
Proceedings of the European
Workshop on Mixed Integer

Nonlinear Programming

12-16 April 2010 - CIRM - Marseille - France

Pierre Bonami 1

Leo Liberti 2

Andrew J. Miller 3

Annick Sartenaer 4

1LIF, Université de la Méditerranée, Marseille, France. pierre.bonami@lif.univ-mrs.fr
2LIX, École Polytechnique, Palaiseau, France. liberti@lix.polytechnique.fr
3IMB, Université de Bordeaux 1, France. andrew.miller@math.u-bordeaux1.fr
4Dept. of Maths, Université de Namur, Belgium. annick.sartenaer@fundp.ac.be



i

We are grateful to our sponsors

We were able to keep the registration for EWMINLP 2009 free of charge due to
generous contributions of our sponsors. The organizing committee wishes to grate-
fully acknowledge the financial support of our sponsors, listed below. We also want
to warmly thank CIRM for welcoming and supporting this conference. Finally we
would like to thank the LIF staff for their help in setting up the conference.

IBM Research

LIX, École Polytechnique

LIF, Marseille

Univ. de la Méditéranée



ii

Conference schedule

4/12/2010 Mon 4/13/2010 Tue 4/14/2010 Wed

0850-0900 Opening
0900-0945 Linderoth 0900-0945 Leyffer 0900-0945 Wiegele
0945-1015 Bienstock 0945-1015 Exler 0945-1030 Piccialli
1015-1045 coffee 1015-1045 coffee 1030-1100 coffee
1045-1130 Grossmann 1045-1130 Toint 1100-1145 Malick
1130-1200 Nannicini 1130-1200 Gentile 1145-1230 Sotirov
1200-1230 discussion 1200-1230 discussion afternoon free
1230-1400 lunch 1230-1400 lunch
1400-1445 Belotti 1400-1445 Adjiman
1445-1515 coffee 1445-1515 coffee
1515-1600 Westerlund 1515-1600 Waechter
1600-1645 Tawarmalani 1600-1630 Guignard
from 1700 posters/cocktail 1630-1700 discussion

Thu 4/16/2010 Fri 4/15/2010

0900-0945 Kocvara 0900-0945 Lee
0945-1015 Sager 0945-1015 Gleixner
1015-1045 coffee 1015-1045 coffee
1045-1130 Messine 1045-1130 Anstreicher
1130-1200 Fortz 1130-1200 D’Ambrosio
1200-1230 discussion 1200-1230 discussion

1230-1400 lunch 1230-1400 lunch
1400-1445 Lasserre 1400-1445 Weismantel
1445-1515 coffee 1445-1515 coffee
1515-1545 Martin-Campo 1515-1520 Closing
1545-1630 Lodi
1630-1700 discussion

http://sites.google.com/site/ewminlp/



iii

Preface

The EWMINLP workshop establishes itself as the second of a series, the first having
been the 2008 IMA MINLP workshop, co-organized by Jon Lee and Sven Leyffer in
Minneapolis, where all of the co-editors of this volume met. We all retain fond mem-
ories of that wonderful experience: the high scientific standards, Jeff Linderoth’s
opening talk on MINLP and the Star Wars saga (including the wonderful remark
from the audience, “Couldn’t you use the source?”), but most of all the endless
pitchers of high quality beers from minnesotan microbreweries. The only trouble
with the IMA MINLP workshop was the outside temperature, set well below freez-
ing in November. For the present workshop we decided to keep most of the good
features, but to set the scenery in a landscape of staggering beauty, just outside
Marseille, France, at a time where the temperature should spare us from freezing.
From the scientific point of view we also decided to make the workshop somewhat
more open, calling for a limited number of contributed talks. As to the beer, we
are well-funded, and we promise to be well-stocked by the opening session.

P. Bonami
L. Liberti
A. Miller

A. Sartenaer

Marseille, March 2010





Contents

PART 1
Invited Lectures 1

A comparative study of molecular design formulations 3
by Adjiman

Comparing convex relaxations for QCQP 5
by Anstreicher

Inequalities for multilinear sets 13
by Belotti, Miller, Namazifar

Using SDP for Solving MIQP 19
by Buchheim, Wiegele

Feasibility pumps for MINLPs 25
by D’Ambrosio, Frangioni, Liberti, Lodi

Experiments with the Perspective Reformulation 27
by Jeon, Linderoth

Can PENNON be useful for global optimization? 31
by Kocvara

A “joint+marginal” algorithm 33
by Lasserre, Phan Thanh

Local search in nonlinear combinatorial optimization 43
by Lee

MINLP Branching Techniques 45
by Leyffer

Solving convex bound constraints MINLPs 57
by Liuzzi, Mattia, Palagi, Piccialli

Computing dense subgraphs with SDP 61
by Malick, Roupin

IBBA: Exact Global Optimization Software 65
by Messine

v



vi

Strengthening Lower Bounds 67
by Ruiz, Grossmann

Improved SDP bounds for QAP with symmetry 73
by Sotirov

Polyhedrality and Inclusion Certificates in Convexification 77
by Tawarmalani

Two problems invoving discrete variables 81
by Toint, Gratton, Fares

An NLP Algorithm Using Iterative Linear Solvers 83
by Wächter

Complexity of Nonlinear Discrete Parametric Optimization 85
by Weismantel

Global Optimization of Signomial Programming Problems 89
by Westerlund, Lundell

PART 2
Contributed Lectures 93

Collision avoidance for the ATM problem 95
by Alonso-Ayuso, Escudero, Martin-Campo

Undercover – Primal MINLP Heuristic 103
by Berthold, Gleixner

Eigenvalue techniques for nonconvex problems 113
by Bienstock

Nonlinear Knapsack Problem 115
by D’Ambrosio, Martello

Outer Approximation based on mixed-integer SQP 119
by Exler, Lehmann, Schittkowski

Branch-and-price for convex MINLP 131
by Fortz, Labbé, Poss

Projected Perspective Reformulations for MIQP problems 139
by Frangioni, Gentile, Grande, Pacifici

Convex Hull Relaxation for nonlinear integer programs 149
by Guignard, Ahlatcioglu

Rounding-based heuristics for nonconvex MINLPs 159
by Nannicini, Belotti

Combinatorial Integral Approximation 169
by Sager, Jung, Kirches



vii

PART 3
Posters 171

On a mixed 0–1 separable nonlinear model for water scheduling 173
by Almiñana, Escudero, Landete, Monge, Rabasa, Sánchez-Soriano

Extending SCIP for solving MIQCPs 181
by Berthold, Gleixner, Heinz, Vigerske

Convex reformulation of MIQPs: a computational study 197
by Billionnet, Elloumi, Lambert

rRLT for polynomial programming 205
by Cafieri, Hansen, Létocart, Liberti, Messine

Hedging American Options by Mixed-Integer Cone Optimization 209
by Camci, Pınar

Formulation symmetries in circle packing 219
by Costa, Hansen, Liberti

Weighted Biclique Completion via CP-SDP Randomized Rounding 223
by Gualandi, Malucelli

A Semidefinite Relaxation for the QCLP 231
by Kakhki, Moghadas

Cutting Planes for MIQP Problems 237
by Lehmann

SOCs for MINLPs 243
by Mahajan, Munson

Tightening the Linear Relaxation of an MINLP using CP 245
by Mouret, Grossmann, Pestiaux

Using DRL* relaxations for QCP-Optimization 249
by Minoux, Ouzia

A t-linearization scheme to exactly solve QKP 251
by Rodrigues, Quadri, Michelon, Gueye

Optimization to Measure Performance 261
by Sager, Barth, Holger, Diedam, Engelhart, Funke

MINLP model and Lagrangian heuristic for the newsvendor problem 271
by Zhang





PART 1

Invited Lectures





1

A comparative study of molecular design
formulations based on Generalized

Disjunctive Programming

Claire Adjiman

Centre for Process Systems Engineering
Department of Chemical Engineering

Imperial College London
London, SW7 2AZ, United Kingdom

c.adjiman@imperial.ac.uk

Keywords: computer-aided molecular design, generalized disjunctive program-
ming.

The design of mixtures, e.g. optimal product formulations or solvents in the phar-
maceutical and personal care industries, is an important and challenging problem
[1]. The problem has traditionally been posed as a Mixed-Integer Nonlinear Pro-
gramming problem in which an optimal molecular structure is sought based on a
performance metric and set of constraints. The molecule is built based on a set of
atom groups which are constrained to meet chemical feasibility constraints. The
problem is typically highly combinatorial: there can be several thousand molecular
structures in the feasible region defined by the chemical feasibility constraints [2].
In addition, at the heart of the model, one often finds highly nonlinear equations
that relate the structure of the molecule, as described by integer variables, to its
physical properties. For instance, it may be necessary to solve phase equilibria
equations. Finally, the optimisation of mixtures is often of interest. In this case,
the composition of the mixture becomes an additional, continuous, design variable
[3, 4]. Even when the components of the mixture are known a priori, the problem
is highly combinatorial and nonlinear, due to the complex relationships between
composition, structure and physical properties.

These difficulties have hampered the formulation and solution of the mixture
design problem. In this paper, we present novel formulations of the mixture design
problem based on Generalized Disjunctive Programming (GDP) [5, 6] and demon-
strate the effectiveness of this approach on case studies. GDP offers a natural way to
formulate the problem. We follow a systematic approach, considering increasingly
complex formulations: we start with mixtures with a fixed number of components

3



4 Adjiman

and progress to optimise both the number of components in the mixture as well as
the components themselves.

References

1. L. E. K. Achenie, R. Gani, and V. Venkatasubramanian, editors. Computer-
Aided Molecular Design: Theory and Practice. Elsevier Science, Amsterdam,
2003.

2. M. Folić, C. S. Adjiman, and E. N. Pistikopoulos. Design of solvents for optimal
reaction rate constants . AIChE Journal, 53:1240–1256, 2007.

3. A. T. Karunanithi, L. E. K. Achenie, and R. Gani. A new decomposition-
based computer-aided molecular/mixture design methodology for the design
of optimal solvents and solvent mixtures. Industrial & Engineering Chemistry
Research, 44(13):4785–4797, 2005.

4. A. T. Karunanithi, L. E. K. Achenie, and R. Gani. A computer-aided molec-
ular design framework for crystallization solvent design. Chemical Engineering
Science, 61(4):1247–1260, 2006.

5. S. Lee and I. E. Grossmann. New algorithms for nonlinear generalized disjunc-
tive programming. Computers & Chemical Engineering, 24(9-10):2125–2141,
2000.

6. S. Lee and I. E. Grossmann. Logic-based modeling and solution of nonlin-
ear discrete/continuous optimization problems. Annals of Operations Research,
139(1):267–288, 2005.



2

Comparing convex relaxations for
Quadratically Constrained Quadratic

Programs

Kurt M. Anstreicher

Department of Management Sciences,
University of Iowa,

Iowa City, IA 52242 USA

kurt-anstreicher@uiowa.edu

Abstract

We consider convex relaxations for the problem of minimizing a (pos-
sibly nonconvex) quadratic objective subject to (possibly nonconvex)
quadratic constraints and simple bounds on the variables. We show
that the standard approach of replacing the objective and constraint
functions with their convex envelopes is dominated by an alternative
methodology based on convexifying the range of the quadratic form
`

1
x

´`

1
x

´T
as the variables x vary within their bounds. We also show

that the use of “αBB” underestimators as computable estimates of
convex lower envelopes is dominated by the use of a relaxation of the
convex hull of the quadratic form that imposes semidefiniteness and
linear constraints on diagonal terms.
Keywords: Quadratically constrained quadratic programming, con-
vex envelope, semidefinite programming.

1. Two convex relaxations for QCQP

We consider a quadratically constrained quadratic programming (QCQP) problem
of the form

(QCQP) z∗ = min f0(x)

s.t. fi(x) ≤ bi, i = 1, . . .m

0 ≤ x ≤ e,
where fi(x) = xTQix+ cTi x, i = 0, 1, . . . ,m, each Qi is an n×n symmetric matrix,
and e ∈ ℜn is the vector with each component equal to one. In the case that
Qi � 0 for each i, QCQP is a convex programming problem that can be solved in

5



6 Anstreicher

polynomial time, but in general the problem is NP-Hard. QCQP is a fundamental
problem that has been extensively studied in the global optimization literature; see
for example [6] and references therein.

A common approach to obtaining a lower bound for a nonconvex instance of
QCQP is to somehow convexify the problem. In this paper we compare several
different convexification techniques. One standard methodology is to replace each

function fi(·) in the problem specification with its convex lower envelope f̂i(·). We

refer to the resulting convex relaxation of QCQP as Q̂CQP, and use ẑ to denote

the solution value in Q̂CQP. In the global optimization literature it is sometimes

suggested that Q̂CQP is the “best possible” convex relaxation of QCQP, although

ẑ may not be computable because the required convex lower envelopes f̂i(·) may
be impossible to obtain.

A completely different approach to convexifying QCQP is based on linearizing
the problem by adding additional variables. LetX denote a symmetric n×nmatrix.
Then QCQP can be written

(QCQP) z∗ = min Q0 •X + cT0 x

s.t. Qi •X + cTi x ≤ bi, i = 1, . . .m

0 ≤ x ≤ e, X = xxT .

Written in the above form, QCQP is a linear problem except for the quadratic
equality constraints X = xxT . A convexification of the problem can then be given
in terms of the set

QPBn = Co

{

(

1

x

)(

1

x

)T

: 0 ≤ x ≤ e
}

,

where Co{·} denotes the convex hull. Using QPBn, we obtain a convex relaxation

(Q̃CQP) z̃ = min Q0 •X + cT0 x

s.t. Qi •X + cTi x ≤ bi, i = 1, . . .m

Y (x,X) ∈ QPBn,

where

Y (x,X) =

(

1 xT

x X

)

.

In this section we will demonstrate that the convex relaxation Q̂CQP cannot

be tighter than Q̃CQP; in other words, it is always true that ẑ ≤ z̃. To do this we
will show that there is a simple relationship between the convex lower envelopes

used in Q̂CQP and the linearized representations of the objective and constraint

functions used in Q̃CQP.

Theorem 1. For 0 ≤ x ≤ e, let f(x) = xTQx + cTx, and let f̂(·) be the convex

lower envelope of f(·). Then f̂(x) = min{Q •X + cTx : Y (x,X) ∈ QPBn}.

Proof. For 0 ≤ x ≤ e, let g(x) = min{Q•X+ cTx : Y (x,X) ∈ QPBn}. Our goal

is to show that f̂(x) = g(x). To do this we first show that g(·) is a convex function

with g(x) ≤ f(x), 0 ≤ x ≤ e, implying that g(x) ≤ f̂(x).



Comparing convex relaxations for QCQP 7

Assume that for i ∈ {1, 2}, 0 ≤ xi ≤ e and g(xi) = Q • Xi + cTxi, where
Y (xi,Xi) ∈ QPBn. For 0 ≤ λ ≤ 1, let

x(λ) = λx1 + (1− λ)x2, X(λ) = λX1 + (1− λ)X2.

Then Y (x(λ),X(λ)) = λY (x1,X1) + (1 − λ)Y (x2,X2) ∈ QPBn, since QPBn is
convex. It follows that

g(x(λ)) ≤ Q •X(λ) + cTx(λ) = λg(x1) + (1− λ)g(x2),

proving that g(·) is convex on 0 ≤ x ≤ e. The fact that g(x) ≤ f(x) follows
immediately from Y (x, xxT ) ∈ QPBn and Q • xxT + cTx = f(x).

It remains to show that f̂(x) ≤ g(x). Assume that g(x) = Q •X + cTx, where
Y (x,X) ∈ QPBn. From the definition of QPBn, there exist xi, 0 ≤ xi ≤ e, and

λi ≥ 0, i = 1, . . . , k,
∑k

i=1 λi = 1 such that

k
∑

i=1

xi = x,

k
∑

i=1

xi(xi)T = X.

It follows that

g(x) = Q •X + cTx

= Q •
(

k
∑

i=1

λix
i(xi)T )

)

+ cT

(

k
∑

i=1

λix
i

)

=
k
∑

i=1

λif(xi).

But f̂(·) is convex, and f̂(x) ≤ f(x), 0 ≤ x ≤ e, so

f̂(x) = f̂

(

k
∑

i=1

λix
i

)

≤
k
∑

i=1

λif̂(xi) ≤
k
∑

i=1

λif(xi) = g(x).

�

The claimed relationship between Q̃CQP and Q̂CQP is an immediate conse-

quence of Theorem 1. In particular, using Theorem 1, Q̂CQP could be rewritten
in the form

(Q̂CQP) ẑ = min Q0X0 + cTx

s.t. Qi •Xi + cTi x ≤ bi, i = 1, . . .m

Y (x,Xi) ∈ QPBn, i = 0, 1, . . . ,m,

so that Q̃CQP corresponds to Q̂CQP with the added constraints X0 = X1 = . . . =
Xm.

Corollary 1. Let ẑ and z̃ denote the solution values in the convex relaxations

Q̂CQP and Q̃CQP, respectively. Then ẑ ≤ z̃.
Corollary 1 indicates that the approach to approximating QCQP taken in

Q̃CQP has theoretical advantages over the more well-known methodology used

in Q̂CQP. However, it is important to recognize that both of these approaches
have practical limitations. In particular, both the problem of computing an exact



8 Anstreicher

convex lower envelope f̂(·) for a quadratic function f(·), and the problem of char-
acterizing QPBn, are intractable. For the latter problem a number of interesting
partial results are known. Important constraints that are valid for Y (x,X) ∈ QPBn

include:

(1) The constraints from the Reformulation-Linearization Technique (RLT)
[7],

{0, xi + xj − 1} ≤ xij ≤ {xi, xj}.
(2) The semidefinite programming (SDP) constraint Y (x,X) � 0 [8].
(3) Constraints on the off-diagonal components of Y (x,X) coming from the

Boolean Quadric Polytope (BQP) [5, 9]; for example, the triangle inequal-
ities for i 6= j 6= k,

xi + xj + xk ≤ xij + xik + xjk + 1,

xij + xik ≤ xi + xjk,

xij + xjk ≤ xj + xik,

xik + xjk ≤ xk + xij .

The relationship between the SDP and RLT constraints is discussed in [2]. In
fact for n = 2, the SDP and RLT constraints together give a full characterization of
QPB2 [3]. For n = 3 the triangle inequalities and RLT constraints fully characterize
the BQP, but these constraints combined with the SDP constraint do not give
a complete characterization of QPB3 [5]. An “extended-variable” description of
QPB3 obtained via a triangulation of the 3-cube is given in [3].

It is known that QPBn can be exactly represented using the cone of completely
positive matrices. To describe this representation it is convenient to define

Y +(x,X) =





1 xT (e− x)T

x X Z(x,X)
e− x Z(x,X)T S(x,X)



 ,

where S(x,X) = eeT −xeT −exT +X and Z(x,X) = xeT −X relax (e−x)(e−x)T

and x(e− x)T , respectively. It can then be shown [4] that

QPBn = {Y (x,X) : Y +(x,X) ∈ C2n+1},
where Ck is the cone of k×k completely positive matrices, that is, matrices that can
be written in the form V V T where V is a nonnegative k×p matrix. Unfortunately,
for k ≥ 5 there is no known complete description for Ck.

We close this section with an example that illustrates that the distinction be-

tween Q̃CQP and Q̂CQP is already sharp for n = 1. Consider the problem

min x2
1

s.t. x2
1 ≥ 1

2

0 ≤ x1 ≤ 1.

Written in the form of QCQP, the constraint x2
1 ≥ 1

2 is −x2
1 ≤ − 1

2 , and the convex

lower envelope of −x2
1 on [0, 1] is −x1. The relaxation Q̂CQP is then

min x2
1

s.t. −x1 ≤ − 1
2

0 ≤ x1 ≤ 1,



Comparing convex relaxations for QCQP 9

Figure 1. Set QPB1 for example

with solution value ẑ = 1
4 . The solution value for Q̃CQP is z̃ = z∗ = 1

2 . The

set QPB1 is depicted in Figure 1. Note that for x1 = 1
2 , Y (x1, x11) ∈ QPB1 for

x11 ∈ [ 14 ,
1
2 ]. The solution of Q̂CQP then corresponds to using x1 = 1

2 along with

x11 = 1
4 for the objective, and x11 = 1

2 for the single nonlinear constraint.

2. Two computable relaxations

As mentioned above, in general both Q̃CQP and Q̂CQP are intractable problems

due to the complexity of computing a convex lower envelope f̂(·), or the convex hull
QPBn. In this section we will compare two further relaxations that are computable

approximations of Q̃CQP and Q̂CQP.
For a quadratic function f(x) = xTQx + cTx defined on 0 ≤ x ≤ e, the well-

known “αBB” underestimator [1] is

fα(x) = xT (Q+ Diag(α))x+ (c− α)Tx,

where α ∈ ℜn
+ is chosen so that Q + Diag(α) � 0. Since fα(·) is convex, it is

immediate that fα(x) ≤ f̂(x), 0 ≤ x ≤ e. A further relaxation of Q̂CQP is then
given by the problem

(QCQPαBB) zαBB = min xT (Q0 + Diag(α0))x+ (c0 − α0)
Tx

s.t. xT (Qi + Diag(αi))x+ (ci − αi)
Tx ≤ bi, i = 1, . . .m

0 ≤ x ≤ e,
where each αi is chosen so that Qi + Diag(αi) � 0.

We will compare QCQPαBB with an approximation of Q̃CQP that imposes
some of the known constraints on QPBn mentioned in the previous section. In
particular, we will apply the semidefiniteness condition Y (x,X) � 0 together with



10 Anstreicher

the diagonal RLT constraints diag(X) ≤ x. Note that these conditions together
imply the original bound constraints 0 ≤ x ≤ e. The resulting relaxation is

(QCQPSDP) zSDP = min Q0 •X + cT0 x

s.t. Qi •X + cTi x ≤ bi, i = 1, . . .m

Y (x,X) � 0, diag(X) ≤ x.
The following theorem shows that there is a simple relationship between the

convexifications used to construct QCQPαBB and QCQPSDP.

Theorem 2. For 0 ≤ x ≤ e, let fα(x) = xT (Q + Diag(α))x + (c − α)Tx, where
α ≥ 0 and Q + Diag(α) � 0. Assume that Y (x,X) � 0, diag(X) ≤ x. Then
fα(x) ≤ Q •X + cTx.

Proof. Let Qα = Q+ Diag(α). Since Qα � 0,

fα(x) = (c− α)Tx+ min{Qα •X : X � xxT }
= min{Qα •X + (c− α)Tx : Y (x,X) � 0}
= min{Qα •X + (c− α)Tx : Y (x,X) � 0, diag(X) ≤ x},

the last because diag(X) ≤ x holds automatically for X = xxT , 0 ≤ x ≤ e. But
then Y (x,X) � 0 and diag(X) ≤ x imply that

fα(x) ≤ Qα •X + (c− α)Tx

= Q •X + cTx+ αT (diag(X)− x)
≤ Q •X + cTx.

�

The following immediate corollary of Theorem 2 confirms a relationship be-
tween QCQPαBB and QCQPSDP first conjectured by Jeff Linderoth (private com-
munication).

Corollary 2. Let zαBB and zSDP denote the solution values in the convex relax-
ations QCQPαBB and QCQPSDP, respectively. Then zαBB ≤ zSDP.

Considering the example at the end of section 1, (α1−1)x2
1 is convex for α1 ≥ 1.

Using α1 = 1, the problem QCQPαBB is identical to Q̂CQP and has solution value

zαBB = ẑ = 1
4 . The problem QCQPSDP is identical to Q̃CQP, and has solution

value zSDP = z∗ = 1
2 .

References

1. I.P. Androulakis, C.D. Maranas, and C.A. Floudas. αBB : A global optimization
method for general constrained nonconvex problems. J. Global Optim., 7:337–
363, 1995.

2. K.M. Anstreicher. Semidefinite programming versus the reformulation-
linearization technique for nonconvex quadratically constrained quadratic pro-
gramming. J. Global Optim., 43:471–484, 2009.

3. K.M. Anstreicher and S. Burer. Computable representations for convex hulls of
low-dimensional quadratic forms. Math. Prog., to appear, 2010.

4. S. Burer. On the copositive representation of binary and continuous nonconvex
quadratic programs. Math. Program., 120(2):479–495, 2009.



Comparing convex relaxations for QCQP 11

5. S. Burer and A.N. Letchford. On nonconvex quadratic programming with box
constraints. SIAM J. Optim., 20(2):1073–1089, 2009.

6. J. Linderoth. A simplicial branch-and-bound algorithm for solving quadratically
constrained quadratic programs. Math. Prog., 103:251–282, 2005.

7. H.D. Sherali and W.P. Adams. A Reformulation-Linearization Technique for
Solving Discrete and Continuous Nonconvex Problems. Kluwer, 1998.

8. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49–
95, 1996.

9. Y. Yajima and T. Fujie. A polyhedral approach for nonconvex quadratic pro-
gramming problems with box constraints. J. Global Optim., 13:151–170, 1998.





3

Valid inequalities for sets defined by
multilinear functions

Pietro Belotti1 Andrew Miller2 Mahdi Namazifar3

1 Lehigh University
200 W. Packer Ave

Bethlehem PA 18018, USA

belotti@lehigh.edu

2 Institut de Mathématiques de Bordeaux (IMB)
351 cours de la Libération

33405 Talence, France

Andrew.Miller@math.u-bordeaux1.fr

3 3239 Mechanical Engineering Building
1513 University Avenue

Madison WI 53706, USA

namazifar@wisc.edu

Abstract

We describe a class of valid inequalities for the bounded, nonconvex
set described by all points within a (n + 1)-dimensional hypercube
whose (n + 1)-st coordinate is equal to the product of the first n

coordinates, for any n ≥ 2. This set can be defined as Mn = {x ∈
Rn+1 : xn+1 = x1x2 · · ·xn, li ≤ xi ≤ ui∀i = 1, 2 . . . , n + 1}, with
li and ui constants. Approximating the convex hull of Mn through
linear inequalities is essential to a class of exact solvers for nonconvex
optimization problems, namely those which use Linear Programming
relaxations to compute a lower bound on the problem. Together with
the well-known McCormick inequalities, these inequalities are valid for
the convex hull of M2. There are infinitely many such inequalities,
given that the convex hull of M2 is not, in general, a polyhedron. The
generalization to Mn for n > 2 is straightforward, and allows us to
define strengthened relaxations for these higher dimensional sets as
well.
Keywords: nonconvex optimization, multilinear functions, convex
hull.

13



14 Belotti, Miller, Namazifar

1. Multilinear sets

Consider the following nonconvex, bounded set

Mn = {x ∈ Rn+1 : xn+1 =

n
∏

i=1

xi, ℓi ≤ xi ≤ ui, i = 1, 2 . . . , n+ 1},

where l and u are (n+ 1)-vectors. We assume 0 < ℓi < ui for all i = 1, 2 . . . , n+ 1.
The set Mn is nonconvex as the function ξn(x) =

∏n
i=1 xi is neither convex nor

concave – its epigraph epi(M) = {x ∈ Rn+1 : xn+1 ≥
∏n

i=1 xi, 0 < ℓi ≤ xi ≤ ui, i =
1, 2 . . . , n} and its hypograph hyp(M) = {x ∈ Rn+1 : xn+1 ≤

∏n
i=1 xi, 0 < ℓi ≤ xi ≤

ui, i = 1, 2 . . . , n} are nonconvex sets.
Assuming Mn is contained in the first orthant, trivial bounds for xn+1 are given

by
∏n

i=1 ℓi and
∏n

i=1 ui, respectively, and denoted by ℓ̄n+1 and ūn+1. In general,
ℓ̄n+1 ≤ ℓn+1 < un+1 ≤ ūn+1; in the remainder, we use the notation M⋆

n for the set
Mn where ℓn+1 = ℓ̄n+1 and un+1 = ūn+1.

We are interested in developing a convex superset Cn of Mn defined by a system
of linear inequalities, therefore we seek a polyhedral set Cn ⊇ Mn. Our interest is
motivated by the nonconvex Optimization problem

P : min{cx : x ∈ X},
where X is, in general, a nonconvex set. In order to solve problems like P to opti-
mality, one needs to implicitly enumerate all local optima, for instance by branch-
and-bound algorithms. The bounding algorithms in such approaches often relies
on a linear relaxation of the nonconvex problem [3, 4], thus benefiting from tighter
linear relaxations.

2. Linear inequalities for n = 2

Here we develop convex inequalities for the set M2 = {(x1, x2, x3) ∈ [l, u] : x3 =
x1x2}. Although this is the simplest case, many considerations generalize easily to
the case when n > 2.

2.1. Unbounded x3

The following linear relaxation of M⋆
2 was introduced by McCormick [2] and shown

to be its convex hull by Al-Khayyal and Falk [1]:

x3 ≥ ℓ2x1 + ℓ1x2 − ℓ1ℓ2
x3 ≥ u2x1 + u1x2 − u1u2

x3 ≤ ℓ2x1 + u1x2 − ℓ1u2

x3 ≤ u2x1 + ℓ1x2 − u1ℓ2,

and is depicted in Figure 1a for convenience. The shaded tetrahedron is the (poly-
hedral) convex hull, while M⋆

2 is shown in colors.

2.2. Nontrivial lower and upper bound for x3

We consider first a finite lower bound, ℓ3 > ℓ̄3 = ℓ1ℓ2. The darker area in Figure
1b shows the projection of M2 onto (x1, x2), that is, the set P2 = {(x1, x2) ∈ R2 :
ℓi ≤ xi ≤ ui, i = 1, 2, x1x2 ≥ ℓ3}. It is safe to assume here that ℓ3 ≤ ℓ1u2 and
ℓ3 ≤ u1ℓ2, as otherwise a valid lower bound for x1 (resp. x2) would be ℓ3/u2 > ℓ1
(resp ℓ3/u1 > ℓ2), or equivalently, the upper left (resp. the lower right) corner of the



Inequalities for multilinear sets 15

x3

x2

x1

(a) Convex hull of M⋆
2 .

0 x1

x2

ℓ1
u1

ℓ2

u2

x⋆
∇f |x⋆

(b) Projections of M2 with non-trivial
lower bound ℓ3.

Figure 1

bounding box in Figure 1b would be cut out by the convex set x1x2 ≥ ℓ3. Similarly
we assume that u3 ≥ ℓ1u2 and u3 ≥ u1ℓ2.

Projecting M2 onto (x1, x2) gives a convex set P2. Consider a point x⋆ on the
curve x1x2 = ℓ3 with ℓ1 ≤ x⋆

1 ≤ u1 and ℓ2 ≤ x⋆
2 = ℓ3/x

⋆
1 ≤ u2. The tangent to the

curve x1x2 = ℓ3 at x⋆ gives a linear inequality a1(x1 − x⋆
1) + a2(x2 − x⋆

2) ≥ 0, that
is valid for P2. The coefficients a1 and a2 are given by the gradient of the function
ξ2(x) = x1x2 at x⋆, i.e., a1 = ∂π

∂x1
|x⋆ = x⋆

2 and a2 = ∂π
∂x2
|x⋆ = x⋆

1. The lighter area
within the bounding box above the tangent line is the set of points satisfying the
above linear constraint, which we rewrite here:

(3.1) x⋆
2(x1 − x⋆

1) + x⋆
1(x2 − x⋆

2) ≥ 0.

As this inequality is valid within P2 and is independent from x3, it is also valid
for M2. We can lift it as follows: the inequality

(3.2) x⋆
2(x1 − x⋆

1) + x⋆
1(x2 − x⋆

2) + a(x3 − ℓ3) ≥ 0

is clearly valid for x3 = ℓ3. For it to be valid for M2,

g(a3) = min{x⋆
2(x1 − x⋆

1) + x⋆
1(x2 − x⋆

2) + a(x3 − ℓ3) : (x1, x2, x3) ∈M2} ≥ 0

must hold. It is easy to show that g(a3) = 0 if a ≥ 0 (a global optimum is given by
(x⋆

1, x
⋆
2)), hence a < 0 in all lifted inequalities (3.2).

We next show how to calculate a. First we will show how to get this coefficient
and then we will prove that the inequalities we get are not dominated by any other
valid inequality. To find the coefficient a in the inequality (3.2), intuitively we know
that the plane

(3.3) x⋆
2(x1 − x⋆

1) + x⋆
1(x2 − x⋆

2) + a(x3 − ℓ3) = 0

should touch the curve x1x2 = u3 at exactly one point and first we want to find this
point. Let’s call this point (x̄1, x̄2). If for a moment we disregard the bounds on x1

and x2, the fact that the plane (3.3) touches the curve (x̄1, x̄2) at exactly one point
means that the plane would be tangent to the curve x1x2 = u3 at that point. This
means that the gradient of the curve at (x̄1, x̄2) is parallel to the projection of the
normal to the plane onto the (x1, x2) space. The gradient of the curve x1x2 = u3 at



16 Belotti, Miller, Namazifar

(x̄1, x̄2) is (x̄2, x̄1) and the projection of the normal to the plane onto the (x1, x2)
space is (x⋆

2, x
⋆
1). As a result we will have:

(3.4) ∃α ∈ R : x̄2 = αx⋆
2, x̄1 = αx⋆

1.

But we know that x̄1x̄2 = u3, so we will have x̄1x̄2 = u3 = α2x⋆
1x

⋆
2 = α2ℓ3, and as

a result

(3.5) α =

√

u3

ℓ3
.

On the other hand we know that (x̄1, x̄2) is on the plane (3.3), which implies

x⋆
2(x̄1 − x⋆

1) + x⋆
1(x̄2 − x⋆

2) + a(u3 − ℓ3) = 0,

As a result,

(3.6) x⋆
2(αx

⋆
1 − x⋆

1) + x⋆
1(αx

⋆
2 − x⋆

2) + a(u3 − ℓ3) = 0.

By (3.5) and (3.6), the value for a is
2(1−

q

u3
ℓ3

)ℓ3

u3−ℓ3
.

Notice that the value of a does not depend on the value of x⋆
1 and x⋆

2 and is
less than zero. Intuitively this value for a will give a tight valid inequality for M2

if ℓ1 ≤ x̄1 ≤ u1 and ℓ2 ≤ x̄2 ≤ u2 (the proof will come later). But if (x̄1, x̄2) is not
in the domain of (x1, x2) we need to find a point on the curve x1x2 = u3 at which
the plane (3.3) touches the curve. Intuitively this point would be one of the end
points of the curve x1x2 = u3; ℓ1 ≤ x1 ≤ u1, ℓ2 ≤ x2 ≤ u2. In fact that point will
be the one which is closer to (x̄1, x̄2).

Again consider the curve x1x2 = u3. On this curve we know that:

x1 ≥
u3

u2
= l̄1; x2 ≥

u3

u1
= l̄2; x1 ≤

u3

ℓ2
= ū1; x2 ≤

u3

ℓ1
= ū2.

Then the real bounds over x1 and x2 on the curve x1x2 = u3 would be ℓ⋆1 ≤ x1 ≤ u⋆
1,

ℓ⋆1 = max (l̄1, ℓ1), and u⋆
1 = min (ū1, u1); ℓ

⋆
2 ≤ x2 ≤ u⋆

2, ℓ
⋆
2 = max (l̄2, ℓ2), and

u⋆
2 = min (ū2, u2). However, based on the assumptions on the upper bound of x3

(see Section 2.2)

(3.7) ℓ⋆1 =
u3

u2
; u⋆

1 = u1; ℓ⋆2 =
u3

u1
; u⋆

2 = u2.

As a result, the end points of the curve x1x2 = u3 in M2 are (u3

u2
, u2) and (u1,

u3

u1
).

It’s easy to see that if αx⋆
1 ≥ u1 and αx⋆

2 ≤ u3

u1
, the the right end point would be

(u1,
u3

u1
), and if αx1 ≤ u3

u2
and αx2 ≥ u2, the right end point would be (u3

u2
, u2). So

if αx⋆
1 ≥ u1 and αx⋆

2 ≤ u3

u1
and u1

α
≤ x⋆

1 ≤ ℓ3
ℓ2

, the plane (3.3) would touch the curve

x1x2 = u3 at (u1,
u3

u1
) and therefore we will have:

(3.8) x⋆
2(u1 − x⋆

1) + x⋆
1(
u3

u1
− x⋆

2) + a(u3 − ℓ3) = 0,

and as a result

(3.9) a =
x⋆

2(u1 − x⋆
1) + x⋆

1(
u3

u1
− x⋆

2)

ℓ3 − u3
.

On the other hand, if αx1 ≤ u3

u1
and αx2 ≥ u2 and ℓ1 ≤ x1 ≤ u3

αu2
, the plane (3.3)

would touch the curve x1x2 = u3 at (u3

u2
, u2) and we will have:

(3.10) x⋆
2(
u3

u2
− x⋆

1) + x⋆
1(u2 − x⋆

2) + a(u3 − ℓ3) = 0,



Inequalities for multilinear sets 17

hence,

(3.11) a =
x⋆

2(
u3

u2
− x⋆

1) + x⋆
1(u2 − x⋆

2)

ℓ3 − u3
.

0
x1

x2

ℓ1 u1

ℓ2

u2
(u3

u2
, u2)

(u1,
u3

u1
)( u3

αu2
, u2

α
)

(u1

α
, u3

αu1
)

(ℓ1,
ℓ3
ℓ1

)

( ℓ3
ℓ2
, ℓ2)

Figure 2

Now we need to deal with two other cases; ℓ3
ℓ2
≤ x⋆

1 ≤ u1, x
⋆
2 = ℓ2 and x⋆

1 = ℓ1,
ℓ3
ℓ1
≤ x⋆

2 ≤ u2. First consider the case which ℓ3
ℓ2
≤ x⋆

1 ≤ u1, x
⋆
2 = ℓ2. Intuitively we

can see that the plane which goes through the points ( ℓ3
ℓ2
, ℓ2, ℓ3), (u1, ℓ2, u1ℓ2), and

(u1,
u3

u1
, u3) gives an inequality which is valid for M2 and is not dominated by any

other inequality. Similarly for the second case in which x⋆
1 = ℓ1,

ℓ3
ℓ1
≤ x⋆

2 ≤ u2, the

plane which goes through the points (ℓ1,
ℓ3
ℓ1
, ℓ3), (ℓ1, u2, ℓ1u2), and (u3

u2
, u2, u3) gives

an inequality which is valid for M2 and is not dominated by any other inequality.
In summary, as can be seen in Figure 2, if u3

αu2
< x⋆

1 <
u1

α
and u3

αu1
< x⋆

2 <
u2

α
, then the point (x̄1, x̄2) (the point at which the plane (3.3) touches the curve

x1x2 = u3) will have u3

u2
< x̄1 < u1 and u3

u1
< x̄2 < u2. Otherwise, (x̄1, x̄2) happens

at either (u3

u2
, u2) or (u1,

u3

u1
).

References

1. F.A. Al-Khayyal and J.E. Falk. Jointly constrained biconvex programming.
Mathematics of Operations Research, 8:273–286, 1983.

2. G.P. McCormick. Nonlinear programming: theory, algorithms and applications.
John Wiley & sons, 1983.

3. E.M.B. Smith and C.C. Pantelides. Global optimisation of nonconvex MINLPs.
Computers & Chemical Engineering, 21:S791–S796, 1997.

4. M. Tawarmalani and N.V. Sahinidis. Global optimization of mixed-integer non-
linear programs: A theoretical and computational study. Mathematical Pro-
gramming, 99(3):563–591, 2004.





4

Using Semidefinite Programming for
Solving Non-Convex Mixed-Integer

Quadratic Problems

Christoph Buchheim1 Angelika Wiegele2

1 Technische Universität Dortmund
Vogelpothsweg 87

44227 Dortmund, Germany

christoph.buchheim@udo.edu

2 Alpen-Adria-Universität Klagenfurt
Universitätsstr. 65-67

9020 Klagenfurt am Wörthersee, Austria

angelika.wiegele@uni-klu.ac.at

Abstract

We present a semidefinite relaxation for non-convex quadratic mixed-
integer optimization problems. This relaxation yields tight bounds
and is computationally easy to solve for medium-sized instances, even
if variables are unbounded in which case the problem contains an infi-
nite number of constraints. These constraints are separated dynami-
cally. We use this approach as the bounding routine in an SDP based
branch-and-bound framework. In case of a convex objective function,
the bound of the SDP improves the bound of the continuous relax-
ation. Numerical experiments show that our algorithm performs very
well on various types of random instances.
Keywords: Semidefinite Programming, Mixed-Integer Quadratic Pro-
gramming.

1. Introduction

Semidefinite Programming has been successfully applied for solving various 0/1
optimization problems, most of them arising from applications in combinatorial
optimization [3]. Furthermore it has been used to solve quadratic problems with
box-constrained continuous variables, so-called BoxQP, see [5, 2].

We widen the area of using semidefinite relaxations for solving quadratic prob-
lems. Contrary to existing work, we can deal with any integrality condition and

19



20 Buchheim, Wiegele

not only 0/1. Furthermore we are able to handle integer and continuous variables
at the same time, i.e., our approach is capable of solving mixed-integer problems.

2. The Method

Let Q ∈ Sn denote a (not necessarily positive semidefinite) matrix. Moreover,
let l ∈ Rn and c ∈ R. We consider the following problem.

(4.1)
min x⊤Qx+ l⊤x+ c
s.t. x ∈ D1 × · · · ×Dn ,

where each Di is a closed set in R. For example, if Di = {−1, 1}, we obtain the
maximum cut problem, or if Di = Z with a convex objective function we obtain
the closest vector problem. However, Problem (4.1) is more general, e.g., one can
choose Di = {0} ∪ [1,∞). Note that it is allowed to choose all Di differently, so
that Problem (4.1) also contains the mixed-integer case.

Using the linearization function ℓ : Rn → Sn+1 defined as

ℓ(x) =
(

1
x

)(

1
x

)⊤

,

and the definition of

Q̃ =

(

c 1
2 l

⊤

1
2 l Q

)

,

which is indexed over {0, . . . , n}, we can rewrite Problem (4.1) as

(4.2)
min 〈Q̃, ℓ(x)〉
s.t. x ∈ D1 × · · · ×Dn .

Since the objective function in Problem (4.2) is linear in ℓ(x), we investigate the
convex set conv ℓ(D1×· · ·×Dn). To this end, we define P (Di) ⊆ R2 as the closure
of conv {(x, x2) | x ∈ Di}.

Using this definition and in order to use semidefinite programming to solve
Problem (4.1), we state the following

Theorem 4.1. Problem (4.1) is equivalent to

(4.3)

min 〈Q̃,X〉
s.t. (x0i, xii) ∈ P (Di) ∀i = 1, . . . , n

x00 = 1
rank(X) = 1

X � 0 .

Proof. Let X be a feasible solution of Problem (4.3). From x00 = 1, rank(X) = 1
and X � 0, we derive

X =
(

1
x

)(

1
x

)⊤

,

where x ∈ Rn. Hence, xii = x2
0i. With (x0i, xii) ∈ P (Di), this implies x0i ∈

Di, using the strict convexity of the function x0i 7→ x2
0i. Thus (x0i, . . . , x0n) is a

feasible solution for Problem (4.1). On the other hand, if x is a feasible solution
for Problem (4.1), then

X =
(

1
x

)(

1
x

)⊤

,



Using SDP for Solving MIQP 21

defines a feasible solution of Problem (4.3). Obviously, the objective function values
coincide. �

Note that the only non-convex constraint in Problem (4.3) is the rank-constraint.
Dropping this constraint leads to the SDP relaxation

(4.4)

min 〈Q̃,X〉
s.t. (x0i, xii) ∈ P (Di) ∀i = 1, . . . , n

x00 = 1
X � 0 .

If the pair (x0i, xii) arises from a positive semidefinite matrix, xii ≥ x2
0i always

holds. Hence, (x0i, xii) ∈ P (R) already follows from the positive semidefiniteness
of X.

In general, however, we need an infinite number of inequalities to model the
constraints (x0i, xii) ∈ P (Di) in Problem (4.4). By separating these inequalities
we can obtain the solution to this SDP efficiently. Such a separation algorithm is
possible, whenever we can solve the problems

• minDi ∩ [x0i,∞) and
• maxDi ∩ (−∞, x0i]

for given x0i. Thus, we obtain a solution of relaxation (4.4) by iteratively adding
inequalities and solving the resulting SDP by an interior point method.
Branch and Bound. In order to solve Problem (4.1) to optimality, we use the
SDP relaxation (4.4) in a branch-and-bound framework. Our branching decision is
motivated by the following

Observation 1. Let X ∈ S+
n+1 with x00 = 1. Then

xii = x2
0i for all i = 1, . . . , n ⇐⇒ X = ℓ(x) for x = (x01, . . . , x0n)⊤.

This observation suggests to branch on variable xi with maximal xii−x2
0i. We

obtain two subproblems by splitting the corresponding Di into

• Di ∩ [x0i,∞) and
• Di ∩ (−∞, x0i],

in which way the new problems fit into our problem description. As soon as xii = x2
0i

for all i, we have found an optimal solution of Problem (4.1).

3. Numerical Experiments

We implemented the algorithm described above in C++, using CSDP [1] for solving
the SDP relaxation. In order to illustrate the performance of our method, we carry
out some numerical experiments. To this end, we implemented a random generator,
which allows us to control the number of negative Eigenvalues of the cost matrix.
In this way we can control whether our objective function is convex, concave or
neither of them.

We consider problems of the form (4.1), where half of the Di are equal to {0, 1}
and half of the Di are equal to [0, 1], i.e., half of the variables are binary, half of
them are boxed-constrained continuous variables.

We generated data with dimensions n ranging from 10 up to 50. For each
dimension we generated 10 instances having a percentage of p negative Eigenvalues,
where p = 0, 10, 20, . . . , 100. In this way we make sure that the set of all the matrices
Q we generated contains positive definite, negative definite and indefinite matrices.



22 Buchheim, Wiegele

Table 1. Instances with 50% binary variables and 50% box-constrained con-

tinuous variables

avg. time (sec)
n b&b-nodes min max avg

10 26.4 0 1 0.1
20 97.8 0 13 0.8
30 736.7 0 176 12.8
40 5217.8 0 9714 160.0
50 11339.3 0 12934 356.4

In Figure 1 we plot the results for n = 10, . . . , 50 of the average time (in seconds)
over 10 instances. On the x-axes the percentage of negative Eigenvalues of matrix
Q is given. As expected, instances having a convex or concave objective function
are easy compared to instances where matrix Q is indefinite.

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

10
3

10
4

percentage neg. Eigenvalues

Figure 1. “Convexity versus concavity”.

Summarized results of this experiment are given in Table 1. Up to dimension 30,
problems are solved within seconds. For n = 40 one has to allow several minutes (up
to 2.5 hours) to solve instances, and for dimension 50 it takes on average 6 minutes
to solve a problem, but for some instances one has to wait up to 4 hours to have
the solution at hand.

We carried out also experiments on ternary problems (see [4]) and BoxQP in
order to compare to existing algorithms. These experiments demonstrate that our
general algorithm achieves results in comparable or slightly longer time than in [4]
or [5].

4. Conclusion

We presented an exact algorithm for solving various types of quadratic problems.
The algorithm uses semidefinite relaxations in a branch-and-bound setting. To the
best of our knowledge this is the first time that SDP is used for solving mixed-integer
programs.



Using SDP for Solving MIQP 23

Experiments show that we efficiently solve mixed-integer quadratic problems.
Various comparisons to algorithms specialized for a certain class of problems indi-
cate that our algorithm performs reasonably well.

Dealing with explicit constraints and thus making this new concept applicable
to an even wider range of problems seems to be promising and is subject of future
research.

References

1. Brian Borchers. CSDP, a C library for semidefinite programming. Optim. Meth-
ods Softw., 11/12(1-4):613–623, 1999. Interior point methods.

2. Samuel Burer and Dieter Vandenbussche. A finite branch-and-bound algorithm
for nonconvex quadratic programming via semidefinite relaxations. Math. Pro-
gram., 113(2, Ser. A):259–282, 2008.

3. Monique Laurent and Franz Rendl. Semidefinite programming and integer pro-
gramming. Aardal, K. (ed.) et al., Discrete optimization. Amsterdam: Else-
vier. Handbooks in Operations Research and Management Science 12, 393-514
(2005)., 2005.

4. Nguyen Thi Hoai Phuong, Hoang Tuy, and Faiz Al-Khayyal. Optimization of a
quadratic function with a circulant matrix. Comput. Optim. Appl., 35(2):135–
159, 2006.

5. Dieter Vandenbussche and George L. Nemhauser. A branch-and-cut algorithm
for nonconvex quadratic programs with box constraints. Math. Program., 102(3,
Ser. A):559–575, 2005.





5

Feasibility Pump(s) for Non-Convex
Mixed-Integer NonLinear Programs

Claudia D’Ambrosio1 Antonio Frangioni2 Leo Liberti3

Andrea Lodi1

1 DEIS, University of Bologna
Viale Risorgimento 2
40136 Bologna, Italy

{c.dambrosio,andrea.lodi}@unibo.it

2 DI, University of Pisa
Largo B. Pontecorvo, 3

56127 Pisa, Italy

frangio@di.unipi.it

3 LIX, École Polytechnique
91128 Palaiseau, France

liberti@lix.polytechnique.fr

Keywords: heuristic, Mixed-Integer NonLinear Programming, feasibility pump.

We present a new Feasibility Pump (FP) algorithm tailored for nonconvex Mixed
Integer Nonlinear Programming (MINLP) problems.

In general, Feasibility Pump algorithms are based on iterative solution of two
subproblems which represent a relaxation of the original problem to be solved. The
objective functions of the two subproblems are selected so as the aim is to make
the two trajectories of the solutions of the two subproblems converge to a unique
point, which is feasible for both the subproblems and, consequently, for the original
problem. Thus, the focus is on finding feasible solutions to a very difficult problem,
in general, the first one.

In the nonconvex MINLP case, difficulties arising from nonconvexities in the
models has to be overcome. We extensively discuss such difficulties. In this case the
first subproblem, obtained relaxing the integer requirements on the variables, is a
nonconvex Nonlinear Program (NLP), which uses as objective function the 2-norm
distance function. For the second subproblem, we explore different approaches:

25



26 D’Ambrosio, Frangioni, Liberti, Lodi

(i) a Mixed Integer Linear Program (MILP), obtained by relaxing and/or
linearizing the nonlinear constraints and using a linear distance function
as objective function, such as the 1-norm;

(ii) a Mixed Integer Quadratic Program, obtained relaxing and/or lineariz-
ing the nonlinear constraints but using a nonlinear distance function as
objective function, the 2-norm;

(iii) not defining an second subproblem, but, following the original idea of FP
for MILPs [1, 2], just round the values of the integer variables obtained
solving the NLP subproblem.

We present theoretical justifications for the different approaches and practical
comparisons. We exhibit computational results showing the good performance of
the algorithms on instances taken from the MINLPLib.

References

1. L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump heuristic for general
mixed-integer problems. Discrete Optimization, 4:63–76, 2007.

2. M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Pro-
gramming, 104:91–104, 2005.



6

Experiments with the Perspective
Reformulation

Hyemin Jeon Jeffrey T. Linderoth

Department of Industrial and Systems Engineering
University of Wisconsin-Madison

1513 University Ave.
Madison, WI 53706-1572, USA

jeon5,linderoth@wisc.edu

Abstract

We describe some integer-programming based approaches for finding
strong inequalities for the convex hull of a quadratic mixed integer
nonlinear set. The techniques are closely related to recent perspec-
tive reformulations of MINLPs.
Keywords: Mixed Integer Nonlinear Programming, perspective func-
tion.

1. Introduction

Our work focuses on the convex hull of the nonlinear set

(6.1) X = {(x, z, v) ∈ Rn
+ × Bn × R | v > xTQx, xj 6 zj∀j ∈ N},

where N = {1, 2, . . . , n}, and the matrix Q � 0. The set X appears as a sub-
structure in many practical mixed integer nonlinear programs (MINLPs), including
those arising from portfolio management [2] or model selection [4].

In the case that Q = diag(q), Stubbs [9] characterized conv(X) as

(6.2)

conv(X) = projx,z,v{(x, z, v, t) ∈ Rn
+×[0, 1]n×R×Rn

+ | v >
∑

j∈N

qjtj , tjzj > qjx
2
j ∀j ∈ N,

xj 6 zj ∀j ∈ N}.
The formula (6.2) can be generalized to the set

Y = {(x, z, v) ∈ Rn
+ × Bn × R | v >

n
∑

j=1

fj(xj), xj 6 zj ∀j ∈ N},

27



28 Jeon, Linderoth

for some convex, separable function f(·). In this case,
(6.3)

clconv(Y ) = {(x, z, v) ∈ Rn
+ × [0, 1]n × R | v >

n
∑

j=1

zjfj(xj/zj), xj 6 zj ∀j ∈ N},

which is a transformation known as the perspective reformulation of Y . The formula
(6.3) is given explicitly in [8], and is a specialization of a more general theorem on
the convex hull of a disjunctive set found in [3].

The characterization of the convex hull (6.3) is also implicitly given by Frangioni
and Gentile in their derivation of perspective cuts [5]. The perspective cut

(6.4) v > (f(x̂) +∇f(x̂)T x̂)z +∇f(x̂)Tx

is a valid inequality for conv(Y ) for all x̂ ∈ dom(f). Moreover, (6.4) is a maximal
face of conv(Y ) of dimension at least one.

Frangioni and Gentile demonstrate in [7] that in many cases, using the lin-
ear inequalities (6.4) with a cutting-plane approach is computationally superior
to using the nonlinear formulation (6.3) of conv(Y ), or even a second-order cone
programming formulation as proposed by [1, 8].

An Integer Programming Perspective

As motivation, consider the simple 3-dimensional set

X0 = {(x, z, v) ∈ R+ × {0, 1} × R | v > x2, x 6 z},
for some convex function f : R→ R. An interesting observation is that the (linear)
perspective cuts (6.4) are equivalent to building a linear outerapproximation of
the set X0 and then strengthening the linear inequalities using a logical deductive
argument. To outerapproximate X0, a set of points B = {χ1, χ2, . . . χ|B|} are
chosen, and the convexity of f implies that

O(X0) = {(x, z, v) ∈ R+ × {0, 1} × R | v > 2(χb)xj − (χb)2 ∀b ∈ B, x 6 z}
is a relaxation of X0. Since z = 0 =⇒ x0, the inequalities

v > 2(χb)xj − (χb)2 ∀b ∈ B
in the description of O(X0) can each be strengthened to

(6.5) v > 2(χb)xj − (χb)2zj ∀b ∈ B.
The simple inequalities (6.5) are precisely the perspective cuts (6.4) of Frangioni
and Gentile for this instance. The fact that these inequalities can be so effective
for solving convex MINLPs gives motivation to consider strengthening polyhedral
relaxations of different nonlinear sets via integer programming arguments in order
to derive inequalities that are useful for solving convex MINLPs.

2. Handling Nonseparability

The perspective reformulation or perspective cuts have been shown to be a very
effective mechanism for solving certain classes of convex MINLPs. Unfortunately,
direct application of the perspective reformulation to (6.1) is not possible, as the
objective is not a separable function of the decision variables x.

Frangioni and Gentile [5] suggest to extract a separable component from Q and
to apply the perspective reformulation to this separate component. Specifically, the



Experiments with the Perspective Reformulation 29

matrix Q may be decomposed into Q = R +D, for some matrix D = diag(d) > 0
such that R = Q −D � 0. With this transformation, the set (6.1) can be written
as

(6.6) X = projx,z,v{(x, z, v, t) ∈ Rn
+ × Bn × R× Rn

+ |
v > xTRx+ eT t, tj > djx

2
j , ∀j ∈ N,xj 6 zj∀j ∈ N}.

The set (6.6) can be strengthened via the perspective reformulation to be

P(X) = projx,z,v{(x, z, v, t) ∈ Rn
+ × Bn × R× Rn

+ |
v > xTRx+ eT t, zjtj > djx

2
j , ∀j ∈ N,xj 6 zj∀j ∈ N}.

In [5], Frangioni and Gentile suggest using D = λnI, where λn > 0 is the
smallest eigenvalue of Q. In subsequent work, they show how “more” of the sepa-
rable structure of Q can be extracted into D through the solution of a semidefinite
program (SDP) [6]. Since the perspective reformulation and tightening will be per-
formed on the diagonal elements of the extracted matrix D, a reasonable metric for
the extracted matrix D seems to be to maximize

∑

j∈N dj = trD. This results in
the SDP:

max
d>0
{
∑

j∈N

dj | Q−
∑

j∈N

dj(eje
T
j ) � 0}.

Reformulation for Separability

In this work we take a different approach to handling nonseparability. Specifically,
since Q � 0, then Q = LLT for some lower triangular matrix L. If Q ≻ 0, then L
is nonsingular and unique. We then let y = LTx and consider the set

S = {(y, t, z, v) ∈ Rn × Rn
+ × Bn × R |

v >
∑

j∈N

tj , tj > y2
j ∀j ∈ N, 0 6 [L−T y]j 6 zj ,∀j ∈ N},(6.7)

which is related to X through the transformation x = L−T y and by projecting out
the t variables.

One insight is that since L−T is upper triangular, the last row of the inequalities
0 6 [L−T y]j 6 zj ,∀j ∈ N is of the form annyn 6 zn, and thus one could apply
the perspective reformulation to tighten S: zntn > y2

n. Our work uses this simple
transformation, in combination with integer programming techniques, to derive
strong inequalities for conv(X). Preliminary computational results will be given in
the talk.

Acknowledgments

This work supported in part by the US Department of Energy under grant DE-
FG02-08ER25861 and the National Science Foundation by grant CCF-0830153.

References

1. S. Aktürk, A. Atamtürk, and S. Gürel. A strong conic quadratic reformula-
tion for machine-job assignment with controllable processing times. Operations
Research Letters, 37:187–191, 2009.



30 Jeon, Linderoth

2. D. Bienstock. Computational study of a family of mixed-integer quadratic pro-
gramming problems. Mathematical Programming, 74:121–140, 1996.

3. S. Ceria and J. Soares. Convex programming for disjunctive optimization. Math-
ematical Programming, 86:595–614, 1999.

4. D. P. Foster and E. I. George. The risk inflation criterion for multiple regression.
Annals of Statistics, 22:1947–1975, 1994.

5. A. Frangioni and C. Gentile. Perspective cuts for a class of convex 0-1 mixed
integer programs. Mathematical Programming, 106:225–236, 2006.

6. A. Frangioni and C. Gentile. SDP diagonalizations and perspective cuts for a
class of nonseparable miqp. Operations Research Letters, 35:181–185, 2007.

7. A. Frangioni and C. Gentile. A computational comparison of reformulations
of the perspective relaxation: SOCP vs. cutting planes. Operations Research
Letters, 24:105–113, 2009.

8. O. Günlük and J. Linderoth. Perspective relaxation of mixed integer nonlinear
programs with indicator variables. In A. Lodi, A. Panconesi, and G. Rinaldi,
editors, IPCO 2008: The Thirteenth Conference on Integer Programming and
Combinatorial Optimization, Lecture Notes in Computer Science, volume 5035,
pages 1–16, 2008.

9. R. A. Stubbs. Branch-and-Cut Methods for Mixed 0-1 Convex Programming.
PhD thesis, Northwestern University, December 1996.



7

Can PENNON be useful when solving
global optimization problems?

Michal Kocvara

School of Mathematics,
University of Birmingham

Edgbaston, Birmingham, B15 2TT, UK

kocvara@maths.bham.ac.uk

Keywords: augmented Lagrangian method, global optimization.

I will present examples when the code PENNON can be used for the solution
of mixed integer and global optimization problems. PENNON solves convex and
nonconvex problems of nonlinear optimization with standard and matrix inequality
constraints. In the first class of examples, we first solve a relaxation of the global
optimization problem and then, by the same code, the original problem starting
from the relaxed solution. In the second class, we use the fact that PENNON is
based on the generalized augmented Lagrangian algorithm. Using a suitable solver
for the unconstrained subproblems, we can thus derive a global or a derivative free
solver for nonlinear and even semidefinite optimization problems. This is a joint
work with Michael Stingl and Ralf Werner.

31





8

A “joint+marginal” algorithm for 0/1
programs

Jean B. Lasserre Tung Phan Thanh

LAAS-CNRS (and Institute of Mathematics, JbL)
Université de Toulouse

7 avenue du Colonel Roche
Toulouse, France

{lasserre,tphantha}@laas.fr

Abstract

We propose a heuristic for 0/1 programs based on the recent “joint
+ marginal” approach of the first author for parametric polynomial
optimization. The idea is to first consider the n-variable (x1, . . . , xn)
problem as a (n−1)-variable problem (x2, . . . , xn) with the variable x1

being now a parameter taking value in {0, 1}. One then solves a hier-
archy of what we call “joint+marginal” semidefinite relaxations whose
duals provide a sequence of polynomial approximations x1 7→ Jk(x1)
that converges to the optimal value function J(x1) (as a function of
the parameter x1). One considers a fixed index k in the hierarchy and
if Jk(1) > Jk(0) then one decides x1 = 1 and x1 = 0 otherwise. The
quality of the approximation depends on how large k can be chosen
(in general, for significant size problems, k = 1 is the only choice).
One iterates the procedure with now a (n− 2)-variable problem with
one parameter x2 ∈ {0, 1}, etc. Preliminary numerical experiments
are provided.
Keywords: 0/1 programs, semidefinite relaxations.

1. Introduction

Consider the general 0/1 program

¶ : f∗ = min
x
{f(x) : x ∈ K ∩ {0, 1}n }

where f is a polynomial and K ⊂ Rn is a basic closed semi-algebraic set. One way
to approximate the optimal value of ¶ is to solve a hierarchy of either LP-relaxations
as in Sherali-Adams [11] and Lovász-Schrijver [9], or semidefinite relaxations as in
Lovász-Schrijver [9] or Lasserre [6]. For a comparison of those approches for 0/1
programs, the interested reader is referred to Lasserre [7] and Laurent [8]. For 0/1

33



34 Lasserre, Phan Thanh

programs, the convergence of the semidefinite relaxations of [6] is finite and there is
a stopping criterion which, when met, guarantees that the semidefinite relaxation
is exact and one may extract global minimizers. Despite practice seems to reveals
that the finite convergence is fast, the matrix size in the k-th semidefinite relaxation
of the hierarchy grows up as fast as O(nk). Hence for problems of reasonable size,
and in view of the present status of SDP-solvers, one can implement only the first or
second relaxation, which in general only provides a lower bound on f∗. Of course,
this lower bound can be exploited in some other search procedure, like e.g. branch
and bound, but more generally, the following natural question arises:

How can we use the results of the k-th semidefinite relaxation to find (or help
find) an approximate solution of the original problem?

