exclud-
ing those forbidden) is found or a time limit is reached. In the case where an integer solution
found by CPLEX at the root node appears in the tabu list, CPLEX stops and no new integer
feasible solution is provided to FP4. In such a case, we amend problem (9) with a no-good
cut [13] which excludes the solution and we call CPLEX again.

Avoid cycling when solving (9) by rounding. When the MILP relaxation of (9) is solved by
rounding to the nearest integer the fractional values of vector x̄, the methods for preventing
the cycling cannot be implemented in the way we described above. The method adopted is
taken from the original FP paper [15]: whenever a forbidden solution is found, the algorithm
randomly flip some of the integer values so as to obtain a new solution.

4 Note that this is the same issue discussed in the solution pool case.

14

5.3 Code Tuning

The algorithm terminates after the first MINLP feasible solution is found or a time limit is
reached. The parameters are set in the following way: time limit of 2 hours of user CPU
time, the absolute feasibility tolerance to evaluate constraints is 1e-6, and the relative fea-
sibility tolerance is 1e-3 (used if absolute feasibility test fails). The tabu list length was set
adaptively to a value which was inversely proportional to the number of integer variables of
the instance, i.e., the number of values to be stored for each solution of the tabu list. The
value was 60,000 divided by the number of integer variables. The actual mean value, over
the full set of 243 instances, of the solutions stored in the tabu list was 35.

5.4 Results

The four surviving FP variants have been extensively tested on the full set of 243 MINLP
instances and, in particular, we discuss the results on the 65 “hard” instances introduced in
Section 5.2. More precisely, the four variants have the characteristics reported in Table 1.

Table 1 FP variants.

Problem (8) Problem (9)
variant algorithm fixing step norm constraint norm algorithm cycling

FP-1 multi-start YES YES L1 MILP tabu list
FP-2 multi-start YES NO L1 MILP tabu list
FP-3 multi-start YES YES L2 rounding tabu list
FP-4 multi-start YES N/A L2 MIQP tabu list

Table 2 reports the aggregated results on the 65 “hard” instances. In particular, we con-
sider for each FP variant the number of times the algorithm terminated with a feasible solu-
tion within the 2-hours of user CPU time limit (successes), the number of times the algorithm
was the only one to find a feasible solution (successes alone), the number of times the time
limit was reached without a feasible solution (time limit reached), the number of times the
algorithm encountered numerical issues (fails), the number of times the algorithm found the
best–smallest– solution (wins) and the geometric mean of the computing time for the solved
instances (time geomean).

Table 2 Comparing the four FP variants, aggregated results.

FP-1 FP-2 FP-3 FP-4
successes 49 45 22 23

successes alone 6 3 1 0
time limit reached 11 14 42 32

fails 5 6 1 9
wins 27 20 10 4

time geomean 151.02 104.45 17.59 76.14

The detailed results are reported in Table 3 where, for each variant, we give the solution
value (value), the computing time (time) and the number of iterations (it.s) which are roughly
equal to the number of problems (8) and (9) solved. In case of numerical issues for a pair
instance / FP variant, we report in all entries for such an instance some “++”, whereas in case

15

of time limit reached the entry value is set to “-” (while we correctly report the computing
time of 7,200 CPU seconds and the number of iterations within such a time).

The results of Tables 2 and 3 show that FP-1 is the most successful FP variant and
is remarkably able to find a feasible solution in limited CPU time on 75% of the “hard”
instances in the testbed. A direct comparison with the closest variant, namely FP-2, shows
that the use of the norm constraint is useful: although FP-1 does not dominate FP-2, it is
overall superior on all entries and there are many instances in which FP-2 converges slowly
whereas FP-1 reaches feasibility in a very small number of iterations. Variant FP-3 is very
fast but seems to be a bit “unsophisticated” for those instances which look more difficult (in
the “hard” testbed). However, it might be a viable option for a “cheap” FP variant executed
extensively within a GO solver. Finally, variant FP-4 does not look–at the moment– very
competitive, although it is not fully dominated because it finds the smallest solution four
times, in one case (deb8) a much smaller one, with respect to the other variants. One relevant
issue for FP-4 seems that the MIQP solved as problem (9) is time consuming thus allowing
only a limited number of FP iterations. Things might change in the future, depending on the
solver or its settings.

