BFO: a simple "brute-force" optimizer and its self optimization

Philippe Toint

Department of Mathematics, University of Namur, Belgium

(philippe.toint@fundp.ac.be)

EWMINLP 2010, Marseille, April 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The problem

We consider the unconstrained nonlinear programming problem:

minimize f(x)

for $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$.

Important special case: the nonlinear least-squares problem

Additional constraints:

- there may be bounds on the variables
- derivatives are unavailable
- objective function possibly nonsmooth
- some variables can only assume discrete values

Motivation: parameter tuning in algorithm design (Audet-Orban), but many other examples...

Direct methods for optimization

A long history of direct search methods, including:

- Hookes-Jeeves, Nelder-Mead
- Coope-Price
- Dennis, Torczon, Lewis, Trosset (GPS)
- Dennis, Audet, Abramson (MADS).

This is one more of them

A very simple version:

BFO, a Brute-Force Optimizer

Main features: (not really original)

- Minimizes on progressively finer grids
- Some grid spacing remains fixed to user-specified discrete values
- Only for Local minimization...

But also

- Attempts to learn from convergence history
- Includes some elements of random search
- User-friendly interface

э

→ Ξ →

Image: A matrix

3

3

∃ ► < ∃ ►</p>

3

∃ ► < ∃ ►</p>

3

→ < ∃ →</p>

-

3

→ < ∃ →</p>

-

-

Image: Image:

3

3

→ < ∃ →</p>

-

3

▶ < ∃ >

-

3

▶ < ∃ >

Philippe Toint (Namur)

3

3

3

3

3

Weaknesses and algorithmic "solutions" (1)

• All compass points evaluated at each iteration

- stop evaluating as soon as sufficient reduction is obtained
- (suitable ordering of search directions)

• Painful zigzag crawling when axis not suitable

- align axis on a grid with progress direction on previous grid (+ random complement)
- define progress on a user-defined number of past iterations (inertia)
- (independent scale for each variable)

Weaknesses and algorithmic "solutions" (2)

- Compute function at infeasible points
 - keep track of active and nearly-active bound constraints
- Slow progress on fine grids
 - expand the (continuous) grid on "successful iterations"
- Minima in neighbouring discrete subspaces not close to each other
 - recursively explore a local tree of discrete subspaces
 - keep track of record value in each such subspace to avoid re-exploration

Implementation features:

- check-pointing at user-specified frequency
- norms of vector functions t(f(x))
- allows objective functions with user-defined parameters
- allows partial objective computations
- allows randomized termination test
- provides a FD estimate of the (projected) gradient's norm (in the continuous variables) at termination
- very flexible keyword-based calling sequence

BFO: the Brute-Force Optimizer

User may specify (amongst others):

- grid shrinking/expansion factors
- inertia for defining progress directions
- initial scale in continuous variables
- local tree-search strategy (depth-first vs breadth-first)
- max conditioning for sampling gradient descent

How best choose the algorithmic parameters?

- a set of 64 (uncs) + 64 (box) + 47 (mixed) test problems
- define objective function value

 $\phi_{BFO}(\text{params}) = \text{total number of evaluations to solve all problems}$

- choose (reasonable) initial default values
- simple idea: let BFO optimize for finding better values! (problem in 6 continuous and 2 discrete variables)

(D. Orban and Ch. Audet)

A robust approach (1)

DANGER : overfitting...

Investigate other formulations inspired by robust optimization (in continuous variables) (Idea also considered by A. Conn?)