In some well-known special cases like e.g. the MAXCUT problem, one my
generate a feasible solution with guaranteed performance, e.g. from the Goemans
and Williamson randomized rounding procedure [2] that uses an optimal solution
of the first semidefinite relaxation (i.e. with k = 1). But there is no receipe
for the general case and one is left with the possibility to use the lower bound
provided by the semidefinite relaxation in a standard branch & bound procedure.
We here provide a simple heuristic for 0/1 polynomial programs which builds upon
the so-called “joint+marginal” approach (in short (J+M)) recently developed in
[4] for parametric polynomial optimization. The (J+M)-approach for polynomial
optimization problems with variables x ∈ Rn and parameters y in a simple set Y,
consists of the standard hierarchy of semidefinite relaxations in [5, 6] where one
treats the parameters y also as variables but now with the additional constraint
that some marginal distribution on Y (e.g. the uniform probability distribution on
Y) is fixed. Among other things, it permits to provide a polynomial approximation
of the optimal value function y 7→ J(y) (viewed as a function of the parameter).
For more details, the interested reader is referred to [4].

In the context of a non-parametric 0/1 polynomial optimization, the above
(J+M)-approach can be used as follows:
• (a) Treat x1 as a parameter in {0, 1} with distribution (p1, 1 − p1) for some

given 0 < p1 < 1, fixed arbitrary (typically p1 = 1/2).
• (b) solve the k-th semidefinite relaxation of the (J+M)-hierarchy applied to

problem ¶ with n − 1 variables x2, . . . , xn and parameter x1 ∈ {0, 1}. The dual
provides a polynomial map x1 7→ Jk(x1) that converges to J(x1) as k increases.
(The map v 7→ J(v) denotes the optimal value function of ¶ given that the variable
x1 is fixed at the value v.) Therefore, to decide if x1 = 0 or 1 in an optimal solution,
one replaces the exact test J(1) > J(0) with the approximate test Jk(1) > Jk(0),
and of course, the larger k the better; in fact the latter test becomes exact for k
sufficiently large.
• (c) If Jk(1) > Jk(0) then fix x̃1 := 1 (and x̃1 = 0 otherwise). For feasibility1,

check if there exists x ∈ K ∩ {0, 1}n with x1 = x̃1; if not then set x̃1 = 0. (e.g.
assuming 0 ∈ K, check whether x := (x̃1, 0, . . . , 0) ∈ K.)
• (d) Iterate and go to step (a) with now a 0/1 program ¶(x̃1) with n − 2

variables x3, . . . , xn and parameter x2 in {0, 1} with distribution (p2, 1 − p2), and
with 0 < p2 < 1 arbitrary. Of course, all data of ¶(x̃1) are updated according to
the value 1 or 0 taken by x̃1.

1When k is large enough, feasiblity is guaranteed because +∞ > Jk(x̃1) ≈ J(x̃1) implies

that there is an optimal solution x ∈ K ∩ {0, 1}n with x1 = x̃1.



A “joint+marginal” algorithm 35

After n iterations, one ends up wih a feasible solution x̃ = (x̃1, . . . , x̃n). The
computational cost is less than solving n times the k-th semidefinite relaxation
in the (J+M)-hierarchy, which is itself of same order than the k-th semidefinite
relaxation in the hierarchy defined in [6] (in fact it includes only one additional
constraint!)

2. The “joint+marginal approach to parametric optimization

Most of the material in this section is taken from [4]. Let R[x,y] denote the ring
of polynomials in the variables x = (x1, . . . , xn), and the variables y = (y1, . . . , yp),
whereas R[x,y]k denotes its subspace of polynomials of degree at most k. Let
Σ[x,y] ⊂ R[x,y] denote the subset of polynomials that are sums of squares (in
short s.o.s.). For a real symmetric matrix A the notation A � 0 stands for A is
positive semidefinite.

The parametric optimization problem

Let Y ⊂ Rp be a compact set, called the parameter set, and for each y ∈ Y, fixed,
consider the following parametric optimization problem:

(8.1) ¶y : J(y) := inf
x
{ f(x,y) : hj(x,y) > 0, j = 1, . . . ,m }

for some polynomials f, hj ∈ R[x,y], j = 1, . . . ,m.
The interpretation is as follows: Y is a set of parameters and for each instance

y ∈ Y of the parameter, one wishes to compute an optimal decision vector x∗(y)
that solves problem (8.1). Let ϕ be a Borel probability measure on Y, with a
positive density with respect to the Lebesgue measure on Rp (or with respect to
the counting measure if Y is discrete). For instance

ϕ(B) :=

(∫

Y

dy

)−1 ∫

Y∩B

dy, ∀B ∈ B(Rp),

is uniformly distributed on Y. Sometimes, e.g. in the context of optimization with
data uncertainty, ϕ is already specified.

The idea is to use ϕ (or more precisely, its moments) to get information on
the mapping y 7→ J((y) and on the distribution of optimal solutions x∗(y) of ¶y,
viewed as random vectors.

A related infinite-dimensional linear program

Let K ⊂ Rn × Rp be the set:

(8.2) K := { (x,y) : y ∈ Y ; hj(x,y) > 0, j = 1, . . . ,m },
and for each y ∈ Y, let

(8.3) Ky := {x ∈ Rn : hyj(x) > 0, j = 1, . . . ,m }.
In what follows we assume that for every y ∈ Y, the set Ky in (8.3) is nonempty.
Let M(K) be the set of finite Borel probability measures on K, and consider

the following infinite-dimensional linear program ¶:

(8.4) ρ := inf
µ∈M(K)

{
∫

K

f dµ : πµ = ϕ }



36 Lasserre, Phan Thanh

where πµ denotes the marginal of µ on Rp, that is, πµ is a probability measure on
Rp defined by πµ(B) := µ(Rn × B) for all B ∈ B(Rp). Notice that µ(K) = 1 for
any feasible solution µ of ¶. Indeed, as ϕ is a probability measure and πµ = ϕ one
has 1 = ϕ(Y) = µ(Rn × Rp) = µ(K).

The dual of ¶ is the the following infinite-dimensional linear program:

(8.5)
ρ∗ := sup

p∈R[y]

∫

Y

p(y) dϕ(y)

f(x)− p(y) > 0 ∀(x,y) ∈ K.

Recall that a sequence of measurable functions (gn) on a measure space (Y,B(Y), ϕ)
converges to g ϕ-almost uniformly if and only if for every ǫ > 0, there is a set
A ∈ B(Y) such that ϕ(A) < ǫ and gn → g uniformly on Y \A.

Theorem 2.1 ([4]). Let both Y ⊂ Rp and K in (8.2) be compact and assume that
for every y ∈ Y, the set Ky ⊂ Rn in (8.3) is nonempty. Let ¶ be the optimization
problem (8.4) and let X∗

y := {x ∈ Rn : f(x,y) = J(y)}, y ∈ Y. Then:

(a) ρ =

∫

Y

J(y) dϕ(y) and ¶ has an optimal solution.

(b) Assume that for ϕ-almost y ∈ Y, the set of minimizers of X∗
y is the singleton

{x∗(y)} for some x∗(y) ∈ Ky. Then there is a measurable mapping g : Y → Ky

such that

(8.6) g(y) = x∗(y) for every y ∈ Y ; ρ =

∫

Y

f(g(y),y) dϕ(y),

and for every α ∈ Nn, and β ∈ Np:

(8.7)

∫

K

xαyβ dµ∗(x,y) =

∫

Y

yβ g(y)α dϕ(y).

(c) There is no duality gap between (8.4) and (8.5), i.e. ρ = ρ∗, and if (pi)i∈N ⊂
R[y] is a maximizing sequence of (8.5) then:

(8.8)

∫

Y

|J(y)− pi(y) | dϕ → 0 as i→∞.

Moreover, define the functions (p̃i) as follows:

p̃0 := p0, y 7→ p̃i(y) := max [ p̃i−1(y), pi(y) ], i = 1, 2, . . .

Then p̃i → J(·) ϕ-almost uniformly.

An optimal solution µ∗ of ¶ encodes all information on the optimal solutions
x∗(y) of ¶y. For instance, let B be a given Borel set of Rn. Then from Theorem
2.1,

Prob (x∗(y) ∈ B) = µ∗(B× Rp) =

∫

Y

IB(g(y)) dϕ(y) = ϕ[g−1(B) ∩Y],

with g as in Theorem 2.1(b).
Moreover from Theorem 2.1(c), any optimal or nearly optimal solution of ¶∗

provides us with some polynomial lower approximation (pi) of the optimal value
function y 7→ J(y) that converges to J(·) in the L1(ϕ) norm. Moreover, one may
also obtain a piecewise polynomial approximation (p̃i) that converges to J(·), ϕ-
almost uniformly.

In [4] the first author has defined a (J+M)-hierarchy of semidefinite relaxations
(Qk) to approximate as closely as desired the optimal value ρ. In particular, the



A “joint+marginal” algorithm 37

dual of each semidefinite relaxation Qk provides a polynomial pk ∈ R[y] bounded
above by J(y), and y 7→ p̃k(y) := maxℓ=1,...k pk(y) converges ϕ-almost uniformly
to the optimal value function J . This last property is the rationale behind the
heuristic for polynomial 0/1 programs developed below.

3. A “joint+marginal” algorithm for 0/1 polynomial programs

Let Nn
i := {α ∈ Nn : |α| 6 i} with |α| =

∑

i αi. With a sequence z = (zα),
α ∈ Nn, indexed in the canonical basis (xα) of R[x], let Lz : R[x]→ R be the linear
mapping:

f (=
∑

α

fα(x)) 7→ Lz(f) :=
∑

α

fα zα, f ∈ R[x].

Moment matrix. The moment matrix Mi(z) associated with a sequence z = (zα),
has its rows and columns indexed in the canonical basis (xα), and with entries.

Mi(z)(α, β) = Lz(x
α+β) = zα+β , ∀α, β ∈ Nn

i .

Localizing matrix. Let q be the polynomial x 7→ q(x) :=
∑

u qux
u. The localizing

matrix Mi(q z) associated with q ∈ R[x] and a sequence z = (zα), has its rows and
columns indexed in the canonical basis (xα), and with entries.

Mi(q z)(α, β) = Lz(q(x)xα+β) =
∑

u∈Nn

quzα+β+u, ∀α, β ∈ Nn
i .

A sequence z = (zαβ) ⊂ R is said to have a representing finite Borel measure
supported on K if there exists a finite Borel measure µ such that

zα =

∫

K

xα dµ, ∀α ∈ Nn.

3.1. A “joint+marginal” approach

With {f, (gj)
m
j=1} ⊂ R[x], let K ⊂ Rn be the basic semi-algebraic set

(8.9) K := {x ∈ Rn : gj(x) > 0, j = 1, . . . ,m},

and consider the 0/1 polynomial optimization problem:

(8.10) ¶ : f∗ = min {f(x) : x ∈ K ∩ {0, 1}n }.

Let Y := {0, 1} and 0 < p < 1, and with y ∈ Y, define the parametrized 0/1
polynomial program in n− 1 variables

(8.11) ¶y : J(y) = min
x
{f(x) : x ∈ K ∩ {0, 1}n ; x1 = y},

or, equivalently J(y) = min {f(x) : x ∈ Ky}, where for every y ∈ Y:

(8.12) Ky := {x ∈ K ∩ {0, 1}n : x1 = y}.

Observe that by definition, f∗ = miny {J(y) : y ∈ Y} = min[J(1), J(0)].



38 Lasserre, Phan Thanh

Semidefinite relaxations

To compute (or at least approximate) the optimal value ρ of problem ¶ in (8.10),
we now provide a hierarchy of semidefinite relaxations in the spirit of those defined
in [5]. Define the polynomials:

x 7→ uk(x) := x2
k − xk, k = 1, . . . , n,

and let vj := ⌈(deg gj)/2⌉, j = 1, . . . ,m. For i > maxj vj and some fixed p ∈ (0, 1),
consider the semidefinite program:

ρi = inf
z

Lz(f)(8.13)

s.t. Mi(z) � 0, Mi−vj
(gj z) � 0, j = 1, . . . ,m

Mi−1(uk z) = 0, k = 1, . . . , n; Lz(1) = 1, Lz(x1) = p,

This semidefinite program (8.13) can be simplified as done in [6] to work modulo
the ideal 〈(x2

i − xi)〉. Get rid of the constraints Mi−1(uk z) = 0, k = 1, . . . , n, and
replace every moment variable zα with zβ where βi = 1 if αi > 0, and βi = 0
if αi = 0. Next, the row and column of Mi(z) associated with the monomial xα

is identical to that associated with xβ and can be deleted; same thing with the
localizing matrices Mi(gjz).

Letting g0 := 0, the dual of (8.13) reads:

(8.14)

ρ∗i = sup
λ,(σi)

λ0 + pλ1

s.t. f − λ0 − λ1x1 = σ0 +
m
∑

j=1

σj gj +
n
∑

k=1

ψk uk

σj ∈ Σ[x], ψk ∈ R[x], 0 6 j 6 m; 1 6 k 6 n
deg σjgj 6 2i, degψk 6 2i− 2, 0 6 j 6 m; 1 6 k 6 n.

Equivalently, and denoting by R[x1]t the space of polynomials of degree at most t,
the above dual may be rewritten as:

(8.15)

ρ∗i = sup
q,(σi)

pq(1) + (1− p)q(0) (=

∫

Y

qdϕ)

s.t. f − q = σ0 +
∑m

j=1 σj gj +
∑n

k=1 ψk uk

q ∈ R[x1]1; σj ∈ Σ[x], ψk ∈ R[x], 0 6 j 6 m; 1 6 k 6 n
deg σjgj 6 2i, degψk 6 2i− 2, 0 6 j 6 m; 1 6 k 6 n.

Observe that with I1 := 〈x2
1 − x1〉 being the ideal of R[x1] generated by the

polynomial x2
1−x1, one may also replace the polynomial q in (8.15) with q̃ := q+I1,

i.e. an element of R[x1]/I1. Indeed it is also admissible and pq̃(1) + (1 − p)q̃(0) is
the same.

Theorem 3.1. Let K be as (8.9), Y = {0, 1}, and 0 < p < 1. Assume that
for every y ∈ Y the set Ky in (8.12) is nonempty, and consider the semidefinite
relaxations (8.15). Then as i→∞:

(a) ρ∗i ↑ p J(1) + (1− p)J(0) (=

∫

Y

Jdϕ)



A “joint+marginal” algorithm 39

(b) Let (qi, (σ
i
j , ψ

i
k)) be a nearly optimal solution of (8.15), e.g. such that

pqi(1) + (1− p)qi(0) > ρ∗i − 1/i. Then qi(y) 6 J(y) for y ∈ Y, and

(8.16) lim
i→∞

qi(y) = J(y), y = 0, 1.

Moreover if one defines

q̃0 := q0, y 7→ q̃i(y) := max [ q̃i−1(y), qi(y) ], i = 1, 2, . . . ,

then q̃i(y) ↑ J(y) for y = 0, 1, i.e. pointwise monotone nondecreasing convergence
takes place.

Remark 3.2. If the set Ky is empty for either x1 = 0 or x1 = 1 then ρi =
+∞ provided i is sufficiently large. Indeed otherwise one may show that ρi =
∫

Y
J(y)dφ(y) = (1−p)J(0)+pJ(1) for all i > i∗ for some index i∗, in contradiction

with J(0) = +∞ or J(1) = +∞. However, if i < i∗ one may have ρi < +∞ while
J(0) = +∞ or J(1) = +∞.

In what follows we will use the primal relaxation (8.13) with index i fixed.
Hence since i will be fixed, it is important de check whether ρi is finite.

A sufficiency test for persistency. In the context of 0/1 deterministic optimization,
persistency of a boolean variable xk in a 0/1 program ¶ is concerned with whether
one may determine if either x∗k = 1 or x∗k = 0 in any optimal solution x∗ ∈ {0, 1}n of
¶; see e.g. [1, 10]. There is a simple sufficient condition to detect whether x1 = 0
(resp. x1 = 1) cannot happen in any feasible solution of ¶ defined in (8.10), in
which case one may safely state that x∗1 = 1 (resp. x∗1 = 0) in any optimal solution
x∗ ∈ {0, 1}n.

Corollary 3.3. Consider the semidefinite relaxation (8.13) with x 7→ f(x) := x1

(resp. x 7→ f(x) := −x1) and without the marginal constraint Lz(x1) = p. Denote
its optimal value by ρ0

i (resp. ρ1
i ).

If ρ0
i > 0 (resp. −ρ1

i < 1) then x∗1 = 1 (resp. x∗1 = 0) in any optimal solution
x∗ ∈ {0, 1}n of ¶.

Proof: This is because ρ0
i (resp. ρ1

i ) always produces a lower bound on f∗. �

Hence the difficult case is when solving (8.13) with f = x1 and f = −x1, one
obtains ρ0

i = 0 and ρ1
i = −1, respectively. But then the semidefinite relaxation

(8.13) with f as in (8.10) is well-defined, that is, ρi is finite.

Corollary 3.4. Let ¶ be the 0/1 problem defined in (8.10) and let ρi be the optimal
value associated with the semidefinite relaxation (8.13). If ρ0

i = 0 and ρ1
i = −1 (as

defined in Corollary 3.3) then ρi is finite.

Proof: Let z1 (resp. z2) be an optimal solution of (8.13) associated with
f = x1 (resp. f = −x1) without the marginal constraint Lz(x1) = p, and with
optimal value ρ0

i = 0 (resp. ρ1
i = −1). Then the sequence z = pz2 + (1 − p)z1 is

feasible for (8.13), hence with finite value. Indeed, Lz1
(x1) = 0 and Lz2

(1) = 1 so
that by linearity Lz(x1) = L(1−p)z1+pz2

(x1) = p. �

3.2. The joint+marginal algorithm

Fix i and 0 < p < 1. Denote by xj ∈ Rn−j+1 the vector (xj , . . . , xn). For every

j = 2, . . . , n, and x̃j−1 = (x̃1, . . . , x̃j−1) ∈ {0, 1}j−1, let f̃j(xj) := f(x̃j−1,xj), and



40 Lasserre, Phan Thanh

g̃j
k(xj) := gk(x̃j−1,xj), k = 1, . . . ,m. Similarly, let

Kj := {xj ∈ Rn−j+1 : g̃j
k(xj) > 0, k = 1, . . . ,m},

and let ¶(x̃j) denote the problem:

¶(x̃j) : ρ(x̃j) = min
xj

{f̃j(xj) : xj ∈ Kj ∩ {0, 1}n−j+1 ; xj = x̃j},

i.e. the original problem ¶ where the variable xk is fixed at the value x̃k ∈ {0, 1},
k = 1, . . . , j. With z being a sequence indexed in the monomial basis of R[xj ], the
associated semidefinite relaxation (8.13) reads:

ρji = inf
z

Lz(f̃j)(8.17)

s.t. Mi(z) � 0, Mi−vk
(g̃j

k z) � 0, k = 1, . . . ,m

Mi−1(uℓ z) = 0, ℓ = j, . . . , n; Lz(1) = 1, Lz(xj) = p,

with associated dual:

(8.18)

ρ∗ji = sup
λ,(σi)

λ0 + pλ1

s.t. f̃j − λ0 − λ1xj = σ0 +
∑m

k=1 σk g̃
j
k +

∑n
ℓ=j ψℓ uℓ

σk ∈ Σ[xj ], ψℓ ∈ R[xj ], k = 0, . . . ,m; ℓ = j, . . . , n

deg σkg̃
j
k 6 2i, degψℓ 6 2i− 2, k = 0, . . . ,m; ℓ = j, . . . , n.

The “joint+marginal” algorithm

For simplicity, assume that x = 0 is feasible solution. The algorithm consists of
n steps. At step j of the algorithm, the vector x̃j−1 = (x̃1, . . . , x̃j−1) (already

computed) is such that g̃j
k(0) > 0 for every k = 1, . . . ,m. That is, the vector

x = (x̃j , 0) is a feasible solution of ¶. For the first step j = 1, one has: x̃0 = ∅,
fj = f and g̃1

k = gk, k = 1, . . . ,m:

Step j: Input: x̃j−1 ∈ {0, 1}j−1. Output: x̃j = (x̃j−1, x̃j) ∈ {0, 1}j . Consider
the semidefinite relaxation (8.17) for problem ¶(x̃j):

• Compute ρ0
ji for the semidefinite relaxation (8.17) without the moment

constraint Lz(xj) = p (see Corollary 3.3). If ρ0
ji > 0 then set x̃j = 1 else

compute ρ1
ji; if −ρ1

ji < 1 then set x̃j = 0.

• Else if ρ0
ji = 0 and ρ1

ji = −1 compute ρji in (8.17) and extract λ0, λ1 from
the dual (8.18). If λ1 < 0 set x̃j = 1, otherwise set x̃j = 0.

• Feasibility2. If g̃j
k(x̃j , 0, . . . , 0) < 0 for some k ∈ {1, . . . ,m} then set

x̃j = 0.

Repeat until j = n.

Computational complexity. At step j of the (J+M)-algorithm, one has to solve
three semidefinite programs (8.17) (two of them without the moment constraint
Lz(xj) = p) whose number of variables is O((n− j + 1)k) and with m semidefinite
constraints with matrix size at most O((n − j)k). Observe that the semidefinite
program (8.17) has exactly same computational complexity as the standrad k-th

2When i is large enough, feasiblity is guaranteed because +∞ > ρji ≈ ¶(x̃j) implies that

there is a solution x∗ ∈ K ∩ {0, 1}n with x∗
k

= x̃k, k = 1, . . . , j. So the above feasibility test is

conservative, in case i is not large enough.



A “joint+marginal” algorithm 41

semidefinite relaxation for 0/1 programs with n− j + 1 variables! Indeed the only
difference is the single additional (linear) moment constraint Lz(xj) = p.

For instance, for the MAXCUT problem maxx {xTQx : x ∈ {−1, 1}n}, and
with k = 1, the semidefinite relaxation (8.17) at step 1 of the (J+M)-algorithm
reads

max

{

trace (QX) : Xii = 1;

[

1 x′

x X

]

� 0; X′ = X ∈ Rn×n; x1 = p

}

,

which is the standard Goemans and Williamson (or Shor) semidefinite relaxation
with the single additional constraint x1 = p. At step j, (8.17) reads

max



c′jxj + trace (Qj X) : Xii = 1;

»

1 x′
j

xj X

–

� 0; X′ = X ∈ R
(n−j+1)×(n−j+1); x̃j = p

ff

for some vector cj ∈ Rn−j+1.

3.3. The max-gap variant

In what we call the “max-gap” variant of the (J+M)-algorithm, at each step j one
may try to optimize the choice of the variable to treat as parameter instead of the
simple choice x1 at j = 1, then x2 at j = 2, etc. For instance, at step j = 1, solve
the semidefinite relaxation (8.17) with xk as parameter, and get (λk

0 , λ
k
1) from an

optimal solution of the dual, k = 1, . . . , n. Then select the index k for which |λk
1 |

is maximum, and fix x̃k = 1 if λk
1 < 0 and x̃k = 0 otherwise. The rationale behind

this variant is that the larger |λk
1 | is, the larger is the approximation |Jk(0)−Jk(1)|,

and so the more likely the decision xk = 0 or xk = 1 is correct. Then repeat in the
obvious manner with now the remaining variables (x1, . . . , xk−1, xk+1, . . . , xn), etc.

4. Computational experiments

We report on a first set of computational experiments on the MAXCUT and k-
cluster problems:

The MAXCUT problem. The celebrated MAXCUT problem formally consists of
solving the discrete optimization problem

¶ : min
x
{x′Qx : x ∈ {−1, 1}n },

for some real symmetric matrix Q = (Qij) ∈ Rn×n.
The entry Qij of the real symmetric matrix Q is set to zero with probability

1/2 and when different from zero, Qij is randomly (and independently) generated
according to the uniform probability distribution on the interval [0, 10].

We have tested the max-gap variant of §3.3 for MAXCUT problems on random
graphs with n = 15, 20 and 40 variables. For each value of n, we have generated 50
problems and 100 for n = 40. In (8.13) the parameter p ∈ (0, 1) is set to 0.5. Let Q1

denote the optimal value of the primal without the marginal constraint Lz(x1) =
p, that is, Q1 is the Shor’s relaxation with famous Goemans and Williamson’s
0.878 performance guarantee. Let ¶1 denote the cost of the solution x ∈ {−1, 1}n
generated by the “joint+marginal” algorithm3. In Table 1 below, we have reported
the average relative error (¶1−Q1)/|Q1|, which as one may see, is comparable with
the Goemans and Williamson (GW) ratio.

3Q1 and ¶1 were computed with the GloptiPloy software dedicated to solving the generalized

problem of moments [3]



42 Lasserre, Phan Thanh

n 20 30 40

(¶1 −Q1)/|Q1| 10.3% 12.3% 12.5%

Table 1. Relative error for MAXCUT

The k-cluster problem. We have also tested the (J+M)-algorithm for the k-cluster
problem

max
x
{x′Qx : x ∈ {0, 1}n;

n
∑

i=1

xi = k },

again for some real symmetric matrix Q = (Qij) ∈ Rn×n, and some fixed integer
k ∈ N, 1 6 k < n.

We have tested the max-gap variant on ten 20-variable problems, randomly
generated as for MAXCUT, and with k = n/2 = 10. The average relative error
(¶1 −Q1)/|Q1| was 7.96%.

On two problems with n = 80 variables the first variant gave a relative error of
5.73% and 22% respectively, but we have not implement the max-gap variant yet.

References

1. D. Bertsimas, K. Natarajan, and Chung-Piaw Teo. Persistence in discrete op-
timization under data uncertainty. Math. Program. Ser. B, 108, 2005.

2. M.X. Goemans and D.P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM, 42:1115–1145, 1995.

3. D. Henrion, J. B. Lasserre, and J. Lofberg. Gloptipoly 3: moments, optimiza-
tion and semidefinite programming. Optim. Methods and Softw., 24:761–779,
2009. http://www.laas.fr/∼henrion/software/gloptipoly3/.

4. J.B. Lasserre. A “joint+marginal” approach to parametric polynomial opti-
mization. SIAM J. Optim. to appear.

5. J.B. Lasserre. Global optimization with polynomials and the problem of mo-
ments. SIAM J. Optim., 11:796–817, 2001.

6. J.B. Lasserre. An explicit equivalent positive semidefinite program for nonlin-
ear 0/1 programs. SIAM J. Optim., 12:756–769, 2002.

7. J.B. Lasserre. Semidefinite programming vs. LP relaxations for polynomial
programming. Math. Oper. Res., 27:347–360, 2002.

8. M. Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre
relaxations for 0/1 programming. Math. Oper. Res., 28:470–496, 2003.

9. L. Lovász and A. Schrijver. Cones of matrices and set-functions for 0-1 opti-
mization problems. SIAM J. Optim, 1:166–190, 1991.

10. K. Natarajan, Miao Song, and Chung-Piaw Teo. Persistency and its applica-
tions in choice modelling. Manag. Sci., 55:453–469, 2009.

11. H. Sherali and W.P. Adams. A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems. SIAM J.
Discr. Math., 3:411–430, 1990.



9

Local search in nonlinear combinatorial
optimization

Jon Lee

IBM T.J. Watson Research Center
Yorktown Heights, NY, U.S.A.

jonlee@us.ibm.com

The successful development of integer linear programming and combinatorial op-
timization have been intertwined for decades. As a counterpoint to the recent
explosion of work in nonlinear integer programming, we develop approximation
algorithms based on simple local-search for nonlinear versions of classical combi-
natorial optimization problems. Surprisingly, such simple algorithms give strong
results. In particular, we obtain new approximation results for optimizing submod-
ular functions subject to knapsack or matroid constraints, and for the nonlinear
matroid parity problem, which interestingly has provable exponential complexity
for exact optimization.

This talk is based on joint works with Vahab Mirrokni (Google), Viswanath
Nagarajan (IBM, Watson), Maxim Sviridenko (IBM, Watson) and Jan Vondrák
(IBM, Almaden).

References

1. J. Lee, V. Mirrokni, V. Nagarajan, M. Sviridenko. Maximizing non-monotone
submodular functions under matroid or knapsack constraints. SIAM Journal on
Discrete Mathematics, 23(4):2053–2078, 2010. (Conference version in: Proceed-
ings of the 41st ACM Symposium on Theory of Computing (STOC 2009), pp.
323–332).

2. J. Lee, M. Sviridenko, J. Vondrák. Submodular maximization over multiple
matroids via generalized exchange properties. In Dinur, I.; Jansen, K.; Naor, S.;
Rolim, J.D.P. (Eds.), Proceedings of APPROX 2009, Lecture Notes in Computer
Science, 5687:244–257.

3. J. Lee, M. Sviridenko J. Vondrák. Matroid Matching: the Power of Local Search.
IBM Research Report RC24898, 11/2009. To appear in: Proceedings of the 42nd
ACM Symposium on Theory of Computing (STOC 2010).

43





10

Experiments with MINLP Branching
Techniques

Sven Leyffer

Mathematics and Computer Science Division
Argonne National Laboratory

9700 South Cass Ave

Argonne, IL 60439, USA

leyffer@mcs.anl.gov

Abstract

Mixed-integer nonlinear optimization problems arise in a range of sci-
entific and operational applications, ranging from the re-ordering of
nuclear fuel rods to the design of wireless networks. We present some
novel mixed-integer nonlinear optimization applications, and review
existing solution techniques. We present some experiments with non-
linear branch-and-bound branching techniques that lead us to pro-
mote a tighter integrating nonlinear solvers into a general branch-
and-cut framework.
Keywords: nonlinear programming, mixed-integer nonlinear pro-
gramming.

1. Introduction and Background

Many scientific, engineering, and public sector applications involve both discrete de-
cisions and nonlinear system dynamics that affect the optimality of the final design.
Mixed-integer nonlinear programming (MINLP) optimization problems combine
the difficulty of optimizing over discrete variable sets with the challenges of han-
dling nonlinear functions. MINLP is one of the most flexible modeling paradigms
available, and an expanding body of researchers and practitioners, including com-
puter scientists, engineers, economists, statisticians, and operations managers, are
interested in solving large-scale MINLPs. MINLPs can be conveniently expressed
as

(10.1) minimize
x,y

f(x, y) subject to c(x, y) 6 0, x ∈ X, y ∈ Y integer,

45



46 Leyffer

where x, y are the continuous and integer variables, respectively, and X,Y are poly-
hedral sets. The functions f, c are assumed to be twice continuously differentiable
and possibly convex. Surveys of MINLP can be found in [22, 24, 23].

Given the generality and flexibility of the model, MINLPs have been proposed
for many diverse and important applications. A small subset of these applications
includes portfolio optimization [5, 29], the design of water distribution networks
[10, 30], block layout design in the manufacturing and service sectors [11], network
design with queuing delay constraints [9], operational reloading of nuclear reactors
[35], integrated design and control of chemical processes [21], blackout prevention
for electrical power systems [6, 15], and minimizing the environmental impact of
utility plants [16].

1.1. New MINLP Applications in Computer Science

Mixed integer nonlinear programs are fast becoming prevalent on the research fron-
tiers of computer science. For example, there are many emerging applications of
MINLP in communications research. Problems in wireless bandwidth allocation
[4, 36, 13], selective filtering, [37, 38], network design topology, [3, 12], and
optical network performance optimization [17] can all be cast as MINLPs.

We have begun building a library of MINLP test problems from computer
science applications, called DIWAL, see http://wiki.mcs.anl.gov/NEOS/index.

php/DIWAL. Current applications include:

• Nonlinear optimization of IEEE 802.11 mesh networks [13]: A model
formulated to plan and optimize IEEE 802.11 broadband access networks.

• Distributed optimization for data-optical networking [17]: An model to
jointly optimize optical networking provisioning and internet protocol (IP)
traffic engineering.

• Energy provisioning and relay node placement for wireless sensor networks
[28]: An model formulated to determine the optimal placement of provi-
sioned energy amongst local aggregation and forwarding nodes (AFN) and
relay nodes (RN) such that the two tiered network lifetime is maximized.

• Capacity fairness for wireless mesh networks [25]: A model to assign
channels to user nodes and determine power of transmission for mesh
routers in a wireless network.

In some cases, these applications require detailed reformulations to avoid or mitigate
nonconvexities. Next, we review a particular solution methods for MINLP, namely
branch-and-bound, and then present some ideas on how to improve this approach
through a tighter integration of the MIP and NLP solves.

2. Nonlinear Branch-and-Bound

Nonlinear branch-and-bound dates back to [31, 14]. It is best explained as a tree-
search. Initially, all integer restrictions are relaxed and the resulting NLP relaxation
is solved. Let the solution be (x̂, ŷ). If all integer variables, ŷ, are integral, then
we have solved the MINLP. Otherwise, we can choose some non-integral integer to
branch on. Branching on, say yi, is achieved by creating two new NLP problems
with added bounds yi 6 [ŷi] and yi > [ŷi] + 1 respectively (where [a] is the largest
integer not greater than a). Next, one of these two NLPs is selected and solved, and



MINLP Branching Techniques 47

the process is repeated. We can fathom a node, if one of the following conditions
is satisfied.

(1) An infeasible NLP is detected, implying that the whole subtree is infeasi-
ble.

(2) An integer feasible node is detected, which provides an upper bound on
the optimum of the MINLP.

(3) A lower bound on the NLP solution is greater or equal than the current
upper bound, which implies that we cannot find a better solution in this
subtree.

After a node has been fathomed the algorithm backtracks to another open node
until all nodes are fathomed. Heuristics for selecting a branching variable and nodes
are discussed in [26, 39].

Typically, every NLP is solved from a previously saved primal-dual solution. In
MILP it is sufficient to safe a basis, because a basis uniquely determines a primal-
dual iterate for an LP. This situation does not generalize to MINLPs. Given a basis
(or active set) is not sufficient to determine a starting point, because the Jacobian
also depends on value of the variables, (x, y). In this paper we concentrate on a
closer integration of the NLP solver and branch-and-bound, concentrating on one
particular branching rule that has proven to be successful in MILP, namely strong
branching [2].

2.1. Preliminary Experience with Nonlinear Branch-and-Bound

We present some preliminary numerical results that motivate our interest in non-
linear branch-and-bound. We start by noting, that MINLPBB [18] is typically out-
performed by more modern approaches such as LP/NLP-based branch-and-bound
[34, 8, 32, 1]. Figure 1 shows that MINLPBB is hopelessly outperformed by newer
approaches. It shows a performance profile of several MINLP solvers on a set of
medium-sized problems. A performance profile can be interpreted as the proba-
bility distribution that a solver is at worst 2x times worst than the best solver.
Solvers, whose lines are towards the left top are best.

We note, that MINLPBB is a fairly simplistic nonlinear branch-and-bound
solver. It implements a depth-first tree-search with maximum fractional branching,
which has been shown to be notoriously poor. Strong branching is usually superior
to maximum fractional branching for solving MILPs [2]. We can readily generalize
strong branching to MINLP. Given a solution of parent node NLP, P , with optimum
value fp, we perform the following steps:

(1) Find all non-integral integer variables yi, i ∈ C.
(2) For every candidate yi ∈ C solve two child NLPs:

• A down NLP: P ∪ {yi = ⌊yi⌋} with optimal value f−i .
• An up NLP: P ∪ {yi = ⌊yi⌋+ 1} with optimal value f+

i .
(3) For every candidate yi ∈ C compute its score:

scorei := (1− µ)min(f−i − fp, f+
i − fp) + µmax(f−i − fp, f+

i − fp),

where µ = 1/6.
(4) Branch on the variable yi that maximizes scorei.

The goal of this procedure is to maximize the change in the objective, and select
branching variables that changes problem the most [2].



48 Leyffer

Figure 1. Performance profile of CPU time of several MINLP solvers on a
set of medium-sized problems.

Figure 2 shows the effect of strong branching for nonlinear branch-and-bound.
The number of nodes in the tree is reduced significantly compared to maximum-
fractional branching. However, the additional CPU time needed to solve these
NLPs, even using SQP warm-starts is still prohibitive, and strong branching is
outperformed even by maximum fractional branching. The plots also show pseudo-
cost branching, which outperforms both other options.

Motivated by these observations, we next consider a closer integration of the
NLP solver within nonlinear branch-and-bound to reduce the CPU time required
for strong branching.

2.2. Challenges in Integrating NLP and MIP

We have already mentioned that in NLP, we cannot generate a vertex or primal-
dual solution simply from a knowledge of the basis, or active set. The reason is that
even given an optimal active set, we still need to solve a nonlinear problem (using
e.g. Newton’s method) to obtain its solution, whereas in LP, we simply update
basis factors, and perform a forward and a backward solve with the basis.

In principle, NLP solvers also compute factors that could be re-used. Unfor-
tunately, these factors are always outdated after a solve. To see why, consider a
simple Newton iteration. At iteration k, we factor the Jacobian matrix, and com-
pute a step, zk+1 = zk + d. If zk+1 satisfies our stopping criterion, then we exit the
solver without forming new factors. This situation is exacerbated in NLP, where
we not only have outdated factors, but the convergence test requires us to update



MINLP Branching Techniques 49

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2
 ( NODES / best NODES ) 

fr
a

c
ti
o

n
 o

f 
p

ro
b

le
m

s

2
x
 times more NODES than best

 

 

MaxFrac

StrongBranch

PseudoCost

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2
 ( CPU / best CPU ) 

fr
a

c
ti
o

n
 o

f 
p

ro
b

le
m

s

2
x
 times slower than best

 

 

MaxFrac

StrongBranch

PseudoCost

Figure 2. Performance profile of comparing strong branching and maximum-

fractional branching. The left plot shows the number of nodes, the right shows
the CPU time.

the gradients (i.e Jacobian), so that factors and the stored matrices are out-of-sink
after an NLP solve.

3. Integrating NLP and MIP

Our NLP solver is a sequential quadratic programming (SQP) method, see [27,
33, 7]. SQP methods successively minimize a quadratic model, mk(x), subject to
a linearization of the constraints about zk = (xk, yk). We define the displacement
d := z − zk and obtain the QP

(10.2) minimize
d

mk(d) := gT
k d+

1

2
dTHkd subject to ck +AT

k d 6 0,

where gk = ∇f(xk, yk) is the objective gradient, ck = c(xk, yk) are the values
of the constraints, Ak = ∇c(xk, yk) is the Jacobian matrix, Hk ≃ ∇2L(zk, λk)
approximates the Hessian of the Lagrangian, and λk is the multiplier estimate at



50 Leyffer

iteration k. The new iterate is zk+1 = zk + d, together with the multipliers λk+1 of
the linearized constraints of (10.2).

We use the SQP solver FilterSQP [19] which implements a trust-region SQP
method. Convergence is enforced with a filter [20], whose components are the
ℓ1-norm of the constraint violation, and the objective function.

There are two obvious ways how we can improve strong branching. The first, is
to replace the costly NLP solve for every problem on the list of candidates branching
variables, C, by a single QP solve. The second approach is to go one step further,
and re-use as much of the final QP solve from the previous iteration.

3.1. Approximate Strong Branching

The simplest way to improve strong-branching is by replacing a complete NLP
solve by a single iteration of SQP. Recall, that we have already solved the parent
problem, so we have a reasonable approximation of the solution that we obtained,
if we branched on one variable. This approach is readily implemented. However,
because the Hessian, Hk, and the Jacobian, Ak are outdated, we cannot readily
re-use their factors (which are available after a solve with FilterSQP), and only
perform a warm-start in which we send the final optimal active set to the QP
solver. We refer to this kind of branching as approximate strong branching. Some
special care has to be taken, because every solve is only an approximate NLP, so
the usual fathoming rules during strong branching have to be adapted in an obvious
way.

Our preliminary numerical results in Figure 3 show that approximate strong
branching (black line) improves on strong branching, and is almost competitive
with the simpler pseudo-cost branching both in terms of number of nodes and CPU
time.

We can improve our branching decisions further, by adapting reliability branch-
ing to NLP. Reliability branching computes pseudo-cost estimates by strong branch-
ing until the resulting pseudo-cost estimate is deemed sufficiently reliable (measured
by the number of times pseudo-costs have been updated for each integer variable).
We use a threshold of 2 in our experiments, and only apply approximate strong
branching, rather than complete NLP solves. The results are displayed in Figure 4.

It is clear from Figure 4, that reliability branching is the method of choice
for MINLP. We are currently investigating the optimal choice of the reliability
parameters for MINLP. Next, we present an approach that allows us to reuse the
factors of the final QP solve, in an attempt to gain further performance advances.

3.2. Hot-Starting QP Solves

The re-use of existing factors of the previous QP solves is the most appealing way
to obtain pseudo-cost estimates. In our implementation, after solving the parent
NLP, we resolve the final QP to synchronize the factors with the solution of the
NLP, and then store these factors so that we can re-use them in every QP during
the strong-branching phase. We use a special feature in the QP solver that allows
us to hot-start the QP and is comparable to a dual-active-set method.

Table 1 shows the CPU times for some reasonably-sized QP approximations.
The first column gives the problem name, # ints shows the number of integer
variables, and the next three columns give the CPU times for full NLP solve, single
QP solve, and a hot-started QP solve, respectively. These results show that the



MINLP Branching Techniques 51

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2
 ( NODES / best NODES ) 

fr
a

c
ti
o

n
 o

f 
p

ro
b

le
m

s

2
x
 times more NODES than best

 

 

MaxFrac

StrongBranch

PseudoCost

ApproxStrong

ReliabilityBranch

BONMIN−Hybrid

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2
 ( CPU / best CPU ) 

fr
a

c
ti
o

n
 o

f 
p

ro
b

le
m

s

2
x
 times slower than best

 

 

MaxFrac

StrongBranch

PseudoCost

ApproxStrong

ReliabilityBranch

BONMIN−Hybrid

Figure 3. Performance profile of comparing approximate strong branch-
ing with strong branching, maximum-fractional branching, and pseudo-cost
branching. The left plot shows the number of nodes, the right shows the CPU

time.

benefit obtained by solving just a single QP is only a factor two or three, whereas
hot-started QPs are faster by a factor of up to 40!

Table 1. CPU times [s] for full NLP solve, single QP solve, and hot-started QP solve.

problem # ints Full NLP Single QP Hot QP
stockcycle 480 4.08 3.32 0.532
RSyn0805H 296 78.7 69.8 1.94
SLay10H 180 18.0 17.8 1.25
Syn30M03H 180 40.9 14.7 2.12

We believe that these preliminary results are encouraging, as they hold the
promise of cheaper strong branching decision for the whole tree. An alternative use



52 Leyffer

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2
 ( NODES / best NODES ) 

fr
a

c
ti
o

n
 o

f 
p

ro
b

le
m

s

2
x
 times more NODES than best

 

 

MaxFrac

StrongBranch

PseudoCost

ApproxStrong

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2
 ( CPU / best CPU ) 

fr
a

c
ti
o

n
 o

f 
p

ro
b

le
m

s

2
x
 times slower than best

 

 

MaxFrac

StrongBranch

PseudoCost

ApproxStrong

Figure 4. Performance profile of comparing approximate strong branch-
ing with strong branching, maximum-fractional branching, and pseudo-cost
branching. The left plot shows the number of nodes, the right shows the CPU

time.

of hot-started QPs that we are exploring is to replace the NLP-based tree-search
by a QP-based tree-search with only occasional updates to compute bounds. We
believe that this approach may become competitive with the prevalent approaches
to MINLP that use LP-based tree-search techniques.

4. Conclusions

We have presented new MINLP applications arising in computer science, includ-
ing the optimization of IEEE 802.11 mesh Networks, the design of data-optical
networks, the optimization of energy provisioning in relay node placements for
wireless sensor networks, and the optimal assignment of channels to users for
mesh routers in a wireless network. These models form part of DIWAL, see
http://wiki.mcs.anl.gov/NEOS/index.php/DIWAL.



MINLP Branching Techniques 53

We have investigated the tighter integration of MIP and NLP solvers for the
solution of these problems. In particular, we have shown that simple heuristics for
performing strong branching based on single QP information is superior to strong
branching based on NLP solves.

Acknowledgments

This work was supported by the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357. This work was also supported by the U.S. Department of Energy
through grant DE-FG02-05ER25694 and by the National Science Foundation through
grant 0830035.

References

1. K. Abhishek, S. Leyffer, and J. T. Linderoth. FilMINT: An outer-
approximation-based solver for nonlinear mixed integer programs. Preprint
ANL/MCS-P1374-0906, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, 2006.

2. T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations
Research Letters, 33:42–54, 2004.

3. D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, Endlewood Cliffs,
NJ, 1987.

4. Randeep Bhatia, Adrian Segall, and Gil Zussman. Analysis of bandwidth al-
location algorithms for wireless personal area networks. Wireless Networks,
12:589603, 2006.

5. D. Bienstock. Computational study of a family of mixed-integer quadratic
programming problems. Mathematical Programming, 74:121–140, 1996.

6. D. Bienstock and S. Mattia. Using mixed-integer programming to solve power
grid blackout problems. Discrete Optimization, 4:115–141, 2007.

7. P.T. Boggs and J.W. Tolle. Sequential quadratic programming. Acta Numerica,
4:1–51, 1995.

8. P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D.
Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic
framework for convex mixed integer nonlinear programs. Discrete Optimiza-
tion, 2008. To appear.

9. R. Boorstyn and H. Frank. Large-scale network topological optimization. IEEE
Transactions on Communications, 25:29–47, 1977.

10. C. Bragalli, C. D’Ambrosio, J. Lee, A. Lodi, and P. Toth. An MINLP solu-
tion method for a water network problem. In Algorithms - ESA 2006 (14th
Annual European Symposium. Zurich, Switzerland, September 2006, Proceed-
ings), pages 696–707. Springer, 2006.

11. I. Castillo, J. Westerlund, S. Emet, and T. Westerlund. Optimization of block
layout deisgn problems with unequal areas: A comparison of milp and minlp
optimization methods. Computers and Chemical Engineering, 30:54–69, 2005.

12. Kaikai Chi, Xiaohong Jiang, Susumu Horiguchi, and Minyi Guo. Topology de-
sign of network-coding-based multicast networks. IEEE Transactions on Mo-
bile Computing, 7(4):1–14, 2008.



54 Leyffer

13. Enrique Costa-Montenegro, Francisco J. González-Casta no, Pedro S.
Rodr´guez-Hernández, and Juan C. Burguillo-Rial. Nonlinear optimization of
ieee 802.11 mesh networks. In Y. Shi et al., editor, ICCS 2007, Part IV, number
4490 in LNCS, pages 466–473. Springer Verlag, Berlin Heidelberg, 2007.

14. R. J. Dakin. A tree search algorithm for mixed integer programming problems.
Computer Journal, 8:250–255, 1965.

15. V. Donde, V. Lopez, B. Lesieutre, A. Pinar, C. Yang, and J. Meza. Identifica-
tion of severe multiple contingencies in electric power networks. In Proceedings
37th North American Power Symposium, 2005. LBNL-57994.

16. A. M. Eliceche, S. M. Corvalán, and P. Mart́ınez. Environmental life cycle
impact as a tool for process optimisation of a utility plant. Computers and
Chemical Engineering, 31:648–656, 2007.

17. A. Elwalid, D. Mitra, and Qiong Wang. Distributed nonlinear integer opti-
mization for data-optical internetworking. IEEE Journal on Selected Areas in
Communications, 24(8):1502–1513, 2006.

18. R. Fletcher and S. Leyffer. Minlp (ampl input). http://www-neos.mcs.anl.
gov/neos/solvers/MINCO:MINLP-AMPL.

19. R. Fletcher and S. Leyffer. User manual for filterSQP. Numerical Analysis
Report NA/181, University of Dundee, April 1998.

20. R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function.
Mathematical Programming, 91:239–270, 2002.

21. A. Flores-Tlacuahuac and L. T. Biegler. Simultaneous mixed-integer dynamic
optimization for integrated design and control. Computers and Chemical En-
gineering, 31:648–656, 2007.

22. C.A. Floudas. Nonlinear and Mixed–Integer Optimization. Topics in Chemical
Engineering. Oxford University Press, New York, 1995.

23. I. E. Grossmann. Review of nonlinear mixed-integer and disjunctive program-
ming techniques. Optimization and Engineering, 3:227–252, 2002.

24. I. E. Grossmann and Z. Kravanja. Mixed–integer nonlinear programming: A
survey of algorithms and applications. In A.R. Conn L.T. Biegler, T.F. Cole-
man and F.N. Santosa, editors, Large–Scale Optimization with Applications,
Part II: Optimal Design and Control, New York, Berlin, 1997. Springer.

25. Wenxuan Guo and Xinming Huang. Achieving capacity fairness for wireless
mesh networks. Wirel. Commun. Mob. Comput., 2009.

26. O. K. Gupta and A. Ravindran. Branch and bound experiments in convex
nonlinear integer programming. Management Science, 31:1533–1546, 1985.

27. S.P. Han. A globally convergent method for nonlinear programming. Journal
of Optimization Theory and Applications, 22(3):297–309, 1977.

28. Y. Thomas Hou, Yi Shi, Hanif D. Sherali, and Scott F. Midkiff. On energy pro-
visioning and relay node placement for wireless sensor networks. IEEE Trans-
actions on Wireless Communications, 4(5), 2005.

29. N. J. Jobst, M. D. Horniman, C. A. Lucas, and G. Mitra. Computational
aspects of alternative portfolio selection models in the presence of discrete
asset choice constraints. Quantitative Finance, 1:489–501, 2001.

30. R. Karuppish and I. E. Grossmann. Global optimization for the synthesis of
integrated water systems in chemical processes. Computers and Chemical En-
gineering, 30:650–673, 2006.



MINLP Branching Techniques 55

31. A. H. Land and A. G. Doig. An automatic method for solving discrete pro-
gramming problems. Econometrica, 28:497–520, 1960.

32. S. Leyffer. Generalized outer approximation. In C.A. Floudas and P.M. Parda-
los, editors, Encyclopedia of Optimization, volume 2, pages 247–254. Kluwer
Academic Publishers, 2001.

33. Powell, M.J.D. A fast algorithm for nonlinearly constrained optimization cal-
culations. In G.A. Watson, editor, Numerical Analysis, 1977, pages 144–157,
Berlin, 1978. Springer–Verlag.

34. I. Quesada and I. E. Grossmann. An LP/NLP based branch–and–bound al-
gorithm for convex MINLP optimization problems. Computers and Chemical
Engineering, 16:937–947, 1992.

35. A. J. Quist, R. van Gemeert, J. E. Hoogenboom, T. Ílles, C. Roos, and T. Ter-
laky. Application of nonlinear optimization to reactor core fuel reloading. An-
nals of Nuclear Energy, 26:423–448, 1998.

36. Waseem Sheikh and Arif Ghafoor. An optimal bandwidth allocation and data
droppage scheme for differentiated services in a wireless network. ECE Tech-
nical Report 349, Purdue University, 2007.

37. Rajnish Sinha, Aylin Yener, and Roy D. Yates. Noncoherent multiuser com-
munications: Multistage detection and selective filtering. EURASIP Journal
on Applied Signal Processing, 12:14151426, 2002.

38. Majid Soleimanipour, Weihua Zhuang, and George H. Freeman. Optimal re-
source management in wireless multimedia wideband CDMA systems. IEEE
Transactions on Mobile Computing, 1(2):143–160, 2002.

39. O. V. Volkovich, V. A. Roshchin, and I. V. Sergienko. Models and methods of
solution of quadratic integer programming problems. Cybernetics, 23:289–305,
1987.

The submitted manuscript has been created by the UChicago Argonne, LLC, Operator of Argonne Na-
tional Laboratory (“Argonne”) under Contract No. DE-AC02-06CH11357 with the U.S. Department of
Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to
the public, and perform publicly and display publicly, by or on behalf of the Government.





11

Solving convex bound constrained
MINLP problems

Giampaolo Liuzzi1 Sara Mattia2 Laura Palagi2

Veronica Piccialli3

1 IASI-CNR, viale Manzoni, 30
Rome, 00185, Italy

liuzzi@iasi.cnr.it

2 Dipartimento di Informatica e Sistemistica
Sapienza University of Rome, via Ariosto, 25

Rome, 00185, Italy
{mattia,palagi}@dis.uniroma1.it

3 Dipartimento di Ingegneria dell’Impresa
University of Rome Tor Vergata, via del Politecnico, 1

Rome, 00133, Italy
piccialli@disp.uniroma2.it

Abstract

In the paper we present an exact method for solving mixed integer
bound constrained problems with convex objective function. We de-
velop a branch-and-bound algorithm where the lower bounds are de-
termined by means of nonlinear techniques. Computational results
are reported.
Keywords: Mixed Integer Nonlinear Programming, convex opti-
mization.

1. Introduction

In recent years, Mixed Integer NonLinear Programming (MINLP) problems have
been attracting more and more attention from the mathematical programming com-
munity, see, for example, the recent survey papers [2], [12] and the references
therein. A MINLP problem is an optimization problem where the objective func-
tion and/or the constraints are nonlinear and some of the decision variables are
restricted to assume integer values. These are challenging problems that can accu-
rately model many real-world applications in chemical engineering (process design
[16], product portfolio optimization [19]), electronics (signal synthesis [4]), finance

57



58 Liuzzi, Mattia, Palagi, Piccialli

(portfolio management and optimization [15]), unit-commitment of electricity gen-
erators [10, 6].

MINLP problems include as special cases NP-Hard problems. In the particular
case of linear objective and constraints we get the well-known and well-studied
class of Mixed Integer Linear Programming (MILP) problems. Research advances
for MILP problems over the past years have led to the development of many both
commercial and open-source codes able to solve large-scale MILP problems. On
the other hand, by relaxing the integrality requirement on the variables, we get
NonLinear Programming (NLP) problems for which in recent years different and
efficient approaches have been proposed allowing the definition of many software
packages and routine libraries for their solution.

In this work we focus our attention on convex MINLP and more specifically
on the minimization of a convex objective function with bound and integrality
constraints on the variables, that is

(11.1)
min f(x)
li 6 xi 6 ui, i ∈ {1, . . . , n}
xi ∈ D ⊂ Z, i ∈ I ⊆ {1, . . . , n},

where D is a subset of the integer numbers Z, I is the index set of integer variables
and f(x) is convex. If f(x) is a quadratic function then problem (11.1) includes as
a special case the max-cut problem and hence the quadratic boolean optimization
problem, see for example [3].

2. Existing methods

In the literature there are some exact methods for solving convex MINLP, and they
can be roughly classified in NLP based branch-and-bound methods [14], generalized
Benders decomposition [11], Outer Approximation decomposition algorithms [7]
,[9], [20] and extended cutting plane method [22]. The branch and bound based
methods use as ingredient the branch and bound algorithm originally introduced
for solving MILP, and at each node a continuous (linear or nonlinear) relaxation of
problem (11.1) is solved. Then the search space is explored by partitioning the set
of solutions in smaller subset as in the standard branch and bound. This class of
methods is implemented in solvers MINLP-BB [18], SBB [5] and BONMIN [1].

The outer approximation method solves a sequence of MILP problems built by
linearizing the objective and constraint functions around a set of solutions of the
NLP obtained by fixing the integer variables. This method is implemented in the
software DICOPT [13] and in BONMIN [1]. The generalized Benders decompo-
sition also solves a sequence of MILP, but instead of using a linearization of each
constraint, it introduces in the master problem a single constraint combining all the
linearizations. Finally, the extended cutting plane method is an extension of the
cutting plane method [17] for solving convex NLPs. The algorithm is based on the
iterative solution of a master problem where linearizations of violated constraints
are added during the iterations. This method is implemented in the software α-ECP
[21].

3. Our algorithm

Our algorithm belongs to the class of the NLP based branch and bound algorithms.
In particular, we implement a branch and bound method where the lower bound at



Solving convex bound constraints MINLPs 59

each node is computed by solving the bound constrained continuous NLP problem
obtained by removing the integrality constraint in problem (11.1). This is done
by means of the algorithm introduced in [8] which is an active set-type algorithm.
Indeed, at each iteration k, the algorithm estimates the variables that will be sup-
posedly at their lower and upper bounds at the (continuous) solution. On the basis
of this partition, the algorithm performs (sort of) an unconstrained minimization
in the subspace of free variables using a local Newton-type method. The quality of
the points generated by the algorithm is assessed by using a very simple differen-
tiable exact penalty function which allows also to generate infeasible points with a
prefixed “degree of infeasibility” during the continuous optimization. From a com-
putational point of view, it turns out that the algorithm is able to rapidly identify
the active bounds at the solution. We exploit this information in the branching
phase and define an heuristic for upper bound computation that keeps into account
the structure of the problem at hand. We evaluate our method on a set of test
problems and compare it with other existing branch-and-bound methods.

References

1. P. Bonami, L.T. Biegler, A.R: Conn, G. Cornuéjouls, I.E. Grossmann, C.D.
Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wachter. An algorithmic
framework for convex mixed integer nonlinear programs. Discrete Optimiza-
tion, 5:186–204, 2008.

2. P. Bonami, M. Kilinc, and J. Linderoth. Algorithms and software for con-
vex mixed integer nonlinear programs. Technical Report 1664, University of
Wisconsin, Madison, 2009.

3. E. Boros and P. L. Hammer. The max-cut problem and quadratic 0?1 opti-
mization; polyhedral aspects, relaxations and bounds. Annals of Operations
Research, 33:227–252, 1991.

4. C. Buchheim, A. Caprara, and A. Lodi. An effective branch-and-bound al-
gorithm for convex quadratic integer programming. Technical Report IPCO
2010, 2010.

5. M. R. Bussiek and A. Drud. Sbb: a new solver for for mixed integer nonlinear
programming. Technical report, OR2001, 2001.

6. G.M. Casolino, G. Liuzzi, and A. Losi. Unit commitment in oligopolistic mar-
kets by nonlinear mixed variable programming. Optimization and Engineering,
2009. DOI 10.1007/s11081-009-9102-6, to appear.

7. M.A. Duran and I.E. Grossmann. An outer-approximation algorithm for a class
of mixed-integer nonlinear programs. Mathematical Programming, 36:307–339,
1986.

8. F. Facchinei, S. Lucidi, and L. Palagi. A truncated newton algorithm for
large scale box constrained optimization. SIAM Journal on Optimization.,
12(4):1100–1125, 2002.

9. IR. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer
approximation. Mathematical Programming, 66:327–349, 1994.

10. A. Frangioni and C. Gentile. Solving nonlinear single-unit commitment prob-
lems with ramping constraints. Operations Research, 54(4):767–775, 2006.

11. A. Geoffrion. Generalized benders decompositions. Journal of Optimization
Theory and Applications, 10:237–260, 1972.



60 Liuzzi, Mattia, Palagi, Piccialli

12. I.E. Grossmann. Review of nonlinear mixed-integer and disjunctive program-
ming techniques. Optimization and Engineering, 3:227–252, 2002.

13. I.E. Grossmann, J. Viswanathan, A.V. Raman, and E. Kalvelagen.
Gams/dicopt: A discrete continuous optimization package. Mathematical
Methods in the Applied Sciences, 11:649–664, 2001.

14. O. K. Gupta and A. Ravindran. Branch and bound experiments in convex
nonlinear integer programming. Management Science, 31:1533–1546, 1985.

15. N.J. Jobst, M.D. Horniman, C.A. Lucas, and G. Mitra. Computational aspects
of alternative portfolio selection models in the presence of discrete asset choice
constraints. Quantitative Finance, 1:489–501, 2001.

16. J. Kallrath. Mixed integer optimization in the chemical process industry: expe-
rience, potential and future. International Journal on Chemical Engineering,
78 part A:809–822, 2000.

17. J.E. Kelley. The cutting plane method for solving convex programs. Journal
of SIAM, 8:703–712, 1960.

18. S. Leyffer. User manual for minlp-bb. Technical report, University of Dundee,
1998.

19. X. Lin, C.A. Floudas, and J. Kallrath. Global solution approach for a non-
convex minlp problem in product portfolio optimization. Journal of Global
Optimization, 32:417–431, 2005.

20. I. Quesada and I.E. Grossmann. An lp/nlp based branch-and-bound algorithm
for for convex minlp optimization problems. Computers and Chemical Engi-
neering, 16:937–947, 1992.

21. T. Westerlund and K. Lundqvist. Alpha-ecp, version 5.101. an interactive
minlp-solver based on the extended cutting plane method. Technical Report
01-178-A, Process Design Laboratory, Abo Akademi University, 2005.

22. T. Westerlund and F. Petterson. A cutting plane method for solving convex
minlp problems. Computers and Chemical Engineering, 19:s131–s136, 1995.



12

Computing dense subgraphs with
semidefinite programming

Jérôme Malick1 Frédéric Roupin2

1 CNRS, LJK (Lab. J. Kunztmann)
51, rue des maths, 38041 Grenoble, France

jerome.malick@inria.fr

2 CNAM, CEDRIC Lab.
292, rue St-Martin, 75003 Paris, France

frederic.roupin@cnam.fr

Abstract

We present a method for finding densest subgraphs, a classical NP-
hard problem in combinatorial optimization. This problem consists
in finding the densest subgraph with k nodes in a unweighted graph.
We use a branch-and-bound approach that applies a new bound-
ing procedure, based on recent semidefinite programming techniques.
These semidefinite bounds are less accurate than standard semidef-
inite bounds, but cheaper to get. The experiments show that our
method is competitive with the best existing approaches.
Keywords: combinatorial optimization, 0-1 quadratic optimization,
graphs, semidefinite optimization, Lagrangian duality, branch-and-
bound, k-densest subgraph, k-cluster.

1. A difficult combinatorial optimization problem

In this communication, we focus on the following standard problem of combinatorial
optimization. Let G = (V,E) be an undirected, unweighted graph with n vertices.
Given an integer 1 6 k 6 n, we want to compute a subgraph of G with k vertices
and with as many edges as possible. This problem can be formulated as the {0, 1}-
quadratic optimization problem:

(k-densest)







max y⊤W y
y1 + · · ·+ yn = k
y ∈ {0, 1}n

where W is the (half) adjacency matrix of G. The densest subgraph problem
is a difficult problem of combinatorial optimization (NP-hard and more, see [5]).
Relaxations and approaches using convex optimization have been proposed to solve

61



62 Malick, Roupin

it exactly or approximately (e.g. [1] using linear optimization, [4] using semidefinite
optimization and [2] using convex quadratic optimization). Moreover, [10] notices
that semidefinite relaxations of this problems give very tight bounds which are also
very expensive to compute.