6 Conclusion

We have presented the theoretical foundation of an abstract feasibility pump scheme inter-
preted as a Successive Projection Method in which, roughly speaking, the set of constraints
of the original problem is split in two sets and the overall algorithm aims at deciding if the
feasibility space given by the intersection of such two sets is empty. Such a scheme has been
specialized for dealing with nonconvex Mixed Integer Nonlinear Programming problems,
the hardest class of (deterministic) optimization problems.

Because evil is in the details, we analyzed a large number of options for (i) formulating
and solving the two distinct problems originated by the above split and (ii) guaranteeing
convergence of the global algorithm. The result has been more than twenty feasibility pump
variants which have been computationally tested on a large number of MINLP instances
from the literature to assert the viability of FP both as a stand-alone approximation algorithm
and as a primal heuristic within a global optimization solver. Four especially interesting of
these variants have been discussed in detail and extensive results have been presented on a
set of 65 “hard” instances. The results show that feasibility pumps are indeed successful in
finding feasible solutions for nonconvex MINLPs.

Acknowledgments

One of the authors (LL) is grateful for the following financial support: ANR 07-JCJC-0151
“ARS”and 08-SEGI-023 “AsOpt”; Digiteo Emergence “ARM”, Emergence “PASO”, Chair
“RMNCCO”; Microsoft-CNRS Chair “OSD”. The remaining three authors are grateful to
the other author (LL) for not making them feel too “poor”.

References

1. T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Optimization, 4:77–86, 2007.
2. F.A. Al-Khayyal and H.D. Sherali. On finitely terminating branch-and-bound algorithms for some global

optimization problems. SIAM Journal of Optimization, 10(4):1049–1057, 2000.

16

3. H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Alternating minimization and projection methods for
nonconvex problems. 0801.1780v2[math.oc], arXiv, 17 Jan 2008.

4. E. Balas and R. Jeroslow. Canonical cuts on the unit hypercube. SIAM Journal on Applied Mathematics,
23(1):61–69, 1972.

5. P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds tightening techniques for
non-convex MINLP. Optimization Methods and Software, 24(4):597–634, 2009.

6. T. Berthold and A. Gleixner. Undercover — primal minlp heuristic. In P. Bonami, L. Liberti, A. Miller,
and A. Sartenaer, editors, Proceedings of the European Workshop on Mixed-Integer Nonlinear Program-
ming, pages 103–113, Marseille, 2010. Université de la Méditerranée.

7. P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot. A feasibility pump for mixed integer nonlinear
programs. Mathematical Programming, 119(2), 2009.

8. P. Bonami and J. Gonçalves. Primal heuristics for mixed integer nonlinear programs. Technical Report
RC24639, IBM, 2008.

9. P. Bonami and J. Lee. BONMIN user’s manual. Technical report, IBM Corporation, June 2007.
10. M. Bruglieri and L. Liberti. Optimal running and planning of a biomass-based energy production process.

Energy Policy, 36:2430–2438, 2008.
11. COIN-OR. Introduction to IPOPT: A tutorial for downloading, installing, and using IPOPT, 2006.
12. C. D’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi. Experiments with a feasibility pump approach

for nonconvex MINLPs. In P. Festa, editor, Symposium on Experimental Algorithms, volume 6049 of
LNCS, Heidelberg, 2010. Springer.

13. C. D’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi. On interval subgradient and no-good cuts. Oper-
ations Research Letters, accepted.

14. M. Duran and I. Grossmann. An outer-approximation algorithm for a class of mixed-integer nonlinear
programs. Mathematical Programming, 36:307–339, 1986.

15. M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Programming, 104(1):91–104,
2005.

16. R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer approximation. Mathe-
matical Programming, 66:327–349, 1994.

17. R. Fourer, D. Gay, and B. Kernighan. AMPL: A Modeling Language for Mathematical Programming,
2nd edn. Duxbury Press/Brooks/Cole Publishing Co., Florence, KY, USA, 2003.

18. L. Grippo and M. Sciandrone. On the convergence of the block nonlinear Gauss-Seidel method under
convex constraints. Operations Research Letters, 26:127–136, 2000.

19. P. Hansen and N. Mladenović. Variable neighbourhood search: Principles and applications. European
Journal of Operations Research, 130:449–467, 2001.