• local sample S(params):

Consider varying each continuous algorithmic parameter by

$$-5\%$$
 -1% 0% $+1\%$ $+5\%$

around each tested value (percentage tunable)

local box

$$\mathcal{B}(\mathrm{params}) = \prod_{1}^{\#\mathrm{params}} [0.95 \,\mathrm{params}_i, 1.05 \,\mathrm{params}_i]$$

A robust approach (2)

Three "robust" formulations:

- progressively (and considerably) more expansive
- BFO may be used for both optimization levels (form. 2 & 3)
- maximization problem possibly approximate (moderately coarse stopping rule)

Philippe Toint (Namur)

On 3 test problems only: the optimization history

Philippe Toint (Namur)

EWMINLP April 2010 32 / 34

	shrink	decr.	max exp.	in.	scale	exp.	condlim
guess	0.1	0.00001	3	5	1	2.1	1.2
simple	0.05	0.56469	3	6	1	2.1	1.147526
sum	0.1	0.00001	3.200578	5	1.25	2.114963	1.0734592
$\max(\mathcal{S})$	0.05	0.00001	4.0626793	9	1.1787	1.99772	1.4533078
$\max(\mathcal{B})$	0.1	0.000001	3.258	6	1.25	2.1	1.2

Which is the most sensible?

Maybe max (\mathcal{B}) ?

More computations are on the way...

Conclusions

BFO

- yet another direct method for mixed integer local optimization
- further direct improvements under development (ordering, sample gradients, etc)
- simple compact implementation
- freely-available easy-to-use Matlab package
- useable for algorithm tuning
- more to do (constraints, use of structure, ...)

Optimization of algorithmic parameters

- four formulations proposed and (nearly) tested
- fully robust formulation most reasonable?

Thank you for your attention!

A new image reconstruction technique using the Linear Sampling Method in inverse-scattering problems

Philippe Toint (with M. Fares and S. Gratton)

Department of Mathematics, University of Namur, Belgium

(philippe.toint@fundp.ac.be)

EWMINLP 2010, Marseille, April 2010

(日) (四) (문) (문) (문)

The name of the game:

Discover the shape of hidden objects

- objects typically hidden in another medium (ground, water, body, ...)
- illuminate the objects by plane waves from "all" directions
- measure waves scattered (reflected) by the object in "all" directions
- reconstruct the object
The problem (2)

- 4 聞 と 4 直 と 4 画 と

3

The Linear Sampling Method (1)

The direct problem:

- $\bullet\,$ the hidden object ${\cal O}$ is given
- the incident plane wave

$$u^{inc}(x,d) = e^{ik\langle x,d \rangle} \quad d \in S$$

(k is the wave number)

• the PDE model: find $u^{s}(x, d)$ (the scattered wave) such that

$$\Delta u^s + k^2 u^s = 0$$
 (outside O)

with

$$u = u^{ins} + u^s$$
, $u = 0$ on ∂O

and

$$\lim_{r\to\infty}\frac{\partial u^s}{\partial r}-iku^s=0.$$

The Linear Sampling Method (2)

The inverse problem problem:

- $\bullet\,$ the hidden object ${\cal O}$ is given
- one knows the far-field u^{∞} such that

$$u(x,d) = \left[\frac{e^{ik\langle x,d\rangle}}{x}u^{\infty}\left(\frac{x}{\|x\|},d\right) + O\left(\frac{1}{x}\right)\right] \text{ when } \|x\| \to \infty$$

• assuming the same PDE model, find δO .

A 0-1 formulation:

Given u^{∞} , decide, for each $x \in \mathbb{R}^3$, whether $x \in \mathcal{O}$ or not.

For $\hat{x} = x/||x||$, define the far-field operator and equation

$$(\mathcal{F}g)(\hat{x}) \stackrel{\mathrm{def}}{=} \int_{\mathcal{S}} u^{\infty}(\hat{x},d)g(d)\,ds(d) = rac{1}{4\pi}e^{-ik\langle\hat{x},d
angle}$$

(the far-field pattern associated to the plane wave $e^{ik\langle \hat{x}, d
angle}$)

Finding g is ill-posed!