The objectives of this communication are:

(1) to present new bounds, trading tightness for cpu time, while keeping SDP-
like quality,

(2) to show their interest for solving densest subgraph problem by brand-and-
bound,

(3) to compare with the best exact resolution method [2].

2. Reformulations as a special semidefinite optimization problem

We propose a new convex relaxation of the densest subgraph problem. This re-
laxation is SDP-like, but differs intrinsically from the other SDP bounds. In this
section, we reformulate the problem as needed, and in the next section we relax it.
We start reformulating with strandard techniques:

• enforcement of contraints - by adding n additional product-contrainsts,
• change of variable - to have a {−1, 1} formulation,
• homogenisation - to get a pure quadratic problem (in Rn+1).

Then we apply the standard “lifting” (see e.g. [3]) in the space of symmetric matri-
cesof size n + 1, equipped with the inner product 〈X,Y 〉 = trace(XY ), to get the
reformulation

(SDP)















max 〈Q,X〉
〈Qj ,X〉 = 4k − 2n, j ∈ {0, . . . , n}
〈Ei,X〉 = 1, i ∈ {0, . . . , n}
rank(X) = 1, X � 0,

with Q,Qj , Ei that are special symmetric matrices of size n+ 1 (see the details in
[9]). The final step consists in noting that, in this situation, the rank-one constraint
is equivalent to the constraint ‖X‖2 = (n + 1)2, called the “spherical constraint”
[7]. Thus we have reformulated our {0, 1} quadratic optimization problem as an
equivalent linear SDP problem with one quadratic constraint.

3. Lagrangian duality and bounds

The Lagrangian dualization of the spherical constraint by real parameter α intro-
duces a family of SDP bounds with interesting properties (see the details in [9]).
The bound denoted Θ(α) is always less accurate that the standard SDP bound, but
it is very close when α is small. Moreover it is computed easily by solving a SDP
least-squares problem















min ‖X −Q/α‖2
〈Qj ,X〉 = 4k − 2n, j ∈ {0, . . . , n}
〈Ei,X〉 = 1, i ∈ {0, . . . , n}
X � 0

with the help of efficient algorithms [6]. The parameter α acts as a cursor trad-
ing tightness for computation time, which is highly appreciable in exact solving
procedure.



Computing dense subgraphs with SDP 63

4. Exact resolution by branch-and-bound

We propose a branch-and-bound algorithm to solve the densest subgraph problem
to optimality. The characteristics of the algorithm are:

• bounding with the new bounds Θ(α) (with prematured interruptions and
warm restart);

• branching with a standard strategy using feasible solutions computed by
greedy heuristics.

We compare this approach with the best one [2] that mixes nicely semidefinite
programming with CPLEX. The numerical experiments on classical test-problems
show that our results are comparable and sometimes better. The reason may be
that the bound of [2] is of SDP-quality at the root of the branch-and-bound tree
only, and deteriorates when getting down in the tree, while Θ(α) is of SDP-quality
all way long, without paying the price in computing time [8]. So we enumerate 10
times less nodes in average, and we are then able to solve densest subgraph problems
of size 100 and more, in reasonnable cpu times. All this is precisely illustrated and
commented in [9].

References

1. A. Billionnet. Different formulations for solving the heaviest k-subgraph prob-
lem. Information Systems and Operational Res., 43(3):171–186, 2005.

2. A. Billionnet, S. Elloumi, and M.-C. Plateau. Improving the performance of
standard solvers for quadratic 0-1 programs by a tight convex reformulation.
Discrete Applied Mathematics, 157(6):1185–1197, 2009.

3. M.X. Goemans and D.P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM, 6:1115–1145, 1995.

4. G. Jäger and A. Srivastav. Improved approximation algorithms for maxi-
mum graph partitioning problems. Journal of Combinatorial Optimization,
10(2):133–167, 2005.

5. S. Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bi-
partite clique. SIAM Journal on Computing, 36:1025–1071, 2005.

6. J. Malick. A dual approach to semidefinite least-squares problems. SIAM Jour-
nal on Matrix Analysis and Applications, 26, Number 1:272–284, 2004.

7. J. Malick. Spherical constraint in Boolean quadratic programming. Journal of
Global Optimization, 39(4), 2007.

8. J. Malick and F. Roupin. Numerical study of SDP bounds for the k-cluster
problem. to appear in E. Discrete Math.: Proceedings of ISCO 2010, 2010.

9. J. Malick and F. Roupin. Solving k-cluster to optimality with semidefinite
programming. Submitted, 2010.

10. F. Roupin. From linear to semidefinite programming: an algorithm to obtain
semidefinite relaxations for bivalent quadratic problems. Journal of Combina-
torial Optimization, 8(4), 2004.





13

IBBA: an Exact Global Optimization
Software for the Design of

Electromechanical Actuators

Frédéric Messine

ENSEEIHT-IRIT
2 rue Camichel

Toulouse, 31071, France

messine@n7.fr

Keywords: interval arithmetic, Branch-and-Bound, global optimization, mixed
variables, categorical variable, design problem, electromechanical actuator.

The problem of the design of electromechanical actuators (such as electrical motors)
is understood as an inverse problem: from some characteristical values we have to
find the parameters of the studied actuator. We formulate this inverse problem as a
MINLP one. Moreover, this MINLP problem is non-homogeneous and the discrete
variables can be integer but also boolean or categorical ones. Indeed some variables
of the corresponding models are continuous, such as for example the diameter or
the length of an electrical motor, some other variables are integer ones, such as the
number of magnets, and some can be of category such as the kind of material which
will be used for the magnets.

IBBA (for Interval Branch and Bound Algorithm) is an exact global optimiza-
tion algorithm based on interval analysis (for the computation of bounds) and
Branch and Bound techniques. The particularity of IBBA is that it is able to solve
some difficult MINLP of design of electromechanical actuators. Thus, during the
collaboration with researchers of the LAPLACE Laboratory we extended IBBA to
deal with:

• mixed integer problems including categorical variables,
• non-homogeneous problems,
• hard non-linear and non-convex constraints; yielding specific interval con-

straint propagation techniques,
• some methods of computation of the bounds,
• some constraints of black-box type: computation of some constraints using

a finite element method.

65



66 Messine

Acknowledgments

This work was done in collaboration with the LAPLACE Laboratory of ENSEEIHT
of Toulouse, France.

References

1. E. Fitan, F. Messine, B. Nogarède, The Electromagnetical Actuators Design
Problem: a General and Rational Approach, IEEE Transaction on Magnetics,
Vol. 40, N. 3, 2004.

2. E. Hansen, Global Optimization Using Interval Analysis, MARCEL DEKKER,
Inc. 270 Madison Avenue, New York 10016, 1992.

3. R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer Aca-
demic Publishers, Dordrecht, Boston, London, 1996.

4. F. Messine, V. Monturet, B. Nogarède, An Interval Branch and Bound Method
Dedicated to the Optimal Design of Piezoelectric Actuators, Mathematics and
Computers in Sciences and Engineering, ISBN 960-8052-36-X, WSES Press,
pp. 174–180, 2001.

5. F. Messine, A Deterministic Global Optimization Algorithm for Design Prob-
lems. To appear as chapter of the book ”Essays and Surveys in Global Opti-
mization”, Kluwer Academic Publishers, 2005.

6. V. Monturet, B. Nogarède, Optimal dimensioning of a piezoelectric bimorph
actuator, European Physical Journal, Vol. 17, pp. 107–118, 2002.

7. R. E. Moore, Interval Analysis, Prentice Hall, Inc. Englewood Cliffs, N.J.,
1966.

8. H. Ratschek, J. Rokne, New Computer Methods for Global optimization, ELLIS
HORWOOD LIMITED Market Cross House, Cooper Street, Chichester, West
Sussex, PO19 1EB, England, 1988.



14

Strengthening of Lower Bounds in the
Global Optimization of Bilinear

Generalized Disjunctive Programs

Juan P. Ruiz Ignacio E. Grossmann

Department of Chemical Engineering
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213, USA

grossmann@cmu.edu

Generalized Disjunctive Programming (GDP), developed by Raman and Gross-
mann [19], has been proposed as a framework that facilitates the modeling of
discrete-continuous optimization problems by allowing the use of algebraic and log-
ical equations through disjunctions and logic propositions that are expressed in
terms of Boolean and continuous variables. In order to take advantage of existing
solvers [25, 24, 20, 14, 11, 5], GDPs are often reformulated as MILP/MINLP
problems by using either the Big-M (BM) [17], or the Convex Hull (CH) [12] re-
formulation.

In the particular case of nonconvex GDP problems the direct application of tra-
ditional algorithms to solve the reformulated MINLPs such as Generalized Benders
Decomposition (GBD) [4, 8] or Outer Approximation (OA) [6], may fail to find
the global optimum since the Xsolution of the NLP subproblem may correspond to
a local optimum and the cuts in the master problem may not be valid. Therefore,
specialized algorithms must be used in order to find the global optimum [9, 22, 7].

Nonconvex GDP problems with bilinear constraints are of particular interest
since these arise in many applications, for instance, in the design of pooling problems
[16], in the synthesis of integrated water treatment networks [10], or generally, in
the synthesis of process networks with multicomponent flows [18]. To tackle this
problem, Lee and Grossmann [13] proposed a global optimization method that first
relaxes the bilinear terms by using the convex envelopes of McCormick [15] and
the concave terms by using linear under-estimators. The convex hull [3] is then
applied to each disjunction. This formulation is then used within a spatial branch
and bound technique in which the branching is first performed on the Boolean
variables followed by the continuous variables. While the method proved to be
effective in solving several problems, a major question is whether one might be able

67



68 Ruiz, Grossmann

to obtain stronger lower bounds to enhance the efficiency for globally optimizing
GDP problems.

The general structure of a nonconvex GDP can be represented as follows [19,
23, 12]:

min Z = f(x) +
∑

k∈K ck

s.t. gl(x) ≤ 0 l ∈ L

∨
i∈Dk





Yik

rl
ik(x) ≤ 0 j ∈ Jik

ck = γik



 k ∈ K

(GDPNC)

Ω(Y ) = true

xlo ≤ x ≤ xup

x ∈ Rn , ck ∈ R1, Yik ∈ {true, false}

where f : Rn → R1 is a function of a continuous variables x in the objective func-
tion, gl : Rn → R1, l ∈ L, belongs to the set of global constraints, the disjunctions
k ∈ K, may be composed of a number of terms i ∈ Dk, that are connected by the
OR operator. In each term there is a Boolean variable Yik, a set of inequalities
rj
ik(x) 6 0, rj

ik : Rn → R1, and a cost variable ck. If Yik is true, then rj
ik 6 0

and ck = γik are enforced; otherwise they are ignored. Also, Ω(Y ) = true are logic
propositions for the Boolean variables. As indicated in Sawaya and Grossmann
[21], we assume that the logic constraints ∨

j∈J

Yik are contained in Ω(Y ) = true. In

a nonconvex GDP, f , rik and/or gl are nonconvex functions.
Bilinear GDPs (BGDP) are the class of nonconvex GDP problems that we

address in this paper. A BGDP is a nonconvex GDP where the functions in the
constraints only contain bilinear and linear terms. In general we can represent a
BGDP as:

min Z = dTx+
∑

k∈K ck

s.t. xTQlx+alx 6 bl l ∈ L

∨
i∈Dk





Yik

xTQl
ikx+ alx 6 blik j ∈ Jik

ck = γik



 k ∈

K (GDPB)

Ω(Y ) = true

xlo ≤ x ≤ xup

x ∈ Rn , ck ∈ R1, Yik ∈ {true, false}

where some of the matrices Ql , Qj
ik are indefinite

In order to solve (GDPB) with a spatial branch and bound method, a convex
GDP relaxation is required. A valid Linear GDP relaxation can be obtained by
finding suitable under- and over-estimating functions of the nonconvex constraints.



Strengthening Lower Bounds 69

Although this set of estimators is not unique, we propose to use the convex envelopes
proposed by McCormick [15] for bilinear terms (see also Al-Khayyal and Falk [1]).

Defining X = xxT we can find a relaxation for each term Xij = xixj as:

Xij 6 xixj
up + xjx

lo
i − xup

j xlo
i

Xij 6 xixj
lo + xjx

up
i − xlo

j x
up
i 1 ≤ i < j < n+ 1

Xij > xixj
lo + xjx

lo
i − xlo

j x
lo
i

Xij > xixj
up + xjx

up
i − xup

j xup
i

This leads to the following Linear GDP,

min Z = dTx+
∑

k∈K ck

s.t. Ql ·X + alx 6 bl l ∈ L

∨
i∈Dk





Yik

Ql
ik ·X + alx 6 blik j ∈ Jik

ck = γik



 k ∈ K

(GDPRB)

Xij > xixj
up + xjx

lo
i − xup

j xlo
i

Xij > xixj
lo + xjx

up
i − xlo

j x
up
i 1 ≤ i < j < n+ 1

Xij > xixj
lo + xjx

lo
i − xlo

j x
lo
i

Xij > xixj
up + xjx

up
i − xup

j xup
i

Ω(Y ) = true

xlo ≤ x ≤ xup

x ∈ Rn , ck ∈ R1, Yik ∈ {true, false}

where · represents the scalar product of matrices.
Traditionally, (GDPRB) has been used to predict lower bounds in the spatial

branch and bound method [13]. In this work we will show that by the application of
a systematic procedure we can improve the strength of the continuous relaxation of
(GDPRB), leading to stronger lower bound predictions for (GDPB). In this work
we first build on the work by Sawaya and Grossmann [21] exploiting the newly
discovered hierarchy of relaxations in order to solve more efficiently bilinear GDP
problems. Sawaya and Grossmann [21] have recently established new connections
between Linear GDP and the Disjunctive Programming theory by Balas [2]. As a
result, a family of tighter reformulations has been identified. These are obtained
by performing a sequence of basic steps on the original disjunctive set (i.e. each
basic step is characterized by generating a new set of disjunctions by intersecting
the former), bringing it to a form closer to the Disjunctive Normal Form (DNF),
and hence tightening its discrete relaxation [3]. It is important to note that each
intersection usually creates new variables and constraints. Therefore, it is important
to recognize when it may be useful to make these intersections. Some general rules
are described in this work. The implementation of this framework is illustrated
by finding a relaxation for a small example. We then outline the implementation
of the tighter reformulation within a spatial branch and bound procedure whose



70 Ruiz, Grossmann

performance is compared with current methodologies (i.e. Lee and Grossmann [13])
on a set of small process optimization problems.

Finally, we present a methodology to find tight convex relaxations for a special
set of quadratic constraints given by bilinear and linear terms that frequently arise
in the optimization of process networks. In general, process networks are composed
of a set of nodes (N) connected by a set of streams (S). Each stream in S is associated
with a flow F and a set of properties J whose values P j are relative to F . The flows
and properties of the set of streams leaving a node (On) are related to the flow and
properties of the set of streams entering the node (In) and the characteristics of
the node itself. The most frequent subset of equations found in these networks is
represented by the following set of quadratic and linear constraints:

∑

i∈In
(FinP

j
in)−FonP

j
on = 0 ∀n ∈ N ,∀j ∈ J (1)

∑

i∈In
Fin − Fon = 0 ∀n ∈ N (2)

where Fin represents the flow of the entering stream i ∈ I at a node n ∈ N
and P j

in the value for the property j in that stream. Similarly, Fon and P j
on are the

characteristic values for the outlet stream. Without loss of generality we assume
that only one stream leaves the node, namely, |On| = 1. The constraints in (1)
and (2) typically correspond to mass or energy balances. Although very simple
in its representation, this set of constraints define a nonconvex region, and when
embedded they require global optimization techniques.

The basic idea in the proposed relaxation lies on exploiting the interaction be-
tween the vector spaces where the different set of variables are defined to tighten
the relaxation of traditional approaches. In order to do so we first describe the
system in vectorial form exposing the interaction of the different vector spaces.
Second, we define and characterize the elementary building blocks of the system
given by ”minimal sets”. This allows us to understand this interaction and generate
from its properties cuts that are proved to be non-redundant for the original relax-
ation. Finally we assess the performance of the method by testing it in several case
studies by embedding the resulting relaxation within a spatial branch and bound
framework.

References

1. F.A. Al-Khayyal and J.E. Falk. Jointly constrained biconvex programming.
Mathematics of Operations Research, 8(2):273–286, 1983.

2. E. Balas. Disjunctive programming. Annals of Discrete Mathematics, 5:3–51,
1979.

3. E. Balas. Disjunctive programming and a hierarchy of relaxations for discrete
optimization problems. SIAM Journal on Algebraic and Discrete Methods,
6:466–486, 1985.

4. J. F. Benders. Partitioning procedures for solving mixed-variables program-
ming problems. Numerische Mathematik, 4:238–252, 1962.



Strengthening Lower Bounds 71

5. L.T. Biegler A.R. Conn G. Cornuejols I.E. Grossmann C.D. Laird J. Lee A.
Lodi F. Margot N. Sawaya A. Wchter Bonami, P. An algorithmic framework for
convex mixed integer nonlinear programs. Discrete Optimization, 5:186–204,
2008.

6. M. A. Duran and I. E. Grossmann. An outer-approximation algorithm for a
class of mixed-integer nonlinear programs. Mathematical Programming, 36:307,
1986.

7. C.A. Floudas. Deterministic Global Optimization: Theory, Methods and Ap-
plications. Kluwer Academic Publishers, 2000.

8. A.M. Geoffrion. Generalized benders decomposition. Journal of Optimization,
10(4):237–260, 1972.

9. R. Horst and H. Tuy. Global Optimization deterministic approaches (3rd Ed).
Springer-Verlag, 1996.

10. R. Karuppiah and I. E. Grossmann. Global optimization for the synthesis
of integrated water systems in chemical processes. Computers and Chemical
Engineering, 20:650–673, 2006.

11. Allgor R. J. Gatzke E. P. Barton P. I. Kesavan, P. Outer approximation algo-
rithms for separable nonconvex mixed-integer nonlinear programs. Mathemat-
ical Programming, 100(3):517–535, 2004.

12. S. Lee and Grossmann I. E. New algorithms for nonlinear generalized disjunc-
tive programming. Computers and Chemical Engineering, 24:2125–2141, 2000.

13. S. Lee and Grossmann I. E. Global optimization of nonlinear generalized dis-
junctive programming with bilinear inequality constraints: application to pro-
cess networks. Computers and Chemical Engineering, 27:1557–1575, 2003.

14. S. Leyffer. Integrating sqp and branch and bound for mixed integer nonlin-
ear programming. Computational Optimization and Applications, 18:295–309,
2001.

15. G. P. McCormick. Computability of global solutions to factorable nonconvex
programs. part i. convex underestimating problems. Mathematical Program-
ming, 10:146–175, 1976.

16. C. Meyer and C.A. Floudas. Global optimization of a combinatorially complex
generalized pooling problem. AIChE Journal, 52:1027–1037, 2006.

17. G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization.
Wiley, 1988.

18. I. Quesada and Grossmann I. E. Global optimization of bilinear process
networks with multicomponent flows. Computers and Chemical Engineering,
19:1219–1242, 1995.

19. R. Raman and I. E. Grossmann. Modeling and computational techniques
for logic based integer programming. Computers and Chemical Engineering,
18(7):563–578, 1994.

20. N. Sahinidis. Baron: A general purpose global optimization software package.
Journal of Global Optimization, 8(2):201–205, 1996.

21. N. Sawaya and I. E. Grossmann. Reformulations, relaxations and cutting
planes for linear generalized disjunctive programming. Submitted for publica-
tion, 2009.

22. M. Tawarmalani and N. Sahinidis. Convexification and Global Optimization
in Continuous and Mixed-Integer Nonlinear Programming. Kluwer Academic
Publishers, 2002.



72 Ruiz, Grossmann

23. M. Turkay and I.E. Grossmann. Disjunctive programming techniques for the
optimization of process systems with discontinuous investment costs-multiple
size regions. Industrial and Engineering Chemistry Research, 35:2611–2623,
1996.

24. Viswanathan and I.E. Grossmann. A combined penalty function and outer-
approximation method for minlp optimization. Computers and Chemical En-
gineering, 14(7):769–782, 1990.

25. T. Westerlund and F. Pettersson. An extended cutting plane method for solv-
ing convex minlp problems. Computers and Chemical Engineering, 19:131–136,
1995.



15

Improved SDP bounds for Quadratic
Assignment Problem with suitable

symmetry

Renata Sotirov

Tilburg University,
Warandelaan 2,

Tilburg, 5000 LE Tilburg, The Netherlands

r.sotirov@uvt.nl

Keywords: quadratic assignment problem, semidefinite programming, group sym-
metry.

We study the quadratic assignment problem (QAP) in the following form:

min
π∈Sn

n
∑

i,j=1

aijbπ(i),π(j),

where A = [aij ] and B = [bij ] are given symmetric n × n matrices, and Sn is the
symmetric group on n elements, i.e. the group of all permutations of {1, . . . , n}.
The matrices A and B are often called the flow and distance matrices respectively.
The physical interpretation is that we are given n facilities with specified flows be-
tween facilities given by the matrix B, as well as n locations with relative distances
between these locations given as the entries of A. The objective is to assign the
facilities to locations such that the ‘flow × distance’ is minimal when summed over
all pairs.

The QAP may be rewritten in terms of n× n permutation matrices as follows:

min
X∈Πn

trAXBXT

where Πn is the set of n× n permutation matrices. It is well-known that the QAP
contains the traveling salesman problem as a special case and is therefore NP-hard
in the strong sense. Moreover, experience has shown that instances with n = 30 are
already very hard to solve in practice. Thus it is typically necessary to use massive
parallel computing to solve even moderately sized QAP instances; see [1]. The
successful computational work in Anstreicher at al. employed convex relaxation of
the QAP in a branch and bound setting. One class of convex relaxations that has
been suggested for the QAP is via semidefinite programming, see [5].

73



74 Sotirov

Semidefinite programming (SDP) is a generalization of linear programming
where the nonnegativity constraints are replaced by positive semidefiniteness on
the matrix variables. Semidefinite programming studies show that it is a very
promising method for providing tight relaxations for hard combinatorial problems,
notably QAP. Derived SDP relaxations are often large scale and therefore hard to
solve with the currently available solvers.

In particular, SDP relaxations of QAP introduced in [5] turn out to be quite
good in practice, but computationally demanding for interior point solvers, even
for relatively small instances (say n ≥ 15). Lower order methods can solve the SDP
relaxations for somewhat larger instances, but are known to be much slower than
interior point methods.

For QAP instances where the data matrices have large automorphism groups,
the SDP bounds can be computed more efficiently, as was shown by De Klerk and
Sotirov [2], who computed the SDP bound of Zhao et al. [5] for some instances
with n up to 128 with interior point solvers.

In this talk we show how one may obtain even stronger bounds for QAP in-
stances where one of the data matrices has a transitive automorphism group, see [3].
Note that when we fix some entry in the permutation matrix X to one, we obtain
a QAP problem that is one dimensional smaller than the original one. In terms
of the physical interpretation of the QAP, we are assigning facility s to location
r for a given index pair (r, s). In general, these bounds are not lower bounds for
the original QAP problem, but if aut(A) or aut(B) is transitive, we do obtain such
global lower bounds. We summarize this in the following lemma.

Lemma 0.1. [3] If aut(A) or aut(B) is transitive, then any lower bound for the
QAP subproblem obtained by assigning facility s to location r is also a lower bound
for the original QAP.

In the other words, every child node at the first level of the branching tree yields
a lower bound on the global minimum of the QAP. Moreover, in [3] is proved that
so obtained bounds dominate the SDP bound of Zhao et al. that were previously
known as the strongest SDP bounds for the QAP. Further, we show that if one of
the automorphism groups of the data matrices is transitive, say aut(B), then the
number of different subproblems in the first level of the branching tree depends on
the number of orbits of aut(A). This results with computing at most n different
subproblems for the given data matrices A and B.

Our approach is very suitable for QAP instances with Hamming distance ma-
trices. To illustrate our approach, we compute improved lower bounds for several
test problems from the QAP library QAPLIB. In the table below we list the previ-
ous lower bounds, the new SDP lower bounds that we computed using symmetry
reduction, the best know upper bounds, and computation times for the given prob-
lems.

It is clear from the table that improved lower bounds are obtained for all the
instances in the table. The stronger bounds are obtained at a significant computa-
tional cost, though, as may be seen from the solution times listed in the table. The
bounds for esc32a, esc32b and esc64a were computed by SDPA-DD solver1, since
these problems showed poor numerical conditioning. The high running times for
these instances reflect the fact that SDPA-DD uses high precision computations.

1Available at http://sdpa.indsys.chuo-u.ac.jp/sdpa/software.html



Improved SDP bounds for QAP with symmetry 75

instance previous l.b. new SDP l.b. best known u.b. time(s)

esc32a 104 107 130 191,510
esc32b 132 141 168 21,234
esc32c 616 618 642 256
esc32d 191 194 200 132
esc32h 425 427 438 1,313
esc64a 98 105 116 24,275

All other bounds were done with SeDuMi using the Yalmip interface on a Pentium
IV 3.4 GHz dual-core processor.

The described approach has several potential areas of applications. The first
aspect is that QAP problems with Hamming distance matrices arise in several ap-
plications: in the design of hardwired VLSI control units and in information theory
with applications in channel coding. The second aspect of the presented approach
is that we obtain a new SDP bound for all QAP instances where the automorphism
group of one of the data matrices is transitive. One famous example of such an
instance is the QAP reformulation of the traveling salesman problem (TSP). The
new SDP relaxation of TSP dominates the previous best known SDP relaxation
(see [4]) that is known to be independent of the Held-Karp bound. Another ex-
ample of QAP instance where the automorphism group of one of the data matrices
is transitive is the QAP reformulation of the equipartition problem (EQP). In this
talk we also present some preliminary numerical results for the new TSP and EQP
bounds.

References

1. K.M. Anstreicher, N. Brixius, J. Linderoth, and J.-P. Goux. Solving Large
Quadratic Assignment Problems on Computational Grids. Mathematical Pro-
gramming, Series B, 91:563–588, 2002.

2. E. de Klerk and R. Sotirov. Exploiting group symmetry in semidefinite pro-
gramming relaxations of the quadratic assignment problem, Mathematical Pro-
gramming A, 122(2):225–246, 2010.

3. E. de Klerk and R. Sotirov. Improved semidefinite programming bounds for
quadratic assignment problems with suitable symmetry. Preprint, 2009.

4. E. de Klerk, D.V. Pasechnik and R. Sotirov. On semidefinite programming
relaxations of the traveling salesman problem. SIAM Journal of Optimization,
19(4):1559–1573, 2008.

5. Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite Programming
Relaxations for the Quadratic Assignment Problem. Journal of Combinatorial
Optimization, 2, 71–109, 1998.





16

Polyhedrality and Inclusion Certificates in
Convexification

Mohit Tawarmalani

Purdue University
100 S. Grant Street,

West Lafayette, IN 47907-2076, USA

mtawarma@purdue.edu

Abstract

Convex extensions have been found useful in constructing relaxations
of nonlinear functions. In this paper, we use convex extensions to
study inclusion certificates. Then, we use these certificates to gain
insights into polyhedrality of multilinear sets. Finally, we discuss
algorithmic techniques for generating facets for polyhedral sets occur-
ring in nonlinear programs.
Keywords: convex extensions, envelopes, separation, multilinear.

1. Introduction

We are interested in solving nonlinear programs (NLP) described symbolically as:

(P ) min f(x)
s.t. g(x) ≤ 0

x ∈ Rn

where f : Rn 7→ R, g : Rn 7→ Rm are continuous functions.
The potential gains from global optimization of MINLPs has motivated a

stream of recent research efforts in this direction. One of the successful determinis-
tic techniques for solving NLPs is the branch-and-bound algorithm which has been
implemented in various commercial and open-source software; [1, 14, 10, 4]. The
branch and bound algorithm bounds (P) by solving convex relaxations over succes-
sively refined partitions; see [9]. The current relaxation techniques are derived from
the factorable programming technique of [11]. They proceed by introducing new
variables zi, i = 1, . . . , k for sub-expressions of f(x) and gj(x), j = 1, . . . ,m. Let
K = {1, . . . , k} and for each i ∈ K, let hi(x) be the sub-expression that is replaced
by zi.

77



78 Tawarmalani

Rectangular partitioning in the most commonly used partitioning technique,
which naturally yields bounds on variables at each node of the branch-and-bound
tree. Then, for a given I ⊆ K, we are interested in relaxing Z(I) = {(z, x) | zi =
hi(x)∀i ∈ I, x ∈ H}, where H is a hypercube obtained from the bounds on x at
the specific partition in consideration. Most research has focused on the case where
I is a singleton. In this case, it suffices to find the convex and concave envelopes
of hi(x) over H. There has been a considerable amount of research in identifying
such envelopes for various classes of functions; see for example [2, 13, 15, 19,
5, 12]. For more details on relaxation techniques, the reader is referred to the
recent surveys [7, 8]. Incidentally, since the envelopes approach hi(x) when the
diameter of the underlying set approaches 0 (see [3]), they along with exhaustive
partitioning techniques and appropriate node-selection rules satisfy the conditions
needed to establish the asymptotic convergence of the branch-and-bound algorithm.
Problems related to bounding probabilities of a finite set of events are shown to be
related to computing the inclusion certificates.

2. Polyhedral Envelopes

Convex envelopes of various classes of functions have polyhedral properties. The
polyhedral relaxations of the bilinear function used in factorable programming were
shown to constitute the convex/concave envelope of the a bilinear term in [2]. In
[13], the author showed that the convex/concave envelopes of multilinear functions
are polyhedral. This has been exploited in [15] to develop closed-form expressions
for convex/concave envelopes of the combinatorial multilinear functions over the
unit hypercube. In [19], the authors developed techniques to identify the subset of
the domain that determines the convex envelope of a lower-semicontinuous function.
Using convex extensions, [17, 18] showed that the multilinear set is also polyhe-
dral, i.e., when each hi is multilinear, the convex hull of Z(I) can be obtained by
restricting x to the extreme points of the underlying hypercube. In [6], the authors
derive the the convex and concave envelope of

∑

i,j aijxiyj . In [5], the author de-
veloped a closed-form expression for the concave envelope of a monomial function
over a hypercube in the non-negative orthant. The concave envelope of an almost-
positive multilinear function is developed in [12]. In [16], the author discusses
conditions under which the envelopes are polyhedral. In [3], the polyhedrality of
the convex envelope of a multilinear function was exploited to develop a column-
generation algorithm for identifying the facets of the convex/concave envelope of
an arbitrary multilinear function. In [21], the authors identify various families
of functions for which they derive closed-form expressions of convex/concave en-
velopes. They demonstrate that the results of [2, 15, 5, 12] are special cases of
their constructions.

2.1. Inclusion Certificates

In this paper, we provide necessary and sufficient conditions for identifying generat-
ing sets in terms of Fenchel conjugates and apply them to the study of polyhedrality
of nonlinear functions. We then focus on a disjunctive union of convex sets. We
associate with each x in the convex hull of the disjunctive union an inclusion certifi-
cate that provides convex multipliers for each convex set in the union and certifies
x as a member of the convex hull. Note that inclusion certificates are not unique.



Polyhedrality and Inclusion Certificates in Convexification 79

However, given one functional representation of inclusion certificate, we show that
other inclusion certificates are obtained via convexification. This convexification
can be performed using disjunctive programming techniques. Then, we discuss
how inclusion certificates for addition and Cartesian product of disjunctive unions
can be obtained from the inclusion certificates of the constituent disjunctive unions.
We specialize the results to the case when each disjunction is a single point. In this
case, the inclusion certificates are the barycentric coordinates. The barycentric co-
ordinates for a Cartesian product of simplices are well-known and give insights into
the polyhedrality of multilinear sets. However, we show that for general polyhedra
and bounded integer sets the barycentric coordinates cannot be polynomial func-
tions. In [20], the authors have discovered rational functions that can be used as
barycentric coordinates for arbitrary polyhedral sets.

2.2. Separation Techniques

We then focus on Z(I) and develop algorithmic techniques to identify facets of
Z(I) that separate a given point (x, z) from Z(I). Towards this end, we discuss
general results regarding separation from convex sets. We develop a primal-dual
pair of convex programs that have nice separation properties. In this construction,
we exploit normalization strategies for cones. For example, we show that a pointed
cone can be normalized by using a point in the relative interior of the polar cone.
We also discuss other normalization strategies that use information about the point
being separated. These are then exploited in our algorithm for separating points
from Z(I).

We specialize the discussion to polyhedral sets. For this case, the separation
problems discussed above reduce to linear programming problems. We interpret
the separation problems geometrically, gain insights, and derive various structural
results. For example, we show that, under certain technical restrictions, the facets
of Z(I) correspond to the minimal faces of the primal linear program. When I is a
singleton, the separation problem reduces to the problem discussed in [15, 3, 21].
This allows us to extend the results in the literature to the case when I has more
than one element.

We show that the sub-problem associated with a specific Lagrangian relaxation
reduces to the separation problem of [3]. Then, the decomposition algorithm of [3]
can be exploited with a sub-gradient ascent scheme to identify the facet of Z(I)
that separates (x, z). Future work will focus on implementing the algorithm and
identifying other classes of functions that are simultaneously polyhedral.

Acknowledgments

This research was supported in part by NSF Award DMI-0900065.

References

1. C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. A global optimiza-
tion method, αBB, for general twice-differentiable constrained NLPs–II. Im-
plementation and computational results. Computers & Chemical Engineering,
22:1159–1179, 1998.

2. F. A. Al-Khayyal and J. E. Falk. Jointly constrained biconvex programming.
Mathematics of Operations Research, 8:273–286, 1983.



80 Tawarmalani

3. X. Bao, N. V. Sahinidis, and M. Tawarmalani. Multiterm polyhedral relax-
ations for nonconvex, quadratically constrained quadratic programs. Optimiza-
tion Methods & Software, 24:485–504, 2009.

4. P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Waechter. Branching and
bounds tightening techniques for non-convex MINLP. Available at http://

www.optimization-online.org/DB\_HTML/2008/08/2059.html, 2008.
5. H. P. Benson. On the construction of convex and concave envelope formulas for

bilinear and fractional functions on quadrilaterals. Computational Optimiza-
tion and Applications, 27:5–22, 2007.

6. D. Coppersmith, O. Günlük, J. Lee, and J. Leung. A Polytope for a Product
of Real Linear Functions in 0/1 Variables. IBM Research Report, 2003.

7. C. A. Floudas and C. E. Gounaris. A review of recent advances in global
optimization. Journal of Global Optimization, 45:3–38, 2009.

8. R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel. Nonlinear integer pro-
gramming. In 50 years of integer programming 1958–2008: The Early Years
and State-of-the-Art Surveys, pages 561–618. Springer-Verlag, 2010.

9. R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer
Verlag, Berlin, Third edition, 1996.

10. LINDO Systems Inc. LINGO 11.0 optimization modeling software for linear,
nonlinear, and integer programming. Available at http://www.lindo.com,
2008.

11. G. P. McCormick. Computability of global solutions to factorable nonconvex
programs: Part I—Convex underestimating problems. Mathematical Program-
ming, 10:147–175, 1976.

12. C. A. Meyer and C. A. Floudas. Convex envelopes of edge-concave functions.
Mathematical programming, 103:207–224, 2005.

13. A. D. Rikun. A convex envelope formula for multilinear functions. Journal of
Global Optimization, 10:425–437, 1997.

14. N. V. Sahinidis and M. Tawarmalani. BARON. The Optimization Firm, LLC,
Urbana-Champaign, IL, 2005. Available at http://www.gams.com/dd/docs/

solvers/baron.pdf.
15. H. D. Sherali. Convex envelopes of multilinear functions over a unit hypercube

and over special discrete sets. Acta Mathematica Vietnamica, 22:245–270, 1997.
16. F. Tardella. Existence and sum decomposition of vertex polyhedral convex

envelopes. Optimization Letters, 2:363–375, 2008.
17. M. Tawarmalani. Polyhedral basis, probability spaces, and links to disjunctive

programming. Technical Report, Krannert School of Management, 2002.
18. M. Tawarmalani. Convexification and global optimization of nonlinear pro-

grams. Presented at Workshop on Integer Programming and Continuous Op-
timization, Chemnitz, 2004.

19. M. Tawarmalani and N. V. Sahinidis. Convex extensions and convex envelopes
of l.s.c. functions. Mathematical Programming, 93:247–263, 2002.

20. J. Warren, S. Schaefer, A. N. Hirani, and M. Desbrun. Barycentric coordinates
for convex sets. Advances in computational mathematics, 27:319–338, 2007.

21. C. Xiong, M. Tawarmalani, and J.-P. P. Richard. Deriving polyhedral envelopes
through polyhedral subdivisions. working paper, 2010.



17

Two problems involving discrete
variables: algorithm optimization in DFO

and image reconstruction in acoustics

Philippe Toint1 Serge Gratton2 M’Barek Fares3

1 Department of Mathematics, FUNDP-University of Namur
61, rue de Bruxelles, B-5000 Namur, Belgium

philippe.toint@fundp.ac.be

2 ENSEEIHT-IRIT,
2, rue Camichel, 31000 Toulouse, France

serge.gratton@enseeiht.fr

3 CERFACS,
42, avenue Coriolis, 31057 Toulouse Cedex 01, France

fares@cerfacs.fr

We present recent advances in two topics where the occurence of discrete vari-
ables plays a significant role. The first is the numerical optimization of the perfor-
mance of algorithms. We consider here a “brute-force” algorithm for derivative-free
minimization of mixed-integer nonlinear problems. After some description of this
method and of the meaning of its parameters, we indicate how robust optimization
has been used to tune these parameters to improve the performance of the minimiz-
ers on a set of test problems from the literature. The second problem of interest is
the reconstruction of the shape of unknown objects from measurements of reflected
plane waves (far-field measures). In this case, one is faced with the (approximate)
reconstruction of an indicator function in the discretized 3D space. A new method
(SVD-tail) is proposed in the framework of the linear sampling methods, for which
image reconstruction is shown to be both extremely fast and visually satisfying.

81





18

An Interior-Point Algorithm for
Nonlinear Optimization Using Iterative

Linear Solvers

Andreas Wächter

IBM T.J. Watson Research Center
1101 Kitchawan Road

Yorktown Heights, NY 10598, USA

andreasw@us.ibm.com

Keywords interior point, inexact step computation.

In many large-scale applications, the computational time in a continuous opti-
mization algorithm is dominated by the solution of large, sparse linear systems,
required for the step computations. In some cases, particularly in the context of
PDE-constrained optimization, direct factorization of the matrices in these sys-
tems creates a lot of fill-in, resulting in very expensive iterations. In this talk,
we present an interior-point line-search algorithm that utilizes an iterative linear
solver instead. Special attention is paid to the termination criteria of the iterative
procedure to ensure that the resulting inexact steps still guarantee convergence of
the overall optimization algorithm to a local solution under mild assumptions. The
algorithm has been implemented in the Ipopt open-source optimization package,
in conjunction with the Pardiso linear solver library. Numerical results for some
PDE-constrained optimization problems will be presented.

This is joint work with Frank Curtis (Lehigh University) and Olaf Schenk
(University of Basel).

83





19

Complexity of Nonlinear Discrete
Parametric Optimization

Robert Weismantel

ETH
Rämistrasse 101

Zürich, 8032, Switzerland

weismant@imo.math.uni-magdeburg.de

Abstract

We consider the problem of optimizing a nonlinear objective function
over a weighted independence system presented by a linear-optimiza-
tion oracle. While this problem is generally intractable, we are able to
provide approximate or exact polynomial-time algorithms for various
special cases. In every such case one considers a apecialized combi-
natorial feasible domain. The cases do not only differ with respect to
the schemes of encoding the input data, but also depend on different
presentations of the oracle for the nonlinear objective function.
Keywords: parametric optimization, nonlinear discrete optimiza-
tion.

1. Introduction

This talk focuses on nonlinear discrete optimization problems defined by a nonlinear
function f : Rd 7→ R, a matrix W ∈ Zd×n such that f(Wx) is to be minimized
over the feasible domain F described by rational data in binary encoding and given
as

(19.1) F =
{

x ∈ Zn, Ax = b, 0 6 x 6 u
}

.

In the special case when d = 1 we always use w in place of W .
The purpose of this talk is to study the computational complexity of the prob-

lem in different special cases regarding the structure of the feasible domain, the
encoding of the weight matrix W and the oracle presenting the objective function.

We first argue that the presentation of the oracle affects the efficieny of algo-
rithms for solving nonlinear discrete optimization problems. In order to demon-
strate this fact we consider an algorithm that is allowed to perform arithmetic and
logic operations on the elements of a Graver basis in order to be able to conclude

85



86 Weismantel

whether or not a given feasible point x0 is optimal for min f(wTx) subject to x ∈ F.
It will be shown that different oracles for presenting f influence the efficiency of
algorithms testing optimality. For example, if f is quasi convex and presented by a
comparison oracle which, when queried on x, y ∈ F, decides whether f(x) < f(y),
f(x) = f(y), or f(x) > f(y) holds, an efficient algorithm cannot exist.

2. Convex minimization over an N-fold System

We next consider the solution of our generic nonlinear discrete optimization for
minimizing a convex univariate function via augmentation procedures. We show
that a so-called greedy augmentation procedure that employs only directions from
a Graver basis needs only polynomially many augmentation steps to solve the given
problem. We extend these results to convex N -fold integer minimization problems
and to convex 2-stage stochastic integer minimization problems. More precisely, we
consider data A ∈ Zm×n, u ∈ Zn, b ∈ Zm, W ∈ Zd×n. Let f : Rd 7→ R denote a
separable convex function presented by a comparison oracle which, when queried on
x, y ∈ Zs+1, decides whether f(x) < f(y), f(x) = f(y), or f(x) > f(y). Moreover,
let H be an upper bound for the difference of maximum and minimum value of
f over the feasible set F = {x ∈ Zn | Ax = b, 0 6 x 6 u}. Assuming that the
encoding length of H is of polynomial size in the encoding lengths of A, u, b,W , any
feasible solution z0 to F can be augmented to an optimal solution by iteratively
applying the following greedy procedure:

Choose a greedy direction αg from a Graver basis G(A,W ) and set z0 :=
z0 + αg.
If αg = 0, that is if α = 0 for all g ∈ G(A,W ), return z0 as optimal
solution.

The number of augmentation steps in this augmentation procedure is polynomially
bounded in the encoding lengths of A, u, b, W , and z0.

As an application of this result we obtain

Theorem 19.1. Let A and W be fixed and f1, . . . , fN : Rn 7→ R be separable
convex functions presented by a comparision oracle. The optimization problem

min

(

N
X

i=1

f
(i)

“

x
(i)

”

:

N
X

i=1

x
(i) = b

(0)
, Ax

(i) = b
(i)

, 0 6 x
(i)

6 u
(i)

, x
(i) ∈ Zn

, i = 1, . . . , N

)

,

can be solved time that is polynomial in N [2].

3. Nonlinear Optimization over a Weighted Independence System

An independence system is a nonempty set of vectors F ⊆ {0, 1}n with the property
that x ∈ {0, 1}n , x 6 y ∈ F implies x ∈ F .

The computational complexity of the nonlinear optimization problem (19.1)
over an independence system depends on the number d of weight vectors, on the
weights wi

j , on the type of function f and its presentation, and on the type of
independence system F and its presentation. For example, when F is a matroid,
the problem can be solved in polynomial time for any fixed d , any {0, 1, . . . , p}-
valued weights wi

j with p fixed, and any function f presented by a comparison
oracle, even when F is presented by a mere membership oracle, see [1]. On the
other hand, for convex f , already with fixed d = 2 and {0, 1}-valued weights wi

j ,



Complexity of Nonlinear Discrete Parametric Optimization 87

it includes as a special case the notorious exact matching problem, the complexity
of which is long open [4, 5].

In view of the difficulty of the problem already for d = 2 , we concentrate on
the special case with d = 1 , single weight vector w = (w1, . . . , wn) ∈ Zn , and
univariate function f : Z → R . The function f can be arbitrary and is presented
by a comparison oracle. The weights wj take on values in a p-tuple a = (a1, . . . , ap)
of positive integers. It turns out that solving this problem to optimality may require
exponential time (see Theorem 19.3), and so we aim at an approximate solution in
the following sense. For a nonnegative integer r , we say that x∗ ∈ F is an r-best
solution to the optimization problem over F if there are at most r better objective
values attained by feasible solutions. In particular, a 0-best solution is optimal.
Recall that the Frobenius number of a primitive a is the largest integer Frob(a)
that is not expressible as a nonnegative integer combination of the ai . We prove
the following theorem.

Theorem 19.2. For every primitive p-tuple a = (a1, . . . , ap) , there is a constant
r(a) and an algorithm that, given any independence system F ⊆ {0, 1}n presented
by a linear-optimization oracle, weight vector w ∈ {a1, . . . , ap}n , and function
f : Z → R presented by a comparison oracle, provides an r(a)-best solution to the
nonlinear problem min{f(wx) : x ∈ F} , in time polynomial in n . Moreover:

(1) If ai divides ai+1 for i = 1, . . . , p − 1 , then the algorithm provides an
optimal solution.

(2) For p = 2 , that is, for a = (a1, a2) , the algorithm provide an Frob(a)-best
solution.[3]

In fact, we give an explicit upper bound on r(a) in terms of the Frobenius
numbers of certain subtuples derived from a .

Because F (2, 3) = 1 , Theorem 19.2 (Part 2) assures us that we can efficiently
compute a 1-best solution in that case. It is natural to wonder then whether, in
this case, an optimal (i.e., 0-best) solution can be calculated in polynomial time.
We present a general result that indicates that this cannot be done.

Theorem 19.3. There is no polynomial time algorithm for computing an optimal
(i.e., 0-best) solution of the nonlinear optimization problem min{f(wx) : x ∈ F}
over an independence system presented by a linear optimization oracle with f pre-
sented by a comparison oracle and weight vector w ∈ {2, 3}n [3].

Acknowledgments

This paper is based on joint work with Raymond Hemmecke, Jon Lee and Shmuel
Onn.

References

1. Berstein, Y., Lee, J., Maruri-Aguilar, H., Onn, S., Riccomagno, E., Weisman-
tel, R., Wynn, H.: Nonlinear matroid optimization and experimental design.
SIAM Journal on Discrete Mathematics (to appear)

2. Hemmecke, R., Onn, S., Weismantel, R.: A polynomial oracle-time algorithm
for convex integer minimization. Mathematical Programming (to appear)



88 Weismantel

3. Lee, J., Onn, S., Weismantel, R.: Approximate Nonlinear Optimization over
Weighted Independence Systems. SIAM Journal on Discrete Mathematics
23:1667–1681 (2009)

4. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix
inversion. Combinatorica 7:105–113 (1987)

5. Papadimitriou, C.H., Yanakakis, M.: The complexity of restricted spanning
tree problems. Journal of the Association for Computing Machinery 29:285–
309 (1982)



20

Global Optimization of Signomial
Programming Problems

Tapio Westerlund Andreas Lundell

Åbo Akademi University
Process Design and Systems Engineering Laboratory

COE in Optimization and Systems Engineering
Biskopsgatan 8

Turku, 20500, Finland

http://www.abo.fi/ose, tapio.westerlund@abo.fi

Abstract

In this presentation, an overview of a signomial global optimization
algorithm is given. As the name indicates, the algorithm can be used
to solve mixed integer nonlinear programming problems containing
signomial functions to global optimality. The method employs single-
variable power and exponential transformations for convexifying the
nonconvex signomial functions termwise. By approximating the trans-
formations using piecewise linear functions, piecewise convex under-
estimators for the nonconvex signomial functions as well as a relaxed
convex problem can be obtained. In the algorithm, the approxima-
tions resulting from the piecewise linear functions are subsequentially
improved resulting in a set of subproblems whose optimal solution
converges to that of the original nonconvex problem. Finally, some
recent theoretical results regarding the underestimation properties of
the convexified signomial terms obtained using different transforma-
tions are also given.
Keywords: global optimization, signomial functions, transformation
techniques, convex relaxations, convex underestimators.

1. Introduction

Optimization problems containing so-called signomial functions appear in many
different application areas. Signomial functions are often highly nonlinear and non-
convex. Deterministic global optimization methods such as BARON [7], αBB [1],
as well as methods utilizing strategies such as those given by Li et al [2] can be used
to solve optimization problems of this kind. These types of optimization algorithms
apply convex underestimators in partitions of the whole domain and subdomains

89



90 Westerlund, Lundell

resulting from using a branch-and-bound type method, while the signomial global
optimization (SGO) algorithm uses piecewise convex underestimators defined over
the entire domain instead.

Signomial programming (SP) and mixed integer signomial (MISP) problems
are special classes of mixed integer nonlinear programming (MINLP) problems.
The SGO algorithm is applicable to the following type of MISP problems:

(20.1)

minimize f(x),

subject to Ax = a, Bx 6 b,

g(x) 6 0,

q(x) + σ(x) 6 0.

In this formulation, the objective function f and the functions g and q occuring
in the nonlinear constraints are assumed to be convex or pseudoconvex depending
on the MINLP solver used to solve the subproblems. The vector of variables x
can contain both real- and integer-valued variables, however, the variables in the
signomial functions σ are assumed to be strictly positive.

A signomial function is defined as the sum of signomial terms, where each term
consists of products of power functions xpi

i , i.e.

(20.2) σ(x) =
J
∑

j=1

cj

N
∏

i=1

x
pji

i ,

When the coefficients cj are all positive, the signomial function is a posynomial.
Optimization problems containing posynomial functions, so called geometric pro-
gramming (GP) problems, can often be solved quite easily to global optimality, but
this is not generally the case of SP and MISP problems.

In the methods used here, the convexity of the transformed problem is guar-
anteed by ensuring that each signomial term is convex. The convexity of signomial
terms have been discussed previously, see e.g., [3, 5, 8, 6], so here only a brief
summary is given:

• A positive signomial term is convex if all powers pi in the term are nega-
tive, or if one power pk is positive, the rest pi i 6= k are negative, and the
sum of these are greater than or equal to one, i.e.

∑

i pi > 1.
• A negative signomial term is convex if all powers pi are positive and the

sum of these are between zero and one, i.e.0 <
∑

i pi 6 1.

By applying different mappings based on the above cases of convexity, as well as
the exponential mapping discussed in e.g., [3, 4] the nonconvex signomial terms
can be convexified.

2. Different types of transformations

For both negative and positive terms, single-variable power transformations (PTs)
of the type xi = Xji

Qji (where Xji is the transformation variable corresponding to
the transformation of the variable xi in the j-th signomial term in the problem) can
be used to transform nonconvex signomial terms to convex ones. However, the con-
vexity conditions must be fulfilled, so additional restrictions on the transformation
powers Qji need to be imposed. For positive terms, the first type of transformation
is the positive power transformation (PPT) which corresponds to the case where
exactly one power in the transformed term is positive and the sum of the powers is



Global Optimization of Signomial Programming Problems 91

greater than or equal to one; the second type of transformation, the negative power
transformation (NPT), is where all powers in the convexified term are negative.
Additionally, as in GP, for positive terms the exponential transformation (ET) can
be utilized, see [3, 4]. For negative terms, power transformations are used. Here
the conditions are that all powers in the convexified term are positive and that the
sum of the powers in the transformed term is between zero and one.

The transformation procedure for a generalized signomial constraint can be
illustrated as follows:

(20.3) q(x) + σ(x) 6 0
(i)−→ q(x) + σC(x,X) 6 0

(ii)−→ q(x) + σC(x, X̂) 6 0.

In equation (20.3), X represent the vector of transformation variables and X̂ their
approximations obtained from piecewise linear functions (PLFs). In step (i) the
nonconvex signomial terms are convexified using either of the applicable transfor-
mations mentioned above. Although the generalized signomial constraints are now
convexified, the transformed problem is still nonconvex, since nonlinear equality
constraints corresponding to the relation between the original and new transforma-
tion variables must be included. Hence, the nonconvexities have only been moved
over from the terms to these relations. However, in step (ii), the relations between
the original and transformation variables are approximated using PLFs, and the
nonconvexities are moved to the gridpoints of the PLFs. The transformed problem
obtained is now convex and relaxed.

Thus, using the transformation technique, a convex relaxation of the nonconvex
problem will be obtained. Furthermore, the solution to the transformed problem
will be a valid lover bound of the solution to the original problem, and by improving
the approximation by subsequentially including more breakpoints in the PLFs, the
global optimal solution to the nonconvex problem can be found.

The different types of transformations, and also the powers in the PTs, can
often be chosen in many different ways. Application of different sets of transfor-
mations often lead to convex relaxations of different tightness and combinatorial
complexity. In this presentation, some recent theoretical results [3, 5] regarding
the underestimating properties of the different transformations are given. Further-
more, since the transformation step is included in a global optimization algorithm, a
method for automatically obtaining the transformations is needed: By formulating
and solving a mixed integer linear programming (MILP) problem, an optimized set
of transformations can be found. This set can be regarded as optimal with respect
to certain strategy parameters, and for example the total number of transforma-
tions needed can be minimized (resulting in a combinatorically simpler transformed
problem).

The MILP method has been discussed in several sources previously, see e.g., [3,
4] while only an overview of these results are given in this presentation. In the MILP
problem formulation, it is also possible to favor certain types of transformations.
This is important, since it has been shown that different transformations have
different underestimation properties. For example, the ET always gives a tighter
convex underestimator than the NPT for positive signomial terms. Also, under
some additional conditions, the same is true for the PPT, i.e.it gives a tighter
convex underestimator than the NPT. In constrast, it has been proved that neither
of the PPT and the ET gives a tighter convex underestimator in the whole original
domain of the variables.



92 Westerlund, Lundell

Acknowledgments

The financial support from the Academy of Finland is gratefully acknowledged.

References

1. C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A global opti-
mization method, αBB, for general twice-differentiable constrained NLPs – I.
Theoretical advances. Computers and Chemical Engineering, 22(9):1137–1158,
1998.

2. H.-L. Li, J.-F. Tsai, and C. A. Floudas. Convex underestimation for posynomial
functions of positive variables. Optimization Letters, 2(3):333–340, 2007.

3. A. Lundell. Transformation Techniques for Signomial Functions in Global Op-
timization. PhD thesis, ?bo Akademi University, 2009.

4. A. Lundell, J. Westerlund, and T. Westerlund. Some transformation tech-
niques with applications in global optimization. Journal of Global Optimization,
43(2):391–405, 2009.

5. A. Lundell and T. Westerlund. Convex underestimation strategies for signomial
functions. Optimization Methods and Software, 24:505–522, 2009.

6. C. D. Maranas and C. A. Floudas. Finding all solutions of nonlinearly con-
strained systems of equations. Journal of Global Optimization, 7:143–182, 1995.

7. N. V. Sahinidis and M. Tawarmalani. BARON 7.2.5: Global optimization of
mixed-integer nonlinear programs, user’s manual, 2005.

8. T. Westerlund. Some transformation techniques in global optimization. In
L. Liberti and N. Maculan, editors, Global Optimization: From Theory to Im-
plementation, volume 84 of Nonconvex Optimization and its Applications, pages
47–74. Springer, 2005.



PART 2

Contributed Lectures





21

Collision avoidance for the ATM problem:
A mixed 0–1 nonlinear model

Antonio Alonso-Ayuso Laureano Escudero
Javier Martin-Campo

Department of Statistics and Operations Research
Universidad Rey Juan Carlos

Móstoles (Madrid), Spain
{antonio.alonso,laureano.escudero,javier.martin.campo}@urjc.es

Abstract

A 0–1 nonlinear model for the Collision Avoidance in Air Traffic Man-
agement (ATM) problem is presented. The aim of this problem is de-
ciding the best strategy for an arbitrary aircraft configurations (con-
tinuous velocity changes) such that all conflicts in the airspace are
avoided. A conflict is the loss of the minimum safety distance that
two aircrafts have to maintain in their flight plans. A 0–1 nonlinear
optimization model based on geometric transformations is developed
knowing the initial flight plan (coordinates, angles and velocities in
each time period) and minimizing acceleration variations where air-
crafts are forced to return to the original flight configuration when
no aircrafts are in conflict. A linear approximation by using Taylor
polynomials is developed to solve the problem in linear terms.
Keywords: collision avoidance, air traffic management, mixed 0–1
nonlinear programming.

1. Problem description

Aircraft conflict detection and resolution is currently attracting the interest of many
air transportation service providers and is concerned with the following question:
Given a set of airborne aircraft and their intended trajectories, what control strategy
should be followed by the pilots and the air traffic service provider to prevent the
aircraft from coming too close to each other?

Methods for maintaining separation between aircraft in the current airspace
system have been built from a foundation of structured routes and evolved pro-
cedures. Humans are an essential element in this process due to their ability to
integrate information and make judgments. However, because failures and oper-
ational errors can occur, automated systems have begun to appear both in the

95



96 Alonso-Ayuso, Escudero, Martin-Campo

cockpit and on the ground to provide decision support and to serve as traffic con-
flict alerting systems. These systems use sensor data to predict conflicts between
aircraft and alert humans to a conflict and may provide commands or guidance to
resolve the conflict. Relatively simple conflict predictors have been a part of air
traffic control automation for several years, and the traffic alert and collision avoid-
ance system (TCAS) has been in place onboard domestic transport aircraft since
the early 1990s. Together, these automated systems provide a safety net should
normal procedures and controller and pilot actions fail to keep aircraft separated
beyond established minimums.

Recently, interest has grown toward developing more advanced automation
tools to detect traffic conflicts and assist in their resolution. These tools could
make use of future technologies, such as a data link of current aircraft flight plan
information, to enhance safety and enable new procedures to improve traffic flow
efficiency.

With the growth of airspace congestion, there is an emerging need to implement
these types of tools to assist the human operators in handling the expanding traffic
loads and improve flow efficiency.

Different methods have been proposed by various researchers to address air-
borne conflict detection and resolution (CDR). These methods have been devel-
oped not only for aerospace, but also for ground vehicle, robotics, and maritime
applications because the fundamental conflict avoidance issues are similar across
transportation modes. A review of recent CDR research suggests that the current
environment is one in which a given solution approach to the problem is proposed
and exercised, typically through a set of constrained and simplified examples.

A model based in 0–1 nonlinear constrained model is developed by using the
geometric and theoretical model ideas of the Velocity Changes problem (VC) pre-
sented in Pallottino et al. (2002) [3] and [4]. The VC model assumes instantaneous
changes in velocity to avoid a conflict, but this assumption can not be applied in
realistic instances, since aircrafts need time to reach the new velocity. In the new
model, so-called VCTP (Velocity Changes with Time Periods), continuous veloc-
ity changes are proposed by using the properties of a rectilinear movement and
uniformly accelerating movement. Another assumption in the VC model is that
aircrafts fly along a straight line where an aircraft can make a turn maneuver. Our
model tackles this problem considering the polygonal (in each time period) of the
trajectory.

For this model it is supposed that the preliminary trajectories of F aircrafts are
known and it can be extracted the aircraft configurations in T fixed time points. In
these points the velocity and the position (abscissa and ordinate) of each aircraft in
each point and the motion angles between two points are known. With these data
we construct a new model in which it will be decided the optimal configuration
changing the aircraft accelerations and avoiding all conflicts between the aircrafts.
To change the aircraft accelerations the equations relating to the rectilinear move-
ment and uniformly accelerating movement will be used.

The organization of the remainder of the note is as follows. Section 2 introduces
the notation of the elements of the problem. Section 3 presents the mixed 0-1
nonlinear model. Section 4 gives the main ideas of the iterative procedure for
problem solving. Finally, section 5 concludes.



Collision avoidance for the ATM problem 97

2. Problem notation

The main notation for the elements in the model is presented:
Sets

F = {1, ..., F}: set of aircrafts in the airspace.
T = {0, ..., T}: set of time periods.

Parameters

x∗t
f , y

∗t
f : the initial configuration of position (abscissa and ordinate) for air-

craft f in time period t, for f ∈ F and t ∈ T .
x∗d

f , y∗d
f : the departure position (abscissa and ordinate) for aircraft f , for

f ∈ F .
x∗r

f , y
∗r
f : the arrival position (abscissa and ordinate) for aircraft f , for f ∈ F .

v∗t
f : initial velocity configuration for aircraft f in the time period t, for f ∈ F

and t ∈ T .
vt

f , v
t
f : minimum and maximum velocities allowed for aircraft f in time pe-

riod t, for f ∈ F and t ∈ T .

at
f , a

t
f : minimum and maximum acceleration allowed for aircraft f in time

period t, for f ∈ F and t ∈ T .
m∗t

f : direction of motion in (−π, π] for aircraft f in time period t, for f ∈ F
and t ∈ T .

s: safety distance between aircrafts, usually, 2.5 nautical miles.

ca
+

f , ca
−

f : cost for changing positive or negative unit in the acceleration vari-
ation for aircraft f , for f ∈ F .

It: length of the time period between t, i.e., time distance between t−1 and
t, for t ∈ T .

d∗t
f : covered distance for aircraft f during time period t in the initial config-

uration, for f ∈ F and t ∈ T .
dtot

f : Total length of the polygonal of the trajectory for aircraft f , for f ∈ F .

tdf , t
r
f : scheduled departure and arrival times for flight f , for f ∈ F .

e: distance bound for considering a pair of aircrafts.

Variables

xt
f , y

t
f : the position (abscissa and ordinate) of aircraft f in time period t, for

f ∈ F and t ∈ T .
vt

f : velocity for aircraft f in time period t, for f ∈ F and t ∈ T .

at
f : acceleration variation for aircraft f in time period t, for f ∈ F and
t ∈ T . This variable is real, and we divide it in two positive variables,
say, at+

f and at−
f .

at+
f , at−

f : positive and negative acceleration variations for aircraft f in time
period t, for f ∈ F and t ∈ T .

dt
f : covered distance for aircraft f during time period t, for f ∈ F and t ∈ T .
γn

ft: auxiliary 0-1 variables to model the case of early or delay arrival to the
targeted time for aircraft f in time period t, for n = 1, . . . , 8, for f ∈ F
and t ∈ T .

ϕijt, ψijt: auxiliary 0-1 variables to model null denominators, for i, j ∈ F
and t ∈ T .

δn
ijt: auxiliary 0-1 variables to model the either-or type of constraints, for
n = 1, . . . , 8, i, j ∈ F and t ∈ T .