20. ILOG. ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly, France, 2008.
21. L. Liberti. Writing global optimization software. In L. Liberti and N. Maculan, editors, Global Opti-

mization: from Theory to Implementation, page 211262. Springer, Berlin, 2006.
22. L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in mathematical programming: A computational

approach. In A. Abraham, A.-E. Hassanien, P. Siarry, and A. Engelbrecht, editors, Foundations of Com-
putational Intelligence Vol. 3, number 203 in Studies in Computational Intelligence, pages 153–234.
Springer, Berlin, 2009.

23. L. Liberti and M. Dražic. Variable neighbourhood search for the global optimization of constrained
NLPs. In Proceedings of GO Workshop, Almeria, Spain, 2005.

24. L. Liberti, N. Mladenović, and G. Nannicini. A good recipe for solving MINLPs. In V. Maniezzo,
T. Stützle, and S. Voß, editors, Hybridizing metaheuristics and mathematical programming, volume 10
of Annals of Information Systems, pages 231–244, New York, 2009. Springer.

25. G. Nannicini and P. Belotti. Local branching for minlps. Technical Report Working paper, CMU, 2009.
26. G. Nannicini and P. Belotti. Rounding-based heuristics for nonconvex minlps with binary variables.

Technical report, Working paper, 2009.
27. F. Schoen. Two-phase methods for global optimization. In P.M. Pardalos and H.E. Romeijn, editors,

Handbook of Global Optimization, volume 2, pages 151–177. Kluwer Academic Publishers, Dordrecht,
2002.

28. P. Tseng. Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization.
Journal of Optimization Theory and Applications, 109(3):475–494, 2001.

29. H. Tuy. Convex Analysis and Global Optimization. Kluwer Academic Publishers, Dordrecht, 1998.
30. S.A. Vavasis. Nonlinear Optimization: Complexity Issues. Oxford University Press, Oxford, 1991.

17

Table 3 Comparing the four FP variants, detailed results.

FP-1 FP-2 FP-3 FP-4
instance value time it.s value time it.s value time it.s value time it.s
beuster ++ ++ ++ ++ ++ ++ - 7,200 28 ++ ++ ++

csched2a -102,002.02 5 2 -102,867.73 4 2 ++ ++ ++ -112,174.73 624 2
csched2 -120,042.73 138 2 -120,066.02 241 2 - 7,200 41 ++ ++ ++

deb10 ++ ++ ++ ++ ++ ++ 223.29 25 14 ++ ++ ++
deb6 234.78 197 29 237.11 4 4 290.90 7 2 235.81 9 4
deb7 411.00 139 4 345.76 10 3 419.78 218 8 451.05 13 2
deb8 8,453,005,065.59 23 2 185,839,836.37 2 1 8,453,005,005.71 30 1 416,332.32 3 1
deb9 444.67 33 2 425.34 16 4 444.67 39 1 438.39 59 2
detf1 11,497.56 368 2 15,976.03 131 2 8,455.75 961 1 15,976.03 731 2

eg all s 223.14 27 3 100,003.77 52 5 94,165.69 10 1 ++ ++ ++
eg disc2 s 65,822.96 7 1 100,004.34 5 1 65,822.96 7 1 100,004.34 5 1
eg disc s 94,165.42 8 1 100,003.69 7 1 94,165.42 8 1 100,003.69 7 1

eg int s 94,167.12 10 1 100,005.46 7 1 94,167.12 10 1 100,005.46 7 1
fo8 ar25 1 994,207.06 185 124 - 7,200 6 - 7,200 3,211 - 7,200 2
fo8 ar3 1 994,235.33 784 367 - 7,200 6 - 7,200 3,210 - 7,200 2

fo8 894,678.42 9 8 1,400,000.00 1,543 533 - 7,200 3,110 1,400,000.00 860 444
fo9 ar2 1 1,136,279.49 1,286 167 - 7,200 8 - 7,200 2,619 - 7,200 2

fo9 ar25 1 1,136,997.73 635 97 - 7,200 14 - 7,200 2,620 - 7,200 2
fo9 ar4 1 9,959.68 202 68 1,599,990.28 4,212 699 - 7,200 2,616 - 7,200 2
fo9 ar5 1 1,428,148.20 17 2 1,599,993.97 14 2 - 7,200 2,610 - 7,200 2

fo9 1,006,964.21 61 32 1,600,000.00 221 153 - 7,200 2,552 1,600,000.00 1,387 657
johnall -201.15 615 2 -201.29 614 2 -201.16 2 2 -221.92 618 2
lop97ic - 7,200 9 - 7,200 120 - 7,200 94 - 7,200 13