But (Colton) ...

$$egin{array}{ll} orall \epsilon & \exists g_\epsilon & \| \mathcal{F} g_\epsilon(\cdot, d) - rac{1}{4\pi} e^{-ik \langle \cdot, d
angle} \| \leq \epsilon \end{array}$$

The Linear Sampling Method (4)

The crucial property:

$$\lim_{z\in\mathcal{O},z\to\partial\mathcal{O}}\|g_{\epsilon}(\cdot,z)\|=\infty, \text{ and } \|g_{\epsilon}(\cdot,z)\|=\infty \text{ for } (z\in\mathbb{R}^{3}\setminus\mathcal{O})$$

For \mathcal{O} a sphere: compute the shape of \mathcal{O} from the level curves of $||g_{\epsilon}||$

7 / 15

Philippe Toint (Namur)

The Linear Sampling Method (5)

Approximate the far-field equation

$$\int_{\mathcal{S}} u^{\infty}(\hat{x},d) g(d) \, ds(d) = rac{1}{4\pi} e^{-ik \langle \hat{x},d
angle}$$

by its discretized form

$$\sum_{j=1}^{N} F_{\ell,j} g_j(z) = e^{-ik \langle d_\ell, z \rangle}$$

i.e.

$$Fg(z) = b^{\infty}(z) \quad (z \in \mathcal{B} \subset \mathbb{R}^3)$$

This is an underdetemined system! \Rightarrow regularization (ignore nullspace)

Regularizing the discretized far-field equation

Assume $F = U\Sigma V^*$. Well-known regularization techniques (Tikhonov-Morosov, TSVD, L-curve, GCV, ...) applicable if the Picard coefficients

 $\left\{\frac{u_{\ell}^*b^{\infty}(z)}{\sigma_{\ell}}\right\} \quad \mathsf{d}$

decrease to zero.

However,

Philippe Toint (Namur)

Operator perturbation and clustered eigenspace recovery

Use a different approach! Consider

$${\cal A}=Q^*\Lambda Q$$
 and $ar{{\cal A}}={\cal A}+t{\cal E}=ar{Q}^*ar{\Lambda}ar{Q}$

Choose $b = \sum_{j=1}^{n} \alpha_j q_j$. Then, after some analysis and for t small,

$$ar{q}_{\ell}^* b pprox lpha_{\ell} + t \sum_{j
eq \ell} lpha_j q_{\ell}^* E^* P_{\ell} (\lambda_{\ell} I_{n-1} - \Lambda_{\ell})^{-1} e_{j\ell}$$

where $P_{\ell} = Q$ minus its ℓ -th column.

 $|\bar{q}_\ell^*b|$ large whenever t is small, ℓ is the index of a clustered eigenvalue and b has a significant component along the cluster's eigenvectors

Note: A, Q or Λ may be unknown!

Philippe Toint (Namur)

Choose

$$ar{A} = FF^*$$
, and $tE = FF^* - F^\infty (F^\infty)^*$

and thus

$$ar{Q}=U$$
 and $|ar{q}^*_\ell b|=u^*_\ell b^\infty.$

 $|u_{\ell}^* b^{\infty}|$ large whenever ℓ is large, $||FF^* - F^{\infty}(F^{\infty})^*||$ is small and b^{∞} has a significant component along the (unknown) approximate nullspace of the far-field operator

(as observed)

reconstruct nullspace!

The SVD-tail algorithm

- Select T a d-dimensional subspace (approximately) spanned by the the d leftmost singular vectors of F
- 2 Compute $\{w_\ell\}$ a basis of \mathcal{T} and $\vartheta_\ell(z) = w_\ell^* b^\infty(z)$ $(\ell = 1, ..., d)$

Oefine

$$\psi_d(z) = \frac{1}{\|\vartheta(z)\|}$$

 $\psi_d(z)$ small for z outside $\mathcal O$ and large for z inside $\mathcal O$

Same as $g_{\epsilon}(z)$ but MUCH cheaper to evaluate (no full SVD)!

Use level curves of ψ_d to compute $\partial \mathcal{O}!$

(isovalue heuristic)

Illustration: the unknown objects

Illustration: the reconstruction of the plane

N = 1002, d = 5, 20, 35, 50, 65, 80

- Interesting (to me) 0-1 decision problem in 3D-space
- Efficient computaional scheme
- Uses level curves of a nullspace "indicator"
- Can this be extended to other such problems ?

Thank you for your attention!