98 Alonso-Ayuso, Escudero, Martin-Campo

3. Mixed 0–1 nonlinear modelization

Next, the proposed model is presented:

(21.1) min
∑

f∈F

∑

t∈T

(at+
f + at−

f )

∀f ∈ F , t = tdf , . . . , t
r
f :

vt
f 6 vt−1

f + at
fIt 6 vt

f(21.2)

at
f 6 at

f 6 at
f(21.3)

(

v
td
f

f +

t−1
∑

ℓ=td
f

aℓ
fIℓ
)

It +
1

2
at

fI
2
t = dt

f(21.4)

t−1
∑

ℓ=td
f

d∗ℓ
f −

t−1
∑

ℓ=td
f

dℓ
f 6 M(1− γ1

ft)(3.5a)

t
∑

ℓ=td
f

d∗ℓ
f −

t
∑

ℓ=td
f

dℓ
f 6 M(1− γ1

ft)(3.5b)

xt
f −

(

xt−1
f + dt

f cos(m∗t−1
f )− x∗t

f

)

cos(m∗t−1
f −m∗t

f )−
(

yt−1
f + dt

f sin(m∗t−1
f )− y∗t

f

)

sin(m∗t−1
f −m∗t

f )− x∗t
f 6 M(1− γ1

ft)(3.5c)

xt
f −

(

xt−1
f + dt

f cos(m∗t−1
f )− x∗t

f

)

cos(m∗t−1
f −m∗t

f )−
(

yt−1
f + dt

f sin(m∗t−1
f )− y∗t

f

)

sin(m∗t−1
f −m∗t

f )− x∗t
f > M(1− γ1

ft)(3.5d)

yt
f +

(

xt−1
f + dt

f cos(m∗t−1
f )− x∗t

f

)

sin(m∗t−1
f −m∗t

f )−
(

yt−1
f + dt

f sin(m∗t−1
f )− y∗t

f

)

cos(m∗t−1
f −m∗t

f )− y∗t
f 6 M(1− γ1

ft)(3.5e)

yt
f +

(

xt−1
f + dt

f cos(m∗t−1
f )− x∗t

f

)

sin(m∗t−1
f −m∗t

f )−
(

yt−1
f + dt

f sin(m∗t−1
f )− y∗t

f

)

cos(m∗t−1
f −m∗t

f )− y∗t
f > M(1− γ1

ft)(3.5f)

...

γ1
f,t + γ2

f,t + γ3
f,t + γ4

f,t = 1(21.6)

∀i < j ∈ F , t = max{tdi , tdj}, . . . ,min{tri , trj}:

vt
i cos(mt

i)− vt
j cos(mt

j) 6 M(1− δ1ijt)(3.7a)

−vt
ih

t
i + vt

jh
t
j 6 M(1− δ1ijt)(3.7b)

vt
i cos(mt

i)− vt
j cos(mt

j) 6 M(1− δ2ijt)(3.7c)

vt
ik

t
i − vt

jk
t
j 6 M(1− δ2ijt)(3.7d)

−vt
i cos(mt

i) + vt
j cos(mt

j) 6 M(1− δ3ijt)(3.7e)

vt
ih

t
i − vt

jh
t
j 6 M(1− δ3ijt)(3.7f)



Collision avoidance for the ATM problem 99

−vt
i cos(mt

i) + vt
j cos(mt

j) 6 M(1− δ4ijt)(3.7g)

−vt
ik

t
i + vt

jk
t
j 6 M(1− δ4ijt)(3.7h)

−vt
i sin(mt

i) + vt
j sin(mt

j) 6 M(1− δ5ijt)(3.7i)

−vt
ih

′t
i + vt

jh
′t
j 6 M(1− δ5ijt)(3.7j)

−vt
i sin(mt

i) + vt
j sin(mt

j) 6 M(1− δ6ijt)(3.7k)

vt
ik

′t
i − vt

jk
′t
j 6 M(1− δ6ijt)(3.7l)

vt
i sin(mt

i)− vt
j sin(mt

j) 6 M(1− δ7ijt)(3.7m)

vt
ih

′t
i − vt

jh
′t
j 6 M(1− δ7ijt)(3.7n)

vt
i sin(mt

i)− vt
j sin(mt

j) 6 M(1− δ8ijt)(3.7o)

−vt
ik

′t
i + vt

jk
′t
j 6 M(1− δ8ijt)(3.7p)

8
∑

n=1

δn
ijt = 1− pt

ij(3.7q)

xt
i − xt

j − s 6 M(1− ϕijt)(3.8a)

xt
j − xt

i − s 6 M(1− ϕijt)(3.8b)

4
∑

n=1

δn
ijt = 1− ϕijt(3.8c)

yt
i − yt

j − s 6 M(1− ψijt)(3.9a)

yt
j − yt

i − s 6 M(1− ψijt)(3.9b)

8
∑

n=5

δn
ijt = 1− ψijt(3.9c)

∀f ∈ F :

tr
f
∑

i=td
f

di
f = dtot

f(3.10)

∀f ∈ F ,∀t ∈ T

xt
f , y

t
f , v

t
f , a

t+
f , at−

f , dt
f ∈ R+(3.11a)

γn
ft ∈ {0, 1} ∀n = 1, . . . , 4(3.11b)

∀i < j ∈ F ,∀t ∈ T

δn
ijt, ϕijt, ψijt ∈ {0, 1} ∀n = 1, . . . , 8(3.11c)

where M and M are upper and lower bounds of the constraints. These bounds are
important to the model because they can affect, on one hand, the model feasibility
and, in the other hand, the computing time. The objective function (21.1) min-
imizes the acceleration variations in absolute value considering |at

f | = at+
f + at−

f .

(21.2) and (21.3) are the bounds of the velocities and accelerations respectively in
each time period. (21.4) is the covered route in each time period t. The set of



100 Alonso-Ayuso, Escudero, Martin-Campo

constraints (3.5) projects the new aircrafts positions in the polygonal of the tra-
jectory in case of a nonlinear one. When a acceleration maneuver is made by an
aircraft, depending on the acceleration sign, the aircraft can arrive at the next
way-point at an earlier or later time. Four possible cases can occur (it is presented
the first one, when an aircraft arrives earlier in times period t− 1 and t) and they
are modeled by using the γ variable. Constraint (3.6) decides one of the four cases
that are contemplated. The complete model can be seen in [2]. The set of con-
straints (3.7) detects if a conflict occurs between aircrafts i and j, see [1, 3, 4].
Constraints (3.7b),(3.7d),(3.7f),(3.7h),(3.7j),(3.7l),(3.7n) and (3.7p) are nonlinear
since the terms (presented below) are nonlinear functions:

ht
i =

(xt
i − xt

j)s+ (yt
i − yt

j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2

(xt
i − xt

j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2 − (yt
i − yt

j)s
cos(mt

i)− sin(mt
i)

ht
j =

(xt
i − xt

j)s+ (yt
i − yt

j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2

(xt
i − xt

j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2 − (yt
i − yt

j)s
cos(mt

j)− sin(mt
j)

kt
i =
−(xt

i − xt
j)s+ (yt

i − yt
j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2

(xt
i − xt

j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2 + (yt
i − yt

j)s
cos(mt

i)− sin(mt
i)

kt
j =
−(xt

i − xt
j)s+ (yt

i − yt
j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2

(xt
i − xt

j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2 + (yt
i − yt

j)s
cos(mt

j)− sin(mt
j)

h
′t
i =

(xt
i − xt

j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2 − (yt
i − yt

j)s

(xt
i − xt

j)s+ (yt
i − yt

j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2
sin(mt

i)− cos(mt
i)

h
′t
j =

(xt
i − xt

j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2 − (yt
i − yt

j)s

(xt
i − xt

j)s+ (yt
i − yt

j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2
sin(mt

j)− cos(mt
j)

k
′t
i =

(xt
i − xt

j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2 + (yt
i − yt

j)s

−(xt
i − xt

j)s+ (yt
i − yt

j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2
sin(mt

i)− cos(mt
i)

k
′t
j =

(xt
i − xt

j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2 + (yt
i − yt

j)s

−(xt
i − xt

j)s+ (yt
i − yt

j)
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 − s2
sin(mt

j)− cos(mt
j)

The sets of constraints (3.8) and (3.9) avoid unstable situations caused by a null
denominator in the above terms. Constraint (3.10) forces aircrafts to follow the
scheduled path. Finally, (3.11) is the set of constraints that represents the type of
variables in the model.



Collision avoidance for the ATM problem 101

4. Algorithmic approach

This model is approximated to a linear model by using Taylor polynomials, obtain-
ing the next mathematical expression for each nonlinear constraint:



Cn +
“

∂Cn

∂vt
i

∂Cn

∂vt
j

∂Cn

∂xt
i

∂Cn

∂xt
j

∂Cn

∂yt
i

∂Cn

∂yt
j

”

ff

|(v∗t
i

,v∗t
j

,x∗t
i

,x∗t
j

,y∗t
i

,y∗t
j

)

0

B

B

B

B

B

B

@

vi − v∗t
i

vj − v∗t
j

xi − x∗t
i

xj − x∗t
j

yi − y∗t
i

yj − y∗t
j

1

C

C

C

C

C

C

A

[ 6 M(1− δ
n
ijt)

The algorithm for the resolution consists on solving the linearized model and up-
dating the model parameters with the obtained solution until the difference between
one solution and the last updated parameters is less than the fixed tolerance chosen.
The algorithm is now presented:
Step 1. Compute the nonlinear constraint values such that vt

i , v
t
j , x

t
i, x

t
j , y

t
i , y

t
j are

replaced by v∗t
i , v

∗t
j , x

∗t
i , x

∗t
j , y

∗t
i , y

∗t
j respectively.

Step 2. Solve the mixed zero-one model, where the nonlinear constraints are sub-
stituted by its linear approximation. Let vt

f , x
t
f , y

t
f be the optimal values

of the respective variables.
Step 3. Optimality test. If condition (21.7) is satisfied then stop, the quasi-

optimal solution has been obtained. Otherwise, go to Step 4.
∑

f∈F

∑

t∈T

(vt
f − v∗t

f )2 6 ε(21.7a)

∑

f∈F

∑

t∈T

(xt
f − x∗t

f )2 6 ε(21.7b)

∑

f∈F

∑

t∈T

(yt
f − y∗t

f )2 6 ε(21.7c)

Step 4. Update:

v∗t
f := v∗t

f + λ(vt
f − v∗f ) ∀f ∈ F ,∀t ∈ T(21.8a)

x∗t
f := x∗t

f + λ(xt
f − x∗f ) ∀f ∈ F ,∀t ∈ T(21.8b)

y∗t
f := y∗t

f + λ(yt
f − y∗f ) ∀f ∈ F ,∀t ∈ T(21.8c)

where 0 < λ < 1, and go to Step 1.

5. Conclusions

A mixed 0-1 nonlinear model as well its algorithmic approach for problem solving
have been presented. The latter uses a Taylor expansion approximation by iter-
atively solving mixed 0-1 linear models. The current computational experience is
very promising but more computational experience is needed to assess the perfor-
mance of the proposed approach for (large-scale) realistic instances. As a future
we are planning to test our approach against available software for directly solving
mixed integer nonlinear problems.



102 Alonso-Ayuso, Escudero, Martin-Campo

Acknowledgments

This research was partially supported by the grants OPTIMOS MTM2009-14039-
C06-03 and PLANIN MTM2009-14087-C04-01 partially funded by the Spanish Min-
istry of Science and Innovation, as well as the project ATLANTIDA for GMV
Aerospace and Defence, Spain.

References

1. A. Alonso-Ayuso, L.F. Escudero, F.J. Martin-Campo. Collision avoidance in
the ATM problem: A mixed integer linear optimization approach. Submitted
for publication (2009).

2. A. Alonso-Ayuso, L.F. Escudero, F.J. Martin-Campo. Collision Avoidance for
the ATM problem: An extended presentation of a mixed 0-1 nonlinear model
approach. Technical report TR09/05, Dept. of Statistics and Operations Re-
search, Rey Juan Carlos University, Móstoles (Madrid), Spain. (2009).

3. L. Pallottino. Aircraft Conflict Resolution in “FREE FLIGHT” Air Traffic
Management Systems: Models and Optimal Solutions PhD thesis, Automation
and Industrial Robotics, Universit di Pisa., (2002).

4. L. Pallottino, E. Feron and A. Bicchi. Conflict resolution problems for air
fraffic management systems solved with mixed integer programming. IEEE
Transactions on Intelligent Transportation Systems. 3(11). 3–11 (2002).



22

Undercover – a primal heuristic for
MINLP based on sub-MIPs generated by

set covering

Timo Berthold Ambros M. Gleixner

Zuse Institute Berlin
Takustraße 7, 14195 Berlin, Germany

{berthold,gleixner}@zib.de

Abstract

We present Undercover, a primal heuristic for mixed-integer nonlin-
ear programming (MINLP). The heuristic constructs a mixed-integer
linear subproblem (sub-MIP) of a given MINLP by fixing a subset
of the variables. We solve a set covering problem to identify a mini-
mal set of variables which need to be fixed in order to linearise each
constraint. Subsequently, these variables are fixed to approximate
values, e.g. obtained from a linear outer approximation. The result-
ing sub-MIP is solved by a mixed-integer linear programming solver.
Each feasible solution of the sub-MIP corresponds to a feasible solu-
tion of the original problem. Although general in nature, the heuris-
tic seems most promising for mixed-integer quadratically constrained
programmes (MIQCPs). We present computational results on a gen-
eral test set of MIQCPs selected from the MINLPLib [12].
Keywords: MINLP, MIQCP, primal heuristic, large neighbourhood
search, set covering.

1. Introduction

For mixed-integer programming (MIP) it is well-known that, apart from complete
solving methods, general-purpose primal heuristics like the feasibility pump [2, 14,
16] are able to find high-quality solutions for a wide range of problems. Over the
years, primal heuristics have become a substantial ingredient of state-of-the-art
MIP solvers [5, 8]. For mixed-integer nonlinear programming (MINLP) there have
only been a few publications on general-purpose primal heuristics [7, 10, 20, 11].

At the heart of many recently proposed primal MIP heuristics, such as Local
Branching [15], RINS [13], DINS [17], and RENS [6], lies large neighbourhood
search, hence the paradigm of solving a small sub-MIP which promises to contain
good solutions. In this paper, we introduce Undercover, a large neighbourhood

103



104 Berthold, Gleixner

search start heuristic that constructs and solves a sub-MIP of a given MINLP. We
demonstrate its effectiveness on a general test set of mixed-integer quadratically
constrained programmes (MIQCPs) taken from the MINLPLib [12].

An MINLP is an optimisation problem of the form

(22.1)

min d⊤x

s.t. gi(x) 6 0 for i = 1, . . . ,m,

Lk 6 xk 6 Uk for k = 1, . . . , n,

xk ∈ Z for k ∈ I,
where I ⊆ {1, . . . , n} is the index set of the integer variables, d ∈ Rn, gi : Rn → R
for i = 1, . . . ,m, and L ∈ (R ∪ {−∞})n, U ∈ (R ∪ {+∞})n are lower and upper
bounds on the variables, respectively. Note that a nonlinear objective function can
always be reformulated by introducing one additional constraint, hence form (22.1)
is general.

2. A generic algorithm

The paradigm of fixing a subset of the variables of a given mixed-integer programme
in order to obtain subproblems which are easier to solve has proven successful in
many primal MIP heuristics such as RINS [13], DINS [17], and RENS [6]. The
core difficulty in MIP solving are the integrality constraints, thus in MIP context
“easy to solve” usually takes the meaning of few integer variables. While in MINLP
integralities do contribute to the complexity of the problem, a specific difficulty are
the nonlinearities. Hence, “easy” in MINLP can be understood as few nonlinear
constraints.

Our heuristic is based on the simple observation that by fixing certain variables
(to some value within their bounds) any given mixed-integer nonlinear programme
can be reduced to a mixed-integer linear subproblem (sub-MIP). Every feasible
solution of this sub-MIP is then a feasible solution of the original MINLP.

Whereas in general it holds that many or even all of the variables might need
to be fixed in order to arrive at a linear subproblem, our approach is motivated by
the experience that for several practically relevant MIQCPs fixing only a compar-
atively small subset of the variables already suffices to linearise the problem. The
computational effort, however, is usually greatly reduced since we can apply the
full strength of state-of-the-art MIP solving to the subproblem. Before formulating
a first generic algorithm for our heuristic, consider the following definitions.

Definition 22.1 (cover of a function). Let a function g : D → R, x 7→ g(x) on
a domain D ⊆ Rn and a point x⋆ ∈ D be given. We call a set C ⊆ {1, . . . , n} of
variable indices an x⋆-cover of g if and only if the set

(22.2) {(x, g(x)) | x ∈ D,xk = x⋆
k for all k ∈ C}

is affine. We call C a (global) cover of g if and only if C is an x⋆-cover of g for all
x⋆ ∈ D.

Definition 22.2 (cover of an MINLP). Let P be an MINLP of form (22.1), let
x⋆ ∈ [L,U ], and C ⊆ {1, . . . , n} be a set of variable indices of P . We call C an
x⋆-cover of P if and only if C is an x⋆-cover for g1, . . . , gm. We call C a (global)
cover of P if and only if C is an x⋆-cover of P for all x⋆ ∈ [L,U ].



Undercover – Primal MINLP Heuristic 105

A first generic algorithm for our heuristic is given in Figure 1. The hinge of the
algorithm is clearly found in Line 5: finding a suitable cover of the given MINLP.
Section 3 elaborates on this in detail with special emphasis on the case of MIQCPs.

Figure 1. Generic algorithm

Input: MINLP P as in (22.1)1

begin2

compute a solution x⋆ of an approximation or3

relaxation of P ;
round x⋆

k for k ∈ I;4

determine an x⋆-cover C of P ;5

solve the sub-MIP of P given by xk = x⋆
k, k ∈ C ;6

end7

To obtain suitable fixing values for the selected variables, an approximation or
relaxation of the original MINLP is used. For integer variables the approximate
values are rounded. Most exact solvers for MINLP are based on branch-and-bound.
If the heuristic is embedded within a branch-and-bound solver, using its (linear or
nonlinear) relaxation appears as a natural choice for obtaining approximate variable
values.

Large neighbourhood search heuristics which rely on fixing variables typically
have to trade off between eliminating many variables in order to make the sub-
MIP tractable versus leaving enough degrees of freedom such that the sub-MIP is
still feasible and contains good solutions. Often their implementation inside a MIP
solver demands a sufficiently large percentage of variables to be fixed to arrive at
an easy to solve sub-MIP [5, 6, 13, 17].

For our heuristic, the situation is different since we do not aim at eliminating
integrality constraints, but nonlinearities. In order to linearise a given MINLP, in
general we may be forced to fix integer and continuous variables. Especially the
fixation of continuous variables in an MINLP can introduce a significant error, even
rendering the subproblem infeasible. Thus our heuristic will aim at fixing as few
variables as possible to obtain as large a linear subproblem as possible.

Remark 22.3. Note that in general a minimum cover does not necessarily yield
a dimension-wise largest sub-MIP that can be obtained by fixing variables in a
given MINLP. First, this is because in our definition we do not look at the feasible
region given by a constraint, but at the graph of its left hand side. Second, we
do not take into account the interrelation of constraints with each other and with
variable bounds and integrality constraints. Through these interrelations, fixing
one variable may lead to further domain reductions and variable fixations which
can not immediately be foreseen when looking at each nonlinearity separately.

Hence, searching for a minimum cover may be understood as an approximate
method for determining dimension-wise maximal sub-MIPs. Propagation routines
using these interrelations can, however, be very effectively integrated within the
heuristic, see “fix-and-propagate” in Section 4.



106 Berthold, Gleixner

Remark 22.4. We point out the links of our general-purpose approach for MINLP
to the works on bilinear programmes in global optimization. Here, bilinear pro-
grammes are defined as quadratically constrained programmes which allow for a
partition of the variable set into two parts such that each quadratic term is bilinear
with one variable from each part. Holding the variables in either set fixed, per
definition one obtains a linear programme, a simple property which has been used
extensively in various solution approaches.

3. Finding minimum covers

This section describes our method for determining a minimum cover of an MINLP,
i.e. a minimal subset of variables to fix in order to linearise each constraint. The idea
for Undercover originated from our work on solving MIQCPs. Since its application
also appears most promising for this class of problems, we start by presenting
conditions for covers of quadratic constraints.
Covering quadratic functions. Suppose we are given a quadratic function g : Rn →
R, x 7→ x⊤Qx, with Q ∈ Rn×n symmetric. Let x⋆ ∈ Rn and C ⊆ {1, . . . , n}. Fixing

xk = x⋆
k for all k ∈ C transforms x⊤Qx into y⊤Q̃y+ q̃⊤y+ c̃ with variable vector y =

(xk)k 6∈C ∈ Rn−|C|, the restricted matrix Q̃ = (Quv)u,v 6∈C of dimension (n−|C|)×(n−
|C|), the vector q̃ = (2

∑

u∈C Qukx
⋆
u)k 6∈C ∈ Rn−|C|, and offset c̃ =

∑

u,v∈C Quvx
⋆
ux

⋆
v.

Thus, the set (22.2) is affine if and only if Q̃ vanishes, i.e. if quv = 0 for all u, v 6∈ C.
In reverse, this means that for C to be a cover of g, it is necessary and sufficient to
contain at least one out of u or v for all nonzero matrix entries Quv.

This can be interpreted as a set covering problem, where items are given by
those (u, v) ∈ {1, . . . , n} × {1, . . . , n} with nonzero Quv, and sets are given by
S(k) := {(u, v) | u = k or v = k} for each variable index k = 1, . . . , n.

Remark 22.5. Note that in the quadratic case, any x⋆-cover is already a global
cover, thus the distinction made in Definitions 22.1 and 22.2 is void.

Covering MIQCPs. An MIQCP is an MINLP as in (22.1) where each constraint

i = 1, . . . ,m takes the form gi(x) = x⊤Aix + bi
⊤x + ci 6 0 with Ai ∈ Rn×n

symmetric, bi ∈ Rn, and ci ∈ R. Matrices Ai are not required to be positive
semidefinite, i.e. we allow for nonconvex constraints.

In order to find a cover of a given MIQCP P , we solve the set covering problem
outlined above, taking into account all constraints. We introduce auxiliary binary
variables αk, k = 1, . . . , n, equal to 1 if and only if xk is fixed in P . As explained
above, C(α) := {k | αk = 1} is a cover of P if and only if

αk = 1 for all i ∈ {1, . . . ,m}, k ∈ {1, . . . , n}, Ai
kk 6= 0, Lk 6= Uk,

(22.3)

αk + αj > 1 for all i ∈ {1, . . . ,m}, k 6= j ∈ {1, . . . , n}, Ai
kj 6= 0, Lk 6= Uk, Lj 6= Uj ,

(22.4)

i.e. we require all square terms and one variable in each bilinear term to be fixed.
Our heuristic tries to identify as large a linear subproblem as possible. Therefore,
we solve the binary programme

(22.5) min
{

n
∑

k=1

αk : (22.3), (22.4), α ∈ {0, 1}n
}

.



Undercover – Primal MINLP Heuristic 107

The following lemma summarises our discussion from above:

Lemma 22.6. Let an MIQCP P be given. Then α 7→ C(α) = {k | αk = 1} gives a
one-to-one correspondence between the feasible solutions of (22.5) and covers of P .
A solution α⋆ of (22.5) is optimal if and only if C(α⋆) is a minimum cardinality
cover of P .

Remark 22.7. Note that the above covering problem is an optimisation version
of 2-SAT, hence there is a polynomial-time algorithm for its solution. In our com-
putational experiments the binary programme (22.5) could always be solved within
a fraction of a second by a general MIP solver, hence we did not employ a spe-
cialised polynomial-time algorithm. Moreover, in the case of general MINLP, a
cover generating problem contains more involved constraints.

Covering general MINLPs. Our approach for computing covers of quadratic con-
straints can be applied to more general nonlinearities. The immediate gener-
alisations are multilinear and polynomial constraints. Sufficient conditions for
a global cover of a monomial xp1

1 · · ·xpn
n , p1, . . . , pn ∈ N0, are αk = 1 for all

k ∈ {1, . . . , n}, pk > 2, Lk 6= Uk, and
∑

k:pk=1,Lk 6=Uk
(1 − αk) 6 1, similar to (22.3)

and (22.4).
As can be seen from this example, with more and more general nonlinearities

present, more and more variables need to be fixed to arrive at a linear subproblem.
However, note that now the notion of an x⋆-cover may be much weaker than that
of a global cover.1

4. Variants and extensions

The generic algorithm in Figure 1 can be extended and modified in several ways in
order to make Undercover more efficient in practise. This section outlines a few of
them, with main focus on avoiding infeasibility of the sub-MIPs.
Fix-and-propagate. Fixing a variable can have great impact on the original problem
and the approximation we use. Therefore, we do not fix the variables simultane-
ously, but sequentially one by one, propagating the bound changes after each fixing.
If by that, the approximation solution falls outside the feasible domain of a variable,
we instead fix it to the closest bound.2 This fix-and-propagate method resembles
a method described in [16]. Additionally, we apply it for continuous variables and
apply backtracking in case of infeasibility.
Backtracking. If the fix-and-propagate procedure deduces some variable domain to
be empty, hence the subproblem to be infeasible, we apply a one-level backtracking,
i.e. we undo the last bound change and try other fixing values instead. 3

Recovering. During the fix-and-propagate routine, variables outside the precom-
puted cover may also be fixed. In this case, the fixing of some of the yet unfixed

1As a simple example consider the multilinear term x1 · · ·xn with no variable bounds. The

minimum cardinality of an x⋆-cover is 1 as soon as x⋆
k

= 0 for some k. In contrast, the smallest

global cover has size n − 1.
2Alternatively, we could recompute our approximation to obtain values within the current

bounds.
3In our implementation, we try the bounds of the variable, if finite, and the midpoint between

the approximation value and each finite bound. For unbounded variables, we try zero and twice

the approximation value.



108 Berthold, Gleixner

variables in the cover might become redundant and recomputing the cover may
yield a smaller number of variable fixings still necessary.
Different covers. Our initial motivation for fixing as few variables as possible was
to minimise the impact on the orginal MINLP. Other measures for the impact of
fixing a variable could be used in the objective function of (22.5), such as domain
size, appearance in nonlinear terms or nonlinear constraints violated by the approx-
imation solution, variable type, or hybrid measures. In particular, if a minimum
cardinality cover yields an infeasible sub-MIP, we may try a cover minimising a
different impact measure.
NLP postprocessing. In the spirit of the QCP local search heuristic described in [7],
we try to further improve the best sub-MIP solution x̃ by solving the NLP which
results from fixing all integer variables to their values in x̃.
Convexification. The main idea of Undercover is to reduce the computational effort
by finding easier to solve subproblems. While here we have focused on sub-MIPs,
for nonconvex MINLPs, already a convex sub-MINLP may be significantly easier
to solve and contain more and better solutions than a sub-MIP. This modifica-
tion of Undercover only requires to weaken the constraints in the cover generating
problem (22.5) suitably.
Domain reduction. Instead of fixing the variables in a cover, we could also merely
reduce their domains. Especially on continuous variables this leaves significantly
more freedom to the subproblem. Since domain propagation is an essential ingredi-
ent in MINLP solvers, this might still reduce the computational effort significantly
on some problems.

5. Computational experiments

Only few solvers exist that handle general nonconvex MINLPs, such as BARON [21],
Couenne [4], and LindoGlobal [19]. Others, such as BONMIN [9] and SBB [3],
guarantee global optimality only for convex problems, but can be used as heuristic
solvers for nonconvex problems. Recently, the solver SCIP [1] was extended to
solve nonconvex MIQCPs to global optimality [7].

The target of our computational experiments is to demonstrate the potential
of Undercover as a start heuristic for MINLPs applied at the root node. We imple-
mented Undercover within the branch-cut-and-price framework SCIP [1] and used
SCIP’s linear outer approximation solution for the fixing values. We incorporated
the fix-and-propagate, backtracking, and NLP postprocessing features described
in Section 4. To perform the fix-and-propagate procedure, we used the standard
propagation engine of SCIP. Secondary SCIP instances were used to solve both
the cover generating problem and the Undercover sub-MIP.

In our experiments, we ran SCIP with all heuristics other than Undercover
switched off, set a node limit of 1, and deactivated cut generation. We set a
node limit of 500 both for the covering problem and the sub-MIP. For solving the
sub-MIP, we used “emphasis feasibility” and “fast presolving” settings. We used
SCIP 1.2.0.4 with CPLEX 12.1 [18] as LP solver and Ipopt 3.7 [22] as NLP solver
for the postprocessing. This configuration we refer to as UC.

For comparison, we ran SCIP 1.2.0.4 with CPLEX 12.1 and Ipopt 3.7 in
default mode, which applies ten primal heuristics at the root node. We fur-
ther compared with the state-of-the-art solvers BARON [21] (commercial) and
Couenne [4] (open source). For all solvers, we used node limit 1. Our goal is thus



Undercover – Primal MINLP Heuristic 109

Table 1. Computational results on MIQCP instances.

instance nnz/var % cov UC SCIP BARON Couenne

du-opt 0.95 95.24 4233.8709
∗

4233.8709 108.331477 41.3038865
du-opt5 0.95 94.74 3407.05415

∗
14.1684489 – 1226.02232

ex1263 0.34 3.88 30.1
∗

– – –
ex1264 0.36 4.26 15.1

∗
– – –

ex1265 0.38 3.52 15.1
∗

– – 15.1
ex1266 0.40 3.03 16.3

∗
– – –

fac3 0.81 78.26 130653857
∗

– 38328601.6 –
feedtray2 10.70 3.26 – 0 0 –
meanvarx 0.19 23.33 16.9968975

∗
14.3692129 14.3692321 18.701873

netmod dol1 0.00 0.30 0
∗

-0.317294979 0 –
netmod dol2 0.00 0.38 -0.0780227488

∗
-0.50468289 0 –

netmod kar1 0.01 0.88 0
∗

-0.132809562 0 –
netmod kar2 0.01 0.88 0

∗
-0.132809562 0 –

nous1 2.39 19.44 – – – 1.567072
nous2 2.39 19.44 – 1.38431729 0.625967412 1.38431741
nuclear14a 4.98 6.43 – – – –
nuclear14b 2.42 6.43 – – – -1.11054393
nvs19 8.00 88.89 – 0 -1098 –
nvs23 9.00 90.00 – 0 -1124.8 –
product 0.17 30.87 – – – –
product2 0.37 26.15 – – – –
sep1 0.40 10.53 -510.080984

∗
– -510.080984 -510.080984

space25 0.12 1.04 – – – –
space25a 0.29 5.84 – – – –
spectra2 3.43 35.71 26.6076018

∗
23.2840887 119.8743 –

tln5 1.39 9.09 15.1
∗

– – 14.5
tln6 1.47 7.69 32.3

∗
– – –

tln7 1.53 6.67 30.3
∗

– – –
tln12 1.70 3.99 – – – –
tloss 1.47 7.89 27.3

∗
– – –

tltr 1.10 12.50 61.1333333
∗

– – –
util 0.07 3.13 999.578743

∗
1000.48517 1006.50609 –

waste 1.10 5.65 693.392795 693.290675 712.301232 –

not to compare the Undercover heuristic with SCIP, BARON, and Couenne as
complete solvers – a comparison rather insignificant –, but specifically with the
performance of their root heuristics.

As test set we used a selection of 33 MIQCP instances from MINLPLib [12].
We excluded lop97ic, lop97icx, pb302035, pb351535, qap, and qapw, which are
linear after the default presolving of SCIP. On the nuclear instances, the root
LP relaxation of SCIP is often unbounded due to unbounded variables in noncon-
vex terms of the constraints. In this case, we cannot apply Undercover since no
fixing values are available. Due to this, we only included two of those instances,
nuclear14a and nuclear14b, for which the root LP of SCIP is bounded.
Results. The results are shown in Table 1. In column “nnz/var” we state the average
number of nonlinear nonzeros, i.e. the number of quadratic terms, per variable as
an indication of the nonlinearity of the problem.4 In column “% cov” we report
the relative size of the cover used by UC as percentage of the total number of
variables after preprocessing, and the objective value of the best solution found by
Undercover. A star indicates that the sub-MIP was solved to optimality. For all
other solvers, we provide the objective value of the best solution found during root
node processing. The best solution among the four solvers is marked bold.

4Note that since the cover generating problem contains one constraint for each nonlinear

nonzero, this corresponds to the ratio of items to sets of the set covering problem solved.



110 Berthold, Gleixner

The computational results seem to confirm our expectation that often a low
fixing rate suffices to obtain a linear subproblem: 12 of the instances in our test set
allow a cover of at most 5% of the variables, further 10 instances of at most 15%.
On the remaining third of the test set, a minimum cover contains 19–96% of the
variables.

UC found a feasible solution for 21 test instances: on 16 out of the 22 instances
with a cover of at most 15% of the variables, and on 5 instances in the remaining
third of the test set. In comparison, BARON found a feasible solution in 15 cases,
Couenne in 9, SCIP in 14. We note that on 7 instances UC found a solution,
although none of BARON, Couenne, and SCIP did. UC could solve ex1266 to
optimality and util to 0.1% primal-dual gap.

To evaluate the solution quality of Undercover, for each other solver consider
the instances on which both UC and this solver found a solution: On those instances
the solution found by Undercover is better than the one found by SCIP in 1 case
(equal in 1, worse in 8), better than BARON 4 times (equal 4, worse 3), and better
than Couenne in 1 case (equal in 2, worse in 3 cases).

The overall time for SCIP preprocessing, solving the root LP and applying
Undercover was always less than two seconds. Thereof, the time for applying Un-
dercover was always less than 0.2 seconds, except for the instance waste, where
Undercover ran for 1.1 seconds. The major amount of time was usually spent in
solving the sub-MIP. Although the polytope described by (22.5) is not integral, the
covering instance could always be solved to optimality in the root node by SCIP’s
default heuristics and cutting plane algorithms. We note that in 10 out of the
14 cases where the resulting sub-MIP was infeasible, the infeasibility was already
detected during the fix-and-propagate stage. Thus in most cases, no time was in-
vested in vain to try and find a solution to an infeasible subproblem. Also, except
for instance waste, all feasible sub-MIPs could be solved to optimality within the
imposed node limit of 500, which indicates that – with a state-of-the-art MIP solver
at hand – the generated subproblems are indeed significantly easier than the full
MINLP.

6. Conclusion and future work

Altogether, Undercover seems to be a fast start heuristic, that often produces fea-
sible solutions of reasonable quality. On the chosen test set, the experiments con-
firmed our expectation that a low fixing rate often suffices to obtain a feasible
linear subproblem which is easy to solve. The computational results indicate, that
it complements nicely with existing root node heuristics in different solvers.

Future research will focus on fully implementing and testing the described fea-
tures and variants in Section 4 and experimenting with fixing values from other
approximations, especially solutions of standard NLP relaxations.

Acknowledgments

This research was partially funded by the DFG Research Center Matheon, Project
B20. We thank GAMS Development Corp. for providing us with evaluation licenses
for BARON. Many thanks to Stefan Vigerske for his valuable comments and to
Mark Wallace for his proofreading.



Undercover – Primal MINLP Heuristic 111

References

1. T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Uni-
versität Berlin, 2007.

2. T. Achterberg and T. Berthold. Improving the Feasibility Pump. Disc. Opt.,
Special Issue 4(1):77–86, 2007.

3. ARKI Consulting & Development A/S and GAMS Inc. SBB. http://www.
gams.com/solvers/solvers.htm#SBB.

4. P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Waechter. Branching
and bounds tightening techniques for non-convex MINLP. Research Report
RC24620, IBM, 2008.

5. T. Berthold. Primal heuristics for mixed integer programs. Diploma thesis,
Technische Universität Berlin, 2006.

6. T. Berthold. RENS – Relaxation Enforced Neighborhood Search. ZIB-Report
07-28, Zuse Institute Berlin, 2007.

7. T. Berthold, S. Heinz, and S. Vigerske. Extending a CIP framework to solve
MIQCPs. ZIB-Report 09-23, Zuse Institute Berlin, 2009.

8. R.E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP: Theory
and practice – closing the gap. In M.J.D. Powell and S. Scholtes, editors, Sys-
tems Modelling and Optimization: Methods, Theory, and Applications, pages
19–49. Kluwer Academic Publisher, 2000.

9. P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D.
Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic
framework for convex mixed integer nonlinear programs. Disc. Opt., 5:186–204,
2008.

10. P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot. A feasibility pump for
mixed integer nonlinear programs. Math. Prog., 119(2):331–352, 2009.

11. P. Bonami and J.P.M. Gonçalves. Primal heuristics for mixed integer nonlinear
programs. Research Report RC24639, IBM, 2008.

12. M.R. Bussieck, A.S. Drud, and A. Meeraus. MINLPLib – A Collection of
Test Models for Mixed-Integer Nonlinear Programming. INFORMS Journal
on Computing, 15(1):114–119, 2003.

13. E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neigh-
borhoods to improve MIP solutions. Math. Prog. A, 102(1):71–90, 2004.

14. M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Math. Prog. A,
104(1):91–104, 2005.

15. M. Fischetti and A. Lodi. Local branching. Math. Prog. B, 98(1-3):23–47, 2003.
16. M. Fischetti and D. Salvagnin. Feasibility pump 2.0. Math. Prog. C, 1:201–222,

2009.
17. S. Ghosh. DINS, a MIP improvement heuristic. In Proc. of 12th IPCO, pages

310–323, 2007.
18. ILOG, Inc. CPLEX. http://www.ilog.com/products/cplex.
19. Lindo Systems, Inc. LindoGlobal. http://www.lindo.com.
20. G. Nannicini, P. Belotti, and L. Liberti. A local branching heuristic for

MINLPs. ArXiv e-prints, 2008.
21. M. Tawarmalani and N.V. Sahinidis. Global optimization of mixed-integer non-

linear programs: A theoretical and computational study. Math. Prog., 99:563–
591, 2004.



112 Berthold, Gleixner

22. A. Wächter and L.T. Biegler. On the implementation of a primal-dual interior
point filter line search algorithm for large-scale nonlinear programming. Math.
Prog., 106(1):25–57, 2006.



23

Eigenvalue techniques for convex
objective, nonconvex optimization

problems

Daniel Bienstock

Columbia University
New York, NY, USA

dano@columbia.edu

Consider a minimization problem given by a nonlinear, convex objective function
over a nonconvex feasible region. Traditional optimization approaches will fre-
quently encounter a fundamental difficulty when dealing with such problems: even
if we can efficiently optimize over the convex hull of the feasible region, the opti-
mum will likely lie in the interior of a high dimensional face, “far away” from any
feasible point. As a result (and in particular, because of the nonlinear objective)
the lower bound provided by a convex relaxation will typically be extremely poor.
Furthermore, we will tend to see very large branch-and-bound (or -cut) trees with
little or no improvement over the lower bound.

In this work we present theory and implementation for an approach that relies
on three ingredients: (a) the S-lemma, a major tool in convex analysis (b) efficient
projection of quadratics to lower dimensional hyperplanes, and (c) efficient compu-
tation of combinatorial bounds for the minimum distance from a given point to the
feasible set, in the case of several signficant optimization problems.

Our current approach is guaranteed to work in case the objective is a convex
quadratic. More generally, if the objective can be (locally) lower bounded by a
convex quadratic, we obtain a (locally) valid lower bound; thus the approach fits
well within the trust region framework for (local) optimization over non-convex
sets. We will present computational experience with large cardinality constrained
problems over the unit simplex. If time permits we will present experience with
other problem classes.

113





24

A heuristic algorithm for the general
nonlinear separable knapsack problem

Claudia D’Ambrosio Silvano Martello

DEIS, University of Bologna
2, Viale Risorgimento
Bologna, I-40136 Italy

{c.dambrosio,silvano.martello}@unibo.it

Keywords: nonlinear knapsack, nonconvex, separable, heuristic, local search,
mixed integer nonlinear programming.

The general nonlinear knapsack problem is

max f(x)

g(x) 6 c

x ∈ D

where x = (x1, . . . , xn) ∈ Rn, f(x) and g(x) are continuous differentiable functions,
and D ⊆ Rn. In this work we consider the case where both f(x) and g(x) are
separable functions, and D includes bounds and integrality requirements on (part
of) the variables. The resulting problem can thus be described, using the knapsack
terminology, as follows. Given n items j, each having a profit function fj(xj) and a
weight function gj(xj), associated with n variables xj limited by upper bounds uj

(j ∈ N = {1, . . . , n}), determine non-negative xj values such that the total weight
does not exceed a given capacity c and the total produced profit is a maximum. A
subset N of the xj variables can be restricted to take integer values. Formally, we
consider the Nonlinear Knapsack problem (NLK)

max
∑

j∈N

fj(xj)

∑

j∈N

gj(xj) 6 c

0 6 xj 6 uj ∀j ∈ N = {1, . . . , n}
xj integer ∀j ∈ N ⊆ N

115



116 D’Ambrosio, Martello

where fj(xj) and gj(xj) are nonlinear increasing functions and the unique constraint
is the capacity constraint. We have no further assumption on functions fj(xj) and
gj(xj), i.e., they can be nonconvex and nonconcave.

The well-known (linear) knapsack problem (see Martello and Toth [9] or Kellerer,
Pferschy and Pisinger [8]) is the special case of NLK arising when fj(xj) and gj(xj)
are linear integer functions, i.e., fj(xj) = pjxj and gj(xj) = wjxj ∀j ∈ N and

N = N . It follows that NLK is NP-hard.
Nonlinear knapsack problems have many applications in various fields such as,

e.g., portfolio selection, stratified sampling, production planning, resource distribu-
tion. We refer the reader to Ibaraki and Katoh [6] and to Bretthauer and Shetty
[2] for extensive reviews.

A number of nonlinear separable knapsack problems has been considered in the
literature. In most cases the proposed algorithms are specifically tailored to the
case of convex or concave functions. In our model neither convexity nor concavity
is assumed, a situation rarely treated in the literature (apart from contributions on
the general global optimization, see Horst and Tuy [5]).

The heuristic algorithm we present starts by computing profit and weight values
over a discretized solution space. Let s̄ denote the number of samplings (identical
for all functions), so δj = uj/s̄ is the sampling step, and define

fjk = fj(kδj) and gjk = gj(kδj) (j ∈ N ; k = 1, . . . , s̄).

We then obtain the profit-to-weight ratios as rjk =
fjk

gjk
(j ∈ N, k = 1, . . . , s̄), and

we can compute, for each item j, the maximum ratio rj,m(j) = maxk=1,...,s̄{rjk}.
Assume by simplicity that the items are sorted according to nondecreasing

rj,m(j) values, so, with respect to the current sampling step, r1,m(1) is the best
available ratio and m(1)δ1 is the value of variable x1 that produces the best filling
of the first g1,m(1) capacity units. Consider now the second best item 2, and its
best ratio r2,m(2) (6 r1,m(1)), and observe that item 1 could have a better ratio
than item 2 also for a higher x1 value. Specifically, we can find the highest m′(1)
value such that r1,m′(1) > r2,m(2).

The idea is then to define x1 = m′(1)δ1, i.e., to use item 1 for the first g1,m′(1)

capacity units, then to continue with the residual capacity c̄ = c− g1,m′(1). At the
second iteration, item 2 (second best available ratio) is used for the next g2,m′(2)

capacity units, where m′(2) is analogously defined as the highest value such that
r2,m′(2) > r3,m(3), and so on.

The method is further improved by refining the search for the best value m′(j)
of the current xj (by iteratively decreasing the sampling step), and by applying a
post-processing. The detailed statement of the overall algorithm can be found in
D’Ambrosio and Martello [4].

The algorithm, denoted as Heur in the following, was experimentally evaluated
on different sets of randomly generated functions. The general function used for
generating the profits (for all test beds) was fj(xj) = cj/(1 + bj exp−aj(xj+dj)).
Different actual functions were obtained, for each item j, by randomly generating
aj , bj , cj and dj in various intervals.

Different weight functions were used for different tests. A first test bed was
obtained by generating the weights according to the concave non-decreasing func-
tions gj(xj) =

√
pjxj + qj−√qj , obtaining different actual functions, for each item

j, by randomly generating pj and qj . A second test bed was produced using linear



Nonlinear Knapsack Problem 117

non-decreasing weight functions gj(xj) = wjxj , by randomly generating the wj

values.
The algorithm was compared with a number of solvers, namely

• heuristic solvers: Ipopt [7] for real instances, Bonmin [1] for integer in-
stances;

• exact solvers: SC-MINLP [3], both for real and integer instances.

For the cases with real variables, Algorithm Heur produced better average
solutions than Ipopt, with CPU times that are roughly of the same (or lower) order
of magnitude with respect to Ipopt. SC-MINLP produced better solutions than
Heur (by about 2%) for n 6 200, worse solutions (by about 2%) for 500 6 n 6 1000,
and no solution at all for n = 2500. Its computing time was however between 3
and 5 orders of magnitude higher than that of Heur.

For the cases with integer variables, the results were even better for Heur. It
produced better average solutions than Bonmin, with CPU times that are always
one or two orders of magnitude smaller than the two solvers. SC-MINLP produced
slightly better solutions than Heur only for n 6 20, slightly worse solutions for
50 6 n 6 100, and no solution at all for n > 200.

Overall, our heuristic finds solutions of excellent quality for a very difficult
problem within extremely short CPU times.

References

1. Bonmin. http://projects.coin-or.org/Bonmin.
2. K.M. Bretthauer and B. Shetty. The nonlinear knapsack problem - algorithms

and applications. European Journal of Operational Research, 138:459–472, 2002.
3. C. D’Ambrosio, J. Lee, and A. Wächter. A global-optimization algorithm for

mixed-integer nonlinear programs having separable non-convexity. A. Fiat and
P. Sanders (Eds.): ESA 2009 (17th Annual European Symposium. Copenhagen,
Denmark, September 2009), Lecture Notes in Computer Science, 5757:107–118,
2009.

4. C. D’Ambrosio and S. Martello. Heuristic algorithms for the general nonlinear
separable knapsack problemy. Technical Report OR-09-15, DEIS, University of
Bologna, 2009.

5. R. Horst and H. Tuy. Global optimization: deterministic approaches. Springer,
Berlin, Germany, 1990.

6. T. Ibaraki and N. Katoh. Resource allocation problems. MIT Press, Cambridge,
MA, 1988.

7. Ipopt. http://projects.coin-or.org/Ipopt.
8. H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer, Berlin,

Germany, 2004.
9. S. Martello and P. Toth. Knapsack problems: algorithms and computer imple-

mentations. John Wiley & Sons, Chichester-New York, 1990.





25

An Outer Approximation Algorithm for
Nonlinear Mixed-Integer Programming

based on Sequential Quadratic
Programming with Trust Region

Stabilization

Oliver Exler1 Thomas Lehmann2 Klaus Schittkowski1

1 Department of Computer Science
University of Bayreuth

Bayreuth, 95440, Germany

{oliver.exler,klaus.schittkowski}@uni-bayreuth.de

2 Konrad-Zuse-Zentrum (ZIB)
Takustr. 7

Berlin-Dahlem, 14195, Germany

lehmann@zib.de

Abstract

We propose a modified outer approximation algorithm for solving
mixed-integer nonlinear programming problems. Successive quadratic
approximations stabilized by a trust region method are applied to in-
crease the efficiency and robustness of a linear outer approximation
algorithm. Numerical results are presented for a set of 100 academic
mixed-integer test problems. The number of function evaluations,
a very important performance criterion in practice, is significantly
decreased and solution quality of non-convex problems is increased
compared to a linear outer approximation algorithm.
Keyword: linear outer approximation, mixed integer nonlinear pro-
gramming, MINLP, numerical algorithms.

119



120 Exler, Lehmann, Schittkowski

1. Introduction

We consider the general mixed-integer nonlinear optimization problem (MINLP) to
minimize an objective function f under m nonlinear inequality constraints,

(25.1) x ∈ X, y ∈ Y :
min f(x, y)

gj(x, y) > 0 , j = 1, . . . ,m ,

where x and y denote the vectors of the continuous and integer variables, respec-
tively. The two sets X and Y are defined as follows

(25.2)
X := {x ∈ Rnc : xlb 6 x 6 xub} ,
Y := {y ∈ Nni : ylb 6 y 6 yub} ,

where nc is the number of continuous variables and ni is the number of integer
variables, i.e. bound constraints on the variables are added. It is assumed that the
problem functions f(x, y) and gj(x, y), j = 1, . . ., m, are continuously differentiable.

Numerous algorithms have been proposed in the past, see for example Floudas [8]
or Grossmann [9] for review papers. Typically, these approaches require convex
model functions and continuous relaxations of integer variables. By a continuous
relaxation, we understand that integer variables can be treated as continuous vari-
ables, i.e., function values can also be computed for all y ∈ YR, where

(25.3) YR := {y ∈ Rni : yl 6 y 6 yu} .
denotes the convex hull of Y . Thus, the corresponding continuous relaxation of
problem (25.1) is

(25.4) x ∈ X, y ∈ YR :
min f(x, y)

gj(x, y) > 0 , j = 1, . . . ,m .

During the last years, branch-and-bound methods were developed where a series
of relaxed nonlinear programs must be solved obtained by restricting the variable
range of the relaxed integer variables, see Gupta and Ravindran [10] or Borchers
and Mitchell [2]. When applying an SQP algorithm for solving a subproblem, it is
possible to apply early branching, see Leyffer [13]. Pattern search algorithms are
available to search the integer space, see Audet and Dennis [1]. After replacing the
integrality condition by continuous nonlinear constraints, it is possible to solve the
resulting highly non-convex program by a global optimization algorithm, see e.g.
Li and Chou [14]. Alternatively, it is also possible to apply cutting planes as in
linear programming, see Westerlund and Pörn [16].

Another frequently used solution method for solving convex mixed-integer non-
linear programming problems is based on linear outer approximations. The idea is
introduced by Duran and Grossmann [3] and is extended by Fletcher and Leyffer [7]
to solve general convex mixed-integer nonlinear programs. Convergence towards the
global optimal solution of a convex mixed-integer nonlinear program is guaranteed
by considering a linear model of the original convex MINLP called master problem.
Since linearized constraints remain valid during the whole optimization process, the
method cannot be applied directly to non-convex problems. It might be possible
that the optimal solution is cut off.

A mixed-integer sequential quadratic programming method was introduced by
Exler and Schittkowski [6]. We refer to this method as MISQP. The algorithm is



Outer Approximation based on mixed-integer SQP 121

based on the trust region method of Yuan [17] and is adapted to solve nonlinear
mixed-integer optimization problems, e.g., by solving a sequence of mixed-integer
quadratic subproblems. It is well known that the continuous version converges to
a stationary point. Although the algorithm is extremely efficient for mixed-integer
nonlinear problems and stops at a feasible solution after very few iterations, in most
cases at the optimal solution, convergence of the underlying algorithm cannot be
guaranteed in a rigorous mathematical way, even not in the convex case.

We present an algorithm that overcomes the disadvantages of both linear outer
approximation and MISQP while maintaining their benefits. Our method combines
mixed integer search steps obtained by local quadratic approximations with linear
outer approximation techniques. The new method has the following properties:

• It guarantees global optimality for convex problems.
• It is efficient in terms of the number of function evaluations.
• It obtains good solutions for non-convex MINLPs.

The article is structured as follows. Sections 2 and 3 summarize the theoret-
ical background of the methods we combined in our algorithm. Our algorithm is
described in Section 4. Numerical results obtained for a selection of 100 academic
mixed integer nonlinear test cases [15] are reported in section 5. Section 6 provides
some conclusions.

2. Linear Outer Approximation

In order to provide convergence to a global solution of convex MINLPs (25.1),
the new algorithm uses a master problem as outer approximation algorithms. The
master problem will be formulated later, but requires some definitions first.

To simplify the notation we define g(x, y) := (g1(x, y), . . . , gm(x, y))T and the
transpose of the Jacobian of the constraints ∇g(x, y) := (∇g1(x, y), . . . ,∇gm(x, y)).
We use g(x, y)− ∈ Rm that is defined as

(25.5) gj(x, y)
− := min(gj(x, y), 0) , j = 1, . . . ,m.

For any fixed ȳ ∈ Y , we denote by NLP(ȳ) the nonlinear program

(25.6) x ∈ X :
min f(x, ȳ)

g(x, ȳ) > 0 ,

and by x(ȳ) its solution. Outer approximation algorithms require the exact solution
of these NLP(y) (25.6) problems because they are essential to generate the master
problem. In the following, we denote by T the set of integer values leading to
feasible nonlinear subproblems,

(25.7) T = {y ∈ Y : NLP (y) feasible} .

Analogously, we denote the set of integer values y with infeasible subproblems by
S, i.e.

(25.8) S = {y ∈ Y : NLP (y) infeasible} .

Note that Y = T ∪ S. Consider now y ∈ S and let

(25.9) J(y) := {j : 1 6 j 6 m,∃x ∈ X with gj(x, y) > 0} .



122 Exler, Lehmann, Schittkowski

With J⊥(y) := {1, ...,m}\J(y), we obtain a feasibility problem F (y) from (25.1)

(25.10) x ∈ X :
min

∑

l∈J⊥(y) wlgl(x, y)
−

gj(x, y) > 0, j ∈ J(y) ,

where wl are appropriate nonnegative weights not all at once equal to zero and
gl(x, y)

− as defined in (25.5). We denote by xF (y) the solution of (25.10) subject
to y ∈ S.

Standard assumptions required to apply outer approximation methods and to
guarantee global optimality are:

Assumption 1. (1) The relaxed program (25.4) is convex, i.e., f(x, y) is
convex and g(x, y) is concave over X and YR.

(2) f(x, y) and g(x, y) are continuously differentiable for all x ∈ X and y ∈ YR.
(3) The linear independent constraint qualification (LICQ) holds at the solu-

tion x(y) of every nonlinear program NLP(y) (25.6).

The following Theorem was shown by Fletcher and Leyffer [7] and defines the
master problem.

Theorem 2.1. If Assumption 1 holds, then the master problem

(25.11)
min η

η > f(x(y), y) +∇f(x(y), y)T

(

x− x(y)
z − y

)

∀y ∈ T

x ∈ X, z ∈ Y, η ∈ R : 0 6 g(x(y), y) +∇g(x(y), y)T

(

x− x(y)
z − y

)

∀y ∈ T

0 6 g(xF (y), y) +∇g(xF (y), y)T

(

x− xF (y)
z − y

)

∀y ∈ S

is equivalent to the convex MINLP (25.1) in that sense, that (x∗, y∗) solves the
convex MINLP (25.1), if and only if it solves the master problem (25.11).

3. A Sequential Quadratic Programming Algorithm with Trust
Region Stabilization

Exler and Schittkowski [6] extended the trust region algorithm suggested by Yuan
[17] to the class of mixed-integer nonlinear programs. The subproblems are trans-
formed into mixed-integer quadratic problems (MIQP).

The method is based on the exact L∞-penalty function

(25.12) Pσ(x, y) = f(x, y) + σ‖g(x, y)−‖∞ ,

where σ > 0 is the associated penalty parameter.
To approximate Pσk

(xk, yk) in the k-th iteration step, where (xk, yk) is a current
iterate, we successively solve the subproblem



Outer Approximation based on mixed-integer SQP 123

(25.13)
min ∇f(xk, yk)T d + 1

2
dT Bkd + σk‖(g(xk, yk) +∇g(xk, yk)T d)−‖∞

dc ∈ Rnc , di ∈ Nni : ‖dc‖∞ 6 ∆c
k , ‖di‖∞ 6 ∆i

k ,

xk + dc ∈ X, yk + di ∈ Y ,

where d :=

(

dc

di

)

with dc ∈ Rnc and di ∈ Nni . It is assumed that Bk ∈

R(nc+ni)×(nc+ni) is positive definite for all k. Note that a solution of (25.13) always

exists, now denoted by dk :=

(

dc
k

di
k

)

. Moreover, it is guaranteed that the subse-

quent iterate xk+1 := xk + dc
k , yk+1 := yk + di

k, if accepted, satisfies the bounds
given by (25.2). ∆c

k > 0 and ∆i
k > 0 denote the trust region radii for the con-

tinuous and integer search space, respectively. We restrict the trust region radius
associated with the integer or binary variables to integer values, i.e ∆i

k ∈ Nni . For
binary variables, we have either ∆i

k = 0 or ∆i
k = 1.

During the remainder of this article we denote the objective function of the
mixed-integer subproblem (25.13) by

(25.14) Φk(d) := ∇f(xk, yk)T d+
1

2
dTBkd+ σk‖(g(xk, yk) +∇g(xk, yk)T d)−‖∞ .

Since (25.13) is non-smooth, we introduce a slack variable η ∈ R to reformulate
(25.13) as a mixed-integer quadratic programming problem

(25.15)

dc ∈ Rnc , di ∈ Nni , η ∈ R :

min ∇f(xk, yk)T d+ 1
2d

TBkd+ σkη

η + gj(xk, yk) +∇gj(xk, yk)T d > 0 , j = 1, . . . ,m ,

‖dc‖∞ 6 ∆c
k , ‖di‖∞ 6 ∆i

k ,

xk + dc ∈ X, yk + di ∈ Y , η > 0 .

The matrix Bk ∈ R(nc+ni)×(nc+ni) is updated during the optimization process.
Best results are obtained by using a BFGS quasi-Newton formula, but other updates
are possible.

The solution dk of problem (25.15) is used to generate the next trail point.
Depending on the ratio of actual and predicted reduction

(25.16) rk =
Pσk

(xk, yk)− Pσk
(xk + dc

k, yk + di
k)

Φk(0)− Φk(dk)
,

the step is accepted or rejected. The trust region radii are adjusted accordingly.
This is a standard procedure for trust region methods.

Regarding the case with fixed integer variables ȳ, under the following Assump-
tions 2, one can prove convergence to at least a stationary point of NLP(ȳ) (see
Yuan [17]).

Assumption 2. (1) f(x, y) and gj(x, y), j = 1, . . . ,m are continuously dif-
ferentiable.

(2) {Bk} is uniformly bounded.



124 Exler, Lehmann, Schittkowski

Extensive tests on academic and real-world problems show that the implemen-
tation MISQP [4] of this method is very efficient in terms of the number of function
evaluations needed to obtain good solutions. But convergence to an optimal solu-
tion of problem (25.1) can not be guaranteed, even not for convex problems.

4. A Linear Outer Approximation Algorithm Combined with SQP
and Trust Region Stabilization

In this section we introduce the algorithm that combines linear outer approximation
and the method MISQP, described in Section 3. The goal is to develop a solution
method that is on the one hand efficient in terms of the number of function and
gradient evaluations needed to obtain a solution. On the other hand global opti-
mality should be guaranteed for convex MINLP problems (25.1). Furthermore the
algorithm should be able to find high quality solutions for non-convex problems.

Global optimality can be guaranteed for convex MINLPs by the global approx-
imation built up in the mixed integer linear master problem (25.11). Therefore, we
have to solve the continuous NLP(ȳ) (25.6) for a fixed ȳ. In our opinion, the per-
formance of an outer approximation algorithm can be improved if we allow changes
in the integer variables during this continuous optimization process.

A change in the integer variables seems to be preferable if it reduces the L∞-
penalty function more than the step obtain with fixed integer values. This is a
so-called improving mixed integer search direction as defined as follows.

Definition 25.1. A solution dk =

(

dc
k

di
k

)

of problem (25.15) with di
k ∈ Nni is an

improving mixed integer search direction, if

(25.17) Pσk
(xk + dc

k, yk + di
k) < Pσk

(xk + d̂c
k, yk),

where d̂k :=

(

d̂c
k

0

)

is the solution of the MIQP (25.15) with fixed d̂i
k, i.e. ∆i

k = 0.

The basic algorithm can be stated as follows:
Note that by setting the Boolean variable IntegerStep to false, we skip step 2.

Thus, executing steps 1 to 8 will generate a sequence that converges to a stationary
point of problem NLP(yk) (25.6) with fixed yk. If a stationary point is detected,
step 8 is executed and the master problem (25.11) is solved. This corresponds to a
linear outer approximation algorithm as described by Fletcher and Leyffer [7].

Our algorithm differs from a linear outer approximation algorithm by adding
step 2. In step 2 search directions are calculated that also involves the integer
variables. We allow changes in the integer variables yk at an early stage of the
optimization process. Using this strategy, generates solutions that are significantly
better compared to those obtained by a linear outer approximation algorithm with-
out this feature, especially if problem (25.1) is non-convex. Note that in step 8 it
is necessary to check whether ykOA

differs from ylOA
, for all lOA = 1, . . . , kOA − 1.

Otherwise cycling can occur.
Under the assumption

Assumption 3. (1) Let the penalty parameter σ satisfy

(25.18) σ > max{‖uj‖1 : j > 1, NLP (yj) feasible}



Outer Approximation based on mixed-integer SQP 125

Let k := 1, x1 ∈ X, y1 ∈ Y, σ1 > 0, B1 ∈ R(nc+ni)×(nc+ni) symmetric1

positive definite. Evaluate function values f(x1, y1), g(x1, y1) and gradients
∇f(x1, y1), ∇g(x1, y1). Set kOA := 1 and IntegerStep:=true.

(1) Solve MIQP (25.15) with ∆i
k = 0 fixed, giving d̂k = (d̂c

k, 0) and evaluate

f((xk, yk) + d̂k) and g((xk, yk) + d̂k) to obtain Pσk
((xk, yk) + d̂k).

Calculate

r̂k =
Pσk

(xk, yk)− Pσk
((xk, yk) + d̂k)

Φk(0)− Φk(d̂k))
.

If IntegerStep=true, then go to 2.

Else set dk := d̂k and rk := r̂k. Go to 4.

(2) Solve the MIQP (25.15) with di
k ∈ Nni , giving dk = (dc

k, d
i
k) and evaluate

f((xk, yk) + dk) and g((xk, yk) + dk) to obtain Pσk
((xk, yk) + dk).

Calculate

rk =
Pσk

(xk, yk)− Pσk
((xk, yk) + dk)

Φk(0)− Φk(dk)
.

(3) If

Pσk
((xk, yk) + dk) < Pσk

((xk, yk) + d̂k),

then use dk and rk. (Improving mixed integer search direction)

Else set dk := d̂k and rk := r̂k.

(4) If Φk(0)− Φk(dk) = 0 and convergence to stationary point, i.e. KKT
point or infeasible stationary point of NLP(yk) (25.6) reached, then go
to 8.