mbtd 91.33 4,266 2 98.53 4,045 2 - 7,200 3 1,000,005.67 5,834 2
nuclear104 - 7,200 2 ++ ++ ++ - 7,200 2 ++ ++ ++
nuclear10a - 7,200 2 - 7,200 5 - 7,200 3 - 7,200 4
nuclear10b - 7,200 2 - 7,200 4 - 7,200 2 - 7,200 3
nuclear14a -1.09 1,602 3 -1.11 2,641 173 - 7,200 38 - 7,200 14
nuclear14b -1.10 646 2 -1.10 686 7 - 7,200 34 -1.09 1,922 81
nuclear14 -1.12 1,645 3 -1.12 847 15 - 7,200 107 - 7,200 14

nuclear24a -1.09 1,602 3 -1.11 2,730 173 - 7,200 38 - 7,200 14
nuclear24b -1.05 2,626 4 -1.09 1,584 59 - 7,200 35 -1.09 1,959 81
nuclear24 -1.12 1,655 3 -1.12 1,649 51 - 7,200 101 - 7,200 14

nuclear25a -1.06 6,501 8 - 7,200 372 - 7,200 39 - 7,200 14
nuclear25b -0.99 1,666 3 -1.05 707 8 - 7,200 33 - 7,200 19
nuclear49a - 7,200 8 -1.11 6,266 67 - 7,200 15 - 7,200 12
nuclear49b -1.06 4,367 4 -1.13 4,980 27 - 7,200 8 - 7,200 34
nuclear49 -1.14 1,165 2 - 7,200 13 - 7,200 5 - 7,200 11
nuclearva -1.01 133 2 -1.01 244 2 -1.01 496 35 - 7,200 71
nuclearvb -1.03 614 2 -1.02 710 3 -1.01 1,107 181 -1.02 613 2
nuclearvc -1.00 2,064 6 -0.99 110 4 -0.99 1,702 149 - 7,200 51

nvs08 24,116.94 0 1 24,119.23 1 1 24,116.94 0 1 24,119.23 0 1
nvs20 146,475,177.22 0 1 138,691,481.67 0 1 146,475,177.22 0 1 138,691,481.67 0 1
nvs24 -342.20 1 4 -536.20 1 4 -517.80 0 2 - 7,200 2

o8 ar4 1 5,822,973.45 22 10 8,199,969.73 736 236 - 7,200 3,214 - 7,200 2
o9 ar4 1 6,877,522.82 198 59 8,199,964.62 6,206 698 - 7,200 2,611 - 7,200 2

qapw 468,078.00 372 2 460,118.00 637 2 - 7,200 21 464,259.68 684 2
saa 2 11,497.56 377 2 15,976.03 252 2 8,455.75 978 2 15,976.03 721 2

space25a 661.97 376 3 650.69 245 18 - 7,200 124 1,124.32 612 2
space25 661.97 413 3 650.69 773 18 - 7,200 45 1,124.38 619 2

space960 24,070,000.00 3,629 7 - 7,200 7 - 7,200 8 - 7,200 8
super1 ++ ++ ++ ++ ++ ++ - 7,200 18 - 7,200 2
super2 ++ ++ ++ ++ ++ ++ - 7,200 18 - 7,200 2
super3 ++ ++ ++ ++ ++ ++ - 7,200 18 - 7,200 2

super3t - 7,200 18 - 7,200 19 - 7,200 20 ++ ++ ++
tln12 - 7,200 14 - 7,200 10 - 7,200 2,403 - 7,200 2
tls12 - 7,200 10 - 7,200 10 - 7,200 445 - 7,200 9
tls2 5.30 720 6 5.30 1 5 - 7,200 6,569 ++ ++ ++
tls5 - 7,200 24 22.50 58 21 - 7,200 2,783 - 7,200 100
tls6 - 7,200 9 - 7,200 26 - 7,200 2,226 - 7,200 17
tls7 - 7,200 9 37.80 2,892 38 - 7,200 1,464 - 7,200 8

uselinear 1,951.37 188 1 227,751.06 47 1 1,951.37 187 1 1,951.37 48 1
var con10 475.36 449 54 463.17 12 5 562.62 29 4 ++ ++ ++
var con5 397.21 110 16 315.16 6 3 434.66 21 3 ++ ++ ++

waste 62,025.78 50 1 306,239.04 19 1 62,025.78 50 1 306,232.46 70 2