(5) Dependent on rk, reduce or increase the trust region radii ∆c
k+1 and

∆i
k+1 (apply standard trust region rules).

If necessary, increase penalty parameter σk+1.

(6) If rk 6 0, set (xk+1, yk+1) := (xk, yk), Bk+1 := Bk and k:=k+1 and go to
1.

(7) Set (xk+1, yk+1) := (xk, yk) + dk. Evaluate ∇f(xk+1, yk+1) and
∇g(xk+1, yk+1). Update Bk+1 and set k := k + 1. Go to 1.

(8) Set kOA := kOA + 1. Update linear outer approximation master probelm
(25.11) by adding linearizations and solve (25.11), giving (xkOA

, ykOA
).

• If ykOA
6= ylOA

, for all lOA = 1, . . . , kOA − 1, then set
IntegerStep:=true.

• Else set IntegerStep:=false.
Set (xk+1, yk+1) = (xkOA

, ykOA
). Evaluate function values f(xk, yk),

g(xk, yk) and gradients ∇f(xk+1, yk+1), ∇g(xk+1, yk+1). Set k:=k+1
and go to 1.

and
(25.19)

σ > max



f(x∗, y∗)− f(xk, yk)

‖g(xk, yk)−‖∞
: k > 1, ‖g(xk, yk)−‖∞ > 0 and f(xk, yk) < f(x∗

, y
∗)

ff

,



126 Exler, Lehmann, Schittkowski

Solver Optimal Time Func Grad Equ. Func Deviation

OA 57 0.2412 370 32 492 163.3141
MISQPN 74 0.3831 403 33 532 19.6153
MISQP 89 0.6617 663 31 777 1.5022

MISQPOA 94 0.9190 3,071 137 3,917 0.3570
MINLPB4 90 0.2517 4,879 4,432 137,581 6.1644

Table 1. Test Results for Academic Test Cases

(2) A second order sufficient condition hold for all yj such that NLP (yj) is
feasible,

where uj denote the unique Lagrange multipliers at the solution x(yj) ofNLP (yj)
and (x∗, y∗) a global solution of MINLP (25.1), the following Theorem can be shown.

Theorem 4.1. If Assumption 1 and Assumption 3 hold, Algorithm 2 terminates
at a global solution (x∗, y∗) of the convex MINLP (25.1).

The proof relies on the fact that cycling for both the outer approximation and
the nonlinear optimization process can be avoided and therefore the global solution
of the mixed integer nonlinear problem (25.1) is obtained.

5. Numerical Results - 100 Academic Test Cases

The method described in the previous section is implemented as a code called
MISQPN [5]. The performance of the solver MISQPN is compared to other MINLP
solution methods on a test set of 100 academic test cases [15]. The following codes
are based on the theoretical background outlined in the previous sections:

MISQPN [5] - SQP-based outer approximation method, successive so-
lution of mixed-integer quadratic programs extended
by linear outer approximation constraints, convergence
guaranteed for convex problems

MISQP [4] - Mixed-integer SQP-based trust region method, conver-
gence not guaranteed

MISQPOA [12] - Additional stabilization of MISQP by outer approxima-
tions, successive solution of mixed-integer nonlinear pro-
grams by MISQP, convergence guaranteed for convex
problems

OA - Outer approximations, successive solution of nonlinear
programs NLP(y) (25.6) by MISQP, convergence guaran-
teed for convex problems, modification of MISQPOA [12]
(Skip Step 2 of Algorithm 2)

MINLPB4 [11] - Branch-and-bound method based on MISQP with
branching subject to integer variables

The subsequent Table 1 shows the performance of the MINLP solvers. In the
first column we specify the solver. The subsequent column Optimal describes the
performance on our test set in terms of the solution quality, i.e., it shows how many
problems were solved. The column labeled by Time informs about the average
time in seconds needed for a single problem instance. In column Func we state
the average number of function evaluations needed to find a solution for a single



Outer Approximation based on mixed-integer SQP 127

problem, while column Grad counts the average number of gradient evaluations
per instance. In column Equ. Func we report the average number of equivalent
function calls per test case, which includes the function calls needed to approximate
gradients by forward differences. In the last column the average deviation from the
optimal solution is reported, which indicates the quality of a local solution.

As we can see the new method MISQPN performs significantly better than
the linear outer approximation method OA in terms of the solution quality. The
performance in terms of the number of function evaluations or equivalent function
calls for MISQPN is of the same order of magnitude compared to linear outer
approximation.

MISQP is able to solve significantly more problems to global optimality and the
number of function evaluations increases only moderately. The performance of the
branch-and-bound solver MINLPB4 in terms of the solution quality is comparable
to that of MISQP but a huge number of function evaluations and equivalent function
calls are necessary to solve the problems.

MISQPOA calls MISQP within an outer approximation framework. As a con-
sequence the obtained solution is at least as good as the one found by MISQP
and obviously the number of function evaluations is significantly higher. For MIS-
QPOA global optimality can be guaranteed for convex problems. MISQPOA is able
to solve almost all problems to global optimality and compared to the cheap solvers
the number of equivalent function calls raises by only a small factor especially in
contrast to the branch-and-bound method.

6. Conclusions

It is well known that mixed-integer optimization problems are extremely difficult
to solve, especially in the non-convex case. Nevertheless, we conclude from our
numerical results that an efficient solution of nonlinear mixed-integer programs is
possible.

The solution method introduced in section 3, that refers to MISQP, is based
on a modified sequential quadratic programming (SQP) algorithm, where we suc-
cessively solve mixed-integer quadratic programs. However, we cannot guarantee
convergence of the mixed-integer SQP-type algorithm, even not in the convex case.

We thus extend the method by adding a mixed-integer linear master program
with outer approximations, by which the SQP-type method is stabilized and con-
vergence is guaranteed for convex problems. The method described in section 4
applies the outer approximation idea directly to the mixed-integer SQP methods,
by combining the master program and the continuous solver for fixed integer vari-
ables.

On the one hand our new method increases the solution quality for non-convex
problems significantly compared to our implementation of an outer approximation
algorithm. On the other hand it is very efficient in terms of the number of function
evaluations, the most important performance criterion for time-consuming simula-
tion programs in practical applications.

Furthermore, MISQPN [5] is the first implementation of such an algorithm and
the close relationship to the solver MISQP [4] indicates that a similar performance
at least in terms of the solution quality should be possible.



128 Exler, Lehmann, Schittkowski

Acknowledgments

Sponsored by Shell GameChanger, SIEP Rijswijk, under project number 4600003917.

References

1. C. Audet and E. J. Dennis. Pattern search algorithm for mixed variable pro-
gramming. Siam Journal on Optimization, 11:573–594, 2001.

2. B. Borchers and E. J. Mitchell. An improved branch and bound algorithm for
mixed integer nonlinear programming. Computers and Operations Research,
21(4):359–367, 1994.

3. A. M. Duran and E. I. Grossmann. An outer-approximation algorithm for
a class of mixed-integer nonlinear programs. Mathematical Programming,
36:307–339, 1986.

4. O. Exler, T. Lehmann, and K. Schittkowski. MISQP: A Fortran implementa-
tion of a trust region SQP algorithm for mixed-integer nonlinear programming
- user’s guide, version 2.2. Technical report, Department of Computer Science,
University of Bayreuth, Germany, 2008.

5. O. Exler, T. Lehmann, and K. Schittkowski. MISQPN: A Fortran subroutine
for mixed-integer nonlinear optimization by outer approximation supported
by mixed-integer search steps - user’s guide, version 1.0. Technical report,
Department of Computer Science, University of Bayreuth, Germany, 2009.

6. O. Exler and K. Schittkowski. A trust region SQP Algorithm for mixed-integer
nonlinear programming. Optimization Letters, 1(3):269–280, 2007.

7. R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer
approximation. Mathematical Programming, 66(1-3):327–349, 1994.

8. A. C. Floudas. Nonlinear and mixed-integer optimization: Fundamentals and
applications. Topics in chemical engineering. Oxford Univ. Press, New York,
NY, 1995.

9. E. I. Grossmann. Review of Nonlinear Mixed-Integer and Disjunctive Program-
ming Techniques. Optimization and Engineering, 3:227–252, 2002.

10. K. O. Gupta and V. Ravindran. Branch and bound experiments in convex
nonlinear integer programming. Management Science, 31:1533–1546, 1985.

11. T. Lehmann and K. Schittkowski. MINLPB4: A Fortran subroutine for mixed
integer nonlinear optimization by branch and bound - user’s guide, version 1.0.
Technical report, Department of Computer Science, University of Bayreuth,
Germany, 2009.

12. T. Lehmann and K. Schittkowski. MISQPOA: A Fortran subroutine for mixed
integer nonlinear optimization by outer approximation - user’s guide, ver-
sion 1.0. Technical report, Department of Computer Science, University of
Bayreuth, Germany, 2009.

13. S. Leyffer. Integrating SQP and branch-and-bound for mixed integer nonlinear
programming. Computational Optimization and Application, 18:295–309, 2001.

14. L. H. Li and T. C. Chou. A global approach for nonlinear mixed discrete
programming in design optimization. Engineering Optimization, 22:109–122,
1994.

15. K. Schittkowski. A collection of 100 test problems for nonlinear mixed-integer
programming in Fortran - user’s guide. Technical report, Department of Com-
puter Science, University of Bayreuth, Germany, 2009.



Outer Approximation based on mixed-integer SQP 129

16. T. Westerlund and R. Pörn. Solving pseudo-convex mixed integer optimization
problems by cutting plane techniques. Optimization and Engineering, 3:253–
280, 2002.

17. Y. Yuan. On the convergence of a new trust region algorithm. Numerische
Mathematik, 70:515–539, 1995.





26

A branch-and-cut-and-price framework
for convex MINLP applied to a stochastic

network design problem

Bernard Fortz1,2 Martine Labbé Michael Poss

Department of Computer Science
Université Libre de Bruxelles

Brussels, Belgium

{bfortz,mlabbe,mposs}@ulb.ac.be

1 also at CORE, Université catholique de Louvain
2 FRIA Research Fellow

Abstract

Many convex linearly constrained programs and mixed integer pro-
grams have a large number of variables, so that the variables should
be generated dynamically throughout the solution algorithm. This
yields to the well known “branch-and-price algorithm” and “simpli-
cial decomposition”. We present a novel “branch-and-cut-and-price
algorithm” to extend this idea to certain classes of convex linearly con-
strained MINLP. Our algorithm incorporates the variables generation
into the “LP/NLP algorithm” introduced by Quesada and Grossman.
We detail our framework for the stochastic network design problem
with simple recourse and present preliminary computational results.
Keywords: convex MINLP, branch-and-price, stochastic program-
ming, network design.

1. Introduction

Many difficult Mixed Integer Programs can be solved efficiently by Dantzig-Wolfe
decomposition, followed by a branch-and-price algorithm, see for instance [10, 4].
This reformulation has the following advantages: it reduces the number of con-
straints of the problem and it may provide a stronger bound than the linear relax-
ation of the problem. Consider for instance the fixed-charge capacitated network
design problem. Its arcs-paths formulation contains much less constraints than its
arcs-nodes formulation, both formulations having the same linear relaxation [9].
Since the number of paths is exponential in the size of the graph, we should rather

131



132 Fortz, Labbé, Poss

generate them dynamically with a branch-and-price algorithm. Other problems,
such as the unsplittable multi-commodity flows problem have a structure naturally
well suited for column generation, see [3].

Independently, Dantzig-Wolfe decomposition has been successfully applied to
linearly constrained problems with a pseudo-convex and differentiable objective,
yielding the simplicial decomposition [13]. Again, this decomposition replaces the
possibly complicated constraints by the simple constraints defining the canonical
simplex, but require dynamic variable generation..

Up to our knowledge, no such decomposition has yet been applied to Mixed
Integer Non Linear Programs, and in particular convex MINLP, although many
efficient algorithms have been developed for convex MINLP, see [7] for a review.
Herein, we reformulate a convex linearly constrained MINLP using Dantzig-Wolfe
decomposition. Then, we present a novel branch-and-cut-and-price algorithm based
on the NP/NLP algorithm first introduced in [15] and implemented in FilMINT
[2] and Bonmin [6]. We are currently implementing our framework for a network
design problem with uncertain demand and simple-recourse, using CPLEX 12.1 [1]
as the LP solver. This framework can easily be extended to handle other convex
MINLP, such as the unsplittable multi-commodity flows problem with convex cost,
well studied in the splittable case [12] and in the linear cost case [3].

In the next section, we describe our stochastic network design problem with
simple recourse, while our branch-and-cut-and-price algorithm is described in Sec-
tion 3. Section 4 briefly describes two possible extensions and Section 5 presents
preliminary computational results.

2. Oblivious network design with simple recourse

Given an undirected graph (V,E) and a set of demands dk ∈ K, with origin s(k)
and destination t(k) for every k ∈ K, the capacitated network design problem aims
at installing the cheapest capacities so that the resulting network shall be able to
attend each demand. However, in many practical situations, the demands are not
known exactly when designing the network, which can be modeled by replacing dk

by continuous random variables, also noted dk. Moreover, it is often desirable that
the routing be planed before the demand is known exactly. Thus, given penalty
factors πk, we formulate the problem as a stochastic program with simple-recourse:

min
X

ij∈E

cijxij +
X

k∈K

π
kE

h

y
k(ω)

i

s.t.
X

j∈V \i

(fk
ji − f

k
ij) =

8

<

:

dk(ω) + zk(ω)− yk(ω) i = t(k)

−dk(ω)− zk(ω) + yk(ω) i = s(k)
0 otherwise

ω ∈ Ω,

i ∈ V,

k ∈ K
(26.1)

(AN)
X

k∈K

“

f
k
ij + f

k
ji

”

6 Cxij ij ∈ E

0 6 xij 6 xij ij ∈ E

x ∈ Z

f, y, z > 0,

where xij represents the number of batches of capacity with size C installed
on edge ij and fk

ij denotes the maximal amount of flow for commodity k that
can go from i to j through edge ij ∈ E. Therefore, given the optimal solution
(x∗, f∗, y∗) to (AN), demand dk(ω) is fully attended only if yk∗(ω) = 0. Let



Branch-and-price for convex MINLP 133

dk∗ = maxω∈Ω{dk(ω) s.t. yk∗(ω) = 0}. Hence, the actual flow on edge ij ∈ E for

commodity k ∈ K is equal to fk ∗
ij min

(

1, dk(ω)
dk ∗

)

.

The simple-recourse structure of (AN) allows us to reformulate (AN) as a non

linear problem, substituting yk(ω) by max
(

0, dk(ω)−∑p∈Pk fk
p

)

, see [8]. Then,

applying a Dantzig-Wolfe decomposition to (26.1) for each commodity k ∈ K, and
introducing the continuous density probability functions gk : R → Ξk for random
variable dk, we obtain our arcs-paths formulation:

min
∑

ij∈E

cijxij +
∑

k∈K

πk

∫

Ξk

max



0, ξk −
∑

p∈Pk

fk
p



 gk(ξk)dξk(26.2)

(AP ) s.t.
∑

k∈K

∑

p∈Pk

δp
ijf

k
p 6 Cijxij ij ∈ E

0 6 xij 6 xij ij ∈ E
x ∈ Z

f > 0,

where Pk is the set of all paths in G between s(k) and t(k), P = ∪k∈KPk, fk
p the

maximal flow on path p, and δp
ij is equal to one if ij ∈ p, 0 otherwise. Let AP (P )

be (AP ) restricted to paths in P ⊆ P. It is well known that (26.2) is convex when
each gk has finite second moments, see [5]. Moreover, it is differentiable because
each non linear term of (26.2) can be rewritten

hk(f) = πk

∫

Ξk:ξk>
P

p∈Pk fk
p



ξk −
∑

p∈Pk

fk
p



 gk(ξk)dξk,

and
∑

p∈Pk fk
p is differentiable. Remark that it may be difficult to compare fixed

costs c and operating costs π so that we could replace the term
∑

ij∈E cijxij in

(26.2) by a budget constraint
∑

ij∈E cijxij 6 B, see [14] for examples of network
design problems with budget constraints.

3. Algorithm

Formulation (AN) has too many constraints to be solved for real size networks,
and requires therefore to be tackled by a decomposition algorithm. However, (AP )
considering all paths has too many variables, while only a few of them are required
in the optimal solution. Hence, it would be interesting to generate paths only when
needed. Once we have chosen a suitable MINLP framework, we must decide how
to generate the paths throughout the solution algorithm. Herein, we decided to use
the NP/NLP algorithm (remark that similar ideas could be used to couple together
the MINLP branch-and-bound algorithm and the simplicial decomposition). Since
(AP ) has only linear constraints, we do not need to solve feasibility NLP so that
the NP/NLP turns out to be a branch-and-cut algorithm. Namely we define a
master problem, see (MP ) below, accumulating the linearizations of the objective
function. Additional linearizations are generated throughout the branch-and-bound
algorithm solving (MP ), see [7]. Although linearizations must be added at each
integer node (to test whether we keep the associated incumbent), it is not obvious
whether to add them at each fractional node. On one hand, it is important to add



134 Fortz, Labbé, Poss

enough linearizations early in the tree to avoid exploration of too many infeasible
nodes. On the other hand, adding too many unnecessary cuts would slow down the
linear relaxation at each node. Our algorithm B&P-NP/NLP-n adds linearizations at
integer nodes and nodes with a depth less than or equal to a given parameter n.

Let Sk and P k ⊆ Pk be the sets of linearizations of hk and paths variables
generated so far for commodity k, respectively, and E0 and E1 the sets of edges fixed
to 0 and 1, respectively, in the branching constraints. We define now the master
problem for |Sk| linearizations of hk and |P k| path variables for each commodity
k, and |E0|+ |E1| branching constraints:

min
∑

ij∈E

cijxij +
∑

k∈K

θk

s.t. hk
(

f
s
)

+
∑

p∈P k

∂hk

∂fk
p

(

f
s
)(

fk
p − f

k

p

)

6 θk k ∈ K, s ∈ Sk(26.3)

(MP )
∑

k∈K

∑

p∈P k

δp
ijf

k
p 6 Cijxij ij ∈ E(26.4)

0 6 xij 6 xij ij ∈ E
xij = 1 ij ∈ E1

xij = 0 ij ∈ E0

0 6 x 6 1

f > 0.

Note that each hk satisfies the following property:

(26.5)
∂hk

∂fk
p

=
∂hk

∂fk
q

for any p, q ∈ Pk,

so that we denote (26.5) by dhk

df
in the following. Property (26.5) implies that the

reduced cost is easy to compute for any path p ∈ P.

Lemma 3.1. Let (x∗, f∗) be an optimal solution to (MP ), λ∗ and µ∗ be optimal
multipliers associated with constraints (26.3) and (26.4), respectively, and p ∈ Pk

for some k ∈ K. The reduced cost of fk
p is equal to:

(26.6) ck∗p = −
∑

s∈Sk

dhk

df
(fs∗)λs∗ −

∑

ij∈E

δp
ijµ

∗
ij .

Since for each k, the piece-wise linear function defined by (26.3) is always
smaller to or equal than hk, we can use ck∗p to know whether new paths can actually
improve the objective.

Lemma 3.2. Consider some path p ∈ P\P and let h(x∗, f∗) and h(x′, f ′) be the
optimal solution of AP (P ) and AP (P ∪p), respectively. If c∗p > 0, then h(x∗, f∗) =
h(x′, f ′).

Note that the term
∑

s∈Sk
dhk

df
(fs∗)λs∗ depends only on commodity k ∈ K, not

on path p. Thus, the pricing problem turns out to be a shortest path problem for
each commodity, with edge costs µ∗

ij . This is a well known problem polynomially
solvable that we solve by linear programming.



Branch-and-price for convex MINLP 135

Our algorithm is described on Algorithm 1. Numerical results for Algorithm 1
shall be available very shortly.

begin /* Initialization */1

T = {o} where o has no branching constraints;2

UB = +∞;3

cut = true;4

var = true;5

end6

while T is nonempty do7

select a node o′ ∈ T ;8

T ← T\{o′};9

while cut = true or var = true do10

solve o′;11

let (θ∗, x∗, f∗) be an optimal solution;12

let (λ∗, µ∗) be optimal dual multipliers;13

cut = false, var = false;14

if θ∗ < UB then15

if x is integer or depth(o′) 6 n then16

foreach k ∈ K do17

if θk∗ < hk(f∗) then18

add a cut (26.3) to Sk;19

cut = true;20

if cut = false then21

foreach k ∈ K do22

let p be the shortest paths between s(k) and t(k)23

according to costs µ∗
ij ;

if ck∗
p < 0 then24

add p to P k;25

var = true;26

if x is integer then define a new upper bound UB := θ∗ and save current27

incumbent;
else28

branch, resulting in nodes o∗ and o∗∗;29

T ← T ∪ {o∗, o∗∗};30

Algorithm 1: B&P-NP/NLP-n

4. Extensions

The previous scheme extends easily to more general convex and differentiable ob-
jective functions h(x, f), as long as we can easily compute the reduced costs for
paths in P\P . For instance, if h is separable for each edge,

(26.7) h(x, f) =
∑

ij∈E

hij



x,
∑

k∈K

∑

p∈Pk

δp
ijf

k
p



 ,



136 Fortz, Labbé, Poss

the reduced cost for path p ∈ Pk simply becomes

ck∗p = −
∑

ij∈E

δp
ij

(

µ∗
ij +

∑

s∈S

∂h

∂fk
p

(fs∗)λs∗

)

,

when |S| linearizations have been computed for h. Note that various realistic rout-
ing costs have structure (26.7), see for example hij(f) =

∑

k∈K
1
2 (qk

ij(f
k
ij)

2 +cijf
k
ij),

and hij(f) =
P

k∈K fk
ij

Cij−
P

k∈K fk
ij

taken from [11], with fk
ij =

∑

k∈K

∑

p∈Pk δ
p
ijf

k
p .

Algorithm 1 is an “easy” branch-and-cut-and-price algorithm in the sense that
we do not branch on the variables that are generated dynamically: we branch
on the x variables and generate the f variables. To extend Algorithm 1 to the
unsplittable multi-commodity flows problem with convex cost, we should use a
more sophisticated branching procedure. We could for instance, adapt the one
used in [3].

5. Preliminary results

We detail next preliminary results obtained for a randomly generated graph with 50
nodes and 100 edges, with four batches of capacity allowed on each edge and C =
100. The number of end-to-end commodities varies between 10 and 20. They follow
Gaussian distributions with means and variances uniformly distributed between 1
and 40, and 0 and 9, respectively. Costs c are based on euclidean distances between
nodes. All algorithms are coded in JAVA on a HP Compaq 6510b with a processor
Intel Core 2 Duo of 2.40 GHz and 2 GB of RAM memory.

The solution times for the subsequent algorithms are shown on Table 1 below.

• CPLEX: Formulation (AN) solved by the branch-and-cut framework from
CPLEX 12.1; cuts (26.3) are implemented through the LazyConstraint-
Callback. We check for violated cut at every node of the tree.

• B&C: Formulation (AN) solved by a branch-and-cut algorithm (similar to
algorithm 1 without the column generation) fully implemented in JAVA
using CPLEX 12.1 as the LP solver. We check for violated cut at every
node of the tree.

• B&C&P: Formulation (AP ) solved by algorithm 1 fully implemented in
JAVA using CPLEX 12.1 as the LP solver. We check for violated cut
and missing path at every node of the tree.

Table 1. CPU times.

Total time (MP ) time (MP ) and pricing time time ratio
|K| CPLEX B&C B&C&P B&C B&C&P B&C&P B&C/B&C&P
10 4.5 3.1 2.7 2.3 0.93 1.56 1.1
12 13.7 24.6 15.8 21.2 9 11.4 1.6
14 64 150 82 134 55 64.5 1.8
16 43 171 101 155 69 81 1.7
18 100 581 303 523 205 238 1.9
20 100 1602 742 1455 510 585 2.2

Columns “Total time” present the total amount of CPU time required by each
algorithm to solve the problem, columns “(MP ) time” provide only the time spent



Branch-and-price for convex MINLP 137

for solving the bounding problem with CPLEX, and column “(MP ) and pricing
time” sums the times for solving the bounding problem and for pricing out a new
variable. Finally, column “time ratio” provides the ratios between total times of
B&C and B&C&P.

Apart from the easiest instance, CPLEX is always faster than both B&C&P and
B&C, which was expected because CPLEX uses the powerful heuristics and cutting
planes from the MIP solver of CPLEX 12.1 while B&C&P and B&C follow simple
branch-and-bound schemes. Then, B&C&P is always faster than B&C and the ratio
rises with the difficulty of the problems.

References

1. IBM-ILOG Cplex, 2009. http://www.ilog.com/products/cplex/.
2. K. Abhishek, S. Leyffer, and J. T. Linderoth. Filmint: An outer-

approximation-based solver for nonlinear mixed integer programs. Argonne
National Laboratory, Mathematics and Computer Science Division, Argonne,
IL., 2008.

3. C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut
to solve origin-destination integer multicommodity flow problems. Oper. Res.,
48(2):318–326, 2000.

4. C. Barnhart, E. L. Johnson, G. L. Nemhauser, Martin W. P. Savelsbergh,
and Pamela H. Vance. Branch-and-price: column generation for solving huge
integer programs. Oper. Res., 46(3):316–329, 1998.

5. J. R. Birge and F. V. Louveaux. Introduction to Stochastic programming (2nd
edition). Springer Verlag, New-York, 2008.

6. P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D.
Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic
framework for convex mixed integer nonlinear programs. Discrete Optimiza-
tion, 5(2):186–204, 2008.

7. P. Bonami, M. Kilinc, and J. Linderoth. Algorithms and software for convex
mixed integer nonlinear programs. Technical Report 1664, Computer Sciences
Department, University of Wisconsin-Madison, 2009.

8. B. Fortz, M. Labbé, F. V. Louveaux, and M. Poss. The knapsack prob-
lem with gaussian weights. Technical Report 592, GOM, Université Li-
bre de Bruxelles, 2009. http://www.ulb.ac.be//di/gom/publications/

technical/2009/Fortz-Labbe-Louveaux-Poss.html.
9. A. Lisser, A. Ouorou, J.-P. Vial, and J. Gondzio. Capacity planning under

uncertain demand in telecommunication networks. Technical report, 1999.
10. M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Oper.

Res., 53(6):1007–1023, 2005.
11. A. Ouorou. A proximal subgradient projection algorithm for linearly con-

strained strictly convex problems. Optimization Methods and Software,
22(4):617–636, August 2007.

12. A. Ouorou, P. Mahey, and J.-P. Vial. A survey of algorithms for convex mul-
ticommodity flow problems. Management Science, 46(1):126–147, 2000.

13. M. Patriksson. Simplicial decomposition algorithms. In Encyclopedia of Opti-
mization, pages 3579–3585. 2009.



138 Fortz, Labbé, Poss

14. M. Pióro and D. Medhi. Routing, Flow, and Capacity Design in Communica-
tion and Computer Networks. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2004.

15. I. Quesada and I. E. Grossman. An LP/NLP based branch and bound al-
gorithm for convex MINLP optimization problems. Comput. Chem. Eng.,
16(10/11):937–947, 1992.



27

Projected Perspective Reformulations for
MIQP problems

Antonio Frangioni1 Claudio Gentile2 Enrico Grande3

Andrea Pacifici3

1 Dipartimento di Informatica, Università di Pisa
Polo Universitario della Spezia, Via dei Colli 90,

19121 La Spezia, Italy

frangio@di.unipi.it

2 IASI-CNR
Viale Manzoni 30,
00185 Roma, Italy

gentile@iasi.cnr.it

3 Dipartimento di Ingegneria dell’Impresa,
Università degli Studi di Roma “Tor Vergata”

via del Politecnico 1, 00133 Rome – Italy

grande@disp.uniroma2.it,pacifici@disp.uniroma2.it

Abstract

The Perspective Relaxation (PR) is a general approach for construct-
ing tight approximations to Mixed-Integer NonLinear Problems with
semicontinuous variables. The PR of a MINLP can be formulated ei-
ther as a Mixed-Integer Second-Order Cone Program, provided that
the original objective function is SOCP-representable, or as a Semi-
Infinite MINLP. We show that under some further assumptions—
rather restrictive, but satisfied in several practical applications—the
PR of Mixed-Integer Quadratic Programs can also be reformulated as
a piecewise linear-quadratic problem of roughly the same size of the
standard continuous relaxation. Furthermore, if the original problem
has some exploitable structure, this is typically preserved in the re-
formulation, allowing to construct specialized approaches for solving
the PR. We report on implementing these ideas on two MIQPs with
appropriate structure: a sensor placement problem and a Quadratic-
cost (single-commodity) network design problem.
Keywords: mixed-integer quadratic problems, perspective relaxation.

139



140 Frangioni, Gentile, Grande, Pacifici

1. Introduction

Semi-continuous variables are very often found in models of real-world problems
such as distribution and production planning problems [7, 10], financial trading
and planning problems [8], and many others [1, 11, 12]. These are variables which
are constrained to either assume the value 0, or to lie in some given polyhedron
P; when 0 belongs to P, one incurs in a fixed cost to allow the variable to have a
nonzero value. We will consider Mixed-Integer NonLinear Programs (MINLP) with
n semi-continuous variables xi ∈ Rmi for each i ∈ N = {1, . . . , n}. Assuming that
each Pi = {xi : Aixi 6 bi} is compact, and therefore {xi : Aixi 6 0} = {0}, each
xi can be modeled by using an associated binary variable yi, leading to problems
of the form

min g(z) +
∑

i∈N fi(xi) + ciyi(27.1)

Aixi 6 biyi i ∈ N(27.2)

(x, y, z) ∈ O , y ∈ {0, 1}n , x ∈ Rm , z ∈ Rq(27.3)

where all fi and g are closed convex functions, z is the vector of all the “other” vari-
ables, and O ⊆ Rm+n+q (with m =

∑

i∈N mi) represents all the “other” constraints
of the problem.

It is known that the convex hull of a (possibly disconnected) domain such as
{0}∪P can be conveniently represented in a higher-dimensional space, which allows
to derive disjunctive cuts for the problem [14]; this leads to defining the Perspective
Reformulation of (27.1)—(27.3) [5, 7]

(27.4) min
{

g(z) +
∑

i∈N yifi(xi/yi) + ciyi : (27.2) , (27.3)
}

whose continuous relaxation is significantly stronger than that of (27.1)—(27.3),
and that therefore is a more convenient starting point to develop exact and ap-
proximate solution algorithms [7, 8, 10, 12]. However, an issue with (27.4) is the
high nonlinearity in the objective function due to the added fractional term. Two
alternative reformulations of (27.4) have been proposed: one as a Mixed-Integer
Second-Order Cone Program [15, 3, 12] (provided that the original objective func-
tion is SOCP-representable), and the other as a Semi-Infinite MILP [7]. In several
cases, the latter outperforms the former in the context of exact or approximate enu-
merative solution approaches [9], basically due to the much higher reoptimization
efficiency of active-set (simplex-like) methods for Linear and Quadratic Programs
w.r.t. the available Interior Point methods for Conic Programs. However, both
reformulations of (27.4) require the solution of substantially more complex con-
tinuous relaxations than the original formulation of (27.1)—(27.3); furthermore,
they may spoil the valuable structure of the problem, such as the presence of net-
work constraints. We show that, under some further assumptions, the PR of a
Mixed-Integer Quadratic Program can also be reformulated as a piecewise linear-
quadratic problem of roughly the same size of the standard continuous relaxation;
this new reformulation is obtained by projecting each pair of variables (xi, yi) onto
the subspace of the variables xi, as discussed in Section 2. Moreover, if the orig-
inal problem has some exploitable structure, then this structure is preserved in
the reformulation, thus allowing to construct specialized approaches for solving the
PR. We apply this approach to a Sensor Placement problem (Section 3) and to a
Quadratic-cost (single-commodity) network design problem (Section 4), reporting



Projected Perspective Reformulations for MIQP problems 141

numerical experiments comparing state-of-the-art, off-the-shelf MIQP solvers with
the new specialized solution approach (Section 5).

2. A piecewise description of the convex envelope

Here we analyze the properties of the Perspective Reformulation under three further
assumptions on the data of the original problem (27.1)—(27.3):

A1) each xi is a single variable (i.e., mi = 1) and each Pi is a bounded real
interval [0, ui];

A2) the variables yi only appear each in the corresponding constraint (27.2),
i.e., the “other” constraints O do not concern the yi;

A3) all functions are quadratic, i.e., fi(xi) = aix
2
i + bixi (and since they are

convex, ai > 0).

While these assumptions are indeed restricting, they are in fact satisfied by most
of the applications of the PR reported so far [7, 8, 11, 3, 12]. Since in this
paragraph we will only work with one block at a time, to simplify the notation in
the following we will drop the index “i”. We will therefore consider the (fragment
of) Mixed-Integer Quadratic Program (MIQP)

(27.5) min
{

ax2 + bx+ cy : 0 6 x 6 uy , y ∈ {0, 1}
}

and its Perspective Relaxation

(27.6) min
{

f(x, y) = (1/y)ax2 + bx+ cy : 0 6 x 6 uy , y ∈ {0, 1}
}

.

The basic idea behind the approach is to recast (27.6) as the minimization over
x ∈ [0, u] of
(27.7)
z(x) = miny f(x, y) = bx+ miny

{

(1/y)ax2 + cy : 0 6 x 6 uy , y ∈ [0, 1]
}

.

It is well-known that z(x) (partial minimization of a convex function) is convex;
furthermore, due to the specific structure of the problem z(x) can be algebraically
characterized. In particular, due to convexity of f(x, y), the optimal solution y∗(x)
of the inner optimization problem in (27.7) is easily obtained by the solution ỹ =
ỹ(x) (if any) of the first-order optimality conditions of the unconstrained version
of the problem, i.e., ∂f(x, y)/∂y = c − ax2/y2 = 0. In fact, if ỹ is feasible for the
problem, then it is optimal (y∗(x) = ỹ); otherwise, y∗(x) is the projection of ỹ
over the feasible region, i.e., the extreme of the interval nearer to ỹ (this is where
assumption A1 is used). Thus, by developing the different cases, one can construct
an explicit algebraic description of z(x) = f(x, y∗(x)).

We start by rewriting the constraints in (27.7) as

(27.8) (0 6) x/u 6 y 6 1

(since u > x > 0⇒ x/u > 0). We must now proceed by cases:

1) If c 6 0, then ỹ is undefined: the derivative is always negative. Thus,
there is no global minima of the unconstrained problem, and therefore
y∗(x) = 1, yielding

(27.9) z(x) = ax2 + bx+ c

2) Instead, if c > 0 then ỹ = x
√

a/c (note that we have used x > 0, c >
0, a > 0). In general, two cases can arise:



142 Frangioni, Gentile, Grande, Pacifici

2.1) ỹ 6 x/u ⇔ u 6
√

c/a ⇔ y∗(x) = x/u ⇒

(27.10) z(x) =
(

b+ au+ c/u
)

x

2.2) 0 > ỹ > x/u ⇔ u >
√

c/a. This gives two further subcases

∗ (u >) x >
√

c/a (> 0) ⇒ ỹ > 1 ⇒ y∗(x) = 1,

∗ 0 6 x 6
√

c/a (6 u) ⇒ ỹ 6 1 ⇒ y∗(x) = ỹ,
finally showing that z(x) is the piecewise linear-quadratic function

(27.11) z(x) =

{ (

b+ 2
√
ac
)

x if 0 6 x 6
√

c/a

ax2 + bx+ c if
√

c/a 6 x 6 u.

Note that (27.11) is continuous and differentiable even at the (poten-

tial) breakpoint x =
√

c/a, and therefore convex (as expected).

In all the cases, z(x) is a convex differentiable piecewise-quadratic function with at
most 2 pieces.

3. A sensor placement problem

Consider the problem of optimally placing a set N = {1, . . . , n} of sensors to cover a
given area, where deploying one sensor has a fixed cost plus a cost that is quadratic
in the radius of the surface covered [1]. The problem, which is shown to beNP-hard
in [2], can be written as

(27.12) min
n

P

i∈N ciyi +
P

i∈N aix
2
i :

P

i∈N xi = 1, 0 6 xi 6 yi, yi ∈ {0, 1} i ∈ N
o

Since we can assume ci > 0 (for otherwise yi can surely be fixed to 1), in the
continuous relaxation of this problem the “design” variables yi can be projected
onto the xi; that is, the yi variables can be eliminated since at optimality yi = xi.
Such a problem can be solved in O(n log n) by Lagrangian relaxation [1]; however,
the bound can be weak, yielding to a large number of nodes in the enumeration
tree and to a large computational time. We can improve on the bound by using
the convex envelope of the single blocks of the objective function; as outlined in
Section 2, we can compute this bound by means of a single minimization involving
the piecewise-linear-quadratic functions (27.10)-(27.11). Hence, we can rewrite the
problem in the form
(27.13)

min
{

∑m
j=1 bjχj +

∑m
j=1 djχ

2
j :

∑m
j=1 χj = 1 , χj ∈ [0, αj ] j = 1, . . . ,m

}

where m 6 2n and the coefficients bj and dj are as follows:

• if
√

ci/ai > 1 then only one new variable χj is generated with coefficients
bj = aiui + ci/ui, dj = 0, and αj = ui;

• if
√

ci/ai < 1 then two new variables χj1 and χj2 are generated such that

xi = χj1 + χj2 with bj1 = 2
√
aici, dj1 = 0, αj1 =

√

ci/ai for the first

variable and bj1 = 2
√
aici, dj1 = ai, αj1 = 1 −

√

ci/ai for the second
variable.

This problem can be easily solved in O(m logm) = O(n log n) with the same algo-
rithm mentioned for the continuous relaxation of (27.12).



Projected Perspective Reformulations for MIQP problems 143

4. Quadratic-cost network design

A directed graph G = (N,A) is given; for each node i ∈ N a deficit bi ∈ R is given
indicating the amount of flow that the node demands (negative deficits indicate
source nodes). Each arc (i, j) ∈ A can be used up to a given maximum capacity
uij paying a fixed cost cij . Otherwise, no cost is due if (i, j) is not installed but
flow cannot pass through the arc. Additionally, if xij units of flow are sent through
an installed arc (i, j), a quadratic flow cost bijxij + aijx

2
ij is also incurred. The

problem is to decide which arcs to install and how to route the flow in such a way
that demands are satisfied and the total (installing + routing) cost is minimized.
The problem can be written as

(27.14)

min
∑

(i,j)∈A cijyij + bijxij + aijx
2
ij

∑

(j,i)∈A xji −
∑

(i,j)∈A xij = bi i ∈ N
0 6 xij 6 uijyij , yij ∈ {0, 1} (i, j) ∈ A

This network design problem is NP-hard, since it is a generalization of the sensor
placement problem described in Section 3. A recent application of this general
model in a Facility Location setting is given in [11, 12].

Again, since cij > 0 (for otherwise yij can surely be fixed to 1), in the continuous
relaxation of (27.14) the design variables yij can be projected onto the xij ; that
is, at optimality yij = xij/uij . The resulting problem can be efficiently solved
by means of (convex) Quadratic Min-Cost Flow (QMCF) algorithms; however, the
bound provided by the continuous relaxation is usually weak.

Applying the results of Section 2 to (27.14), a Separable Convex-cost NonLinear
MCF problem is obtained, where the flow cost function on each arc is a piecewise
linear-quadratic convex cost function. In turn, this can be rewritten as a QMCF
problem

(27.15)

min
∑

(i,j)∈A′ b′ijχij + a′ijχ
2
ij

∑

(j,i)∈A′ χji −
∑

(i,j)∈A′ χij = bi i ∈ N
0 6 χij 6 u′ij (i, j) ∈ A′

on a graph G′ = (N,A′) with the same node set and at most 2 times the num-
ber of arcs. For each of the original arcs (i, j), at most two “parallel” copies are

constructed. If uij 6
√

cij/aij (case 2.1), then only one representative of (i, j) is
constructed in G′, with b′ij = bij + aijuij + cij/uij , a

′
ij = 0 and u′ij = uij . Instead,

if uij >
√

cij/aij (case 2.2) then two parallel copies of the arc (i, j) have to be con-

structed in G′: the first has b′ij = bij +2
√
aijcij , a

′
ij = 0, and u′ij =

√

cij/aij , while

the second has b′ij = bij+2
√
aijcij , a

′
ij = aij , and u′ij = uij−

√

cij/aij . For this kind
of “partitioned” NonLinear MCF problems—where some of the arcs have strictly
convex cost functions, while the other have linear cost functions—specialized algo-
rithms have been proposed [6]. In general, any algorithm for Convex (Quadratic)
MCF problems (e.g., [4]) can be used. While codes implementing these algorithms
are either not available or not very efficient in practice, the off-the-shelf solver Cplex
turns out to be quite efficient in solving these convex QMCFs.



144 Frangioni, Gentile, Grande, Pacifici

5. Computational Results

In order to assess the behaviour of the Projected Perspective Reformulation tech-
nique we implemented it on the two problems discussed in sections 3 and 4 within
a specialized B&B where the perspective relaxation is solved by computing the
projection z(p) as in (27.10)-(27.11). We considered the reformulations (27.13)
and (27.15) and, for their solution, we applied the specialized O(n log n) algorithm
for the Sensor Placement problem and the Cplex quadratic solver, respectively. We
compared the new approach (denoted as P2/R) against the following ones:

• a B&C on the PR (27.6) using the Semi-Infinite MILP formulation (de-
noted as P/C for Perspective Cut method);

• a B&C on the PR (27.6) using the MI-SOCP formulation (denoted as
CPLEX-SOCP);

• a standard B&C on the continuous relaxation (27.5) (denoted as CPLEX).

These three alternative methods have all been implemented by means of Cplex

B&C solver. In particular, the P/C method has been coded with a cut-callback

function. All the algorithms have been coded in C++, compiled with GNU g++

4.0.1 (with -O3 optimization option) and ran on an Opteron 246 (2 GHz) computer
with 2 Gb of RAM, under Linux Fedora Core 3.

We generated 180 random instances of the Sensor Placement problem, grouped
in 6 classes with 30 instances each. The first 4 classes contain instances with
either 2000 or 3000 sensors and have either high or low quadratic costs. In the
former (“h”) , fixed costs are uniformly chosen in the interval [1, n] while quadratic
costs are uniformly chosen in the interval [n,Cmax], where Cmax ∈ {10n, 20n, 30n}.
In the latter (“l”), fixed costs are randomly generated in the interval [n,Bmax],
where Bmax ∈ {10n, 20n, 30n}, while quadratic costs are randomly generated in the
interval [1, n]. The last two classes are generated starting from random instances
of the Partition problem, according to the NP-hardness proof for the Sensor
Placement problem in [2]. We considered 2000 and 3000 Partition items ranging
in the intervals [100,1000], [500,1000], [1,100000]. Table 1 reports the obtained
results.

name P2/R CPLEX

time nodes av. t/n time nodes av. t/n gap

2000-h 0.39 1 0.39 1020.51 223293 0.01 4.03

2000-l 0.09 1 0.09 101.58 3713 0.03 0.00

3000-h 0.92 1 0.92 1057.09 144406 0.01 7.18

3000-l 0.21 1 0.21 270.49 5724 0.05 0.00

PTN-2000 0.43 1 0.43 1018.13 4149 0.25 2.98

PTN-3000 1.02 1 1.02 1008.42 568 1.79 3.14

name P/C CPLEX - SOCP

time nodes av. t/n time nodes av. t/n gap

2000-h 47.74 924 30.43 1066.02 507 2.11 207.04

2000-l 17.02 1 17.02 49.32 38 7.60 0.00

3000-h 91.24 88 74.09 1069.73 332 3.24 412.54

3000-l 40.27 1 40.27 135.95 72 12.08 0.00

PTN-2000 94.30 6 56.93 23.79 1 23.80 0.00

PTN-3000 202.63 6 114.72 53.74 1 53.74 0.00

Table 1. Results for the Sensor Placement problem



Projected Perspective Reformulations for MIQP problems 145

For the Network Design Problem we generated 360 problems, grouped into 12
classes with 30 instances each, as follows:

- the underlying flow networks with 1000, 2000, or 3000 nodes have been
generated by netgen [13], where: (i) the minimum arc cost is 1 and the
maximum is randomly generated between 10 and 100, (ii) the total supply
bs is randomly generated between 100 and 1000, and (iii) the minimum arc
capacity is 0.05bs and the maximum arc capacity is randomly generated
in the interval [0.2bs, 0.4bs];

- the fixed costs which are either low or high with respect to the linear costs
generated by netgen, i.e., cij is uniformly generated either in [0.5bij , bij ]
(“l”) or in [3bij , 10bij ] (“h”);

- the quadratic costs which are either low or high with respect to the lin-
ear costs generated by netgen, i.e., aij is uniformly generated either in
[3bij , 10bij ] (“l”) or in [100bij , 1000bij ] (“h”).

Table 2 reports the obtained results.

name P2/R CPLEX
time nodes av. t/n time nodes av. t/n gap

1000-h-h 0.05 1 0.05 108.80 35630 0.28 0.00

1000-h-l 0.31 5 0.05 1037.63 324447 0.01 0.02

1000-l-h 0.05 1 0.05 163.67 46685 0.18 0.00

1000-l-l 0.32 5 0.05 1046.89 304305 0.01 0.01

2000-h-h 0.10 1 0.10 690.09 101868 0.11 0.00

2000-h-l 45.42 278 1.10 1031.75 141485 0.01 0.06

2000-l-h 0.09 1 0.09 858.22 131954 0.03 0.00

2000-l-l 8.78 63 0.10 1036.79 140877 0.01 0.04

3000-h-h 0.15 1 0.15 1041.96 88541 0.01 0.00

3000-h-l 71.02 269 0.17 1051.93 73591 0.01 0.12

3000-l-h 0.15 1 0.15 988.74 89209 0.12 0.00

3000-l-l 19.05 79 0.16 1062.45 85878 0.01 0.04

name P/C CPLEX - SOCP
time nodes av. t/n time nodes av. t/n gap

1000-h-h 17.03 3 10.14 967.30 26 62.86 0.01

1000-h-l 5.89 25 0.38 79.17 46 16.98 0.00

1000-l-h 8.89 4 4.60 620.77 21 38.62 0.00

1000-l-l 4.68 22 0.33 30.46 63 17.37 0.00

2000-h-h 57.09 7 13.84 895.70 8 207.60 0.01

2000-h-l 51.60 348 0.72 252.98 36 27.65 0.00

2000-l-h 42.3 6 16.57 525.35 9 63.35 0.00

2000-l-l 20.60 131 0.51 252.82 193 40.02 0.00

3000-h-h 117.30 11 18.90 564.41 2 407.97 0.01

3000-h-l 140.47 584 1.39 366.95 27 36.76 0.00

3000-l-h 101.18 12 12.01 372.16 4 89.53 0.01

3000-l-l 45.43 153 0.89 292.41 83 62.39 0.00
Table 2. Results for Network Design problems

For our experiments we fixed a time limit of 1000 seconds. All problems where
solved at optimality within this time limit with the P2/R and the P/C methods,



146 Frangioni, Gentile, Grande, Pacifici

therefore we do not report the gap at termination for them. For all methods, we re-
port the running time in seconds, the number of B&B nodes and the average time
for node. As expected from previous results [7, 9], the P/C method overcomes
CPLEX B&C algorithm both with standard and SOCP formulations. However,
the newly proposed P2/R approach significantly overcomes the P/C method. This
is mainly because of the much faster specialized solution methods used for the relax-
ations, which significantly reduces the effort required at each node. Furthermore,
P/C approximates the true perspective relaxations by means of a finite number of
cutting planes, thereby introducing some (small) approximation errors; these seem
to cause the generation of more B&C nodes w.r.t. the “exact” solutions provided
by P2/R.

References

1. A. Agnetis, E. Grande, P.B. Mirchandani, and A. Pacifici. Covering a
line segment with variable radius discs. Computers & Operations Research,
36(5):1423–1436, 2009.

2. A. Agnetis, E. Grande, and A. Pacifici. Demand allocation with latency cost
functions. CoRR, abs/0810.1650, 2008.

3. S. Aktürk, A. Atamtürk, and S. Gürel. A strong conic quadratic reformula-
tion for machine-job assignment with controllable processing times. Operations
Research Letters, 37(3):187–191, 2009.

4. J. Castro and N. Nabona. An Implementation of Linear and Nonlinear Mul-
ticommodity Network Flows. European J. of Operational Research, 92:37–53,
1996.

5. S. Ceria and J. Soares. Convex programming for disjunctive convex optimiza-
tion. Mathematical Programming, 86:595–614, 1999.

6. R. De Leone, R.R. Meyer, and A. Zakarian. A Partitioned ε-Relaxation Al-
gorithm for Separable Convex Network Flow Problems. Computational Opti-
mization and Applications, 12:107–126, 1999.

7. A. Frangioni and C. Gentile. Perspective Cuts for 0-1 Mixed Integer Programs.
Mathematical Programming, 106(2):225–236, 2006.

8. A. Frangioni and C. Gentile. SDP Diagonalizations and Perspective Cuts for
a Class of Nonseparable MIQP. Operations Research Letters, 35(2):181 – 185,
2007.

9. A. Frangioni and C. Gentile. A Computational Comparison of Reformulations
of the Perspective Relaxation: SOCP vs. Cutting Planes. Operations Research
Letters, 37(3):206–210, 2009.

10. A. Frangioni, C. Gentile, and F. Lacalandra. Tighter Appro-ximated MILP
Formulations for Unit Commitment Problems. IEEE Transactions on Power
Systems, 24(1):105–113, 2009.

11. O. Günlük, J. Lee, and R. Weismantel. MINLP Strengthening for Separable
Convex Quadratic Transportation-Cost UFL. IBM Research Report RC24213,
IBM Research Division, 2007.

12. O. Günlük and J. Linderoth. Perspective relaxation of MINLPs with indicator

variables. In A. Lodi, A. Panconesi, and G. Rinaldi, editors, Proceedings 13th

IPCO, volume 5035 of Lect. N. Comp. Sc., pages 1–16, 2008.



Projected Perspective Reformulations for MIQP problems 147

13. D. Klingman, A. Napier, and J. Stutz. NETGEN: A program for generating
large scale capacitated assignment, transportation, and minimum cost flow
network problems. Management Science, pages 814–821, 1974.

14. R.A. Stubbs and S. Mehrotra. A branch-and-cut method for 0-1 mixed convex
programming. Mathematical Programming, 86:515–532, 1999.

15. M. Tawarmalani and N.V. Sahinidis. Convex extensions and envelopes of lower
semi-continuous functions. Mathematical Programming, 93:515–532, 2002.





28

The Convex Hull Relaxation for
Nonlinear Integer Programs with Convex

Objective and Linear Constraints

Monique Guignard1 Aykut Ahlatcioglu2

1 Operations and Information Management Department
The Wharton School

University of Pennyslvania
Philadelphia, PA, 19104, USA

guignard@wharton.upenn.edu

2 Department of Economics
Princeton University

Princeton, NJ, 08544, USA

aahlatci@princeton.edu

Keywords: nonlinear integer programming, bounds, relaxation.

1. Introduction

In this paper we introduce a relaxation method for computing both a lower bound
on the optimal value of a nonlinear integer minimization program (NLIP), and good
integer feasible solutions. For a linear integer program (LIP), an optimal integer
solution is also optimal over the convex hull of all integer feasible solutions, but this
is not usually the case for NLIPs. Rather, the minimization over this convex hull
yields a relaxation of the NLIP, which we will call the Convex Hull (CH) Relaxation.
While we define this relaxation for arbitrary NLIPs, for computational reasons, we
restrict our attention to convex minimization problems with linear constraints, and
we show that the lower bound can then be computed using any version of simplicial
decomposition, with sub-problems that have the same constraints as the NLIP, but
with linear objective functions. If these are easier to solve than their nonlinear
counterpart, as would be the case for instance for nonlinear 0-1 knapsack problems,
the bound may be tight and relatively inexpensive to compute.

A side product of this procedure is the generation of feasible integer points,
which provide a tight upper bound to the optimal value of the problem.

What makes this relaxation very special is that contrary to Lagrangean relax-
ation or to primal relaxation (Guignard, 1994), this relaxation does not dualize or

149



150 Guignard, Ahlatcioglu

treat separately any constraints. While for nonlinear integer problems, it cannot
be directly compared with Lagrangean relaxation, it always provides a bound at
least as good as any primal relaxation. However, if (1) the linear subproblems are
difficult to solve, (2) the objective function is nonconvex, and/or (3) there are non-
linear constraints, then one has to consider using a primal relaxation instead. In
other cases, this new approach appears very attractive.

In the paper, we first define the CH relaxation (CHR) in section 2, analyze
the application of simplicial decomposition to the CHR problem in section 3, give
details on the algorithm in section 4, and finally present some computational results.

2. Preliminaries and notation

Consider the following nonlinear integer program (NLIP)

(NLIP) min
x∈S

f(x)

where
f(x) is a nonlinear convex function of x, a vector of Rn,
S = {x ∈ Y : Ax 6 b},
A is an m× n constraint matrix,
b is a resource vector in Rm,
Y is a subset of Rn specifying integrality restrictions on x.

Definition 28.1. We define the Convex Hull Relaxation of (NLIP) to be

(CHR) min
x∈Co(S)

f(x)

The problem (CHR) is not in general equivalent to (NLIP) when f(x) is non-
linear, because an optimal solution of (CHR) may not be integer, and therefore not
feasible for (NLIP). However, it is easy to see that (CHR) is indeed a relaxation to
(NLIP).

This relaxation is a primal relaxation, in the x-space, and it is related to the
primal relaxation for nonlinear integer problems introduced in Guignard (1994). It
is actually a primal relaxation that does not “relax” any constraint. A similar idea
was used independently by Albornoz in his 1998 unpublished dissertation.

The difficulty in solving (CHR) comes from the implicit formulation of the
convex hull. However the idea of decomposing the problem into a sub-problem
and a master-problem, first introduced by Frank & Wolfe (1956), and furthered
by Von Hohenbalken with Simplicial Decomposition (1973), and Hearn et al. with
Restricted Simplicial Decomposition (1987), does provide an efficient way to solve
(CHR) to optimality, solving a sequence of linear integer problems and of essentially
unconstrained nonlinear problems. Primal relaxations that also relax constraints
require a more complicated scheme, such as that described in Contesse and Guig-
nard (1996, 2007), which use an augmented Lagrangean approach, with simplicial
decomposition used at each iteration. By contrast, here, due to the absence of
relaxed constraints, only one call to simplicial decomposition is needed.



Convex Hull Relaxation for nonlinear integer programs 151

3. Applying simplicial decomposition to the CHR problem

3.1. Assumption

There are several assumptions which should be imposed to the (NIP) formulation
in order for the simplicial decomposition technique to effectively solve (CHR) to
optimality. These are:

(i) Compactness and convexity of the feasible region
(ii) Convexity of the objective function
(iii) Linearity of the constraint set.

3.2. Subproblem

The first part of the decomposition problem is the sub-problem, and can also be
considered as feasible descent direction finding problem. Assume we are at a feasible
point of (CHR), call it xk. For the kth iteration of simplicial decomposition, we can
find a feasible descent direction for Co {Ax ≤ b, x ∈ X}, a polyhedron, by solving
the following problem

(CHS) min
y
∇f(xk)T × (y − xk) s.t. y ∈ Co{Ax 6 b, x ∈ Y }

We will call this the Convex Hull Sub-problem (CHS), and xk a linearization
point. Note that CHS is a linear program. Therefore unlike nonlinear problems, it
has an equivalent integer program, which we will call Integer Program Subproblem
(IPS)

(IPS) min
y
∇f(xk)T × (y − xk) s.t. Ay 6 b, y ∈ Y.

For many types of integer programming problems, solving (IPS) is considerably
easier than solving (NLIP). The solution to (IPS) will yield an extreme point of
the convex hull, unless xk is optimal for the convex hull relaxation (CHR) prob-
lem. Therefore, at each iteration we obtain a feasible point to the original (NLIP)
problem. Convergence to the optimal solution will be discussed in section 4. If xk

is not optimal, we proceed to the master problem.

3.3. Master Problem

Consider the following nonlinear programming problem with one simple constraint,
which we call the Master Problem (MP).

(MP) min f(Xβ) s.t.

r
∑

i=1

βi = 1, βi > 0, i = 1, 2, ..., r.

X is the n × r matrix comprised of a subset of extreme points of the convex
hull, along with one of the current iterates xk or a past iterate. There are r such
points in X. Note that in the hypothetical case where we know all the extreme
points of the convex hull, (MP) would have been equivalent to (CHR). Naturally, if
the method required such equivalence, there would be no point in using it to solve
(CHR). Luckily, any point within the convex hull of a set can be described as a con-
vex combination of at most n+ 1 points within that set, a result of Caratheodory
Theorem. Therefore, the optimal point can be written as a convex combination
of a subset of extreme points. Simplicial decomposition takes advantage of this



152 Guignard, Ahlatcioglu

observation, introducing only one extreme point obtained from the subproblem per
iteration. Then at the master problem stage, (MP) is solved, which is a minimiza-
tion problem over a r− 1 dimensional simplex. If the optimal solution of (CHR) is
within this simplex, then the algorithm terminates. If not, the optimal solution β∗

of (MP) will be used to compute the next iterate, xk+1, which can be found using
the following formula:

xk+1 =

r
∑

i=1

β∗
i ×Xi

Then we go back to the subproblem, find another extreme point and increase
the dimension of the simplex for (MP). It may seem as if a considerable number
of extreme points have to be included in X, before finding the optimal solution.
Fortunately, this is not the case. This can be perhaps explained by the way extreme
points are introduced to the X matrix. At each sub-problem, the extreme point
chosen y∗ is the one which yields the steepest descent direction as ∇f(xk)T × (y∗−
xk) is minimal among all such directions. Therefore at each iteration, we are quickly
progressing toward the optimal solution, in contrast what would happen if extreme
points were to be chosen arbitrarily.

For some pathological cases, putting no restriction on r could potentially pose
computational problems. Restricted simplicial decomposition, introduced by Hearn
et al. (1987) puts a restriction on the number of extreme points that can be kept.
However, even for such pathological cases, there are certain trade-offs between
restricted simplicial decomposition and unrestricted simplicial decomposition. Dis-
cussing these tradeoffs is beyond the scope of this paper.

3.4. Convergence to the Optimal Solution of CHR

Because the objective function is convex, the necessary and sufficient optimality
condition for xk to be the global minimum is

∇f(xk)T (y∗ − xk) > 0

Lemma 2 of Hearn et al. (1987) proves that if xk is not optimal, then f(xk+1) <
f(xk), so that the sequence

{

xk
}

is monotonically decreasing. Finally Lemma 3 of

Hearn et al. (1987) shows that any convergent subsequence of
{

xk
}

will converge
to the global minimum. The result is proved using contradiction that one cannot
have a subsequence such that ∇f(x∞)T (y∞ − x∞) > 0 where xk → x∞, y∗ → y∞.

4. Algorithm

The algorithm used in this study follows the restricted simplicial decomposition
(Hearn et al. 1987). The parameter R denotes the maximum number of extreme
points allowed to be used in solving the master problem. In the test runs done for
this paper, the number of extreme points stored in the matrix X was manageable,
so that we put no limit on R, making the algorithm below equivalent to the unre-
stricted simplicial decomposition method of von Hohenbalken (1977). The stopping
condition for the algorithm is taken from Contesse & Guignard (1996, 2007).

Note that in this notation:

(1) [Ws]
k

is the collection of extreme points stored at iteration k,

(2) [Wx]
k

stores one point, a current or a past linearization point.



Convex Hull Relaxation for nonlinear integer programs 153

Then, with this notation the master problem introduced in section 3.3 will be:

min f(Xβ) s.t.

r
∑

i=1

βi = 1, βi > 0, i = 1, 2, ..., r, X = [Ws]
k ∪ [Wx]

k
= [W]

k
.

An important point to note is that we discard those points within [Ws]
k+1

and

[Wx]
k+1

with βi = 0 after solving the master problem. This prevents an excessive

increase in the number of extreme points stored in [Ws]
k+1

.

Step 0: Take a feasible point x0. Set k = 0, [Ws]
0
=∅, [Wx]

0
=
{

x0
}

Step 1: Solve min
{

∇f
(

xk
)

y : y ∈ S
}

and let yk= argmin
{

∇f
(

xk
)

y : y ∈ S
}

.

(1) If
∣

∣

∣
[Ws]

k
∣

∣

∣
< R, set [Ws]

k+1
= [Ws]

k ∪
{

yk
}

, and [Wx]
k+1

= [Wx]
k

(2) If
∣

∣

∣
[Ws]

k
∣

∣

∣
= R, take the element of [Ws]

k
with the minimal weight out

and put yk in instead to obtain [Ws]
k+1

, and let [Wx]
k+1

={xk}. Set

[W]
k+1

= [Ws]
k+1 ∪ [Wx]

k+1
, and go to step 2.

Step 2: Let xk+1 = argmin
{

f(x) : x ∈ H
(

[W]
k+1
)}

, where H
(

[W]
k+1
)

is the

convex hull of the points corresponding to the columns of [W]
k+1

. Write xk+1 =
∑r

i=1 βiWi. Then take all elements with weights βi = 0 out of [W]. Set k = k + 1
and go to step 3.

Step 3: If
∣

∣xk − xk−1
∣

∣ < εx max
{∣

∣xk
∣

∣ ,
∣

∣xk−1
∣

∣

}

, or
∣

∣f(xk)− f(xk−1)
∣

∣ < εf

∣

∣f(xk−1)
∣

∣,

xk is a solution, then terminate. Otherwise, go to step 1.

5. Calculating lower and upper bounds for convex GQAP prob-
lems

As stated in Definition 28.1, (CHR) is a relaxation to the (NLIP). Simplicial De-
composition finds an optimal solution, say, x∗, to (CHR), and this provides a lower
bound on v(NLIP):

LBCHR=f(x∗)

On the other hand, at each iteration k of the subproblem an extreme point,
yk
∗ , of the convex hull is found , which is an integer feasible point of (NLIP). Each

point yk
∗ yields an Upper Bound (UB) to the optimal value of the (NLIP), and the

best upper bound on v(NLIP) can be computed as

UBCHR = min{f(y1
∗), f(y2

∗), ..., f(yk
∗ )}

To demonstrate the ability of the CHR approach to compute bounds often
significantly better than the continuous relaxation bounds, we implemented CHR to
find a lower bound on the optimal value of convex GQAPs (Generalized Quadratic
Assignment Problems).

We used two types of data. First we adapted data from GQAPs from the
literature, with instances of size 30 × 15 , 35×15 and 30×20, and measured the
improvement over the continuous bound by computing the ratio of



154 Guignard, Ahlatcioglu

CHR bound - NLP bound

best feasible value found - NLP bound

as a measure of how much the gap is reduced when one replaces the NLP bound
by the CHR bound. We computed the matrix of the objective function by premul-
tiplying the original matrix Q by its transpose, where the entries of Q are products
of a flow by a distance as given in the original GQAP instances. These problems
tend to have moderate integrality gaps. The results were in the range 43 to 99 %.
The largest runtime on a fast workstation was 12 seconds.

The second data set uses again data from the GQAP literature, and generates
the objective function matrix as the product of a matrix by its transpose, but this
matrix is now randomly generated with coefficients between -500 and +500. These
tend to have large duality gaps and to be considerably more difficult to solve. We
will describe in the next paragraph how one can reduce this gap.

6. A priori Improvement of Lower Bounds

For some of the convex data sets generated for GQAP, the gaps between the contin-
uous and the CHR bound on the one hand, and the optimal value on the other, are
very large. Since CHR computes a bound based on the convex hull of all 0-1 feasi-
ble solutions, there is nothing that can be done to improve that part of the model,
like adding cuts or tightening inequalities. The only place where an improvement
remains possible is then the objective function.

The reason we mention the continuous relaxation bound is that we know that
the CHR bound must be at least as good or better. If we can manage then to
increase the continuous bound, we must be able to increase the CHR bound as
well.

Consider the convex function f(x) = ux(x− 1), x ∈ {0, 1}, u a positive scalar.
The problem is to minimize f(x) subject to x ∈ {0, 1}. The function is zero for x = 0
or 1, but it is negative in between. If one computes the continuous bound on f(x)
for x ∈ [0, 1], one gets u(1/2)(−1/2) = −u/4, and if u is large, so is the integrality
gap. Notice that one could however replace f(x) by g(x) = ex(x − 1) with e > 0,
e very close to 0, it would produce an equivalent problem min{g(x)|x ∈ {0, 1}}.
Indeed g(x) coincides with f(x) over the feasible set {0, 1}, yet it gives a much
better lower bound equal to −e/4, and it is a convex function as long as e > 0, no
matter how small.

If one has a convex objective function of n variables, the same kind of diffi-
culty may occur, i.e., the continuous bound, and thus the integrality gap, may be
very large because the value of the objective function drops substantially when the
variables are allowed to be between 0 and 1.

Convexification (see for instance Billionnet, Elloumi and Plateau 2008) in its
simplest form adds terms of the form uij(x

2
ij − xij), with uij real, to the quadratic

objective function. To convexify a nonconvex quadratic function, one tends to add
positive terms to the diagonal of the matrix, to make it positive semidefinite. Here
one will tend to subtract positive terms from the diagonal, as long as the objective
function remains convex. This will not change the objective function for xij 0 or
1. We will call this backward process de-convexification, even though it leaves the
problem convex.



Convex Hull Relaxation for nonlinear integer programs 155

De-convexification through SDP is possible (see for instance the GAMS website
link

http://www.gams.com/modlib/libhtml/gqapsdp.htm

showing an application to GQAP using CSDP) but somewhat expensive. Some
commercial programs for quadratic optimization, on the other hand, detect non-
convexity of an MIQCP objective function. CPLEX is one of them. If one is willing
to get results somewhat inferior to those of the SDP approach, one can set all uij

equal, say, to some u > 0, and one can determine the largest value of u that keeps
the function g(x) = f(x) − u

∑

ij(x
2
ij − xij) convex. We call this the diagonal

de-convexification. One can then replace f(x) by g(x) in the model to compute
improved lower bounds and hopefully solve it more easily.

7. Computational results

7.1. Instances with large integrality gaps.

To illustrate the diagonal de-convexification process, we will use generalized qua-
dratic assignment instances with a large duality gap. We present results for two
instances of size 16× 7 and 20× 10 respectively. 16× 7 is the largest problem size
that we were able to solve using CPLEX as a mixed-integer quadratic problem. Its
objective function has 0 linear terms.

Table 1 concerns the 16 × 7 GQAP problem. It shows how the continuous
relaxation bound improves (increases) as u increases, until the problem becomes
nonconvex.

Table 1. u vs. continuous bound de-convexified problem

0 114,187,401 7,850,000 209,000,689
100 114,188,627 7,875,000 209,295,092

1,000 114,197,260 7,895,000 209,530,577
10,000 114,297,630 7,897,500 209,560,048

100,000 115,417,877 7,898,500 209,571,775
1,000,000 126,470,436 7,898,750 209,574,722
5,000,000 175,074,749 7,899,949 209,589,926
7,500,000 204,873,059 7,950,000 210,177,957
7,600,000 206,053,510 7,975,000 210,972,127
7,700,000 207,233,060 7,977,000 210,495,656
7,800,000 208,411,709 7,977,050 210,496,246

Figure 1 plots the values in Table 1.
Table 2 below compare bounds obtained before and after the “diagonal” de-

convexification. Bounds from SDP are even better (290,083,674 for the 16 × 7
instance, and 147,817,573 for the 20 × 10 instance), and the CHR bound could of
course be computed from that final model, implementation is in progress.

7.2. Instances with smaller integrality gaps

Table 3 shows results for relatively large GQAP instances with smaller integrality
gaps. The last two digits of an instance name are for identification, while the first
four specify problem size, for instance 30× 20 or 40× 10. The gaps are computed



156 Guignard, Ahlatcioglu

Figure 1. u vs. continuous bound for de-convexified problem

Table 2. Instances 1 and 2

16 × 7 Continuous CHR bound RLT-1 bound Optimal value or Largest u s.t.
bound best feasible value problem convex

Original convex 114,187,401 139,645,033 185,918,839
function

De-convexified 210,434,185 232,950,970 185,918,839 577,900,705 7,977,050
function

20 × 10 Continuous CHR bound RLT-1 bound Optimal value or Largest u s.t.
bound best feasible value problem convex

Original convex 56,255,405 56,342,009 -418,102,042
function

De-convexified 91,498,550 91,592,623 -418,102,042 469,555,787 2,126,110
function

from the best known integer feasible solution values (IFV) to-date. Replacing the
continuous bound by the CHR bound almost bridges the gap in most cases.

8. Conclusion

The Convex Hull Relaxation (CHR), possibly combined with de-convexification,
provides tight lower and upper bounds by (1) transforming a nonlinear integer op-
timization problem in one over the convex hull of all integer feasible solutions, and
(2) replacing this problem by a sequence of integer linear programs and simple non-
linear continuous programs. The potential strength of the proposed algorithm is
that the difficulty of the problems solved at each iteration stays relatively unchanged
from iteration to iteration. It will be most suitable for those nonlinear integer prob-
lem types that would be much easier to solve with a linear objective function. One
should expect that CHR will have a robust performance for large-scale problems if



Convex Hull Relaxation for nonlinear integer programs 157

Table 3. Continuous vs. CHR bound

Instance Continuous bound CHR bound Best IFV Improvement
30-20-35 28,996,191 29,210,393 29,267,194 79.04%
30-20-55 18,721,636 18,925,414 18,932,878 96.47%
30-20-75 24,882,925 25,273,194 25,299,161 93.76%
30-20-95 21,162,833 23,787,852 23,809,571 99.18%
35-15-35 32,750,712 32,769,891 32,795,216 43.09%
35-15-55 27,443,328 27,605,620 27,621,169 91.26%
35-15-75 30,638,516 30,920,476 30,928,923 97.09%
35-15-95 34,722,239 35,825,436 35,886,295 94.77%
50-10-75 56,103,056 56,606,460 56,615,187 98.30%
50-10-95 71,684,990 72,082,091 72,099,812 95.73%

one has access to solvers able to handle large integer linear programs and simple
nonlinear programs efficiently. Current experiment seem to confirm this behavior.

References

1. V. Albornoz. Diseno de Modelos y Algoritmos de Optimizacion Robusta y su
Aplicacion a la Planificacion Agregada de la Produccion. Doctoral Dissertation,
Universidad Catolica de Chile, Santiago, Chile, 1998.

2. A. Billionnet, S. Elloumi, M.-C. Plateau. Quadratic 0-1 Programming: Tight-
ening Linear or Quadratic Convex Reformulation by Use of Relaxations,
RAIRO-RO 42:103-121, 2008.

3. L. Contesse, M. Guignard. An Augmented Lagrangean Relaxation for Nonlin-
ear Integer Programming Solved by the Method of Multipliers, Part II: Ap-
plication to Nonlinear Facility Location. Working Paper, 1996 (latest revision
2007).

4. M. Guignard. Primal Relaxation in Integer Programming. VII CLAIO Meeting,
Santiago, Chile, 1994, also Operations and Information Management Working
Paper 94-02-01, University of Pennsylvania, 1994.

5. D.W. Hearn, S. Lawphongpanich, J.A. Ventura. Restricted Simplicial Decom-
position: Computation and Extensions. Mathematical Programming Study 31,
99-118, 1987.

6. B. Von Hohenlbalken. Simplicial decomposition in non linear programming
algorithms. Mathematical Programming, 13, 49-68, 1997.

Acknowledgments

Research partially supported under NSF Grant DMI-0400155.





29

Rounding-based heuristics for nonconvex
MINLPs

Giacomo Nannicini1 Pietro Belotti2

1 Tepper School of Business
Carnegie Mellon University

Pittsburgh, PA, 15217, USA

nannicin@andrew.cmu.edu

2 Department of Industrial & Systems Engineering
Lehigh University

Bethlehem, PA, 18015, USA

belotti@lehigh.edu

Abstract

We propose two primal heuristics for possibly nonconvex MINLPs,
based on the idea of rounding the solution to a continuous NLP sub-
ject to linear constraints. The linear constraints consist in the lin-
earization of the feasible region of the problem, and in local branching
cuts [3]. Our heuristics use the same algorithmic scheme, but they
differ in the continuous NLP problem which is solved to compute the
point that is to be rounded, and in the use of local branching cuts.
We design a heuristic that tries to find a first feasible solution, and
an improvement heuristic which starts at a feasible solution and tries
to compute one with a better objective function value. We mainly
deal with MINLPs with binary variables, but we also discuss the ex-
tension to general integer variables. Computational results show the
effectiveness in practice of these simple ideas.
Keywords: primal heuristics, nonconvex MINLPs, local branching.

1. Introduction

Mixed-Integer Nonlinear Programs (MINLPs) are mathematical programs that are
very difficult to solve in practice. In this paper we focus on nonconvex MINLPs, that
is, mathematical programs which involve both integer and continuous variables, and
where the objective function and constraints can be nonconvex. Difficulties in the
solution of nonconvex MINLPs arise because they inherit all the problems related to
solving large-scale Nonlinear Programs (NLPs) and Mixed-Integer Linear Programs

159



160 Nannicini, Belotti

(MILPs). In recent years, some attempts have been made in developing exact
solvers for nonconvex MINLPs [1, 5]. These solvers are based on the Branch-and-
Bound (BB) algorithm, where lower bounds (we assume a minimization problem)
at each node of the BB tree are typically obtained by solving a Linear Program
(LP) that defines a relaxation of the corresponding MINLP.

Within the context of a BB algorithm for nonconvex MINLPs, obtaining good
upper bounds as quickly as possible is of great practical importance; in this paper we
study two heuristics for this purpose. Our primal heuristics are based on the same
algorithm scheme: first, we obtain a feasible point for the continuous relaxation
(we denote such a point constraint feasible in the following) by solving a NLP,
then we round the solution to this NLP, subject to linear constraints, to obtain
an integral feasible point. This rounding is accomplished through the solution of a
MILP. Finally, we fix the integer variables and act on the continuous variables to
generate a MINLP feasible point.

We make an extensive use of local branching cuts, i.e. the linear cuts which
define a neighbourhood of a solution employed in the local branching heuristic for
MILPs [3]. We apply these cuts both to define a neighbourhood of a solution
and to cut off integer solutions which we have already visited during the previous
iterations of the heuristic. The use of local branching cuts is the reason why we
focus on MINLPs with binary variables. However, we also discuss the extension to
general integer variables, which will be included in the full paper.

2. Notation and Preliminaries

Consider the following mathematical program:

(29.1)

min f(x)
∀j ∈M gj(x) ≤ 0
∀i ∈ N xL

i ≤ xi ≤ xU
i

∀i ∈ NI xi ∈ Z,















P

where f and g are possibly nonconvex functions, n = |N | is the number of variables,
and x = (xi)i∈N is the vector of variables. Difficulties arise from the integrality
of some of the variables, as well as nonconvexities (if present). Solution methods
typically require that the functions f and g are factorable, that is, they can be
expressed as

∑

i

∏

j hij(x) [5]. Branch-and-Bound methods for MINLPs attempt
to closely mimick their MILP counterparts. Lower bounds are typically obtained by
computing a convex relaxation (simply convexification from now on) of the feasible
region of the problem.

In the following, we will assume that the Branch-and-Bound method that we
address computes a linear convexification of the original problem; that is, the ob-
jective function f and all constraints gj are replaced by suitable linear terms which
underestimate and overestimate the original functions over all the feasible region.
The accuracy of the convexification greatly depends on the variable bounds.

Local branching [3] is an improvement heuristic for BB algorithms which relies
on exploring a neighbourhood of the incumbent, looking for a better solution. For
problems with only continuous and binary variables, the neighbourhood is defined
by adding a local branching constraint to the original problem, obtaining the local
branching problem. Let B ⊆ NI be the set of binary variables, 0 < k ∈ N, and let



Rounding-based heuristics for nonconvex MINLPs 161

x̄ be any feasible solution; then the local branching constraint is:

(29.2)
∑

i∈B:x̄i=1

(1− xi) +
∑

i∈B:x̄i=0

xi ≤ k.

This constraint has the effect of allowing only k binary variables to flip their value
from 0 to 1 or vice versa. Typically, k is a small value; experiments in [3] suggest
k ≈ 10. As a consequence, the number of feasible solutions of the local branching
problem is very small, and an efficient BB code requires little time to find its optimal
solution. Note that if we reverse the sense of the inequality (29.2), then we obtain
a linear inequality that cuts off x̄ and requires solutions to differ from x̄ on at least
k binary variables:

(29.3)
∑

i∈B:x̄i=1

(1− xi) +
∑

i∈B:x̄i=0

xi ≥ k.

Following [2], we call an inequality of the type (29.3) with k = 1 a no-good cut.

3. Main algorithmic ideas

The heuristics presented in the paper follow a common scheme, whose main compo-
nent is the rounding of a constraint feasible solution, subject to linear constraints.
These linear constraints always include the linearization of the original feasible re-
gion, and typically also local branching cuts (both (29.2) and (29.3)). We introduce
some notation.

Let Q be the continuous relaxation of P, that is, P without integrality re-
quirements on the variables. Let x′ be a constraint feasible point, i.e. a feasible
solution to Q. In the following, we denote by F the linearization of the fea-
sible region of P with the integrality requirements for the variables in NI , by
LB(x̄, k) = {x ∈ Rn :

∑

i∈B:x̄i=1(1 − xi) +
∑

i∈B:x̄i=0 xi ≤ k}, and by NG(x̄) =
{x ∈ Rn :

∑

i∈B:x̄i=1(1− xi) +
∑

i∈B:x̄i=0 xi ≥ 1}. F is the intersection of a poly-

hedron with R|N\NI | × Z|NI |. With a slight abuse of notation, for a problem P
and S ⊂ Rn we denote by P ∩ S the problem which is obtained by intersecting the
feasible region of P with S. Given a point y ∈ Rn, we denote by Q(y) the problem:

(29.4)

min f(x)
∀j ∈M gj(x) ≤ 0

∀i ∈ N \NI xL
i ≤ xi ≤ xU

i

∀i ∈ NI xi = yi.















Q(y)

In other words, Q(y) is the NLP that we obtain from P by fixing the integer
variables of y; therefore, if y has integer components yj ∈ Z ∀j ∈ NI and Q(y) has
a feasible solution z, z is feasible for the original problem P.

Our idea is to start from a feasible solution x′ to Q, and look for an integral
solution xI which is close to x′ and is in F . This can be achieved by solving the
MILP:

(29.5) min
x∈F
‖x− x′‖1

which is equivalent to rounding x′ subject to the linear constraints that overapprox-
imate the feasible region of the original problem. The point xI = arg minx∈F ‖x−
x′‖1 obtained this way is certainly integral feasible, but it is not necessarily con-
straint feasible with respect to the original problem P. Therefore, we solve Q(xI)



162 Nannicini, Belotti

and hopefully obtain a feasible solution x∗ to P. If a termination criterion is not
satisfied (which may depend on the feasibility of x∗ or on different conditions), we
iterate the algorithm by setting F = F ∩NG(xI), and resolving (29.5), i.e. we try
a different rounding of x′.

So far, we have not defined some elements which are necessary for our algo-
rithm: in particular, we need to decide how to compute the initial point x′ which
is to be rounded, and the termination criterion. Moreover, we may impose addi-
tional constraints for the rounding phase. Depending on these details, we obtain
different heuristics; in the rest of this paper, we will specialize this basic scheme
into two different heuristics (Section 5 and Section 6). The basic scheme is given
in Algorithm 2. Note that all subproblems which have to be solved to apply Algo-

1: Initialization: stop← false
2: Compute point x′

3: Set R← F
4: while ¬stop do
5: Compute xI = arg minx∈R ‖x− x′‖1 with a MILP solver
6: Solve Q(xI) with a NLP solver and obtain point x∗

7: if Termination condition is satisfied then
8: Set stop← true
9: else

10: Set R← R ∩NG(x∗)
11: end if
12: end while
13: return x∗

Algorithm 2: Basic algorithm

rithm 2 need not be solved to optimality: in principle, only feasibility is required.
However, typically Q(xI) is always solved to optimality, because early termination
can provide a solution with a worse objective function value.

It now becomes clear why we mainly focus on MINLPs with binary variables:
whenever the rounding of x′ fails, i.e. yields a point x∗ which does not satisfy the
termination criterion, we want to make sure that at the following iteration we obtain
a different point. Since we assumed that B 6= ∅, this can be easily done by adding a
no-good cut, that is, a single linear inequality with integer coefficients that cuts off
x∗ from the feasible region of the MILP which is solved at line 5 of Algorithm 2. For
MINLPs without binary variables, this is not always straightforward. We briefly
discuss the extension of this scheme to general integer variables in the next session.

4. Dealing with General Integer Variables

Algorithm 2 needs an efficient way to cut off a point x∗ from the feasible region of
a MILP. If binary variables are present in the formulation, we accomplish this task
through a no-good cut. If there are no binary variables, we propose the following
method. If there is a sufficient number of integer variables at one of their bounds
in the point x∗ that we want to exclude (where “sufficient” depends on the total
number of integer variables), then we can easily write a no-good cut:

∑

i∈B′:x̄i=xU
i

(xU
i − xi) +

∑

i∈B′:x̄i=xL
i

xi ≥ 1,



Rounding-based heuristics for nonconvex MINLPs 163

where B′ is the set of integer variables at one of their bounds. Otherwise, we choose
an integer variable xj at random, and change the corresponding bounds, setting
xL

j = xj + 1 or xU
j = xj − 1 (we want to exclude the smallest interval between

[xL
j , xj−1] and [xj +1, xU

j ]). This ensures that we cannot obtain x∗ as the solution
of the rounding MILP at the following iteration.

A detailed description and evaluation of these heuristics on instances with only
general integer variables is left to the full paper. Through the rest of this extended
abstract, we focus on MINLPs with binary variables.

5. Local Branching for MINLPs

In principle, the original local branching for MILPs [3] could be applied to noncon-
vex MINLPs without modifications, by simply employing a BB solver for nonconvex
MINLPs instead of a BB solver for MILPs. However, as pointed out in Section 2,
BB solvers for nonconvex MINLPs are much slower than their counterparts for
MILPs. This motivates our idea for a local branching scheme which does not em-
ploy a solver for nonconvex MINLPs to solve the local branching problem, in order
to be faster. We apply the scheme presented in Section 3, with small modifications
which are intended to favour speed.

First, we specify the missing details for Algorithm 2, namely lines 2 and 7. Let
x̄ be the solution which we want to improve, and let k be the rhs of (29.2); both
x̄ and k are inputs for the heuristics. We solve Q∩ LB(x̄, k), which is a NLP, and
obtain the initial constraint feasible point x′ which is to be rounded; we use x̄ as
the starting point for the NLP solver. The stopping condition on line 7 is set to
be: ((∀j ∈ M gj(x) ≤ 0) ∧ (f(x∗) ≤ f(x̄))) ∨ (NumIterations ≥ MaxIterations),
where MaxIterations is a parameter; in other words, we exit from the main loop
as soon as we find a feasible point which improves over the incumbent x̄, or after
a maximum number of iterations. Furthermore, on line 3 we replace R ← F
with R ← F ∩ LB(x̄, k); this way, the MILP which is solved on line 5 is a local
branching problem, therefore it can be solved efficiently. Summarizing, the local
branching heuristic proceeds as indicated in Algorithm 3. We call this heuristic
Local-Branching-based Iterative Rounding (LB-IR).

6. Feasibility-based Iterative Rounding

In order to provide a starting point for the local branching heuristic, we tailor a
second heuristic based on Algorithm 2, aimed at discovering a first feasible solution.
For this purpose, we initially try to generate a feasible point with a good objective
function, and in case of failure, we iteratively focus more on feasibility than objective
function value. In particular, we compute the point x′ which is to be rounded
by considering a linear combination of the objective function and a measure of
feasibility, i.e. the amount by which the point satisfies the inequality constraints
gj ≤ 0 ∀j ∈ M . Given a parameter µ ∈ [0, 1], the problem that we solve to obtain
x′ is the following:

(29.6)
min µf(x) + (1− µ)

∑

j∈M (gj(x))

∀j ∈M gj(x) ≤ 0
∀i ∈ N \NI xL

i ≤ xi ≤ xU
i .







F(µ)



164 Nannicini, Belotti

1: Input: incumbent x̄, parameters k,MaxIterations
2: Output: improved solution x∗

3: Initialization: stop← false, NumIterations← 0
4: Solve Q∩ LB(x̄, k) with a NLP solver to obtain x′

5: Set R← F ∩ LB(x̄, k)
6: while ¬stop do
7: Compute xI = arg minx∈R ‖x− x′‖1 with a MILP solver
8: Solve Q(xI) with a NLP solver and obtain point x∗

9: if ((x∗ feasible ∧ f(x∗) < f(x̄)) ∨ (NumIterations ≥ MaxIterations)) then
10: Set stop← true
11: else
12: Set R← R ∩NG(x∗)
13: end if
14: Set NumIterations← NumIterations + 1
15: end while
16: return x∗

Algorithm 3: Local branching algorithm

This provides a constraint feasible point x′ which is a local minimum of Q if µ = 1
(recall that Q may be nonconvex), and is more in the interior of the feasible region
as µ goes from 1 to 0. For µ = 0, the problem boils down to a minimization of
∑

(gj(x)), subject to gj ≤ 0 and the box constraints on the variables: that is, we try
to obtain the gj ’s as negative as possible. Our intuition is that, if the constraints
are satisfied by a large amount, then there are more chances to obtain a feasible
integer point when rounding x′. This clarifies line 2 of Algorithm 2.

For the termination criterion on line 7, we stop as soon as we find a feasible
solution to P, or after a maximum number of iterations. We call this heuristic
Feasibility-based Iterative Rounding (F-IR); we give a description in Algorithm 4.
In practice, it is natural to run F-IR several times, starting with µ = 1 (which

1: Input: parameters µ,MaxIter
2: Output: feasible solution x∗

3: Initialization: stop← false, NumIter← 0
4: Solve F(µ) with a NLP solver to obtain x′

5: Set R← F
6: while ¬stop do
7: Compute xI = arg minx∈R ‖x− x′‖1 with a MILP solver
8: Solve Q(xI) with a NLP solver and obtain point x∗

9: if (x∗ feasible) ∨ (NumIter ≥ MaxIter) then
10: Set stop← true
11: else
12: Set R← R ∩NG(x∗)
13: end if
14: Set NumIter← NumIter + 1
15: end while
16: return x∗

Algorithm 4: Feasibility-based Iterative Rounding



Rounding-based heuristics for nonconvex MINLPs 165

is likely to find a solution with better objective value, if one is found) and then
decreasing µ until it reaches zero.

7. Computational Experiments

In this section, we provide computational experiments to assess the practical use-
fulness of the proposed heuristics. Both LB-IR and F-IR where implemented within
Couenne [1], an open-source BB solver for nonconvex MINLPs. Through the rest
of this section, the linearization of the feasible region of the original problem P is
assumed to be the one provided by Couenne at the root node of the BB tree, after
the bound tightening phase which is carried out with the default parameters. We
try at most 10 different roundings of a point x′ (see Algorithm 2) before reporting
a failure of the heuristic. We used Cplex 11.0 [4] as the MILP solver, and Ipopt

[6] as the NLP solver. We set a time limit of 5 seconds for the solution of all MILPs
arising during the application of the heuristics, whereas no time limit was given for
the solution of NLPs. We set the parameter MIP EMPHASIS of Cplex to HIDDENFEAS.
All experiments were run on one core of a machine equipped with an Intel Xeon
2.4 GHz and 8 GB of RAM, running Linux. For space reasons, in this section we
only report average values instead of full tables of results.

We tested LB-IR and F-IR on 23 challenging instances with binary variables
taken from MINLPLib. Our full test set consists in the instances reported in Ta-
ble 1; we report the number of variables, the number of integer variables (which
includes binary and general integer variables), the number of constraints. In the
computational experiments, we consider two subsets of the full test set: one con-
sisting in the instances for which the default configured version of Couenne found
a feasible solution in less than 2 hours of CPU time, and one consisting of the in-
stances for which the default configured version of Couenne did not find a solution
at the root node. We call these two subsets, respectively, TS1 and TS2; the list of
instances in each of them is provided in Table 1.

Instance # Cons # Vars (Ints) TestSet Instance # Cons # Vars (Ints) TestSet
cecil 13 899 841 (180) TS2 space25a 202 384 (240) TS2
csched2a 138 233 (140) TS1-TS2 space25 236 894 (750) TS2
csched2 138 401 (308) TS1-TS2 synheat 65 57 (12) TS1
deb10 130 183 (22) TS2 tls12 155 346 (296) TS2
deb6 508 476 (20) TS2 tls4 65 106 (89) TS1-TS2
eniplac 190 142 (24) TS1-TS2 tls5 91 162 (136) TS1-TS2
fo7 212 115 (42) TS1-TS2 tls6 121 216 (179) TS1-TS2
fo8 274 147 (56) TS1-TS2 tls7 155 346 (296) TS2
fo9 344 183 (72) TS1-TS2 water4 138 196 (126) TS1-TS2
lop97icx 88 987 (899) TS1-TS2 waterx 55 71 (14) TS2
m7 212 115 (42) TS1-TS2 waterz 138 196 (126) TS1-TS2
qap 31 226 (225) TS1

Table 1. Details on the test set.

In the following, we will denote by Couenne the default configured version of the
solver, by CouenneLB the version which includes the LB-IR heuristic, by CouenneF

the version which includes the F-IR heuristic, and by CouenneIR the version which
includes both F-IR and LB-IR.

In the first set of experiments, we want to assess the effectiveness of LB-IR.
To this aim, we focus on TS1, that is, the instances for which Couenne finds a
feasible solution in less than two hours. The aim of an improvement heuristic such



166 Nannicini, Belotti

as LB-IR is to keep a good incumbent through the BB algorithm. We propose the
following measure: we run Couenne and CouenneLB in parallel, and we record for
how much time one of the two solvers has an incumbent which is strictly better
than the incumbent of the other one. We then compute a percentage value by
dividing by the maximum time (2 hours) if the instance is not solved, or by the
time taken for the fastest of the two algorithms to prove optimality. We obtain a
value between 0 and 1 for each of the two algorithms. This can be seen as a measure
of the probability of one of the two algorithms having a better incumbent at a given
time instant. In our experiments, we obtain the best results setting k = 15. With
this value, CouenneLB holds a better incumbent with respect to Couenne for 62.0%
of the time on average, and for an additional 26.4% they have an incumbent with
the same objective value. Moreover, for k = 15 CouenneLB finds a better solution
at the end of the two hours time limit for 9 instances, and the same solution for an
additional 4 (Couenne wins in the remaining 2 instances).

Next, we perform experiments to determine the usefulness of F-IR; thus, we
consider the test set TS2, i.e. the instances for which Couenne does not find a
solution at the root node, and we analyse the solutions computed by F-IR at the
root node. Recall that F-IR has a parameter µ which determines the objective
function, so that using a different µ yields a different point x′; in each run, we
apply F-IR with differents value of µ, starting from µ = 1 and decreasing by equal
steps so that the last application has µ = 0. We stop as soon as we find a feasible
solution; if no solution is found, we report a failure. Formally, let h be the maximum
number of different values of µ that we are willing to try; we set µ1 = 1 and for
i ≥ 2 we set µi = 1 − (i − 1)/(h − 1). In our experiments, we obtain the best
results for h = 5. With this value of the parameter, we find a feasible solution
through F-IR for 14 instances, with an average CPU time of 67.87 seconds, and the
objective value of these solutions is on average 27.15% away from the best known
objective value for those instances.

Finally, we combine LB-IR (with k = 15) and F-IR (with h = 5) together into
CouenneIR. On the complete test set of 23 instances, CouenneIR holds an incum-
bent with an objective value strictly better than the incumbent held by Couenne for
67.94% of the time, whereas Couenne has a strictly better incumbent for 12.21%
of the time. Furthermore, CouenneIR returns a better solution on 12 instances,
Couenne returns a better solution on 2 instances, and on the remaining 9 instances
they return the same solution. Clearly, CouenneIR (i.e. Couenne plus both heuris-
tics) performs better than default Couenne. Not only it finds feasible solutions to
a larger set of instances, but it also find better solutions on average, and typically
has a better incumbent during the BB algorithm. Furthermore, the computational
overhead is small, so that on those instances where the heuristics fail and there is
no improvement in terms of objective function, the CPU time lost is negligible with
respect to the 2 hours of time limit.

References

1. P. Belotti. Couenne: a user’s manual. Technical report, Lehigh University, 2009.
2. C. D’Ambrosio. Application Oriented Mixed Integer Nonlinear Programming.

PhD thesis, DEIS, Università di Bologna, 2009.
3. M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–

37, 2003.



Rounding-based heuristics for nonconvex MINLPs 167

4. ILOG. ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly, France, 2007.
5. M. Tawarmalani and N. Sahinidis. Global optimization of mixed integer nonlin-

ear programs: A theoretical and computational study. Mathematical Program-
ming, 99:563–591, 2004.

6. A. Wächter and L. T. Biegler. On the implementation of a primal-dual inte-
rior point filter line search algorithm for large-scale nonlinear programming.
Mathematical Programming, 106(1):25–57, 2006.





30

Combinatorial Integral Approximation for
Mixed-Integer Nonlinear Optimal Control

Sebastian Sager Michael Jung Christian Kirches

Interdisciplinary Center for Scientific Computing
University of Heidelberg

INF 368, 69120 Heidelberg, Germany

sebastian.sager@iwr.uni-heidelberg.de

Keywords: MINLP, MIOCP, MILP, optimal control, integer programming.

We are interested in structures of and efficient methods for mixed-integer nonlinear
programs (MINLP) that arise from a first discretize, then optimize approach to
time-dependent mixed-integer optimal control problems (MIOCPs). In this study
we focus on combinatorial constraints, in particular on restrictions on the number
of switches on a fixed time grid

0 = t1 < . . . < tnt+1 = tf,(30.1)

which we will use for a discretization of the control in a first discretize, then optimize
approach. We consider a problem with piecewise constant binary control functions,

ωk(t) = pk,i ∈ {0, 1}, t ∈ [ti, ti+1], k = 1 . . . nω, i = 1 . . . nt(30.2)

with pk,i ∈ {0, 1}. Special emphasis is on the switching constraints

nt−1
∑

i=1

|pk,i+1 − pk,i| ≤ σk,max, k = 1 . . . nω.(30.3)

We propose a novel approach that is based on a decomposition of the MINLP
into a NLP and a MILP. We discuss the relation of the MILP solution to the MINLP
solution and formulate bounds for the gap between the two, depending on Lipschitz
constants and the control discretization grid size. The MILP solution can also be
used for an efficient initialization of the MINLP solution process.

Previously obtained results on integer gaps have been used in several ways.
Most importantly they imply that, if the control discretization grid is fine enough,
no integer gap exists [2], because ∆t can be chosen arbitrarily small and the estima-
tion carries over to continuous objective and constraint functions. Also, the specific
way of constructing a binary solution can be used, e.g., in the adaptive algorithm
MINTOC, [2, 1]. However, both uses require that the constructed binary control

169



170 Sager, Jung, Kirches

is feasible for the original problem. This is not a problem if only constraints on the
differential states are present when ∆t→ 0, but switching constraints will typically
be violated if ∆t is small.

Therefore we propose to change the point of view: while before it was argued
that the difference between integer and relaxed solution will become arbitrarily
small if ∆t → 0, we now consider ∆t to be fixed and allow a larger constant to
obtain a feasible solution.

To be able to include constraint (30.3) we determine p as the solution of the
MILP

min
p

max
k=1...nω

max
i=1...nt

∣

∣

∣

∣

∣

∣

i
∑

j=1

(qk,j − pk,j)∆tj

∣

∣

∣

∣

∣

∣

subject to

σk,max ≥ ∑nt−1
i=1 |pk,i − pk,i+1| , k = 1 . . . nω,

pi ∈ {0, 1}, i = 1 . . . nt,

(30.4)

for fixed control values q that stem from the solution of the relaxed nonlinear
problem and given upper bounds on the number of switches, σk,max. The objective
function is related to higher level approximation results, and hence allows for error
estimates between the MILP and the MINLP solution.

The speedup of the solution of the MILP compared to the MINLP solution is
considerable already for general purpose MILP solvers. We analyze the structure
of the MILP that takes switching constraints into account, discuss properties of
the feasible polytope, and propose a tailored Branch and Bound strategy that
outperforms CPlex and Gurobi on a numerical case study.

References

1. S. Sager. Reformulations and algorithms for the optimization of switching deci-
sions in nonlinear optimal control. Journal of Process Control, 19(8):1238–1247,
2009.

2. S. Sager, G. Reinelt, and H.G. Bock. Direct methods with maximal lower
bound for mixed-integer optimal control problems. Mathematical Programming,
118(1):109–149, 2009.



PART 3

Posters





31

On a mixed 0–1 separable nonlinear
model for water irrigation scheduling

Marc Almiñana1 Laureano Escudero2

Mercedes Landete1 Juan Monge1 Alejandro Rabasa1

Joaqúın Sánchez-Soriano1

1 Centro de Investigación Operativa,
Universidad Miguel Hernández

Elche (Alicante), Spain

{marc,landete,monge,a.rabasa,joaquin}@umh.es

2 Depto. de Estad́ıstica e Investigación Operativa
Universidad Rey Juan Carlos

Móstoles (Madrid), Spain

laureano.escudero@urjc.es

Abstract

We present a mixed 0–1 separable nonlinear model for the optimiza-
tion of the management of water resources for agricultural irrigation
usage on a daily basis. It provides dynamic scheduling of the daily
irrigation for a given land area by considering the irrigation network
topography, water flow technical conditions and logistical operation
constraints in order to optimize the usage of the water stored in a
reservoir. We also present a solution procedure that iteratively solves
a mixed 0–1 linear approximation of the model. A large-scale real-life
problem is reported.
Keywords: water resource scheduling, agricultural irrigation, mixed
0–1 separable nonlinear program.

1. Problem description

Consider the problem of an agricultural area to be irrigated on a daily basis where
the water flows from a reservoir, that is connected with the hydrants in an arbores-
cent form. There are three types of elements in the pipe system: sector head nodes,
hydrant nodes and bifurcation nodes. The last two types of nodes are also called
non-head nodes, and they are grouped in sectors which start from the sector heads.
These other sectors are inter-connected in the opposite direction to the reservoir,

173



174 Almiñana, Escudero, Landete, Monge, Rabasa, Sánchez-Soriano

and constitute the set of root nodes of the sector subtrees. Figure 1 illustrates the
topology of the system.

Each sector head has a given elevation and a given water pressure. The irriga-
tion is performed in a certain set of consecutive daily time periods (in our case, 5
periods of 4 hours each). Depending upon the dimension of the area to be irrigated
by a hydrant, it has the right to be irrigated during a certain number of consecu-
tive time periods. The set of hydrants must satisfy the demand for water and some
technical constraints, such as the minimum water pressure and a maximum speed
in their upstream tree pipe segments.

The water pressure at a given hydrant is a function of the pressure at its
sector head, plus the elevation difference between the sector head and the given
hydrant, minus the load loss to be described below. Furthermore, two additional
pieces of information are taken into account in the irrigation scheduling problem.
First, the sector heads and the bifurcation nodes allow the appropriate water flow
distribution, but they do not have their own water needs. Secondly, the time periods
for irrigation should be non-preempted (i.e, once the irrigation begins through a
hydrant it can not be interrupted).

Given an irrigation network, the system operator assigns a priority to each
hydrant for each time period. Hence, the problem involves of selecting the hydrants
for irrigation at each time period, such that the sum of priorities is maximized and
the technical and logistical constraints are satisfied in the given time frame. An
alternative function given by the maximum pressure in pipe segments is minimized.
The constraints are the satisfaction of the daily water demand of the hydrants
for given consecutive time periods, the maximum water speed and the minimum
pressure in the pipe segments.

Reservoir 1 2 3

4 5

8 9

13

6

10

14 15

7

11 12

16 17

Figure 1. Problem topology. Squared nodes are sector heads and circled
nodes are non-headed (hydrants and bifurcation) nodes.



On a mixed 0–1 separable nonlinear model for water scheduling 175

Moreover, the decision support system based on the proposed model and algo-
rithm allows the system operator to irrigate some fields partially on a given day.
This feature, plus the tuning of the priority coefficients, allows us to get high prior-
ity for irrigation on the next day, in the event that some water users do not obtain
satisfaction for their demand on a given day.

In order to describe mathematically the irrigation scheduling problem, we need
to take into account the technical, topographical, logistical and irrigation scheduling
parameters. The technical and topographical parameters are related to physical
properties of the fluids. The logistical parameters are related to the management
of the irrigation system and the irrigation scheduling parameters are related to
constraints on how to assign the time periods of irrigation. Finally, the decision
variables are related to the water discharge in each node for each set of a given
number of consecutive time periods at which the hydrants are irrigated.

The organization of the remainder of the note is as follows: Section 2 introduces
the notation of the elements of the problem. Section 3 presents the mixed 0-1
separable nonlinear model. Section 4 gives the main ideas of the iterative procedure
for problem solving. And section 5 describes the pilot case.

2. Notation of the elements

The notation for all relevant elements and parameters in the system is the following:
Sets of general elements:

T : set of time periods for water irrigation purposes.

I: set of hydrants and bifurcation nodes in the geographical area under con-
sideration.

I0: set of bifurcation nodes.

I1 ⊂ I − I0: subset of hydrants whose irrigation schedule has been partially
or completely fixed.

T 1
i ⊂ T : subset of time periods whose irrigation variables have already been
fixed by the system operator for hydrant i, for i ∈ I1.

Γ: set of sector heads, and γ(i) ∈ Γ is the root node (sector head) of the
subtree to which hydrant i belongs.

Ri: set of upstream nodes to hydrant i, in its path back to its sector head,
including the same hydrant i, for i ∈ I − I0.

Si: set of successor nodes to node i, including the same hydrant i, for i ∈ I.
Notice that the nodes in set Si can belong to different successor paths (it
is the case where the successor path has bifurcation nodes).

Technical and topographical parameters:

f it: friction factor for obtaining the pressure in the immediate upstream
pipe segment of hydrant i at time period t, to be updated iteratively, for
i ∈ I − I0, t ∈ T . (For details on the computing of this coefficient see
Section 4.1).

Ei: elevation of node i, for i ∈ I ∪ Γ.

Li: length of the immediate upstream pipe segment of node i, for i ∈ I ∪ Γ.

Di: diameter of the immediate upstream pipe segment of node i, for i ∈ I∪Γ.

g: gravity acceleration coefficient.



176 Almiñana, Escudero, Landete, Monge, Rabasa, Sánchez-Soriano

Prγ: pressure at sector head γ, for γ ∈ Γ.

P̂ r: minimum pressure required by any hydrant at any time period.

V̂ : maximum water flow speed allowed along the immediate upstream pipe
segment of any node at any time period.

k: constant to obtain the water flow volume to irrigate the land area through
any hydrant at any time period.

Irrigation scheduling parameters:

N̂i: number of consecutive time periods that hydrant i must irrigate its re-
spective land area, based on its dimension (has), for i ∈ I − I0.

Logistic parameters provided by the system operator:

cit: priority coefficient for selecting hydrant i to begin a non-preempted ir-
rigation at time period t, for i ∈ I − I0.

Fi: effective land area (has) to be irrigated by hydrant i, for i ∈ I − I0.
Ŷit: fixed value to 0 or 1 for the variable Yit due to logistic considerations,

for t ∈ T 1
i , i ∈ I1.

Variables:

Qit: water discharge to flow through node i at time period t to satisfy its own
needs, if any, and the water needs of its successor nodes, for t ∈ T, i ∈ I∪Γ.

Yit: 0–1 variable, such that its value is 1 if the irrigation in hydrant i begins
at time period t and, otherwise, it is zero, for t ∈ T, i ∈ I−I0. Notice that
the irrigation is carried out in periods t, . . . , t+ N̂i − 1 such that Yit = 1.

3. Modelization

In order to achieve the aim mentioned in the previous section, the model for the
water irrigation scheduling is as follows,



On a mixed 0–1 separable nonlinear model for water scheduling 177

(P1) max
∑

i∈I−I0

∑

t∈T

citYit(31.1)

s.t. Prγ(i) + Eγ(i) − Ei

−
∑

j∈Ri

(

8f jtLj

π2gD5
j

Q2
jt

)

> P̂ r ∀t ∈ T, i ∈ I − I0(31.2)

Qit =
∑

j∈Si−I0−Γ

kFj(
∑

τ=t−N̂j+1,...,t

Yjτ ) ∀t ∈ T, i ∈ I ∪ Γ(31.3)

(

4

πD2
i

)

Qit 6 V̂ ∀t ∈ T, i ∈ I ∪ Γ(31.4)

∑

t∈T

Yit = 1 ∀i ∈ I − I0(31.5)

Yit = Ŷit ∀t ∈ T 1
i , i ∈ I1(31.6)

Yit ∈ {0, 1} ∀t ∈ T, i ∈ I − I0(31.7)

The program (31.1)–(31.7) has three blocks, namely, the technical and topo-
graphical subsystem that comprises the constraints (31.2)–(31.4), the irrigation
scheduling block that comprises the constraints (31.5), and the logistic block that
comprises the objective function, the fixing bound (31.6) and the parameter Fj in
the constraints (31.3).

The objective function (31.1) maximizes the priority given to the irrigation
scheduling through the hydrants. The constraints (31.2) are technical expressions
to lower bound the pressure in each hydrant node. The equations (31.3) define the
water discharge through each node at each time period, and define the number of
time periods to irrigate. The constraints (31.4) upper bound the water flow speed
allowed along the immediate upstream pipe segment of any node. The special
ordered sets (31.5) impose the condition that the hydrant irrigation must be non-
preempted. The constraints (31.6) fix (totally or partially) the irrigation schedule
for some hydrants, due to logistic considerations by the system operator.

Another interesting objective function consists of the minimization of the max-
imum pressure of water in the irrigation network at any time period.

(P2)min Prmax

(31.8)

s.t.(31.2)− (31.7)(31.9)

Prγ(i) + Eγ(i) − Ei −
∑

j∈Ri

(

8f jtLj

π2gD5
j

Q2
jt

)

6 Prmax, ∀i ∈ I − I0, t ∈ T(31.10)

where Prmax is the variable that gives the maximum pressure of water along the
time horizon.



178 Almiñana, Escudero, Landete, Monge, Rabasa, Sánchez-Soriano

4. Algorithmic framework

4.1. Computing the friction factor fht

The mixed 0-1 nonlinear model (31.1)–(31.7) has an additional difficulty. It is
the computation of the friction factor f it in the calculation of the load loss for
obtaining the pressure in the immediate upstream pipe segment of the hydrant i,
for i ∈ I−I0. This friction factor can be calculated by using the Colebrook formula
(see e.g., [2, 3]), it has the following expression, where the subindices t and i have
been omitted,

(31.1)
1
√

f
= −2 log

(

ǫ

3.71D
+

2.51ν

V D
√

f

)

,

where ǫi is a constant related to the roughness of the immediate upstream pipe
segment of hydrant i, ν is the constant related to the water kinematic viscosity,
and V gives the water flow speed that has the following technical expression,

(31.2) V =

(

4

πD2

)

Q.

The computation of f will be iteratively performed at each outer iteration of
the algorithm for a given water discharge through the hydrants. Considering (31.1)
as a nonlinear equation in f , we make use of the Newton-Raphson procedure for
obtaining its roots. This procedure starts with a value of f obtained by using only
the first term of the right hand side of the Colebrook formula, and approaches the
root by steps which are proportional to the quotient of the function (31.1) and its
derivative. (An explicit calculation of the friction factor in a set of special pipes is
presented in [4]).

4.2. Iterating a mixed 0-1 linear problem

The constraints (31.2) have the quadratic term Q2
jt, for j ∈ Ri, t ∈ T, i ∈ I − I0. It

can be approximated by the Taylor series expansion

(31.3) Q2
jt ≈ Q

2

jt + 2Qjt(Qjt −Qjt),

where Qjt is the value from the optimization of the model in the previous iteration.
The algorithm for solving the original problem (31.1)–(31.7) in an outer itera-

tive way is as follows.
Step 1. Compute the friction factor f it in expression (31.1), such that Q is re-

placed by Qit in expression (31.2).
Step 2. Solve the mixed 0–1 model (31.1)–(31.7), where the function Q2

jt is sub-
stituted by its linear approximation (31.3). Let Q∗

it denote the optimal
value of the variable Qit ∀i ∈ I, t ∈ T .

Step 3. Optimality test. If condition (31.4) is satisfied then stop, the quasi-
optimal solution has been obtained. Otherwise, go to Step 4.

(31.4)
∑

t∈T

∑

i∈I

(Q∗
it −Qit)

2 6 σ,

where σ is a positive tolerance.



On a mixed 0–1 separable nonlinear model for water scheduling 179

Step 4. Update

(31.5) Qit := Qit + ϕ(Q∗
it −Qit), ∀i ∈ I, t ∈ T

where 0 < ϕ 6 1, and go to Step 1.

5. Pilot case description

The approach presented in this work has been implemented for solving a real-
life problem presented by “La Comunidad de Regantes, Riegos de Levante, Canal
2nd”, which is located in Eastern Spain. Its irrigation area comprises 2188 Has
and is distributed in 20 pipe sectors (i.e, 20 head nodes) with a total number of
2831 nodes (2025 of them are hydrants with their own water demand needs). The
irrigation is needed in a daily basis for |T | = 5 time periods (4 hours each, and
the additional time period is devoted to maintenance operations). The topography
of this problem is depicted in Figure 2. Depending on the dimension of the land
area to irrigate, the consecutive time periods are 1 (for 1791 hydrants), 2 (for 191
hydrants), 3 (for 43 hydrants), and none hydrant for 4 and 5 time periods. The
water flows from a reservoir with a capacity of 13Hm3, and the full system has an
arborescence structure. The technical and topographic parameters are as follows:
k = 2.3l/sec/ha, P̂ r = 25mca (2.5Kg/cm3), V̂ = 2.5m/sec, Prγ = 40 ∀γ ∈ Γ;
ǫ = 0.003 mm; and ν = 1.08× 10−6m2/s. The pipe segment parameters Li and Di

vary from 0 to 691 meters and from 66 to 800 millimeters, respectively, for i ∈ I∪Γ.

Figure 2. Pilot case topography

See the numerical results in [1]. The testbed is available upon request.



180 Almiñana, Escudero, Landete, Monge, Rabasa, Sánchez-Soriano

Acknowledgments

This research has been partially supported by the grant PLANIN MTM2009-14087-
C04-01 from the Spanish Ministry of Science and Innovation, and the grant RIES-
GOS CM from Comunidad de Madrid.

References

1. M. Almiñana, L.F. Escudero, M. Landete, J.F. Monge, A.Rabasa and J.
Sánchez-Soriano. On a mixed 0–1 separable nonlinear approach for water irri-
gation scheduling IIE Tansactions 40:398-405, (2008).

2. C.F. Colebrook. Turbulent flow in pipes, with particular reference to the trans-
mition region between the smooth and rough pipe laws. Journal of the Institute
of Civil Engineers 11. 133–156 (1938).

3. T.G. Lester Calculating Pressure Drops in Piping Systems. ASHRAE Journal
44, 41–43 (2002).

4. D.H. Yoo and V.P. Singh. Explicit Design of Commercial Pipes with no Se-
cundary Losses. Journal of Irrigation and Drainage Engineering 130, 437–440
(2004).



32

Extending SCIP for solving MIQCPs

Timo Berthold1 Ambros M. Gleixner1 Stefan Heinz1

Stefan Vigerske2

1 Zuse Institute Berlin
Takustraße 7

14195 Berlin, Germany

{berthold,gleixner,heinz}@zib.de

2 Humboldt-Universität zu Berlin
Unter den Linden 6

10099 Berlin, Germany

stefan@math.hu-berlin.de

1. Introduction

In recent years, substantial progress has been made in the solvability of generic
mixed integer programs (MIPs) [2, 9] and in the extension of successful MIP
solving techniques to the more general case of mixed integer nonlinear programs
(MINLPs) [1, 4, 10]. Similarly, integrating constraint programming (CP) and
mixed integer programming has proven to be effective for the solution of optimiza-
tion problems that were intractable with either of the two methods alone, for an
overview see [15, 23]. The paradigm of constraint integer programming (CIP) [2, 3]
combines modeling and solving techniques from the fields of CP, MIP, and satisfi-
ability testing (SAT).

The goal of this poster is to show, how a framework for CIPs can be extended
towards a competitive solver for mixed integer quadratically constrained programs
(MIQCPs). This allows to utilize the complete power of already existing MIP
and CP technologies for handling the linear and the discrete parts of the problem.
Also an experimental support for convex MINLPs is discussed shortly. We use
the branch-cut-and-price framework SCIP (Solving Constraint Integer Programs),
which incorporates the idea of CIP and implements several state-of-the-art tech-
niques for MIP solving. Due to its design, it can be easily customized, e.g., by
adding problem specific separation, presolving, or domain propagation algorithms.

SCIP solves CIPs by a branch-and-bound algorithm. The problem is recur-
sively split into smaller subproblems, thereby creating a branching tree and implic-
itly enumerating all potential solutions. At each subproblem, domain propagation

181



182 Berthold, Gleixner, Heinz, Vigerske

may exclude further values from the variables’ domains, and a relaxation may be
solved to achieve a local lower bound (assuming minimization problems). The re-
laxation may be strengthened by adding further valid constraints. In case of an
infeasible subproblem, conflict analysis is performed to learn additional valid con-
straints. Primal heuristics are used as supplementary methods to improve the upper
bound. In the context of this article, the relaxation employed in SCIP is a linear
program (LP).

2. Algorithm

In the following we sketch some extensions to SCIP that target on MIQCPs and
convex MINLPs.

A constraint handler defines the semantics and the algorithms to process con-
straints of a certain class. Each constraint handler has to implement an enforcement
method. In enforcement, the handler has to decide whether a given solution, e.g.,
the optimum of a relaxation, satisfies all of its constraints. If the solution violates
one or more constraints, the handler may resolve the infeasibility by adding an-
other constraint, performing a domain reduction, or a branching. For speeding up
the computation, a constraint handler may further implement additional features
like presolving, cut separation, and domain propagation for its particular class of
constraints.

2.1. A constraint handler for quadratic constraints

In the following, we discuss the presolving, separation, propagation, and enforce-
ment algorithms that are used in our handler for quadratic constraints.

Presolving. During the presolving phase, bounds on the variables are tightened
and a set of reformulations and simplifications are tried. For products of a bi-
nary variable with a linear term, a well-known linearization technique based on
adding auxiliary variables and linear constraints is applied. Constraints of the

form
∑k

i=1(αixi)
2 6 (βy)2, y > 0, where αi ∈ Q, i = 1 . . . , k, and β ∈ Q are recog-

nized as second-order cone constraints and handled by the corresponding constraint
handler, cf. Section 2.2. Constraints of the form ℓ 6 xy 6 u, ℓ, u ∈ Q∪{±∞}, with
either y > 0 or y < 0, are reformulated by division by y and handled as univariate
nonlinear constraints (linearization for convex side, secants for concave side). After
the presolving phase is finished, each quadratic constraint is checked for convexity
by computing the sign of the minimal eigenvalue of the coefficient matrix A.

Separation. If the current LP solution x̃ violates some constraints, a constraint
handler may add valid cutting planes in order to strengthen the formulation. For
a violated convex constraint, this is always possible by linearizing the constraint
function at x̃. For a violated nonconvex constraint, we currently underestimate each
term of a quadratic function

∑

i,j ai,jxixj separately by a linearization for ai,ix
2
i

with ai,i > 0, a secant for ai,ix
2
i with ai,i < 0, and a McCormick underestimator [17]

for a bilinear term, respectively. If a linear inequality generated by this method
does not cut off the current LP solution x̃, the infeasibility has to be resolved in
enforcement.

Propagation. In the domain propagation call, the constraint handler may infer
deductions of the variables’ local domains. Domain deductions can yield stronger
linear underestimators in the separation procedures, they may cut off nodes due



Extending SCIP for solving MIQCPs 183

to infeasibility of a constraint, and can result in further domain deductions on
other constraints. For quadratic constraints, we implemented an interval-arithmetic
based method similar to [14].

Enforcement. In the enforcement call, the constraint handler has to check whether
the current LP solution x̃ is feasible for the constraints of the constraint handler.
If it is not feasible, it can resolve this infeasibility. We have configured SCIP to
call the enforcement method of the quadratic constraint handler with a lower pri-
ority than the enforcement method for the handler of integrality constraints. Thus,
at the point where quadratic constraints are enforced, all integer variables take
an integral value in the LP optimum x̃. For a violated quadratic constraint, we
perform a spatial branching operation if a domain propagation step does not cut
off the current node and the separation method does not cut off x̃ from the LP
relaxation. We use a pseudo-cost based branching rule as suggested in [4] to select
the branching variable.

2.2. A constraint handler for second-order cone constraints

Constraints of the form
√

∑k
i=1(αixi)2 6 βy, where βy > 0, are handled by the

constraint handler for second-order cone (SOC) constraints. These constraints are
enforced by separation only. If the current LP solution x̃ violates some SOC con-

straints, then we add the gradient-based cut γ+γ−1(
∑k

i=1 αix̃i(xi− x̃i))−βy 6 0,

where γ :=
√

∑k
i=1(αix̃i)2, which is violated by x̃. We also experimented with

adding a linear outer-approximation of the SOC as suggested in [5] during pre-
solve, but did not observe a computational benefit for the instances in our testset.

2.3. A constraint handler for convex nonlinear constraints

Experimental support for convex nonlinear constraints consists of separating the so-
lution of the LP relaxation by generating gradient-based linear outer-approximations
of convex functions.

2.4. Primal Heuristics

Three large neighborhood search heuristics for MINLPs have been implemented in
SCIP so far.

NLP local search (Fix-and-NLP). When solving MIQCPs or convex MINLPs,
we still make use of all default MIP primal heuristics of SCIP [6]. Since most of
them aim at finding good integer-feasible solutions for the LP relaxation, they
usually construct a point x̂ which is feasible for the MIP relaxation, but violate
some of the nonlinear constraints. However, we utilize x̂ as starting point for a
local search in the NLP obtained from the MINLP by fixing all integer variables to
the values of x̂. Each feasible solution of this NLP also is a feasible solution of the
MINLP.

RENS (Fix-and-MINLP). Furthermore, we implemented an extended form of
the relaxation enforced neighborhood search (RENS) heuristic [7]. At some node of
the branch-and-bound-tree, this heuristic creates a sub-MINLP problem by fixing
all integer variables which take an integral value in an optimal solution of the
LP relaxation and restricts the bounds of all integer variables with fractional LP
solution value to the two nearest integral values. This – hopefully much easier –



184 Berthold, Gleixner, Heinz, Vigerske

sub-MINLP is then partially solved by a separate SCIP instance. Obviously, each
feasible solution of the sub-MINLP is a feasible solution of the original MINLP.

Undercover (Fix-and-MIP). The heuristic “undercover” [8] is based on the
observation that it often suffices to fix only a comparatively small number of vari-
ables in an MINLP such as to yield a MIP subproblem. Every solution of such a
sub-MIP is then a feasible solution for the original MINLP. The variables to fix are
chosen by solving a set covering problem, which aims at minimizing the number of
variables to fix. The values for the fixed variables are taken from the solution of
the LP relaxation.

3. Numerical Results

We conducted numerical experiments on several different testsets. The first is a
testset of H. Mittelmann of mixed integer quadratic programs (MIQPs) [18], i.e.,
problems with a quadratic objective function and linear constraints. Second, we
have selected a testset of mixed integer conic programs (MICPs), which have been
formulated as MIQCP. They represent three different classes of portfolio optimiza-
tion problems and have been introduced in [20]. Third, we have assembled a testset
of general MIQCPs from the MINLPLib [12], an IBM-CMU project on MINLP [13],
and truss structure design problems from [23]. Finally, we used a testset of convex
MINLPs from [11].

For our benchmark, we ran SCIP 1.2.0.7 using CPLEX 11.2.1 [16] as LP
solver and Ipopt 3.8 [21] (with MA27 as linear solver) as NLP solver for the
heuristics. For comparison we used solvers as provided by GAMS 23.3.2 (except
for Couenne and BONMIN, which we compiled by ourself). For MIQCPs, we
ran BARON 9.0.2 [19] (with CPLEX as LP solver and MINOS as NLP solver),
Couenne 0.3 [4] (with CLP as LP solver and Ipopt with MA27 as NLP solver),
CPLEX 12.1, LINDOglobal 6.0.1 (with a limited license), and Mosek 6.0.0.55.
For convex MINLPs, we ran AlphaECP 1.75.04 [22] (with CPLEX as MIP solver
and CONOPT as NLP solver), BONMIN 1.3 [10] (with CLP as LP solver and
Ipopt with MA27 as NLP solver), DICOPT 2x-C (with CPLEX as MIP solver and
CONOPT as NLP solver), and SBB (with CONOPT as NLP solver).

All solvers were run with a time limit of one hour, a final gap tolerance of 10−4,
and a feasibility tolerance of 10−6 on a 2.5 GHz Intel Core2 Duo CPU with 4 GB
RAM and 6 MB Cache. Further, for AlphaECP the option ECPstrategy was set to
1, for DICOPT the option stop was set to 1 and maxcycles was set to 10000, for
SBB the option memnodes was set to 9999999, and for SCIP when solving convex
MINLPs, an option was set to indicate that these models are convex. BONMIN was
run with three algorithmic options. BONMIN-BB is an NLP-based branch-and-
bound similar to SBB, BONMIN-QG is an LP-based branch-and-bound algorithm
similar to the one that SCIP implements, and BONMIN-Hyb is an hybrid of an
NLP-based and an LP-based branch-and-bound algorithm.

Figure 1 shows performance profiles for MIQCPs and convex MINLPs. The
performance profile for MIQCPs was created for all 80 instances from the first
three testsets where at least two solvers took more than 10 seconds and which fit
into the license limit of LINDOglobal. Detailed problem statistics and results
can be found in the appendix.



Extending SCIP for solving MIQCPs 185

100 101 102 103 104

0

10

20

30

40

50

60

SCIP

BARON

LINDOglobal

Couenne

time factor w.r.t. fastest solver

%
in

st
a
n
ce

s
so

lv
ed

100 101 102 103 104

0

20

40

60

80

100
SCIP

BONMIN-BB

BONMIN-Hyb
BONMIN-QG

DICOPT

AlphaECP

SBB

time factor w.r.t. fastest solver
%

in
st

a
n
ce

s
so

lv
ed

Figure 1. Performance profiles for MIQCPs (left) and convex MINLPs (right).

Acknowledgments

This research was funded by the DFG Research Center Matheon, Project B20.
We thank GAMS Development Corp. for providing us with evaluation licenses.

References

1. K. Abhishek, S. Leyffer, and J.T. Linderoth. FilMINT: An outer-
approximation-based solver for nonlinear mixed integer programs. Technical
Report ANL/MCS-P1374-0906, Argonne National Laboratory, Mathematics
and Computer Science Division, 2006.

2. T. Achterberg. Constraint Integer Programming. PhD thesis, TU Berlin, 2007.
3. T. Achterberg, T. Berthold, T. Koch, and K. Wolter. Constraint integer pro-

gramming: A new approach to integrate CP and MIP. In L. Perron and M.A.
Trick, editors, Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, 5th International Conference,
CPAIOR 2008, volume 5015 of LNCS, pages 6–20. Springer, 2008.

4. P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and
bounds tightening techniques for non-convex MINLP. Optimization Methods
and Software, 24(4-5):597–634, 2009.

5. A. Ben-Tal and A. Nemirovski. On polyhedral approximations of the second-
order cone. Math. Oper. Res., 26(2):193–205, 2001.

6. T. Berthold. Primal heuristics for mixed integer programs. Master’s thesis, TU
Berlin, 2006.

7. T. Berthold. RENS – relaxation enforced neighborhood search. ZIB-Report
07-28, Zuse Institute Berlin, 2007.



186 Berthold, Gleixner, Heinz, Vigerske

8. T. Berthold and A.M. Gleixner. Undercover – a primal heuristic for MINLP
based on sub-MIPs generated by set covering. ZIB-Report 09-40, Zuse Institute
Berlin, December 2009.

9. R.E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP: theory
and practice – closing the gap. In M.J.D. Powell and S. Scholtes, editors,
System Modelling and Optimization: Methods, Theory and Applications, pages
19–50. Kluwer, 2000.

10. P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D.
Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic
framework for convex mixed integer nonlinear programs. Discrete Optimiza-
tion, 5:186–204, 2008.

11. P. Bonami, M. Kilinç, and J. Linderoth. Algorithms and software for
convex mixed integer nonlinear programs. available online http://www.

optimization-online.org/DB_HTML/2009/10/2429.html, 2009.
12. M.R. Bussieck, A.S. Drud, and A. Meeraus. MINLPLib - A Collection of

Test Models for Mixed-Integer Nonlinear Programming. INFORMS Journal
on Computing, 15(1):114–119, 2003.

13. CMU-IBM MINLP Project. http://egon.cheme.cmu.edu/ibm/page.htm.
14. F. Domes and A. Neumaier. Constraint propagation on quadratic constraints.

available online at http://www.mat.univie.ac.at/~dferi/publ, 2008.
15. J. Hooker. Integrated Methods for Optimization. International Series in Oper-

ations Research & Management Science. Springer, New York, 2007.
16. IBM. CPLEX. http://www-01.ibm.com/software/integration/

optimization/cplex/.
17. G.P. McCormick. Computability of global solutions to factorable nonconvex

programs: Part I-Convex Underestimating Problems. Math. Prog., 10:147–175,
1976.

18. H. Mittelmann. MIQP test instances. http://plato.asu.edu/ftp/miqp.

html.
19. M. Tawarmalani and N.V. Sahinidis. Convexification and Global Optimiza-

tion in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algo-
rithms, Software, and Applications. Kluwer Academic Publishers, 2002.

20. J.P. Vielma, S. Ahmed, and G.L. Nemhauser. A lifted linear programming
branch-and-bound algorithm for mixed integer conic quadratic programs. IN-
FORMS Journal on Computing, 20(3):438–450, 2008.

21. A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior
point filter line search algorithm for large-scale nonlinear programming. Math.
Prog., 106(1):25–57, 2006.

22. T. Westerlund and K. Lundquist. Alpha-ECP, version 5.04. an interactive
MINLP-solver based on the extended cutting plane method. Technical Report
01-178-A, Process Design Laboratory, Åbo Akademi University, Åbo, Finland,
2003. http://abo.fi./~twesterl/A-ECPManual.pdf.

23. T. Yunes, I.D. Aron, and J. Hooker. An integrated solver for optimization
problems. Technical report, School of Business Administration, University of
Miami, 2008.



Extending SCIP for solving MIQCPs 187

Appendix: Detailed numerical experiments

In the tables on problem statistics, the “presolved problem” columns show statistics
about the MIQCP or MINLP after SCIP has applied its presolving routines. The
columns “vars”, “int”, and “bin” show the number of all variables, the number of
integer variables, and the number of binary variables, respectively. The columns
“linear”, “quad”, ”soc”, ”nonlin” show the number of linear, quadratic, second-
order cone, and nonlinear (other than quadratic or soc) constraints, respectively.
The column “conv” indicates whether all nonlinear constraints of the presolved
MIQCP or MINLP are convex or whether at least one of them is nonconvex.

In the tables with computational results, each entry shows the number of sec-
onds to solve a problem, or the lower and upper bounds at termination, if the
problem was not solved.

Results on Mittelmann MIQPs

Table 1 presents the 25 instances from the MIQP testset [18]. Note that we consider
the clay* instances in the general MIQCP testset, since they are not MIQPs.
We observe, that due to the reformulation for products with binary variables, 15
instances could be reformulated as mixed integer linear programs in the presolving
state.

Table 2 compares the performance of BARON, Couenne, CPLEX, LIN-
DOglobal (as far as our license allowed), and SCIP on this testset. Note that
some of the instances are nonconvex before applying the reformulation described
in Section 2.1, so that we did not apply solvers which have only been designed for
convex problems. Instance ivalues is the only instance that cannot be handled by
CPLEX due to nonconvexity.

Results on second-order cone problems

The MICP testset consists of three types of optimization problems, see Table 3. The
instances classical XXX YY contain only one convex quadratic constraint of the

form
∑k

j=1 x
2
j 6 u for some u ∈ Q, where XXX stand for the dimension k and YY is a

problem index. The instances robust XXX YY and shortfall XXX YY additionally
contain one, respectively two, SOC constraints of dimension k.

Table 4 compares the performance of BARON, Couenne, CPLEX, LIN-
DOglobal, Mosek, and SCIP on this testset.

Results on general MIQCPs

For the general MIQCP testset, we took 42 instances from the MINLPLib [12],
six constrained layout problems (clay*) from [13], and twelve truss structure de-
sign problems (*bar*) from [15], see Table 5. The instances lop97ic, lop97icx,
pb302035, pb351535, qap, and qapw were transformed into MIPs during presolv-
ing. For the instances 200bar, nuclear14a, and nuclear14b, a simple bilinear
constraint of the form ℓ 6 xy 6 u with y > 0 or y < 0 was reformulated by division
by y.

Table 6 compares the performance of BARON, Couenne, LINDOglobal,
and SCIP on this testset. The additional column ”PP” indicates which instances
participated in the generation of the performance profile in Figure 1.



188 Berthold, Gleixner, Heinz, Vigerske

Results on convex MINLPs

For the convex MINLP testset, we reproduced the testset from the recent paper
[11], see Table 7.

Table 8 compares the performance of AlphaECP, BONMIN in three variants,
DICOPT, SBB, and SCIP on this testset.

Table 1. Problem statistics for MIQP testset from Mittelmann.

instance original problem presolved problem

vars int bin linear quad vars int bin linear quad conv

iair04 8905 0 8904 823 1 12848 0 7362 17464 0 X

iair05 7196 0 7195 426 1 10574 0 6117 14218 0 X

ibc1 1752 0 252 1913 1 866 0 252 1438 0 X

ibell3a 123 29 31 104 1 129 29 31 161 1 X

ibienst1 506 0 28 576 1 473 0 28 592 0 X

icap6000 6001 0 6000 2171 1 7323 0 5865 6362 0 X

icvxqp1 10001 10000 0 5000 1 10003 9998 2 5006 1 X

ieilD76 1899 0 1898 75 1 2685 0 1898 3168 0 X

ilaser0 1003 151 0 2000 1 1003 151 0 1000 1 X

imas284 152 0 150 68 1 228 0 150 299 0 X

imisc07 261 0 259 212 1 360 0 238 598 0 X

imod011 10958 1 96 4480 1 8963 1 96 2730 1 X

inug06-3rd 2887 0 2886 3972 1 3709 0 2886 7779 0 X

inug08 1633 0 1632 912 1 2217 0 1632 3076 0 X

iportfolio 1201 192 775 201 1 1201 192 775 201 1 X

iqap10 4151 0 4150 1820 1 5879 0 4150 9047 0 X

iqiu 841 0 48 1192 1 871 0 48 1285 0 X

iran13x13 339 0 169 195 1 468 0 169 585 0 X

iran8x32 513 0 256 296 1 651 0 256 713 0 X

isqp0 1001 50 0 249 1 1001 50 0 249 1 X

isqp1 1001 0 100 249 1 1068 0 100 480 1
isqp 1001 50 0 249 1 1001 50 0 249 1 X

iswath2 6405 0 2213 483 1 8007 0 2213 5631 0 X

itointqor 51 50 0 0 1 51 50 0 0 1 X

ivalues 203 202 0 1 1 203 202 0 1 1



Extending SCIP for solving MIQCPs 189

T
a
b
le

2
.

R
es

u
lt
s

fo
r

M
IQ

P
te

st
se

t
fr

o
m

M
it
te

lm
a
n
n
.

in
st

an
ce

B
A

R
O

N
C

o
u
e
n
n
e

C
P
L
E
X

L
IN

D
O

g
l
o
b
a
l

S
C

IP

i
a
i
r
0
4

[−
∞
,∞

]
fa

il
3
7
.5

2
li
ce

n
se

li
m

it
20

6.
75

i
a
i
r
0
5

[−
∞
,∞

]
[2

58
86
,∞

]
3
0
.7

1
li
ce

n
se

li
m

it
10

3.
56

i
b
c
1

[1
.7

92
,3
.7

2]
[1
.6

96
,3
.9

8]
89

5.
54

[−
∞
,∞

]
4
9
.6

5
i
b
e
l
l
3
a

58
.9

5
19

8.
90

3
.9

6
[8

69
87

2,
87

87
85

]
14

.5
8

i
b
i
e
n
s
t
1

10
48

.0
4

14
77

.1
9

28
36

.0
5

[1
5.

47
,5

1.
89

]
3
2
.6

2
i
c
a
p
6
0
0
0

[−
24

48
49

6,
−

24
41

85
2]

fa
il

6
.2

8
li
ce

n
se

li
m

it
6.

34
i
c
v
x
q
p
1

[3
24

60
3,

61
35

59
]

fa
il

[3
2
7
5
2
2
,4

1
0
4
3
9
]

li
ce

n
se

li
m

it
[0
,4

45
13

98
]

i
e
i
l
D
7
6

[7
29
.5
,1

08
1]

[8
08
.3
,8

98
.5

]
1
3
.5

0
[−
∞
,∞

]
40

.9
2

i
l
a
s
e
r
0

[−
∞
,∞

]
fa

il
[2

40
99

25
,2

4
1
2
7
3
4
]

li
ce

n
se

li
m

it
fa

il
i
m
a
s
2
8
4

[8
91

93
,9

22
41

]
31

39
.1

2
4
.3

6
[−
∞
,∞

]
30

.3
8

i
m
i
s
c
0
7

[2
43

2,
28

14
]

[1
69

6,
30

50
]

70
.0

2
[0
,2

81
5]

4
9
.1

8
i
m
o
d
0
1
1

[−
3.

82
3,
−

3
.8

4
3
]

fa
il

[−
∞
,∞

]
li
ce

n
se

li
m

it
3
2
8
.6

0
i
n
u
g
0
6
-
3
r
d

[1
77
.8
,1

4
3
4
]

fa
il

[5
27
.2
,1

4
3
4
]

li
ce

n
se

li
m

it
[1

1
1
4
,∞

]
i
n
u
g
0
8

[1
45

1,
14

69
6]

[6
83
.1
,∞

]
21

26
.6

8
[−
∞
,∞

]
2
3
.5

0
i
p
o
r
t
f
o
l
i
o

[−
∞
,0

]
[−

0
.4

9
4
4
,∞

]
[−

0
.4

9
4
4
,−

0
.4

9
3
7
]

[−
∞
,∞

]
[−

0.
52

52
,0

]
i
q
a
p
1
0

[−
∞
,∞

]
[3

29
.8
,∞

]
14

11
.2

6
li
ce

n
se

li
m

it
8
9
4
.9

7
i
q
i
u

[−
40

2.
5,
−

10
8.

6]
[−

35
7.

5,
−

12
6.

3]
91

.7
7

[−
77

3.
6,
−

11
3.

5]
7
0
.0

2
i
r
a
n
1
3
x
1
3

[2
93

0,
33

55
]

[3
01

4,
34

76
]

2
0
.0

2
[2

74
3,

33
47

]
49

.5
3

i
r
a
n
8
x
3
2

[5
01

3,
54

54
]

[5
03

4,
56

29
]

25
.2

4
[4

95
6,

53
26

]
1
7
.1

4
i
s
q
p
0

[−
∞
,∞

]
[−
∞
,−

20
13

7]
[−

2
0
3
3
8
,−

2
0
3
2
0
]

[−
∞
,∞

]
[−
∞
,−

19
89

5]
i
s
q
p
1

[−
∞
,∞

]
[−
∞
,−

18
80

1]
[−

1
9
0
2
8
,−

1
8
9
9
3
]

[−
∞
,∞

]
[−
∞
,−

17
88

3]
i
s
q
p

[−
∞
,∞

]
1
3
1
2
.5

6
[−

21
07

1,
−

2
1
0
0
1
]

[−
∞
,∞

]
[−
∞
,∞

]
i
s
w
a
t
h
2

[3
35
.6
,6

61
.9

]
[3

35
.9
,4

11
.8

]
21

2.
15

li
ce

n
se

li
m

it
2
1
0
.0

0
i
t
o
i
n
t
q
o
r

[−
∞
,−

11
46

]
fa

il
[−

11
50
,−

1
1
4
7
]

3
9
4
.1

0
[−
∞
,0

]
i
v
a
l
u
e
s

[−
12
.8

8,
−

0.
41

68
]

[−
6
.0

5
4
,−

1
.0

5
6
]

fa
il

[−
∞
,∞

]
[−

16
9.

4,
0]



190 Berthold, Gleixner, Heinz, Vigerske

Table 3. Problem statistics for MICP testset.

instance original problem presolved problem

vars int bin linear quad vars int bin linear quad SOC

classical_40_0 120 0 40 82 1 120 0 40 82 1 0
classical_40_1 120 0 40 82 1 120 0 40 82 1 0
classical_50_0 150 0 50 102 1 150 0 50 102 1 0
classical_50_1 150 0 50 102 1 150 0 50 102 1 0
classical_200_0 600 0 200 402 1 600 0 200 402 1 0
classical_200_1 600 0 200 402 1 600 0 200 402 1 0
robust_40_0 163 0 41 124 2 163 0 41 124 1 1
robust_40_1 163 0 41 124 2 163 0 41 124 1 1
robust_50_0 203 0 51 154 2 203 0 51 154 1 1
robust_50_1 203 0 51 154 2 203 0 51 154 1 1
robust_100_0 403 0 101 304 2 403 0 101 304 1 1
robust_100_1 403 0 101 304 2 403 0 101 304 1 1
robust_200_0 803 0 201 604 2 803 0 201 604 1 1
robust_200_1 803 0 201 604 2 803 0 201 604 1 1
shortfall_40_0 164 0 41 125 2 164 0 41 125 0 2
shortfall_40_1 164 0 41 125 2 164 0 41 125 0 2
shortfall_50_0 204 0 51 155 2 204 0 51 155 0 2
shortfall_50_1 204 0 51 155 2 204 0 51 155 0 2
shortfall_100_0 404 0 101 305 2 404 0 101 305 0 2
shortfall_100_1 404 0 101 305 2 404 0 101 305 0 2
shortfall_200_0 804 0 201 605 2 804 0 201 605 0 2
shortfall_200_1 804 0 201 605 2 804 0 201 605 0 2



Extending SCIP for solving MIQCPs 191

T
a
b
le

4
.

R
es

u
lt
s

fo
r

M
IC

P
te

st
se

t.

in
st

a
n
ce

B
A

R
O

N
C

o
u
e
n
n
e

C
P
L
E
X

L
IN

D
O

g
l
o
b
a
l

M
o
s
e
k

S
C

IP

c
l
a
s
s
i
c
a
l
_
4
0
_
0

2
0
7
.2

4
1
7
8
.7

2
1
.6

0
3
8
.2

5
1
2
.7

9
2
2
.9

0
c
l
a
s
s
i
c
a
l
_
4
0
_
1

7
.0

9
1
1
4
.4

9
1
.0

1
2
1
7
.5

5
2
2
.2

8
6
.5

5
c
l
a
s
s
i
c
a
l
_
5
0
_
0

[−
0
.0

9
1
9
1
,−

0
.0

9
0
7
4
]

[−
0
.0

9
4
4
7
,−

0
.0

9
0
5
4
]

4
1
.3

3
[−

0
.0

9
5
7
2
,−

0
.0

9
0
7
4
]

1
6
1
.1

7
2
8
6
6
.5

6
c
l
a
s
s
i
c
a
l
_
5
0
_
1

2
5
0
.4

6
[−

0
.0

9
5
9
5
,−

0
.0

9
4
5
9
]

7
.3

8
[−

0
.0

9
5
9
3
,−

0
.0

9
4
7
6
]

3
0
.6

2
2
0
0
.3

1
c
l
a
s
s
i
c
a
l
_
2
0
0
_
0

[−
0
.1

2
4
7
,−

0
.1

0
7
7
]

[−
0
.1

2
5
5
,−

0
.0

9
5
1
]

[−
0
.1

2
3
1
,−

0
.1

1
0
6
]

[−
0
.1

2
5
6
,−

0
.0

8
5
7
4
]

[−
0
.1

2
4
,−

0
.1

1
0
3
]

[−
0
.1

2
8
5
,−

0
.1

0
8
1
]

c
l
a
s
s
i
c
a
l
_
2
0
0
_
1

[−
0
.1

2
6
9
,−

0
.1

1
4
9
]

[−
0
.1

2
8
3
,−

0
.1

0
3
6
]

[−
0
.1

2
5
7
,−

0
.1

1
6
4
]

[−
0
.1

2
8
4
,−

0
.1

0
9
3
]

[−
0
.1

2
6
6
,−

0
.1

1
6
2
]

[−
0
.1

3
,−

0
.1

1
6
4
]

r
o
b
u
s
t
_
4
0
_
0

3
4
7
3
.0

3
[−

0
.0

9
7
0
6
,−

0
.0

7
6
0
2
]

0
.6

7
3
6
0
0
.9

5
1
.3

7
4
.0

4
r
o
b
u
s
t
_
4
0
_
1

1
7
5
2
.7

0
[−

0
.1

1
6
,−

0
.0

7
6
4
6
]

0
.6

4
2
4
9
.7

2
2
.8

8
2
.2

5
r
o
b
u
s
t
_
5
0
_
0

[−
0
.0

8
6
1
5
,−

0
.0

8
6
0
9
]

[−
0
.1

2
6
3
,−

0
.0

8
6
1
]

1
.8

8
1
6
5
.4

5
0
.9

0
1
.1

7
r
o
b
u
s
t
_
5
0
_
1

[−
0
.0

8
5
7
4
,−

0
.0

8
5
6
9
]

[−
0
.1

2
7
4
,−

0
.0

8
5
7
8
]

2
.3

2
5
0
6
.3

6
3
.1

8
9
.0

0
r
o
b
u
s
t
_
1
0
0
_
0

[−
0
.1

0
1
3
,−

0
.0

9
3
2
]

[−
0
.1

5
1
4
,−

0
.0

9
7
5
3
]

[−
0
.1

0
4
3
,−

0
.0

9
7
2
1
]

[−
0
.1

5
4
2
,−

0
.0

8
8
3
3
]

1
2
1
0
.8

6
1
1
4
0
.3

4

r
o
b
u
s
t
_
1
0
0
_
1

[−
0
.0

7
5
0
1
,−

0
.0

7
0
3
]

[−
0
.1

2
5
7
,−

0
.0

6
7
7
]

5
2
5
.1

4
[−

0
.1

2
6
9
,0

]
2
9
2
.2

1
6
2
8
.8

0
r
o
b
u
s
t
_
2
0
0
_
0

[−
0
.1

7
2
2
,−

0
.1

3
6
3
]

fa
il

[−
0
.1

4
5
,−

0
.1

4
1
1
]

[−
1
,0

]
[−

0
.1

4
6
8
,−

0
.1

4
1
1
]

[−
0
.1

4
5
6
,−

0
.1

4
1
1
]

r
o
b
u
s
t
_
2
0
0
_
1

[−
0
.1

4
7
7
,−

0
.1

4
2
4
]

[−
0
.1

9
9
5
,−

0
.1

3
7
7
]

[−
0
.1

4
5
4
,−

0
.1

4
2
5
]

[−
1
,0

]
[−

0
.1

4
5
6
,−

0
.1

4
2
7
]

[−
0
.1

4
7
3
,−

0
.1

4
2
1
]

s
h
o
r
t
f
a
l
l
_
4
0
_
0

1
0
2
.1

7
3
3
3
.7

6
2
4
7
.9

9
1
0
2
7
.0

2
4
5
.7

1
1
5
.4

4

s
h
o
r
t
f
a
l
l
_
4
0
_
1

5
.9

9
1
3
3
.4

9
5
.7

1
2
8
8
.1

2
1
3
.7

2
3
.0

2

s
h
o
r
t
f
a
l
l
_
5
0
_
0

[−
1
.0

9
8
,−

1
.0

9
5
]

[−
1
.1

0
2
,−

1
.0

9
5
]

1
9
1
3
.0

0
[−

1
.1

0
4
,−

1
.0

9
5
]

4
0
5
.9

3
1
4
9
4
.8

7
s
h
o
r
t
f
a
l
l
_
5
0
_
1

9
1
.8

4
[−

1
.1

0
3
,−

1
.0

9
9
]

1
3
.1

3
[−

1
.1

0
4
,−

1
.1

0
2
]

2
1
.7

3
1
4
.6

3
s
h
o
r
t
f
a
l
l
_
1
0
0
_
0

[−
1
.1

2
,−

1
.1

1
4
]

[−
1
.1

2
6
,−

1
.1

0
2
]

[−
1
.1

3
2
,−

1
.1

1
2
]

[−
1
.1

2
5
,−

1
.1

1
4
]

[−
1
.1

1
6
,−

1
.1

1
4
]

[−
1
.1

2
,−

1
.1

1
4
]

s
h
o
r
t
f
a
l
l
_
1
0
0
_
1

[−
1
.1

0
9
,−

1
.1

0
6
]

[−
1
.1

1
3
,−

1
.0

9
1
]

3
3
0
1
.7

5
[−

1
.1

1
3
,−

1
.1

0
5
]

[−
1
.1

1
1
,−

1
.1

0
6
]

2
2
2
3
.7

6

s
h
o
r
t
f
a
l
l
_
2
0
0
_
0

[−
1
.1

4
9
,−

1
.1

2
]

[−
1
.1

5
,−

1
.0

9
4
]

[−
1
.1

4
6
,−

1
.1

2
5
]

[−
1
.4

7
9
,−

1
.0

8
]

[−
1
.1

4
6
,−

1
.1

2
6
]

[−
1
.1

4
8
,−

1
.1

2
5
]

s
h
o
r
t
f
a
l
l
_
2
0
0
_
1

[−
1
.1

5
,−

1
.1

3
1
]

[−
1
.1

5
2
,−

1
.1

0
1
]

[−
1
.1

5
,−

1
.1

3
3
]

[−
1
.3

6
1
,−

1
.0

8
9
]

[−
1
.1

5
1
,−

1
.1

3
5
]

[−
1
.1

4
9
,−

1
.1

3
4
]



192 Berthold, Gleixner, Heinz, Vigerske

Table 5. Problem statistics for general MIQCP testset.

instance original problem presolved problem

vars int bin linear quad vars int bin linear quad nonlin convex

10bar1A 148 0 110 38 10 137 0 110 27 10 0

10bar1B 148 0 110 38 10 137 0 110 27 10 0
10bar1C 148 0 110 38 10 137 0 110 27 10 0
10bar1D 148 0 110 38 10 137 0 110 27 10 0
10bar2 176 0 110 56 20 154 0 110 34 20 0

10bar3 148 0 110 38 10 138 0 110 28 10 0
10bar4 176 0 110 56 20 156 0 110 36 20 0
25bar 436 0 275 323 50 248 0 87 119 50 0
72bar 1248 0 792 1000 144 623 0 175 320 144 0

90bar 1560 0 990 1250 180 781 0 219 402 180 0
108bar 1872 0 1188 1500 216 939 0 263 484 216 0
200bar 7850 0 6000 4570 600 4532 0 2880 1175 593 7

clay0203m 30 0 18 30 24 27 0 15 27 24 0 X

clay0204m 52 0 32 58 32 48 0 28 54 32 0 X

clay0205m 80 0 50 95 40 75 0 45 90 40 0 X

clay0303m 33 0 21 30 36 31 0 19 29 36 0 X

clay0304m 56 0 36 58 48 54 0 34 57 48 0 X

clay0305m 85 0 55 95 60 81 0 51 93 60 0 X

du-opt 21 13 0 9 1 21 13 0 5 1 0 X

du-opt5 21 13 0 9 1 19 11 0 4 1 0 X

ex1263 92 0 72 51 4 91 0 71 47 4 0
ex1264 88 0 68 51 4 82 0 62 47 4 0
ex1265 130 0 100 69 5 122 0 92 65 5 0

ex1266 180 0 138 89 6 168 0 126 81 6 0
ex4 37 0 25 5 26 37 0 25 4 26 0
fac3 67 0 12 33 1 67 0 12 39 1 0 X

feedtray2 88 0 36 137 147 300 0 12 1001 147 0

lop97ic 1754 831 831 52 40 5228 708 708 11521 0 0 X

lop97icx 987 831 68 48 40 488 68 68 1138 0 0 X

meanvarx 36 0 14 44 1 30 0 12 36 1 0 X

netmod_dol1 1999 0 462 3137 1 1993 0 462 3131 1 0 X

netmod_dol2 1999 0 462 3080 1 1592 0 454 2637 1 0 X

netmod_kar1 457 0 136 666 1 453 0 136 662 1 0 X

netmod_kar2 457 0 136 666 1 453 0 136 662 1 0 X

nous1 51 0 2 15 29 47 0 2 11 29 0
nous2 51 0 2 15 29 47 0 2 11 29 0
nuclear14a 992 0 600 49 584 1568 0 600 2377 368 192
nuclear14b 1568 0 600 1225 560 1568 0 600 1225 368 192

nuclear14 1562 0 576 624 602 986 0 576 48 602 0
nuclearva 351 0 168 50 267 327 0 144 24 267 0
nvs19 9 8 0 0 9 9 8 0 0 9 0

nvs23 10 9 0 0 10 10 9 0 0 10 0
pb302035 601 0 600 50 1 1199 0 600 1847 0 0 X

pb351535 526 0 525 50 1 1048 0 525 1619 0 0 X

product 1553 0 107 1793 132 446 0 92 450 82 0

product2 2842 0 128 2597 528 480 0 128 338 128 0
qap 226 0 225 30 1 449 0 225 702 0 0 X

qapw 451 0 225 255 1 675 0 225 930 0 0 X

sep1 29 0 2 25 6 19 0 2 15 6 0
space25 893 0 750 210 25 767 0 716 118 25 0
space25a 383 0 240 176 25 308 0 240 101 25 0
spectra2 70 0 30 65 8 68 0 30 30 8 0

tln5 35 30 5 25 5 35 30 5 20 5 0
tln6 48 42 6 30 6 48 42 6 24 6 0
tln7 63 56 7 35 7 63 56 7 28 7 0
tln12 168 156 12 60 12 180 144 24 85 11 0

tloss 48 42 6 47 6 46 42 4 39 6 0
tltr 48 36 12 51 3 56 27 20 73 2 0
util 146 0 28 164 4 32 0 12 13 4 0

waste 2484 0 400 623 1368 1238 0 400 516 1230 0



Extending SCIP for solving MIQCPs 193

Table 6. Results for general MIQCP testset. The column ”PP” indicates

which instances participated for the performance profile in Figure 1.

instance BARON Couenne LINDOglobal SCIP PP

10bar1A 1.82 2.51 61.43 1.15
10bar1B 1.69 2.73 58.26 1.44
10bar1C 3.59 2.77 [0, 1623] 2.75
10bar1D 13.83 13.58 [0, 1623] 3.57 X

10bar2 121.22 5.51 [0, 1976] 10.29 X

10bar3 450.01 2123.14 [0, 5157] [−∞, 5181] X

10bar4 3449.80 3702.63 [2028, 6547] 941.70 X

25bar 707.04 fail [268.5, 387.1] 633.93 X

72bar 949.26 fail [71.58, 127.8] [70.38,∞] X

90bar [90.13, 104.3] fail [−∞,∞] [90.34,∞] X

108bar [103.3,∞] fail [−∞,∞] [110.7, 249.3] X

200bar [7681,∞] fail license limit [7353,∞] X

clay0203m 1.56 2.03 43.13 0.13
clay0204m 48.25 4.79 85.50 0.54 X

clay0205m 971.83 27.73 1162.00 4.80 X

clay0303m 1.29 2.85 62.17 0.37
clay0304m 14.77 16.31 187.38 0.88 X

clay0305m 3584.73 27.65 1112.42 7.30 X

du-opt 137.39 [−8727,∞] 2204.70 0.97 X

du-opt5 150.54 [−2437, 9.012] 697.10 0.46 X

ex1263 0.86 2.83 249.39 0.97
ex1264 0.97 1.49 325.47 0.51
ex1265 1.19 11.57 [0, 15.1] 0.66 X

ex1266 0.39 7.91 1.50 0.12
ex4 1.54 8.98 28.15 0.34
fac3 0.20 [24208886, 31985546] 44.26 0.57 X

feedtray2 0.12 18.86 181.45 1.47 X

lop97ic [2549,∞] [3826,∞] [−∞,∞] [2576, 4358] X

lop97icx [2812, 4415] [3903, 4272] [0, 5259] [3612, 4124] X

meanvarx 0.11 1.59 0.13 0.08
netmod_dol1 [−0.7817,−0.08079] [−0.8333,−0.2579] license limit [−0.607,−0.56]
netmod_dol2 [−0.6162,−0.1459] [−0.6504,−0.1254] license limit 50.85
netmod_kar1 508.78 [−0.6209,−0.3697] [−0.5549,−0.4198] 5.63 X

netmod_kar2 508.71 [−0.621,−0.3697] [−0.6626,−0.4198] 5.64 X

nous1 641.19 [1.345, 1.567] 41.44 [0.9966, 1.567] X

nous2 0.97 2.69 0.36 265.50
nuclear14a [−12.26,∞] [−12.26,∞] [−∞,∞] [−247,−1.074] X

nuclear14b [−2.078,−1.107] [−2.234,∞] [−∞,∞] [−197.8,−1.101] X

nuclear14 [−∞,∞] [−∞,−1.12] [−∞,−1.126] [−∞,−1.122] X

nuclearva [−∞,∞] [−∞,−1.005] [−∞,∞] [−∞,∞] X

nvs19 12.14 778.31 457.04 0.26 X

nvs23 44.54 [−1380,−1109] 2533.14 0.43 X

pb302035 [−∞,∞] fail [−∞,∞] [1133674, 3993292] X

pb351535 [−∞,∞] fail fail [1666134, 5069392] X

product fail fail [−2200,−2092] 89.14 X

product2 fail fail license limit [−2106,−2099]
qap [103040, 388250] [0,∞] [−∞,∞] [26372, 414268] X

qapw [265372, 391210] [0,∞] [0, 405354] [30350, 405088] X

sep1 0.04 0.33 0.14 0.08
space25a [99.99, 490.2] [35.09,∞] [330.6, 489.2] [73.42,∞] X

space25 [84.91, 520.9] [42.68,∞] [33.07, 638.8] [72.46,∞] X

spectra2 3.33 [−1072, 19.2] 109.91 0.55 X

tln5 798.56 [6.592, 10.3] 174.02 129.53 X

tln6 [13.75, 15.3] [7.801, 15.3] 182.23 [9.88, 15.3] X

tln7 [12.38, 15.6] [5.038, 16.1] [14.2, 15.6] [6.303, 15.2] X

tln12 [32.73,∞] [16.19,∞] [85.8, 139.1] [16.41, 91.6] X

tloss 0.10 2.99 0.27 0.14
tltr 0.14 1.61 1.43 0.11
util 0.28 1.32 6.12 0.31
waste [306.7, 712.3] fail 1532.71 [308.2, 681.7] X



194 Berthold, Gleixner, Heinz, Vigerske

Table 7. Problem statistics for convex MINLP testset.

instance original problem presolved problem

vars int bin linear nonlin vars int bin linear quad nonlin

BatchS101006M 279 0 129 1018 2 298 0 120 690 0 29
BatchS121208M 407 0 203 1510 2 430 0 192 1044 0 35
BatchS151208M 446 0 203 1780 2 472 0 192 1215 0 38
BatchS201210M 559 0 251 2326 2 590 0 240 1595 0 43
clay0303h 99 0 21 114 36 99 0 21 114 0 36
clay0304h 176 0 36 210 48 176 0 36 210 0 48
clay0304m 56 0 36 58 48 54 0 34 57 48 0
clay0305h 275 0 55 335 60 275 0 55 335 0 60
clay0305m 85 0 55 95 60 81 0 51 93 60 0
FLay04H 234 0 24 278 4 234 0 24 278 0 4
FLay05H 382 0 40 460 5 382 0 40 460 0 5
FLay05M 62 0 40 60 5 62 0 40 60 0 5
FLay06M 86 0 60 87 6 86 0 60 87 0 6
fo7_2 114 0 42 197 14 82 0 42 137 0 14
fo7 114 0 42 197 14 82 0 42 137 0 14
fo8 146 0 56 257 16 102 0 56 173 0 16
m6 86 0 30 145 12 62 0 30 101 0 12
m7 114 0 42 197 14 80 0 42 133 0 14
o7_2 114 0 42 197 14 90 0 42 153 0 14
RSyn0805H 308 0 37 426 3 141 0 36 169 0 3
RSyn0805M02M 360 0 148 763 6 194 0 106 563 0 6
RSyn0805M03M 540 0 222 1275 9 296 0 176 937 0 9
RSyn0805M04M 720 0 296 1874 12 406 0 246 1405 0 12
RSyn0810M02M 410 0 168 854 12 223 0 119 615 0 12
RSyn0810M03M 615 0 252 1434 18 342 0 198 1031 0 18
RSyn0820M 215 0 84 357 14 105 0 48 209 0 14
RSyn0830M04H 2344 0 496 4156 80 977 0 405 2067 0 80
RSyn0830M 250 0 94 405 20 132 0 57 249 0 20
RSyn0840M 280 0 104 456 28 157 0 65 291 0 28
SLay06H 343 0 60 435 1 343 0 60 435 1 0
SLay07H 477 0 84 609 1 477 0 84 609 1 0
SLay08H 633 0 112 812 1 633 0 112 812 1 0
SLay09H 811 0 144 1044 1 811 0 144 1044 1 0
SLay09M 235 0 144 324 1 235 0 144 324 1 0
SLay10M 291 0 180 405 1 291 0 180 405 1 0
sssd-10-4-3 68 0 52 30 12 68 0 52 30 0 12
sssd-12-5-3 95 0 75 37 15 95 0 75 37 0 15
sssd-15-6-3 132 0 108 45 18 132 0 108 45 0 18
Syn15M04M 340 0 120 762 44 192 0 80 409 0 44
Syn20M03M 315 0 120 657 42 190 0 82 375 0 42
Syn20M04M 420 0 160 996 56 259 0 115 572 0 56
Syn30M02M 320 0 120 564 40 185 0 77 320 0 40
Syn40M03H 1146 0 240 1914 84 344 0 173 637 0 84
Syn40M 130 0 40 198 28 104 0 33 162 0 28
uflquad-20-150 3021 0 20 3150 1 3021 0 20 3150 1 0
uflquad-30-100 3031 0 30 3100 1 3031 0 30 3100 1 0
uflquad-40-80 3241 0 40 3280 1 3241 0 40 3280 1 0



Extending SCIP for solving MIQCPs 195

Table 8. Results for convex MINLP testset.

instance AlphaECP BONMIN-BB BONMIN-Hyb BONMIN-QG DICOPT SBB SCIP

BatchS101006M 67.51 25.90 21.38 22.28 9.30 90.04 13.46
BatchS121208M 159.89 52.35 60.39 60.16 5.08 217.35 70.88
BatchS151208M 279.57 235.90 117.35 144.64 10.38 274.89 126.27
BatchS201210M 124.19 218.52 140.83 169.00 9.15 220.50 82.19
clay0303h 1.70 31.31 10.67 3.11 30.82 4.42 0.68
clay0304h 16.90 193.47 70.82 27.68 [7088, 58357] 228.26 1.94
clay0304m 12.78 63.50 48.29 8.61 [7180, 58357] 11.76 0.85
clay0305h 94.13 [8070, 8092] 70.47 14.41 1075.33 464.75 13.08
clay0305m 20.07 723.15 42.80 [−∞, 8289] 2227.20 27.60 7.26
FLay04H 99.99 52.47 50.23 15.17 494.68 6.07 4.84
FLay05H [−∞, 64.5] 1993.43 1308.71 1080.98 [57.96, 64.5] 1809.22 294.48
FLay05M [−∞, 64.5] 593.36 284.01 246.33 [61.99, 64.5] 1.00 67.83
FLay06M [−∞, 66.93] [60, 66.93] [60.88, 66.93] [59.87, 66.93] [55, 66.93] [56.16, 66.93] 3254.95
fo7_2 16.76 [6.844, 19.96] 81.40 68.38 [13.66, 29.15] [9.9, 17.75] 49.43
fo7 104.70 [8.346, 25.84] 153.74 217.86 [11.75, 33.68] [8.195, 29.95] 129.52
fo8 474.99 [7.067, 30.22] 961.07 2451.36 [14.75,∞] [6.232, 46.72] 236.46
m6 0.66 1057.83 13.67 3.14 0.14 868.92 4.90
m7 4.37 [75.93, 106.8] 73.39 20.79 0.47 [83.48, 106.8] 18.06
o7_2 773.09 [23.89, 134.4] 632.51 2344.03 [67.55,∞] [55.67, 138.2] 790.18
RSyn0805H 0.09 3.37 30.35 1.09 0.05 0.55 0.37
RSyn0805M02M 7.54 [−2385,−2238] [−∞,−2153] [−∞,−2148] 3.45 [−2418,−2198] 12.99
RSyn0805M03M 16.51 [−3388,−3065] [−∞,−2625] [−∞,−2966] 7.99 [−3900,−2704] 18.84
RSyn0805M04M 13.67 [−7846,−7141] 72.00 [−∞,−7140] 8.59 [−8191,−7163] 23.12
RSyn0810M02M 10.81 [−3194,−1710] [−∞,−1711] [−∞,−1682] 5.03 [−3327,−1585] 44.82
RSyn0810M03M 38.24 [−4143,−2704] [−∞,−2633] [−∞,−2655] 11.37 [−5826,−2486] 46.01
RSyn0820M 0.62 [−1228,−1150] [−1150,−1033] [−1317,−1150] 0.18 [−1479,−1116] 1.53
RSyn0830M04H 11.42 398.73 122.20 75.31 5.39 676.27 3.22
RSyn0830M 1.31 [−610,−509.9] [−∞,−497.9] [−684,−506.7] 0.46 [−1567,−504.1] 3.34
RSyn0840M 0.94 [−822.4,−318.6] 537.66 [−664.8,−308.4] 0.31 [−1764,−115] 2.74
SLay06H 602.70 4.20 26.99 3.07 33.41 143.73 16.74
SLay07H 2573.58 8.79 44.51 7.52 42.60 2988.40 47.88
SLay08H [−∞, 84960] 13.71 154.02 48.86 2220.36 [82526, 85728] 323.05
SLay09H [−∞, 107806] 27.70 268.53 555.13 [105649, 108645] [103146, 114342] 1483.84
SLay09M [−∞, 108521] 10.29 46.16 202.57 797.99 10.57 91.21
SLay10M [−∞, 131168] 118.87 382.70 [126913, 129580] [121630, 132180] 37.01 [106361, 129580]
sssd-10-4-3 1.23 14.59 1.11 [−∞, 174854] 2.30 [78151, 183184] 0.91
sssd-12-5-3 14.04 58.70 12.63 23.08 21.64 [100794, 315015] 2.02
sssd-15-6-3 321.45 240.46 877.70 62.87 715.62 [155130, 517747] 3.58
Syn15M04M 0.54 356.32 [−∞,−4892] [−∞,−4924] 0.16 52.90 1.17
Syn20M03M 0.51 [−∞,−2598] [−2647,−2596] [−∞,−2615] 0.08 [−3207,−2647] 1.46
Syn20M04M 1.17 [−∞,−3512] 21.96 [−3544,−3503] 0.13 [−5120,−3452] 9.45
Syn30M02M 0.67 [−681,−378.7] [−∞,−389.7] [−∞,−362.6] 0.12 [−2541,−356.9] 1.56
Syn40M 0.17 1407.02 [−∞,−55.71] [−205.4,−60.76] 0.04 [−492.8,−67.71] 0.62
Syn40M03H 2.99 25.85 [−∞,−0] 5.85 1.08 15.04 1.19
uflquad-20-150 [−∞, 630.2] 495.58 [258.4, 653.2] [241.1, 596.9] [240.8, 727.5] [359.4, 1026] [132.3, 4313]
uflquad-30-100 [−∞, 415] 721.82 [163.6, 399.6] [144.2, 430] [147, 441.8] [249.9, 558.5] [97.56, 2953]
uflquad-40-80 [−∞, 393.6] [304.3, 348.1] [103.1, 1896] [103.1, 1896] [119.8, 440] [221.5, 402.7] [97.28, 905.5]





33

Solving a general mixed-integer quadratic
problem through convex reformulation: a

computational study

Alain Billionnet Sourour Elloumi Amélie Lambert

CEDRIC-ENSIIE
1, square de la résistance

Evry, 91026 Cedex, France

{alain.billionnet,sourour.elloumi,amelie.lambert}@ensiie.fr

Abstract

Let (QP ) be a mixed integer quadratic program that consists of min-
imizing a quadratic function subject to linear constraints. In this pa-
per, we present a convex reformulation of (QP ), i.e. we reformulate
(QP ) into an equivalent program, with a convex objective function.
Such a reformulation can be solved by a standard solver that uses a
branch and bound algorithm. This reformulation, that we call MIQCR
(Mixed Integer Quadratic Convex Reformulation), is the best one
within a convex reformulation scheme, from the continuous relaxation
point of view. It is based on the solution of an SDP relaxation of
(QP ). Computational experiences were carried out with instances of
(QP ) with one equality constraint. The results show that most of the
considered instances, with up to 60 variables, can be solved within 1
hour of CPU time by a standard solver.
Keywords: mixed integer quadratic programming, convex reformu-
lation, semidefinite programming, experiments.

1. Introduction

Consider the following linearly-constrained mixed-integer quadratic program:

197



198 Billionnet, Elloumi, Lambert

(QP )

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

Min f(x)

s.t.

N
X

i=1

arixi = br r = {1, . . . , m} (33.1)

N
X

i=1

dsixi 6 es s = {1, . . . , p} (33.2)

0 6 xi 6 ui i ∈ I (33.3)
0 6 xi 6 ui i ∈ J (33.4)
xi ∈ N i ∈ I (33.5)
xi ∈ R i ∈ J (33.6)

where I = {1, . . . , n} is the sub-set of integer variable indices, J = {n+ 1, . . . , N}
is the sub-set of real variable indices,

f(x) = x
T
Qx + c

T
x =

X

(i,j)∈I2

qijxixj +
X

(i,j)∈I×J

2qijxixj +
X

(i,j)∈J2

qijxixj +
X

i∈I∪J

cixi

and Q ∈ SN (space of symmetric matrices of order N), c ∈ RN , A ∈Mm,N (space
of m×N matrices), b ∈ Rm, D ∈Mp,N , e ∈ Rp, u ∈ NN .

We suppose that the sub-function of the products of real variables of h(x):
X

(i,j)∈J2

qijxixj is convex.

(QP ) belongs to the class of NP-hard problems [3]. Standard solvers [5, 2]
can efficiently solve Mixed Integer Quadratic Programs (MIQP), but only in the
specific case where f(x) is convex. Thus, to solve (QP ) by use of a standard
solver, we choose to reformulate it into another program with a convex objective
function. By convex reformulation, we mean to design a program, that is equivalent
to (QP ), and that has a convex objective function. In concrete terms, that will
consist of perturbing the Q matrix of f(x) in order to obtain a positive semidefinite
matrix. In this work, we first define a convex reformulation scheme, and then
we compute, within this scheme, the optimal convex reformulation in terms of
continuous relaxation bound. To do it, we introduce new variables yij , and new
linear constraints to enforce the equality yij = xixj . These new variables will allow
the perturbation of each term of matrix Q. In a sense, our approach mixes ideas of
linearization and convexification.

In the rest of the paper, we present our approach, that we denote by MIQCR

(Mixed Integer Quadratic Convex Reformulation). In Section 2, we propose a
reformulation scheme of (QP ) into an equivalent mixed-integer quadratic program
(QPα,β) depending on a scalar parameter α, and on a matrix parameter β. In Sec-
tion 3, we show how to compute α∗ and β∗, the values of α and β that maximize
the optimal value of the continuous relaxation of (QPα,β). We show that α∗ and
β∗ can be deduced from the solution of a semidefinite relaxation of (QP ). Finally,
in Section 4, we evaluate MIQCR from the computational point of view. Our exper-
iments are carried out on instances of (QP ) with one equality constraint. Section
5 is a conclusion.

2. A convex reformulation scheme for mixed-integer quadratic
programs

In this section, we rewrite (QP ) into an equivalent mixed-integer quadratic program
(QPα,β) with a convex objective function. The idea is to add to the initial objective



Convex reformulation of MIQPs: a computational study 199

function f(x) the following functions that vanish on the feasible domain of (QP )
under the assumption that yij = xixj , ∀(i, j) ∈ P , where P = {(i, j) ∈ (I × I) ∪
(I × J) ∪ (J × I)}.

• α

m
X

r=1

(
X

i∈I∪J

arixi − br)
2 where α ∈ R.

•
X

(i,j)∈P

βij(xixj − yij) , where βij ∈ R and βij = βji ∀(i, j) ∈ P , or equiva-

lently, we consider β ∈ SN with βij = 0 ∀(i, j) ∈ J2.

We obtain the following program (QPα,β):

(QPα,β)

8

<

:

Min fα,β(x, y)
s.t. (33.1)(33.2)

x, y, z, t ∈ Pxyzt

where

fα,β(x, y) = f(x) +
X

(i,j)∈P

βij(xixj − yij) + α

m
X

r=1

(
X

i∈I∪J

arixi − br)
2

and Pxyzt is the following set:

Pxyzt

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

x, y, z, t :

(33.3)(33.4)

xi =

⌊log(ui)⌋
X

k=0

2k
tik i ∈ I (33.7)

zijk 6 ujtik (i, k) ∈ E, j ∈ I ∪ J (33.8)
zijk 6 xj (i, k) ∈ E, j ∈ I ∪ J (33.9)
zijk > xj − uj(1− tik) (i, k) ∈ E, j ∈ I ∪ J (33.10)
zijk > 0 (i, k) ∈ E, j ∈ I ∪ J (33.11)

yij =

⌊log(ui)⌋
X

k=0

2k
zijk (i, j) ∈ I × I ∪ J (33.12)

tik ∈ {0, 1} (i, k) ∈ E (33.13)
yij = yji (i, j) ∈ P (33.14)
yij > xiuj + xjui − uiuj (i, j) ∈ P (33.15)
yii > xi i ∈ I (33.16)
yij 6 uixj (i, j) ∈ I × J (33.17)

with E = {(i, k) : i = 1, . . . , n, k = 0, . . . ⌊log(ui)⌋}.

It is proven in [4] that (QPα,β) is equivalent to (QP ).

3. Computing the best convex reformulation : the MIQCR method

In this section, we show how to compute, by semidefinite programming, values of α∗

and β∗ that make fα∗,β∗(x, y) convex, and that maximize the continuous relaxation
value of (QPα∗,β∗), that is to say we have to solve the following problem (CP ):

(CP ) : max
α∈R,β∈SN

βij=0, (i,j)∈J2

Qα,β�0

{v(QP α,β)}

where (QPα,β) is the continuous relaxation of (QPα,β), v(QPα,β) is the optimal

solution value of (QPα,β) and Qα,β = Q+αATA+β. Recall that βij = 0, ∀(i, j) ∈
J2.



200 Billionnet, Elloumi, Lambert

Theorem 33.1. [4] Let (SDP ) be the following semidefinite program:

(SDP )

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

Min f(X, x) =

N
X

i=1

N
X

j=1

qijXij +

N
X

i=1

cixi

s.t. (33.1)(33.2)(33.4)
m

X

r=1

(
N

X

i=1

(
N

X

j=1

ariarjXij − 2aribrxi)) = −
m

X

r=1

b
2
r (33.18)

Xij 6 ujxi (i, j) ∈ P (33.19)
Xij 6 uixj (i, j) ∈ P (33.20)
−Xij 6 −ujxi − uixj + uiuj (i, j) ∈ P (33.21)
−Xij 6 0 (i, j) ∈ P (33.22)
−Xii 6 xi i ∈ I (33.23)
„

1 x

xT X

«

� 0 (33.24)

x ∈ RN X ∈ SN (33.25)

An optimal solution (α∗, β∗) of (CP ) can be deduced from the optimal values of
the dual variables of (SDP ). The optimal coefficient α∗ is the optimal value of the
dual variable associated with constraint (33.18). The optimal coefficients β∗

ij are

computed as β∗
ij = β1∗

ij +β2∗
ij −β3∗

ij −β4∗
ij , for (i, j) ∈ P, i 6= j, and β∗

ii = β1∗
ii +β2∗

ii −
β3∗

ii − β4∗
ii − β5∗

ii , i ∈ I where β1∗
ij , β2∗

ij , β3∗
ij , β4∗

ij , and β5∗
ii , are the optimal values

of the dual variables associated with constraints (33.19), (33.20), (33.21), (33.22),
and (33.23), respectively.

From Theorem 33.1, we design an exact solution algorithm for non-convex
mixed-integer quadratic programs (QP ) based on the MIQCR approach:

Solution algorithm to (QP ) based on MIQCR

1 Solve the semidefinite program (SDP )
2 Deduce α∗ and β∗ as in Theorem 33.1.
3 Solve the program (QPα∗,β∗), by a MIQP solver.

(Its continuous relaxation (QPα∗,β∗) is a convex program with an optimal
value equal to the optimal value of (SDP ))

To illustrate our approach, we consider the following example.

Example 33.2. Let (QPe) be an instance of (QP ) with 2 integer and 2 continuous
variables:

(QPe)

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

Min f(x) = xT

0

B

B

@

−7 3 −15 −4
3 −14 −7 −13

−15 −7 8 7
−4 −13 7 12

1

C

C

A

x +

0

B

B

@

15
10
−7
−4

1

C

C

A

T

x

s.t 5x1 + x2 + 8x3 + 4x4 = 95
0 6 xi 6 10 i ∈ {1, . . . , 4}
x1, x2 ∈ N
x3, x4 ∈ R

Observe that the sub-matrix

„

8 7
7 12

«

is positive semidefinite. The optimal

solution of (QPe) is x = (8, 10, 2.03, 7.19) and its value is −3434.27. We perturb



Convex reformulation of MIQPs: a computational study 201

the Q matrix as follows:
0

B

B

@

−7 + β11 + 25α 3 + β12 + 5α −15 + β13 + 40α −4 + β14 + 20α

3 + β12 + 5α −14 + β22 + α −7 + β23 + 8α −13 + β24 + 4α

−15 + β13 + 40α −7 + β23 + 8α 8 + 64α 7 + 32α

−4 + β14 + 20α −13 + β24 + 4α 7 + 32α 12 + 16α

1

C

C

A

where the optimal value of the α parameter is 291.49, and the optimal values of the
β parameter are: β11 = β13 = β14 = 0, β12 = −8.73, β22 = 18.22, β23 = −0.005,
and β24 = 4.16. For the reformulated problem, the optimal value of the continuous
relaxation equals −3434.45. The integrality gap is hence of 0.005%.

4. Computational results

Our experiments concern instances of (QP ) that consists of minimizing a quadratic
function subject to a linear equality constraint.

(MQP )

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Min xT Qx + cT x

s.t.

N
X

i=1

aixi = b

0 6 xi 6 ui i ∈ I ∪ J

xi ∈ N i ∈ I

xi ∈ R i ∈ J

For this problem, we generate two classes of problems (MQP1) and (MQP2).
For these two classes we randomly generate the coefficient u, Q, c, a and b in the
same way, and we vary the number of integer variables. More precisely the coeffi-
cients of Q ∀ (i, j) ∈ P are integers uniformly distributed in the interval [−100, 100]
( for any i < j, a number ν is generated in [−100, 100], and then qij = qji = ν). To
generate the coefficients of Q ∀ (i, j) ∈ J2, we generate a matrix M ∈MN−n of in-
tegers uniformly distributed in the interval [−10, 10], and we compute M ′ = MTM
then qij = m′

ij , ∀(i, j) ∈ J2. The c coefficients are integers uniformly distributed
in the interval [−100, 100]. The ai coefficients are integers uniformly distributed in

the interval [1, 50], b = 20 ∗

n
X

i=1

ai and ui = 50, i ∈ I. Note that in these instances

the solution xi = 20, for all i is feasible. For the class (MQP1), we take 1/3 of
integer variables, and 2/3 of continuous ones. For the class (MQP2), we take 2/3
of integer variables, and 1/3 of continuous ones. For each problem and for each
N = 40, 50, or 60, we generate 5 instances obtaining a total of 30 instances.

Our experiments are carried out on a PC with an Intel core 2 duo processor
2.8 GHz and 2048 MB of RAM using a Linux operating system. We use the
modeling language ampl and the solver Cplex version 11 [2] for solving mixed
integer quadratic convex programs, and the solver CSDP [1] for solving semidefinite
programs.
Legends of the tables:

• Name: Problem i r nb, where i is the number of integer variables in
(QP ), r is the number of real variables in (QP ) and nb is the instance
number.

• Optimum: best solution found within 1 hour of CPU time.



202 Billionnet, Elloumi, Lambert

MIQCR

Name Optimum initial gap CSDP time(s) Cplex time (s) nodes
MQP1 13 27 1 -1441722.34 0 1240 5 0
MQP1 13 27 2 -4001173.84 0 1252 3 0
MQP1 13 27 3 -4072930.12 0 1587 5 0
MQP1 13 27 4 -4303086.42 0 1294 4 0
MQP1 13 27 5 -5792796.84 0 1246 4 6

average 0 1323.8 4.2 1.2
MQP1 16 34 1 -6770822.01 0 6088 10 0
MQP1 16 34 2 -4281691.17 1.07 4746 57 58
MQP1 16 34 3 -12003888.62 0 4747 17 7
MQP1 16 34 4 -14917101.36 0 4726 11 0
MQP1 16 34 5 -8450308.13 0.15 4744 42 51

average 0.24 5010.2 27.4 23.2
MQP1 20 40 1 -11331739.74 0 14756 55 9
MQP1 20 40 2 -9541493.46 0.20 17959 142 52
MQP1 20 40 3 -11243727.11 0.37 14530 46 14
MQP1 20 40 4 -17871860.96 0 14682 38 0
MQP1 20 40 5 -11194683.38 0.15 15835 61 16

average 0.14 15552.4 68.4 16.2

Table 1. Solution of MQP1

MIQCR

Name Optimum Initial gap CSDP time(s) Cplex time (s) nodes
MQP2 27 13 1 -12764814.30 1.53 4698 331 632
MQP2 27 13 2 -13063090.09 0.73 4703 91 99
MQP2 27 13 3 -12210409.85 2.72 4720 234 390
MQP2 27 13 4 -15060832.30 0.80 4691 131 268
MQP2 27 13 5 -11550064.15 0.83 4714 91 91

average 1.32 4705.2 175.6 296
MQP2 34 16 1 -15746064.71 0.80 19164 1626 3088
MQP2 34 16 2 -21504640.72 0.83 19100 104 0
MQP2 34 16 3 -16337803.32 2.36 19245 1541 1349
MQP2 34 16 4 -17942418.38 2.05 19174 1637 3973
MQP2 34 16 5 -21394688.60 0.49 20327 646 210

average 1.31 19402 1180.8 1724
MQP2 40 20 1 -34437235.29 0.08 54539 838 38
MQP2 40 20 2 -26342341.28 2.29 54701 - 829
MQP2 40 20 3 -25124557.73 6.61 54656 - 635
MQP2 40 20 4 -27395752.85 11.02 54826 - 873
MQP2 40 20 5 -22573097.16 8.69 54817 - 1038

average 5.73 54707.8 838 (1) 682.6

Table 2. Solution of MQP2

• Initial gap:

∣

∣

∣

∣

opt− l
opt

∣

∣

∣

∣

∗ 100 where l is the optimal value of the continuous

relaxation at the root node.
• CSDP time: CPU time (in seconds) required by the SDP solver to find

the optimal solution of the semidefinite relaxation of the initial problem.
• Cplex time: CPU time (in seconds) required by the branch-and-bound

algorithm to solve the reformulated program. The time limit is fixed to 1
hour.

• nodes: number of nodes visited by the branch-and-bound algorithm.

Tables 1 and 2 present the results for the classes (MQP1) and (MQP2), re-
spectively. For the class (MQP1), that has less integer variables than real ones,
every instance of size 40, 50 or 60 can be solved by the MIQP solver in less than 142



Convex reformulation of MIQPs: a computational study 203

seconds. For these instances the average initial gap over the 15 instances is of 0.13%
and hence the number of nodes visited during the Branch & Bound algorithm after
reformulation is rather small, with an average of 13.5 nodes. Experiments on this
class of problems give good first results. To experiment the impact of the ratio of
integer variables on the MIQCR approach, we generate a second class of instances,
(MQP2), in the same way that for (MQP1), but we invert the ratio of integer
variables versus the real one. The results reveal a similar trend. However, for this
class of problems, MIQCR leads to a reformulated problem with bounds obtained
by continuous relaxation a bit worst in comparison to the class (MQP1). Indeed,
the average initial gap increases from 0.13% for (MQP1) to 2.79% for (MQP2).
Consequently, the number of nodes visited in the Branch & Bound algorithm is
then increased, with an average of 900.8 nodes. is only able to solve 8 instances
over the 15 proposed. Finally, let us mention the preprocessing time associated
with the optimal solution of the semidefinite programs. For the class (MQP1) it
takes 1323.8 seconds, 5010.2 seconds and 15552.4 seconds on average, for instances
of size 40, 50, and 60, respectively. For the class (MQP2), this time is larger, with
an average of 4705.2 seconds, ac seconds and ac seconds, for instances of size 40,
50, and 60, respectively. Observe that, as every feasible dual of (SDP ) provides α,
and β that make convex the objective function of the reformulated problem [4], and
because the SDP solvers often provide dual feasible solutions as they progress, the
solution of semidefinite programs can be stopped after a fixed time. This possibility
is interesting for large instances since SDP solvers generally find a good solution
very quickly.

5. Conclusion

In this paper, we present a computational study of MIQCR, a convex reformulation
of general mixed-integer programs. The approach has two phases: the first phase
consists of building a convex reformulation of (QP ), and in the second phase the
reformulated problem is submitted to a MIQP solver. Computational experiments
on two types of problems show that after the reformulation by the MIQCR approach,
most of the instances proposed can be solved within 1 hour of CPU time. How-
ever, the time to compute the parameters of the reformulation is still weighty, and
an important future direction for research consists of trying to decrease the SDP
solution time.

References

1. B. Borchers. A C library for semidefinite programming. Optimization Methods
and Software, 11(1):613–623, 1999.

2. ILOG. Ilog CPLEX 11.0 reference manual. ILOG CPLEX Division, Gentilly,
2008.

3. D.S. Johnson and M.R. Garey. Computers and intractability: A guide to the
theory of NP-completness. W.H. Freeman, San Francisco, 1979.

4. A. Lambert, S. Elloumi, and A. Billionnet. Solution of general mixed-integer
quadratic programs through convex reformulation. Mathematical Programming,
accepted for publication.



204 Billionnet, Elloumi, Lambert

5. N. Sawaya, F. Margot, A. Lodi, Lee J., C. Laird, I. Grossmann, G. Cornuéjols,
A. Conn, L. Biegler, and P. Bonami. An algorithmic framework for convex mixed
integer nonlinear programming. Discrete Optimization, 5:186–204, 2005.



34

Reduced RLT constraints for polynomial
programming

Sonia Cafieri1 Pierre Hansen2 Lucas Létocart3

Leo Liberti4 Frédéric Messine5

1 ENAC, 7 av. E. Belin, 31055 Toulouse, France
sonia.cafieri@enac.fr

2 GERAD & HEC Montréal, Canada
pierre.hansen@gerad.ca

3 LIPN, Univ. de Paris Nord, France
lucas.letocart@lipn.univ-paris13.fr

4 LIX, École Polytechnique, France
liberti@lix.polytechnique.fr

5 ENSEEIHT-IRIT, Toulouse, France
frederic.messine@n7.fr

Abstract

An extension of the reduced Reformulation-Linearization Technique
constraints from quadratic to general polynomial programming prob-
lems with linear equality constraints is presented and a strategy to
improve the associated convex relaxation is proposed.
Keywords: polynomial, MINLP, sBB, convex relaxation, RLT.

1. Introduction

Reduced RLT constraints (rRLT) are a special class of Reformulation-Lineariza-
tion Technique (RLT) constraints, that apply to nonconvex (both continuous and
mixed-integer) quadratic programming problems subject to linear equality con-
straints [2, 4, 3]. rRLT are obtained by replacing some of the quadratic terms with
suitable linear constraints. These turn out to be a subset of the RLT constraints
for quadratic programming [7].

We present an extension of the rRLT theory to the case of general polynomial
programs. Then, we show a strategy to choose the basis of a matrix involved in the
rRLT constraints generation so as to tighten the bound of the associated convex

205



206 Cafieri, Hansen, Létocart, Liberti, Messine

relaxation. This allows to improve the performance of a spatial Branch-and-Bound
algorithm applied to nonconvex NLP and MINLP problems where such convex
relaxation is computed at each node.

2. Extending rRLT to polynomial programs

Let n be the number of variables, q the degree of the polynomials in the targeted
problem and N = {1, . . . , n}, Q = {2, . . . , q}. For each monomial xj1 · · ·xjp

, p ∈ Q,
appearing in the problem, we define a finite sequence J = (j1, . . . , jp) and consider
defining constraints of the following form:

(34.1) wJ =
∏

ℓ≤|J|

xjℓ

(for |J | = 1, i.e. J = (j), we also define wJ = xj). For all p ∈ Q, J ∈ N p

and any permutation π in the symmetric group Sp we have that wJ = wπJ by
commutativity. We therefore define an equivalence relation ∼ on N p stating that
for J,K ∈ N p, J ∼ K only if ∃π ∈ Sp such that J = πK. We then consider the
index tuple set N̄ p = N p/∼ to quantify over when indexing variables wJ .

We multiply the original linear constraints Ax = b by all monomials
∏

ℓ≤p−1

xjℓ

and replace them by the corresponding added variables w(J ′,j), where J ′ ∈ N̄ p−1.
This yields the following rRLTS:

(34.2) ∀p ∈ Q, J ′ ∈ N̄ p−1 A wJ ′ = bwJ ′ ,

where wJ ′ = (w(J ′,1), . . . , w(J ′,n)). We then consider the companion system:

(34.3) ∀p ∈ Q, J ′ ∈ N̄ p−1 A zJ ′ = 0.

Since (34.3) is a linear homogeneous system, there is a matrix M such that the
companion system is equivalent to Mz = 0, the columns of which are indexed by
sequences in N̄ p. We let B ⊆ N̄ p and N ⊆ N̄ p be index sets for basic and nonbasic
columns of M . We define the following sets:

C = {(x,w) | Ax = b ∧ ∀p ∈ Q, J ∈ N̄ p(wJ =
∏

ℓ≤|J|

xjℓ
)}

RN = {(x,w) | Ax = b ∧ ∀p ∈ Q, J ′ ∈ N̄ p−1(A wJ ′ = bwJ ′) ∧
∀J ∈ N(wJ =

∏

ℓ≤|J|

xjℓ
)}.

Theorem 2.1. For each partition B,N into basic and nonbasic column indices for
the companion system Mz = 0, we have C = RN .

3. Tightening the convex relaxation

Replacing C with RN for some nonbasis N effectively replaces some monomial
terms with linear constraints, and therefore contributes to simplify the problem.
A convex relaxation for the reformulated problem is readily obtained by applying
monomial convexification methods in the literature [5, 6, 1]. We observe that
for any given linear system there is in general more than one way to partition
the variables in basics and nonbasics. Hence the set B can be chosen in such
a way as to decrease the discrepancy between the feasible region and its convex
relaxation. Given f : X ⊆ Rn → R and the sets S = {(x,w) | w = f(x)} and



rRLT for polynomial programming 207

S̄ = {(x,w) | f(x) ≤ w ≤ f̄(x)}, where f(x), f̄(x) are respectively a convex lower

and a concave upper bounding function for f (and hence S̄ is a convex relaxation
of S), the convexity gap between S and S̄ can be defined as the volume V (S) of
the set S̄. Explicit expressions of V (S) can be derived for a quadratic term x2

i ,
for a bilinear term xixj using the Cayley-Menger formula in 3 dimensions, and for
a general monomial, exploiting associativity recursively to rewrite it as product of
lower degree monomials and using the preceding results.

Let B,N be the basic/nonbasic sets of column indices of the companion system,
which we can write as MBzB + MNzN = 0. The elements of B,N are sequences
J ∈ M . For S ⊆ M and p ∈ Q we define V S,p =

∑

J∈S
|J|=p

VJ and V S =
∑

p∈Q

V S,p.

If, for all p ∈ Q, V N,p < V β,p then the total convexity gap of RN is smaller than
that of C. Thus, we aim to find N such that V N,p is minimized, or equivalently, to
find B such that V B,p is maximized for all p ∈ Q. This yields the multi-objective
problem:

(34.4)
∀p ∈ Q maxV B,p

MB is a basis of (34.3)

}

It can be shown that (34.4) is equivalent to a single-objective problem: any solution
B of (34.4) maximizing V B also maximizes V B,p for all p ∈ Q. In this way, we
have derived a technique to choose a good basis for the companion system so as
to improve the chances of tightening the lower bound of the convex relaxation
associated to rRLT.

Preliminary computational experiments carried out on a set of randomly gen-
erated instances of the convex Quadratic Knapsack Problem (cQKP) show that the
proposed strategy is promising in improving performances of a spatial Branch-and-
Bound algorithm.

References

1. S. Cafieri, J. Lee, and L. Liberti. On convex relaxations of quadrilinear terms.
Journal of Global Optimization, to appear.

2. L. Liberti. Linearity embedded in nonconvex programs. Journal of Global Op-
timization, 33(2):157–196, 2005.

3. L. Liberti. Compact linearization of binary quadratic problems. 4OR, 5(3):231–
245, 2007.

4. L. Liberti and C.C. Pantelides. An exact reformulation algorithm for large non-
convex NLPs involving bilinear terms. Journal of Global Optimization, 36:161–
189, 2006.

5. G.P. McCormick. Computability of global solutions to factorable nonconvex
programs: Part I — Convex underestimating problems. Mathematical Program-
ming, 10:146–175, 1976.

6. C.A. Meyer and C.A. Floudas. Trilinear monomials with mixed sign domains:
Facets of the convex and concave envelopes. Journal of Global Optimization,
29:125–155, 2004.

7. H.D. Sherali and A. Alameddine. A new reformulation-linearization technique
for bilinear programming problems. Journal of Global Optimization, 2:379–410,
1992.





35

Mixed-Integer Second-Order Cone
Programming for Lower Hedging of

American Contingent Claims in
Incomplete Markets

Ahmet Camci Mustafa C. Pınar

Department of Industrial Engineering
Bilkent University

Ankara, 06800, Turkey

{camci,mustafap}@bilkent.edu.tr

Abstract

We describe a very challenging class of large Mixed-Integer Second-
Order Cone Programming models which arise in computing the max-
imum price that a buyer is willing to disburse to acquire an American
contingent claim in an incomplete financial market with no arbitrage
opportunities. Taking the viewpoint of an investor who is willing
to allow a controlled amount of risk by replacing the classical no-
arbitrage assumption with a “no good-deal assumption” defined using
an arbitrage-adjusted Sharpe ratio criterion we formulate the prob-
lem of computing the pricing and hedging of an American option in
a financial market described by a multi-period, discrete-time, finite-
state scenario tree as a large-scale mixed-integer conic optimization
problem. We report computational results with off-the-shelf Mixed-
Integer Conic Optimization software.
Keywords: american options, mixed-integer second-order cone opti-
mization.

1. Introduction

The emergence of integer programming in mathematical finance has been so far
limited mainly to portfolio optimization problems where buying and selling securi-
ties were subject to fixed transaction costs or when minimum lot restrictions were
present. Cardinality constraints in the context of portfolio optimization may also
lead to the use of discrete variables; see e.g., [10, 18].

209



210 Camci, Pınar

In the present contribution, we report on a different area of mathematical fi-
nance where finite dimensional optimization models with discrete-valued variables
is of interest: pricing of stochastic cash flows. The pricing problem of stochastic
cash flows is complicated by the fact that most financial markets are incomplete,
i.e., not all future uncertain cash flows can be replicated exactly using the existing
instruments. This observation leads to a wealth of literature on pricing and hedging
in incomplete markets; see e.g., [3, 5, 8, 17]. When markets are incomplete state
prices and claim prices are not unique. Since markets are almost never complete
due to market imperfections as discussed in Carr et al. [5], and characterizing all
possible future states of economy is impossible, the common practice is to find the
cheapest portfolio dominating a stochastic future cash flow and the most expen-
sive portfolio dominated by it, and use these respective values as bounds on the
price of the stochastic cash flow. These bounds are referred to as super-replication
and sub-replication bounds or no-arbitrage (or equilibrium) bounds. They are also
known as upper hedging and the lower hedging prices. In the absence of arbitrage,
the lower hedging price is the value of the most precious self-financing portfolio
strategy composed of market instruments whose pay-off is dominated by the con-
tingent claim pay-off at expiration. The lower hedging price can also be interpreted
as the largest amount the contingent claim buyer can borrow (in the form of cash
or by short-selling stocks) to acquire the claim while paying off his/her debt in a
self-financed manner using the contingent claim pay-off at expiration [9]. Hence,
we refer to this price as the buyer’s price as well as the lower hedging price. For
European contingent claims with no early exercise and termination possibility, the
upper and lower hedging prices are expressed as supremum and infimum, respec-
tively, of the expectation of the discounted contingent claim pay-off (at expiration)
over all probability measures that make the underlying stock price a martingale.
We direct the reader to the book by Föllmer and Schied [12] for an in-depth treat-
ment of pricing contingent claims in discrete time, and to Chalasani and Jha [9]
for American contingent claims (ACC), which can be exercised at any time until
expiration. The upper hedging price for ACC is the supremum of the expectation of
the discounted contingent claim pay-off (at some time between now and expiration)
over all stopping times and all probability measures that make the underlying stock-
price process a martingale. While the upper hedging price for ACC can be cast as
a linear programming problem in discrete time [9, 16], the lower hedging price is
harder to compute since it requires the solution of a mixed-integer programming
problem [16]. Recently, Camcı and Pınar [4] showed that the lower hedging price
can also be computed by solving the LP relaxation of the mized-integer model, i.e.,
the LP relaxation is exact. On the other hand, as indicated in [12], the computed
upper and lower hedging prices may be far apart, and useless in practice.

In the present work, we are interested in pricing ACCs using a risk criterion
introduced in [11] and further developed in [6, 8]. Our work is based on good-
deals defined as investments with high arbitrage adjusted Sharpe ratio [8]. Our
motivation is to derive a tighter lower hedging price for an ACC in an incomplete
market. In a multi-period, discrete time, discrete state space framework we define
the stock price process as a non-recombinant tree and formulate a mixed-integer
second-order cone programming problem for computing the lower hedging price un-
der the Sharpe ratio risk criterion. After a brief introduction to the financial market
setting, we describe our pricing measure and give our mixed-integer second-order



Hedging American Options by Mixed-Integer Cone Optimization 211

cone optimization formulation. We develop an application using S & P 500 index
options data, and report our preliminary computational experience on these very
difficult and large problem instances whose even convex relaxation may prove tough
to handle. These instances clearly pose a challenge to the numerical optimization
community. We obtain the optimal solution of the instances using duality theory
and guesswork.

2. The Stochastic Scenario Tree

We approximate the behavior of the stock market by assuming that security prices
and other payments are discrete random variables supported on a finite probability
space (Ω,F , P ) whose atoms are sequences of real-valued vectors (asset values)
over the discrete time periods t = 0, 1, . . . , T as in [13]. We further assume the
market evolves as a discrete, non-recombinant scenario tree (hence, suitable for
incomplete markets) in which the partition of probability atoms ω ∈ Ω generated
by matching path histories up to time t corresponds one-to-one with nodes n ∈ Nt

at level t in the tree. The set N0 consists of the root node n = 0, and the leaf
nodes n ∈ NT correspond one-to-one with the probability atoms ω ∈ Ω. The σ-
algebras are such that, F0 = {∅,Ω}, Ft ⊂ Ft+1 for all 0 6 t 6 T − 1 and FT = F .
A stochastic process is said to be (Ft)

T
t=0-adapted if for each t = 0, . . . , T , the

outcome of the process only depends on which element of Ft has been realized
at stage t. Similarly, a decision process is said to be (Ft)

T
t=0-adapted if for each

t = 0, . . . , T , the decision depends on which element of Ft has been realized at stage
t. In the scenario tree, every node n ∈ Nt for t = 1, . . . , T has a unique parent
denoted π(n) ∈ Nt−1, and every node n ∈ Nt, t = 0, 1, . . . , T − 1 has a non-empty
set of child nodes C(n) ⊂ Nt+1. We denote the set of all nodes in the tree by N .
A(n) denotes the ascendant nodes or path history of node n including itself. The
probability distribution P is obtained by attaching positive weights pn to each leaf
node n ∈ NT so that

∑

n∈NT
pn = 1. For each non-terminal (intermediate level)

node in the tree we have, recursively,

pn =
∑

m∈C(n)

pm, ∀ n ∈ Nt, t = T − 1, . . . , 0.

Hence, each intermediate node has a probability mass equal to the combined mass
of the paths passing through it.

A random variable X is a real valued function defined on Ω. It can be lifted
to the nodes of a partition Nt of Ω if each level set {X−1(a) : a ∈ R} is either
the empty set or is a finite union of elements of the partition. In other words,
X can be lifted to Nt if it can be assigned a value on each node of Nt that is
consistent with its definition on Ω, [13]. This kind of random variable is said to
be measurable with respect to the information contained in the nodes of Nt. A
stochastic process {Xt} is a time-indexed collection of random variables such that
eachXt is measurable with respectNt. The expected value ofXt is uniquely defined
by the sum EP [Xt] :=

∑

n∈Nt
pnXn.

The market consists of J + 1 traded securities indexed by j = 0, 1, . . . , J with
prices at node n given by the vector Sn = (S0

n, S
1
n, . . . , S

J
n ). We assume as in

[16, 7] that the security indexed by 0 has strictly positive prices at each node of
the scenario tree.



212 Camci, Pınar

The amount of security j held by the investor in state (node) n ∈ Nt is denoted
θj

n. Therefore, to each state n ∈ Nt is associated a vector θn ∈ RJ+1. The value of

the portfolio at state n is Sn · θn =
∑J

j=0 S
j
nθ

j
n.

In our finite probability space setting an American contingent claim H is a
stochastic process measurable with respect to Nt, and hence, generates payoff op-
portunities Hn, (n > 0) to its holder depending on the states n of the market.

3. Arbitrage-Adjusted Sharpe Ratio Good-Deals

In our context a good-deal opportunity is defined as follows. Let the random variable
X represent the uncertain cash flow of an investment. The random variable X is
split into two components:

X = Xsh +Xarb,

where Xarb is a non-negative random variable measuring the arbitrage (zero risk)
component of the cash flow (we will illustrate this concept in the sequel), and Xsh

measures the Sharpe ratio component of X. Then the arbitrage-adjusted Sharpe
ratio of X is defined as

E[X]
√

σ(X)

where σ(X) denotes the variance of the random variable X. For n ∈ NT let
Sn ·θn = xn +vn where vn is non-negative. Assume that there exist a set of vectors
θ0, θ1, . . . , θ|N | such that

S0 · θ0 = 0

Sn · (θn − θπ(n)) = 0, ∀ n ∈ Nt, t > 1

and
∑

n∈NT

pnxn − λ
√

∑

n∈NT

pn(xn −
∑

n∈NT

pnxn)2 > 0

for λ > 0. This sequence of portfolio holdings is said to yield a “Sharpe ratio
good-deal opportunity” at level λ. This formulation is similar to the Sharpe ratio
criterion treated in [8, 11]. Here, the parameter λ can be interpreted as a loss
aversion parameter of the individual investor because as λ gets larger the investor
is closer to seeking an arbitrage.

4. The Formulation

Now, let us assume that an American contingent claimH is available in our financial
market setting. The potential buyer is interested in borrowing cash to acquire the
claim, and with the remaining cash to form a portfolio of traded instruments.
She/he will modify this portfolio later using proceeds from the claim (if exercised)
or through self-financing transactions. At the expiry date of the option the final
positions that the buyer carries should satisfy the Sharpe ratio risk constraint, i.e.,
the ratio of the average position to the standard deviation of the position should
remain bounded by λ. The exercise of the American contingent claim is controlled
by means of binary variables en, n ∈ N . Hence, under the assumption of no good-
deal opportunities for the stock price process, the price of the ACC that provides



Hedging American Options by Mixed-Integer Cone Optimization 213

no good-deals to the buyer must be greater than or equal to the optimal value of
the following optimization problem.

max V
s.t. S0 · θ0 = H0e0 − V

Sn · (θn − θπ(n)) = Hnen, ∀ n ∈ Nt, 1 6 t 6 T
Sn · θn − xn − vn = 0, ∀ n ∈ NT

∑

n∈NT

pnxn − λ
√

∑

n∈NT

pn(xn −
∑

n∈NT

pnxn)2 > 0

∑

m∈A(n)

em 6 1, ∀ n ∈ NT

vn > 0, ∀ n ∈ NT

en ∈ {0, 1} , ∀ n ∈ N .

This problem is a mixed integer second-order cone programming (MISOCP) prob-
lem. The first constraint ties the initial wealth (borrowed) to the value of an initial
portfolio. The second set of constraints represent the portfolio transactions at the
nodes of subsequent periods. The third constraint is the Sharpe ratio good-deal
constraint while the fourth set of constraints limits exercise to a single node over
each sample path. For computational purposes we shall work on a slightly different
model described next.

5. Calibrated Option Bounds

In the setting of [14] adopted for our numerical tests, liquid options traded in the
market are used for hedging purposes in addition to securities. These liquid options
give the investor the possibility of forming buy-and-hold strategies in the hedging
portfolio sequence. In other words, every liquid option can be bought or shorted
by the investor at time zero with the purpose of hedging a contingent claim, and
no intermediary trading is available for these options. Assuming there are K such
liquid options, we denote them by Gk, k = 1, . . . ,K. Bid and ask prices observed
in the market at time 0 for option k are denoted by Ck

b and Ck
a , respectively, with

the latter greater than or equal to the former. Gk
n is the payoff of option k at node

n of the scenario three and Gn is the vector of option payoffs at node n. At this
point we will assume that S0

n = 1, ∀n ∈ N , to use normal stock prices instead of
discounted prices. This assumption is consistent with our numerical experiments
since we use a zero interest rate. The non-negative K-vectors ξ+ and ξ− denote,
respectively, the long and short initial buy-and-hold positions in the liquid options.
Under these assumptions the buyer’s problem we shall be solving is modified as
(referred to as (P))



214 Camci, Pınar

max −S0 · θ0 − Ca · ξ+ + Cb · ξ− +H0e0
s.t. Sn · (θn − θπ(n)) = Gn · (ξ+ − ξ−) + enHn, ∀ n ∈ Nt, t > 1

∑

n∈NT

pnxn − λ
√

∑

n∈NT

pn(xn −
∑

n∈NT

pnxn)2 > 0

vn + xn = Sn · θn, ∀ n ∈ NT ,
∑

m∈A(n)

em 6 1, ∀ n ∈ NT

en ∈ {0, 1} , ∀ n ∈ N
ξ+, ξ− > 0,

vn > 0, ∀ n ∈ NT .

6. Numerical Results and Solution via Duality

We use 48 European options written on the S&P500 index. The option data were
available in the market on September 10, 2002. The first 21 are call options and
the remaining ones are put options. Strikes and maturities as well as actual bid
and ask prices (columns Cb and Ca) of these options are given in Table 1. We
compute “calibrated” pricing bounds for each option treating that option as an
American option. This means that the buyer or writer of the option can include
buy-and-hold positions in the 47 remaining European options into his/her hedge
portfolio sequence.

We use S = (1, S1) as the traded securities. Having S0 = 1 for all dates means
that interest rate is zero. We assume that the price of the S&P 500 index (i.e.
S1) follows a geometric Brownian motion. Under this assumption, we generate
a scenario tree by the Gauss-Hermite process which was discussed in [14, 15] in
detail. We use a branching structure of (50,10,10). It means that the tree divides
into 50 nodes at the second period. Then, each node branches into ten nodes in
the second period hence there are additional 500 nodes in the third period. Then,
again each node of the third period is divided into 10 and there are 5000 leaf nodes
of the tree. We assume that investors can trade at days 0, 17, 37 and 100, and
form instances of problem P with four periods, which already yields huge MISOCP
instances with up to 25,553 constraints and 31,749 variables of which 5,551 are
binary. Let X denote the strike price. We have now Hn = (S1

n − X)+ for call
options and Hn = (X − S1

n)+ for put options for all n ∈ N .
We used the conic interior point optimizer MOSEK version 5.0.0.127 [2] under

default settings through GAMS Version 23.2 [1] to determine buyer’s prices for
each option for λ = 5.7. We report computational results in Table 1. It proved
impossible to get most MINLP solvers to work on the present instances using the
primal formulation P. MOSEK was the only code to solve the convex relaxations
with some success, but it stopped immediately with an error message when the
models were input as mixed-integer conic models. In Table 1 below, the continuous
(relaxed) models marked with a B for “binary” solution, and solver and model
status both equal to 1 were solved successfully with MOSEK, and yielded an integer
e component hence the optimal solution to the original model for claims with the
earliest maturity date (day 17). However, for the remaining models either the



Hedging American Options by Mixed-Integer Cone Optimization 215

Option No. Type Strike Maturity Cb Ca Buyer’s Price

Solver
&
Model
Status

Solution

1 Call 890 17 31.5 33.5 31.22 1, 1 B
2 Call 900 17 24.4 26.4 24.67 1, 1 B
3 Call 905 17 21.2 23.2 21.80 1, 1 B
4 Call 910 17 18.5 20.1 18.92 1, 1 B
5 Call 915 17 15.8 17.4 16.09 1, 1 B
6 Call 925 17 11.2 12.6 - 4, 6 -
7 Call 935 17 7.6 8.6 7.68 1, 1 B
8 Call 950 17 3.8 4.6 3.39 1, 1 B
9 Call 955 17 3 3.7 2.99 1, 1 B
10 Call 975 17 0.95 1.45 0.65 1, 1 B
11 Call 980 17 0.65 1.15 0.66 1, 1 B
12 Call 900 37 42.3 44.3 40.58 1, 1 F
13 Call 925 37 28.2 29.6 - 4, 6 -
14 Call 950 37 17.5 19 - 4, 6 -
15 Call 875 100 77.1 79.1 75.49 1, 1 F
16 Call 900 100 61.6 63.6 59.87 1, 1 F
17 Call 950 100 35.8 37.8 - 4, 6 -
18 Call 975 100 26 28 - 4, 6 -
19 Call 995 100 19.9 21.5 - 4, 6 -
20 Call 1025 100 12.6 14.2 - 4, 6 -
21 Call 1100 100 3.4 3.8 - 4, 6 -
22 Put 750 17 0.4 0.6 - 4, 6 -
23 Put 790 17 1 1.3 1.01 1, 1 B
24 Put 800 17 1.3 1.65 1.21 1, 1 B
25 Put 825 17 2.5 2.85 2.05 1, 1 B
26 Put 830 17 2.6 3.1 2.74 1, 1 B
27 Put 840 17 3.4 3.8 3.41 4, 6 -
28 Put 850 17 3.9 4.7 4.41 1, 1 B
29 Put 860 17 5.5 5.8 5.39 4, 6 -
30 Put 875 17 7.2 7.8 7.60 4, 6 -
31 Put 885 17 9.4 10.4 10.40 1, 1 B
32 Put 750 37 5.5 5.9 - 2, 6 -
33 Put 775 37 6.9 7.7 7.60 1, 1 F
34 Put 800 37 9.3 10 9.89 1, 1 F
35 Put 850 37 16.7 18.3 - 4, 6 -
36 Put 875 37 23 24.3 22.39 1, 1 F
37 Put 900 37 31 33 32.70 1, 1 F
38 Put 925 37 41.8 43.8 43.61 1, 1 F
39 Put 975 37 73 75 72.57 1, 1 F
40 Put 995 37 88.9 90.9 - 4, 6 -
41 Put 650 100 5.7 6.7 2.73 1, 1 F
42 Put 700 100 9.2 10.2 10.10 1, 1 F
43 Put 750 100 14.7 15.8 - 4, 6 -
44 Put 775 100 17.6 19.2 - 4, 6 -
45 Put 800 100 21.7 23.7 - 4, 6 -
46 Put 850 100 33.3 35.3 32.93 1, 1 F
47 Put 875 100 40.9 42.9 - 4, 6 -
48 Put 900 100 50.3 52.3 51.99 1, 1 F

Table 1. Numerical Results for the Continuous Relaxation of Sharpe Ratio
Lower Hedging Primal Problem (P) with λ = 5.7

Solver Status Codes: 1= Normal Completion, 2=Iteration Interrupt, 4=Terminated by Solver

Model Status Codes: 1= Optimal, 6=Intermediate Infeasible, F=Fractional, B=Binary

solver successfully returned an optimal fractional solution (hence, an upper bound
on the buyer’s price), or stopped with an error message (reported in the table). It
is conjectured that the solvers run into numerical problems due to the very small
entries for the node probabilities generated from the Gauss-Hermite process. For
models with five trading dates that are even larger, it is expected that the problems
will grow even more challenging.



216 Camci, Pınar

Having failed at obtaining solutions for a large number of instances using the
primal formulation P of the problem at hand we turned at a bounding approach
using duality.

Let E be the set {en|
∑

m∈A(n) em 6 1, ∀ n ∈ NT and en ∈ {0, 1} , ∀ n ∈ N}.
Based on our earlier work [6], for fixed e ∈ E the inner maximization over the
remaining variables can be seen to be equivalent via duality to the following problem
DL over the variables qn (under a strict feasibility assumption to guarantee zero-
duality gap):

(35.1) min
∑

n∈N

enqnHn

subject to (35.2)-(35.3)-(35.4)-(35.5)-(35.6) as defined below:

(35.2) qmSm =
∑

n∈C(m)

qnSn, ∀ m ∈ Nt, 0 6 t 6 T − 1

(35.3) q0 = 1,

(35.4) qn > 0, ∀n ∈ N ,

(35.5)

√

∑

n∈NT

pn(
qn
pn

− 1)2 6 λ,

(35.6) Cb 6

T
∑

t=1

∑

n∈Nt

qnGn 6 Ca.

Solving the above problem with e fixed gives a lower bound to the optimal
value OPT (P ). Inspired by the well-known folklore result that it is sub-optimal
to exercise American options before maturity (see e.g. [12]) we fix en = 1 for all
n ∈ NT (and thereby force all other e’s to zero) and solve the above problem DL
successfully using GAMS/MOSEK (solver returns an optimal solution with default
parameter settings). The results are reported in Table 2 under column “LB” for
lower bound.

To assess the quality of the lower bound, we look for a relaxation of the problem
that would be easy to solve, and aim for the dual of the continuous relaxation of
P to give an upper bound. This dual problem, referred to as DU, is the following
problem (after some algebra and elimination of variables, the details of which are
left to the reader):

(35.7) min
∑

n∈NT

qnHn

subject to (35.2)-(35.3)-(35.4)-(35.5)-(35.6)-(35.8) where (35.8) is as defined below:

(35.8) qnHn 6
∑

m∈C(n)

qmHm ∀ n ∈ Nt, 0 6 t 6 T − 1.

Solving problem DU successfully (solver returned optimal solution with default
settings) in GAMS/MOSEK we find that the lower and upper bounds collapse for
almost all the difficult instances! The results are reported in Table 2. The small



Hedging American Options by Mixed-Integer Cone Optimization 217

Option No. Type Strike Maturity Cb Ca UB LB

6 Call 925 17 11.2 12.6 10.57 10.57

12 Call 900 37 42.3 44.3 40.58 40.58

13 Call 925 37 28.2 29.6 26.86 26.86

14 Call 950 37 17.5 19 14.32 14.32

15 Call 875 100 77.1 79.1 75.48 75.48

16 Call 900 100 61.6 63.6 59.88 59.88

17 Call 950 100 35.8 37.8 33.81 33.80

18 Call 975 100 26 28 24.99 24.99

19 Call 995 100 19.9 21.5 18.90 18.90

20 Call 1025 100 12.6 14.2 10.06 10.03

21 Call 1100 100 3.4 3.8 0.389 0.384

22 Put 750 17 0.4 0.6 0.545 0.545

27 Put 840 17 3.4 3.8 3.44 3.44

29 Put 860 17 5.5 5.8 5.41 5.41

30 Put 875 17 7.2 7.8 7.65 7.65

32 Put 750 37 5.5 5.9 3.80 3.80

33 Put 775 37 6.9 7.7 7.60 7.60

34 Put 800 37 9.3 10 9.89 9.89

35 Put 850 37 16.7 18.3 15.84 15.84

36 Put 875 37 23 24.3 22.43 22.43

37 Put 900 37 31 33 32.72 32.72

38 Put 925 37 41.8 43.8 43.62 43.62

39 Put 975 37 73 75 72.70 72.70

40 Put 995 37 88.9 90.9 87.72 87.72

41 Put 650 100 5.7 6.7 2.72 2.72

42 Put 700 100 9.2 10.2 10.02 10.02

43 Put 750 100 14.7 15.8 15.02 15.02

44 Put 775 100 17.6 19.2 17.84 17.84

45 Put 800 100 21.7 23.7 21.04 21.03

46 Put 850 100 33.3 35.3 32.97 32.97

47 Put 875 100 40.9 42.9 42.52 42.52

48 Put 900 100 50.3 52.3 52.02 52.02

Table 2. Numerical Results on the Most Difficult Instances of Table 1 for
Sharpe Ratio Lower Hedging Bounding Problems DL and DU with λ = 5.7

disprencies (always after the decimal point) between upper bounds of Table 1 and
those of Table 2 are attributed to the numerical difficulties experienced by the conic
solver when faced with the primal problem that is deemed less stable compared to
the dual models.

The above result indicates that it may be always optimal to exercise the index
options treated in this paper under Sharpe-ratio restrictions at the final period. A
result in this direction can be rigorously proven, but will be published elsewhere.

Acknowledgments

Research supported by TUBITAK Grant 107K250.

References

1. GAMS: A User’s Guide. The Scientific Press, San Fransisco, California, 1992.



218 Camci, Pınar

2. Mosek ApS. Mosek solver manual. Technical report, Mosek ApS c/o Symbion
Science Park, Fruebjergvej 3, Box 15, 2100 Copenhagen, Denmark, 2009.

3. A. E. Bernardo and O. Ledoit. Gain, loss and asset pricing. J. Political Econ-
omy, 108:144–172, 2000.

4. A. Camcı and M. Ç. Pınar. Pricing american contingent claims by stochastic
linear programming. Optimization, 58:627–640, 2009.

5. P. Carr, H. Geman, and D.B. Madan. The pricing and hedging in incomplete
markets. J. Financial Economics, 62:131–167, 2001.

6. M. Ç. Pınar. Sharpe-ratio pricing and hedging of contingent claims in incom-
plete markets by convex programming. Automatica, 44:2063–2073, 2008.

7. M. Ç. Pınar, A. Altay-Salih, and A. Camcı. Expected gain-loss pricing and
hedging of contingent claims in incomplete markets by linear programming.
European J. Oper. Res., 201:770–785, 2010.

8. A. Cerny. Generalized sharpe ratios and pricing in incomplete markets. Euro-
pean Finance Review, 7:191–233, 2003.

9. P. Chalasani and S. Jha. Randomized stopping times and american option
pricing with transaction costs. Mathematical Finance, 11:33–77, 2001.

10. T.J. Chang, N. Meade, J.E. Beasley, and Y.M. Sharaiha. Heuristics for cardi-
nality constrained portfolio optimization. Computers and Oper. Res., 27:1271–
1302, 2000.

11. J. H. Cochrane and J. Saa-Requejo. Beyond arbitrage: Good-deal asset price
bounds in incomplete markets. J. Political Economy, 108:79–119, 2000.

12. H. Föllmer and A. Schied. Stochastic Finance: An Introduction in Discrete
Time. W. De Gruyter, 2004.

13. A. J. King. Duality and martingales: A stochastic programming perspective
on contingent claims. Mathematical Programming Series B, 91:543–562, 2002.

14. A.J. King, M. Koivu, and T. Pennanen. Calibrated option bounds. Int. J. of
Theor. and Appl. Finance, 8:141–159, 2005.

15. E. Omberg. Efficient discrete time jump process models in option pricing. J.
of Financial and Quantitative Analysis, 23:161–164, 1988.

16. T. Pennanen and A. King. Arbitrage pricing of american contingent claims
in incomplete markets - a convex optimization approach. Technical report,
Helsinki School of Economics, 2006.

17. J. Staum. Fundamental theorems of asset pricing for good deal bounds. Math-
ematical Finance, 14:141–161, 2004.

18. S.A. Zenios, editor. Financial Optimization. Cambridge University Press, 1993.



36

Formulation symmetries in circle packing

Alberto Costa1 Pierre Hansen1,2 Leo Liberti1

1 LIX, École Polytechnique
91128 Palaiseau, France

{costa,liberti}@lix.polytechnique.fr

2 GERAD & HEC,
3000 ch. Côte-S.te-Catherine, H3T 2A7 Montreal, Canada

pierre.hansen@gerad.ca

Abstract

The performance of Branch-and-Bound algorithms is severely im-
paired by the presence of symmetric optima in a given problem. We
propose here a method to automatically find MINLP formulation sym-
metries. We show an application of our method to the “circle packing
in a square” problem, in order to get a reformulation that should cut
away symmetric optima.
Keywords: MINLP, spatial Branch-and-Bound, Global Optimiza-
tion, group, reformulation.

1. Introduction

It is well known that problems involving a high degree of symmetry are particu-
larly difficult to solve with Branch-and-Bound (BB) techniques. Intuitively, since
optimal solutions are to be found at leaf nodes of the BB tree, the presence of
many optima causes fewer prunings, longer branches, and hence a higher number
of nodes to explore. One possibility for breaking symmetries, proposed in [2], is to
reformulate the problem by adjoining symmetry-breaking constraints (SBC) to the
original formulation, yielding a reformulation of the narrowing type [1]. The main
theoretical contribution of this paper is the determination of the group structure
of circle packing problem.

2. Automatic symmetry detection

In this section we discuss a method for computing Mathematical Program (MP)
symmetries automatically; conceptually, it is the same as in [2] but the formal
presentation is different. We consider a Mixed-Integer Nonlinear Program (MINLP)

219



220 Costa, Hansen, Liberti

P :

(36.1) min{f(x) | g(x) ≤ 0 ∧ x ∈ X},
where f : Rn → R, g : Rn → Rm, x ∈ Rn, and X ⊆ Rn is a set which might
include variable ranges xL ≤ x ≤ xU as well as integrality constraints on a subset
of variables {xi | i ∈ Z} for some Z ⊆ {1, . . . , n}. Let G(P ) be the set of global
optima of P and F(P ) be its feasible region. The group G∗

P = stab(G(P ), Sn) is
called the solution group of P (where Sn is the symmetric group of order n). The
solution group is the largest subgroup of Sn which maps every global optimum
into another global optimum. Since G∗

P depends on G(P ) it cannot, in general, be
found before the solution process. We therefore try to find subgroups of G∗

P . In
particular, we consider the subgroup of G∗

P consisting of all variable permutations
which “fix the formulation” of P . For π ∈ Sn and σ ∈ Sm we define σPπ to be the
following MINLP:

(36.2) min{f(πx) | σg(πx) ≤ 0 ∧ πx ∈ X},
where σ acts on g = (g1, . . . , gm) by σg = (gσ−1(1), . . . , gσ−1(m)). Consider the group

ḠP = {π ∈ Sn | ∃σ ∈ Sm (σPπ) = P}. Whenever P is a Mixed-Integer Linear
Program (MILP), ḠP is called the LP relaxation group [3]. For general MINLPs,
determining whether ∀x ∈ dom(f) f(πx) = f(x) and ∀x ∈ dom(g) σg(πx) = g(x)
is an undecidable problem.

We therefore introduce the following restriction: f, gi (i ≤ m) must be strings of
the formal language L on the alphabet A given by the operators in {+,−,×,÷, ↑
, log, exp, (, )} (where a ↑ b = ab), the variable symbols in {x1, . . . , xn} and the
constant symbols in R. This restriction allow us to define the formulation group
GP = {π ∈ Sn | ∃σ ∈ Sm (σPπ ∼= P )} of P (where the symbol ∼= indicates that
the formulations are equal respetct to this restriction). It is easy to show that
GP 6 ḠP 6 G∗

P . For MILPs, GP = ḠP [2].
Once GP is known, we aim to find a reformulation Q of P which ensures that

at least one symmetric optimum of P is in G(Q). Such reformulations are known
as narrowings [1]. A set of constraints h(x) ≤ 0 are SBCs with respect to π ∈ GP

if there is y ∈ G(P ) such that h(πy) ≤ 0. Adjoining SBCs to P yields a narrowing
Q of P [2].

3. Circle Packing in a square

We consider the following problem.

Circle Packing in a Square (CPS). Given N ∈ N and L ∈
Q+, can N non-overlapping circles of unit radius be arranged in
a square of side 2L?

We formulate the CPS as the following nonconvex NLP:

(36.3) max{α | ∀i < j ≤ N ‖xi − xj‖2 ≥ 4α ∧ x ∈ [1− L,L− 1]2N}
For any given N,L > 1, if a global optimum (x∗, α∗) of (36.3) has α∗ ≥ 1 then the
CPS instance is a YES one. Using the theory above, we are able to prove this

Theorem
The formulation group of the CPS is isomorphic to S2 × SN .



Formulation symmetries in circle packing 221

This result allow us to add some SBCs to the original formulation. Some preliminary
tests show that solving the reformulated circle packing problem is more easy than
solve the original one, in term of time and nodes generated by the Spatial Branch
and Bound.

References

1. Liberti, L., Reformulations in mathematical programming: Definitions and systematics,
RAIRO-RO 43 (2009), pp. 55–86.

2. Liberti, L., Reformulations in mathematical programming: Symmetry, Mathematical Pro-
gramming (in revision).

3. Margot, F., Symmetry in integer linear programming, in: M. Jünger, T. Liebling, D. Naddef,
G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi and L. Wolsey, editors, 50 Years of

Integer Programming, Springer, Berlin, 2010 pp. 647–681.





37

Weighted Biclique Completion via
CP-SDP Randomized Rounding

Stefano Gualandi Federico Malucelli

DEI, Politecnico di Milano
viale Ponzio 34/5

Milano, 20133, Italy

{gualandi,malucell}@elet.polimi.it

Abstract

In this work, we present a randomized rounding algorithm for solving
the weighted k-Clustering Minimum Biclique Completion problem.
This problem has a significant application in telecommunications for
bundling channels in multicast transmissions. In the literature, it
has been solved to optimality with an Integer Bilinear Programming
formulation and a hybrid Constraint Programming and Semidefinite
Programming approach. In this work, we consider for the first time
the weighted version of the problem, and we propose a randomized
rounding algorithm that exploits the Semidefinite Relaxation within
a Constraint Programming solver.
Keywords: semidefinite programming, constraint programming, ran-
domized rounding.

1. Introduction

The k-Clustering Minimum Biclique Completion (k-MinBCP) problem consists in
partitioning an undirected bipartite graph into k clusters such that the sum of the
edges that complete each cluster into a biclique, i.e., a complete bipartite subgraph,
is minimum. While the problem of covering undirected graphs by bicliques has been
widely studied in the literature for its connections to factorization problems of 0/1
matrices (for a survey see [9]), the k-MinBCP problem has received little attention.
This combinatorial optimization problem is NP-hard even for k = 2, as proven in
[3]. In the literature, it has been tackled with Integer Bilinear Programming in
[3] and with an hybrid Constraint Programming and Semidefinite Programming
approach in [7].

The k-MinBCP problem has a significant application in telecommunications,
as shown in [3], for bundling channels in multicast transmissions. In this paper, we

223



224 Gualandi, Malucelli

consider a weighted version of k-MinBCP, where each edge of the complementary
bipartite graph has a positive weight. Given a set of demands of services from
clients, the application consists of finding k multicast sessions that partition the
set of demands. Each service has to belong to a single multicast session, while each
client can appear in more sessions. This problem is represented on a bipartite graph
G = (S, T,E) as follows: every service i is represented by a vertex in S, and every
client j by a vertex in T . The demand of a service i from a client j is represented
by the edge (i, j) ∈ E. In the case each service i requires a different bandwidth,
we can weight the edges incident to an edge with a positive integer proportional
to the required bandwidth. Hence, the cost of each cluster gives a measure of the
waste of bandwidth of the corresponding multicast session. Solving the k-MinBCP
problem on this bipartite subgraph, is equivalent to finding k multicast sessions that
minimize the overall waste of bandwidth.

The relaxed (weighted) version of k-MinBCP is solved in this work with an
extension of the SDP relaxation proposed in [7], but a simple cutting plane proce-
dure is used to tighten the lower bound. In addition, the SDP relaxation is used
to develop a randomized rounding heuristic enhanced by Constraint Programming.
Preliminary computational results show that this approach yields very good heuris-
tic solutions.

Notation. Let G = (S, T,E) be an undirected bipartite graph, where E ⊆
S × T . A biclique is a complete bipartite graph, that is, E = S × T . The
complementary graph of a bipartite graph is Ḡ = (S, T, Ē), with Ē = {(i, j) |
i ∈ S, j ∈ T, (i, j) /∈ E}. The bipartite subgraph induced by two subsets S′ ⊆ S and
T ′ ⊆ T is denoted by G[S′, T ′] = (S′, T ′, E′), where E′ = {(i, j) ∈ E | i ∈ S′, j ∈
T ′}. The neighborhood of a vertex i is denoted by N(i). The one-shore-induced
bipartite subgraph induced by a subset S′′ ⊆ S is denoted by G[S′′] = (S′′, T ′′, E′′),
where T ′′ =

⋃

i∈S′′ N(i), and E′′ = {(i, j) ∈ E | i ∈ S′′, j ∈ T ′′}.

2. Problem Description

Let G = (S, T,E) be a bipartite undirected graph, let k be the number of desired
clusters, and let every edge e = (i, j) in Ē have a positive integer weight ce. A subset
Sp of S induces a bipartite subgraph G[Sp] of cost cp =

∑

e∈G[Sp] ce. The weighted

k-MinBCP problem consists of partitioning the set of vertices S into k subsets
Sp, with p = 1, . . . , k, such that the sum of the cost cp of each one-shore-induced
bipartite graph G[Sp] is minimum.

Example 37.1. Figure 1.a shows a bipartite graph G with S = {1, . . . , 4} and
T = {5, . . . , 9}. Every edge incident to vertex 1 has weight 3, to vertex 2 has weight
4, to vertex 3 has weight 1, and to vertex 4 has weight 2. Figure 1.b represents
a possible 2-clustering induced by S1 = {1, 2} and S2 = {3, 4}. The dashed edges
belong to the one-shore-induced subgraph G[S1] and those in bold to G[S2]. Note
that vertex 9 belongs to both clusters. The complementary graph Ḡ is shown in
Figure 1.c. The cost of this 2-clustering is 12, given by three edges in Ḡ[S1],i.e.,
c1 = 3 + (4 + 4) = 11, and the edge in Ḡ[S2], i.e., c2 = 1.

Integer Bilinear Programming formulation. Let xip and yjp be 0–1 vari-
ables indicating whether the vertex i ∈ S and the vertex j ∈ T , respectively, are
in cluster p. Let K = {1, . . . , k} be the set of the clusters. The Integer Bilinear



Weighted Biclique Completion via CP-SDP Randomized Rounding 225

1

2

3

4

5

6

7

8

9

(a)

1

2

5

6

7
3

4
8

9

(b)

1

2

5

6

7
3

4
8

9

(c)

Figure 1. An example of the k-MinBCPproblem for k = 2.

Programming formulation of the weighted k-MinBCP problem is as follows:

w∗
k = min

∑

p∈K

∑

(i,j)∈Ē

cij xip yjp(37.1)

s.t.
∑

p∈K

xip = 1, ∀i ∈ S,(37.2)

yjp > xip, ∀(i, j) ∈ E,∀p ∈ K,(37.3)

xip ∈ {0, 1}, ∀i ∈ S,∀p ∈ K,(37.4)

yjp ∈ R+, ∀j ∈ T,∀p ∈ K.(37.5)

The objective function (37.1) minimizes the sum of the edge weights that complete
each cluster into a biclique. Constraints (37.2) assign each vertex of the shore S to
a single cluster. Constraints (37.3) force each neighbor j of a vertex i to be (also)
in the same cluster of i.

3. Semidefinite Programming relaxation

The SDP relaxation of k-MinBCP proposed in our previous work [7] is strictly
related to the SDP relaxations of the Max-Cut problem proposed in [6], of the
Max-k-Cut problem proposed in [4], and of the Min-k-Partition problem proposed
in [2]. First, we review the weighted SDP relaxation for the case k = 2, and then
we extend the formulation to the case k > 2. Finally, we investigate a stronger
formulation that uses the triangle and clique inequalities.

Case k = 2. Let xi be a {−1, 1} variable that indicates whether the vertex
i ∈ S is in the cluster S1 (xi = 1), or in the cluster S2 (xi = −1). Note that if two
vertices i and j of S are in the same cluster, then the product xixj is equal to 1,
and, otherwise, is equal to -1.

The difficult part of the SDP formulation is to take into account which edges of
the complementary bipartite graph do contribute to objective function. Let ze be
a {−1, 1} variable equal to -1 if we pay for the complementary edge e = (i, j) ∈ Ē,
and equal to 1 otherwise. The objective function must account for a given edge
e = (i, j) ∈ Ē, if there is at least another vertex l ∈ S such that (l, j) ∈ E and l is
in the same cluster of i. This relation is formulated with:

(37.6) ze = max
(l,j)∈E

{xixl}, ∀e = (i, j) ∈ Ē



226 Gualandi, Malucelli

which can be restated with the following inequalities: ze > xixl,∀e = (i, j) ∈
Ē,∀(l, j) ∈ E.

Using the vertex variables xi and the edge variables ze, the weighted 2-MinBCP
problem is formulated as follows:

w2 = min
∑

e∈Ē

ce
1 + ze

2
(37.7)

s.t. ze > xixl, ∀e = (i, j) ∈ Ē, (l, j) ∈ E,(37.8)

xi ∈ {−1, 1}, ∀i ∈ S,(37.9)

ze ∈ R, ∀e ∈ Ē.(37.10)

We derive an SDP relaxation of problem (37.7)–(37.10) using the labeling tech-
nique proposed in [6] for the Max-Cut problem. Every vertex i of S is labeled with
a unit vector vi ∈ R|S|. Then, two vertices i and j are considered to be in the same
cluster if the angle between them is small enough, that is, if vt

ivj = 1. Let V be a

matrix such that column i is given by vector vi, and let X = V tV . Let e ∈ R|S| be
a vector of all ones. The SDP relaxation of the weighted 2-MinBCP problem is as
follows:

min
∑

e∈Ē

ce
1 + ze

2
(37.11)

ze > Xil, ∀e = (i, j) ∈ Ē, (l, j) ∈ E,(37.12)

diag(X) = e,(37.13)

X � 0,(37.14)

ze ∈ R, ∀e ∈ Ē.(37.15)

Constraints (37.12) are equivalent to constraints (37.8), where each entry (i, l)
of matrix X is used for the product xixl. Constraints (37.13)–(37.14) together
correspond to relax constraints (37.9) as −1 6 Xij 6 1.

Case k > 2. We extend the relaxation (37.11)–(37.15) to the case k > 2 by
using the same technique used in [4] to derive the SDP relaxation of the Max-k-
Cut problem. The resulting model is similar to the min-k-partition formulation
presented in [8].

Let us consider k unit vectors a1, . . . ,ak ∈ Rk−1 satisfying at
iaj = − 1

k−1 , for
1 6 i 6= j 6 k. We label each vertex i ∈ S with a vector of real variable xi. The
variable vector has the domain ranging in {a1, . . . ,ak}, i.e., xi ∈ {a1, . . . ,ak}. Two
vertices i and j are in the same cluster if xt

ixj = 1, while are in different clusters
whenever xt

ixj = − 1
k−1 . Note that for k = 2, we get exactly a1 = −1, a2 = 1, and

xi ∈ {−1, 1}.
Let ze be again a variable that indicates whether we pay for the edge e = (i, j) ∈

Ē. The value of ze is assigned using the relation (37.6) defined on the vectors of
variables xi and xj . Note that in this case the possible values are either ze = − k

k−1

if there exists an edge (l, j) ∈ E such that the vertex l is in the same cluster of i,
or ze = 1 if such edge does not exist.



Weighted Biclique Completion via CP-SDP Randomized Rounding 227

The formulation of the k-MinBCP problem is as follows:

wk = min
∑

e∈Ē

ce
1 + (k − 1)ze

k
(37.16)

s.t. ze > xt
ixl, ∀e = (i, j) ∈ Ē, (l, j) ∈ E,(37.17)

xi ∈ {a1, . . . ,ak}, ∀i ∈ S,(37.18)

ze ∈ R, ∀e ∈ Ē.(37.19)

Constraints (37.17) restate the relation (37.6). Note the the objective function is
equal to either 1, if ze = 1, or is equal to 0, if ze = −1

k−1 . The SDP relaxation of the
k-MinBCP problem for k > 2 is obtained using the same labeling technique as for
k = 2, and is as follows:

wsdp = min
∑

e∈Ē

ce
1 + (k − 1)ze

k
(37.20)

ze > Xil, ∀e = (i, j) ∈ Ē, (l, j) ∈ E,(37.21)

diag(X) = e,(37.22)

Xij > − 1

k − 1
, ∀i, j ∈ S, i 6= j,(37.23)

X � 0,(37.24)

ze ∈ R, ∀e ∈ Ē.(37.25)

Together constraints (37.22)–(37.24) relax constraints (37.18) and (37.19) into− 1
k−1 6

Xij 6 1.
Valid inequalities. In order to further improve the relaxation (37.20)–(37.24),

we tried to strength the value of the SDP relaxation by generating violated valid
inequalities, in the same vein of [8, 5].

Let i, j, l be three vertices in S. Since we are solving a clustering problem, if
vertex i is in the same cluster of vertex j, and vertex j is in the same cluster of vertex
l, then necessarily, vertex i and l are in the same cluster too. With respect with
the formulation (37.16)–(37.19), this is equivalent to add the well–known triangle
inequalities:

Xij +Xjl 6 1 +Xil,(37.26)

Xjl +Xil 6 1 +Xij ,(37.27)

Xil +Xij 6 1 +Xjl.(37.28)

Note that we have 3
(

|S|
3

)

triangles that can be easily enumerated.
In addition, we consider also the clique inequalities for the set of vertices S.

The idea is that for any subset C ⊆ S, with |C| = k+ 1, at least two vertices must
be in the same cluster. For the case k = 2, the clique inequalities reduce to:

Xil +Xij +Xjl > −1(37.29)

For k > 2, the clique inequalities for Xij ∈ { −1
k−1 , 1} are as follows [5]:

(37.30)
∑

i,j∈C:i<j

Xij > −k
2
, ∀C ⊆ S, with |C| = k + 1.



228 Gualandi, Malucelli

Unfortunately, there are
(

|S|
k+1

)

of such inequalities, and therefore must be gen-
erated via a cutting plane procedure.

4. CP-SDP Randomized Rounding

Constraint Programming (CP) is a programming paradigm for solving combina-
torial problems that combines expressive modeling languages with efficient solver
implementations. The two basic concepts of CP are constraint propagation and con-
structive search. Constraint propagation is an efficient inference mechanism aiming
at reducing the domains of the problem variables by exploiting the semantics of
the problem constraints. The inference mechanism is implemented into filtering
algorithms that filter out values from the domain of each variable. When con-
straint propagation is unable to further reduce the domains of the variables, the
constructive search comes into play. Constructive search explores the search tree
by tightening the domain of a single variable at a time. In practice, it performs a
search in the space of partial solutions. The simplest form of constructive search
consists of selecting an undetermined variable, i.e., a variable having more than
a value in its domain, and labeling a value to that variable. This form of search
is called labeling. By iterating constraint propagation and labeling, the CP solver
computes the solution(s) of a given problem, or it reports that none exists. A reader
not familiar with the basic notion of Constraint Programming can refer to [1] for
an introductory textbook, or to [10] for the state-of-the-art on the research trends
in CP.

The main idea of this work is to exploit the Semidefinite Programming relax-
ation obtained after the cutting plane procedure presented in the previous section,
by devising a randomized rounding algorithm enhanced by the constraint propaga-
tion inherent in Constraint Programming. Although the idea is related to the exact
hybrid method presented in [7], we are interested here in a heuristic solution.

In addition, remark that we are not proposing a new specific randomized algo-
rithm with performance guarantees, but rather we propose a general framework for
implementing randomized rounding algorithms on top of general purpose CP and
SDP solvers.

4.1. The CP model

Let (Zp,Yp) be a pair of finite domain integer set variables that represents the
vertices of the p-th cluster. Let cp be an integer variable representing the cost of
the p-th cluster, i.e., the number of added edges, and let d be an integer variable
for the sum of the cost of each cluster. The CP formulation of the k-MinBCP
problem is as follows:

variables/domains: Zp ⊆ S, ∀p ∈ K,(37.31)

Yp ⊆ T, ∀p ∈ K,(37.32)

0 6 cp 6 |Ē|, ∀p ∈ K,(37.33)

0 6 d 6 |Ē|,(37.34)

constraints: partition([Z1, . . . , Zp], S),(37.35)

osi-qbiclique(Zp, Yp, cp, G), ∀p ∈ K,(37.36)

d =
∑

p∈K

cp.(37.37)



Weighted Biclique Completion via CP-SDP Randomized Rounding 229

Constraints (37.35) force each vertex of the shore S to appear in a single cluster.
Constraints (37.36) constrain each subgraph induced by a pair (Zp, Yp) to be a clus-
ter of cost equal to cp. Constraint (37.37) sums up the cost of every cluster. The CP
model (37.31)–(37.37) relies on the filtering algorithm used for the osi-qbiclique

constraint, which was introduced in [7].

4.2. The CP-SDP Randomized Rounding algorithm

The basic scheme of the randomized rounding algorithm we propose is as follows:

(1) Start the execution of the CP solver running model (37.31)–(37.37), and
let the inference mechanism of Constraint Programming to reduce the
domains of the variables Zi and Yi as much as possible (i.e., until the CP
solver has reached a fix point).

(2) Map the domain reduction achieved by the CP solver into a new problem
instance, and solve the SDP relaxation (37.20)–(37.25) obtaining also the
semidefinite matrix X∗.

(3) Generate the violated triangle and clique inequalities (37.26)–(37.28) and
(37.30), respectively. Since the instances solved in literature are rather
small, we manage to generate all the violated inequalities.

(4) Start the Randomized Rounding:
(a) choose an undetermined variable Zp, see (37.31);
(b) select among the pairs of vertices v and w that appear the domain

of variable Zp and maximize the value X∗
vw, see (37.24);

(c) assign both v and w to variable Zp;
(d) let the CP solver propagates the new assignment (i.e., to reach a fix

point);
(e) if all the variables Zp are assigned stops, otherwise go back to step

(4a).
(5) Go back to step (4) until a timeout is expired or a given number of rounds

are executed.

The two crucial steps of the algorithm are (4a) and (4b). We are currently
investigating alternative criteria for selecting both the variable Zi and the pair of
vertices v and w.

5. Further research

Currently, we are finalizing the implementation of the CP-SDP randomized round-
ing algorithm. Experimental results show that the SDP relaxation is tight and only
few among the triangle and clique inequalities are violated in the relaxation. The
CP-SDP randomized rounding produce good solutions on random bipartite graphs,
but further work is required to compare our results with a standard randomized
rounding (i.e., without constraint propagation). However, note that the proposed
CP-SDP Randomized Rounding algorithm is quite general and can be adapted to
other combinatorial optimization problems.



230 Gualandi, Malucelli

References

1. K.R. Apt. Principles of Constraint Programming. Cambridge University Press,
2003.

2. A. Eisenblatter. The semidefinite relaxation of the k-partition polytope is
strong. In Proc Integer Programming and Combinatorial Optimization, volume
LNCS 2337, pages 273–290. Springer, 2002.

3. N. Faure, P. Chrétienne, E. Gourdin, and F. Sourd. Biclique completion prob-
lems for multicast network design. Discrete Optimization, 4(3):360–377, 2007.

4. A. Frieze and M. Jerrum. Improved approximation algorithms for max k-cut
and max-bisection. Algorithmica, 18:67–81, 1997.

5. B. Ghaddar, M.F. Anjos, and F. Liers. A branch-and-cut algorithm based on
semidefinite programming for the minimum k-partition problem. Annals of
Operations Research, pages 1–20, 2009. availabel on-line.

6. M.X. Goemans and D.P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J
ACM, 42:1115–1145, 1995.

7. Stefano Gualandi. k-clustering minimum biclique completion via a hybrid CP
and SDP approach. In Proc Integration of AI and OR Techniques in CP
for Combinatorial Optimization, volume LNCS 5547, pages 87–101. Springer,
2009.

8. C. Helmberg and F. Rendl. Solving quadratic (0, 1)-problems by semidefi-
nite programs and cutting planes. Mathematical Programming, 82(3):291–315,
1998.

9. S.D. Monson, N.J. Pullman, and R. Rees. A survey of clique and biclique
coverings and factorizations of (0,1)-matrices. Bulletin of the Combinatorics
and its Applications, 14:17–86, 1992.

10. F. Rossi, P. Van Beek, and T. Walsh. Handbook of Constraint Programming.
Elsevier Science, 2006.



38

A Semidefinite Relaxation for the
Queueing Covering Location Problem

with an M/G/1 System

Hossein T. Kakhki Foroogh M. Moghadas

Department of Mathematics,
Ferdowsi University of Mashhad

Vakil Abad Blvd.
Mashhad, 91775-1159, Iran

taghizad@math.um.ac.ir

Abstract

We consider the queueing maximal covering location problem with
an M/G/1 system. We formulate the problem as a binary quadratic
program and present a semi-definite programming relaxation to ob-
tain an upper bound for the problem. A lower bound for the problem
is obtained by a Lagrangian relaxation of some coupling constraints
which yields a mixed integer nonlinear program.
Keywords: queueing covering location, M/G/1, semidefinite relax-
ation.

1. Introduction

Queueing maximal covering location-allocation problem (QM-CLAP) is an exten-
sion of the maximal covering location problem (MCLP) of Church and ReVelle
(1974) introduced by Marianov and Serra (1998). It can be stated as: given m
demand points and their populations, find the location of p new facilities and the
assignment of demand points to the new facilities so that the population covered is
maximized. A demand point i is considered covered by a facility j, if its Euclidean
distance to j is not greater than a given distance. Each demand point can be cov-
ered by at most one facility. In addition, the model requires that the probability of
at most say b people being in line should be larger than or equal to a given α; or
the probability of waiting time at a center being less than or equal to a maximum
allowable time, τ , should be at least α.

231



232 Kakhki, Moghadas

A less restricted version suggested by them is that the expected number of
customers in center j should be less than or equal to b; or the expected time spent
at center j should be less than or equal to τ .

This last form is what we will be dealing with in this paper. Other variants of
the MCLP problem, under M/M/1, M/M/m, M/G/1, M/G/k, M/G/s-loss queue-
ing systems, sometimes called location in congested systems, have been considered
by many researchers including Berman,Larson and Chiu (1985), Batta and Berman
(1989), Marianov and ReVelle (1996), Marianov (2003); Baron, Berman and Krass
(2008), Silva and Serra (2008), and Erkut, et.al (2009). A review of many of these
models can be found in Goldberg (2004) and, Berman and Krass (2002).

In what follows, we first present a mathematical model for our problem. Then
we show that for the M/G/1 system, the problem reduces to a quadratically con-
strained mathematical programming problem. By lifting the problem into a higher
dimension, we obtain a semi-definite relaxation of our model.

2. Mathematical model

The model presented by Marianov and Serra (1998) is as follows:

max
∑

i∈I:j∈Ni

aixij

st:

xij ≤ yj ∀i ∈ I, j ∈ Ni(38.1)
∑

j∈Ni

xij ≤ 1 ∀i ∈ I(38.2)

∑

j∈J

yj ≤ p(38.3)

Wj ≤ τj ∀j ∈ J(38.4)

xij , yj = 0, 1 ∀i ∈ I and j ∈ J(38.5)

where,
I := the set of existing demand points
J := the set of candidate locations for new facilities
Ni := the set of points in the neighborhood of i ;i.e., Ni = {j| dij ≤ R}
yj := 1, if a new facility is located at site j ∈ J , and 0, otherwise
xij := 1 if a call from point i is answered by a center j; and 0, otherwise
ai := population at point i
p := the maximum number of new centers
Wj := average waiting time at station j
τj := maximum waiting time at a center j

The objective in this model maximizes the population coverage. Constraints
(2.1) ensure that a demand point is being served only by an open facility. Con-
straints (2.2) guarantee that a demand point i is served at most by one new facility.
Constraint (2.3) establishes p new facilities, and constraints (2.4) ensures that the
average waiting time does not exceed a given threshold. Here we have assumed
that this waiting time is the same for all centers.



A Semidefinite Relaxation for the QCLP 233

Marianov and Serra (1998) propose a heuristic solution procedure for the M/M/1
case which is based on first satisfying the waiting time constraints. Silva and Serra
(2008) propose a GRASP type heuristic also for the M/M/1 case. Recently Correa,
Lorena and Ribeiro (2009) proposed a decomposition approach by first constructing
a covering graph, then partitioning it using the routine MEITS of Karypis and Ku-
mar (1998). The resulting block diagonal structure is then solved via Danzig-Wolfe
decomposition approach.

Here we consider the case where the underlying system is an M/G/1 queueing
system and try to formulate the problem as a binary quadratic program. A semi-
definite programming relaxation is then obtained which provides an upper bound.

To develop our model note that since we assume that the arriving calls for
demand is a Poisson process with intensity fi , then the arriving calls at each
center j would also be a Poisson process but with the rate λj =

∑

i∈I:j∈Ni
fixij

(Marianov and Serra 1998). Also for the M/G/1 the waiting time is given by :

(38.6) Wj =
λjS2

j

2(1− λjSj )
, 1− λjSj > 0

where, Sj and S2
j are, respectively, the first and the second moments of the

service time at center j. Hence, constraints (2.4) can be written as:

(38.7) λj(
1

2
S2

j + τjSj ) ≤ τj

Then, we have:

∑

t∈I:j∈Nt

∑

i∈I:j∈Ni

hift(
1

2
T 2

ij + τjTij)xtjxij ≤ τj ,(38.8)

where hi is the probability of a call originating from demand point i.
Therefore the M/G/1 model can be formulated as:

(P ) max
∑

i∈I,j∈J

aixij

st:

(2.1)-(2.3), (2.5) and (2.8)

Note that in the above formulation we need to determine Tij and T 2
ij . To do

so, we use the same definition as used by Berman, et.al. (1985), that is

Tij = βdij/v + Zi(38.9)

T 2
ij = (βdij/v + Zi)

2 + 2(βdijv)Zi + Zi
2

(38.10)

where dij is the Euclidean distance between demand point i and center at j; v is

the speed, β is a parameter greater than 1; and Zi is the average on-the-scene plus
off-the-scene service time at demand point i.



234 Kakhki, Moghadas

3. An SDP relaxation

Since its early development in the 1990’s, semi-definite programming (SDP) has
found many applications in areas such as combinatorial optimization, control the-
ory, convex optimization, and experimental design; See for example Wolkowicz, et
al (2000) for a more comprehensive discussion. One particular application of SDP
in combinatorial optimization and non-convex quadratic programming, has been
its use as a relaxation to obtain bounds for these problems (see eg. Goemans and
Rendl (2000), and Nesterov, et.al. (2000). A well known example is the Goemans
and Williamson (1995) use of a SDP to obtain tight bounds for the max-cut prob-
lem. For more examples the interested reader can refer to Alizadeh (1991), Ding
and Wolkowicz (2008) and Rendl (2010). For two matrices A and B let us define
A•B as the trace of the product of A and B, tr(AB) . Also, let Sn denote the set of
symmetric n×n matrices, and Sn

+ the set of n×n symmetric positive semi-definite
matrices. Then by homogenizing the constraints, and defining C, Bi, Dj , and Z;
respectively, as

C =

[

0 1
2c

t

1
2c 0

]

Bi =

[

−bi 1
2Ai

1
2Ai

t 0

]

Ai is the ith row of A. O here, is an (mn + m) × (mn + m) matrix of all zeroes,
while 0 and 1 are scalars.

Dj =

[

−τj 0
0 Qj

]

and,

Z =

[

x0

x

] [

x0

x

]t

=

[

1 xt

x xxt

]

=

[

x0 xt

x Y

]

Note that x0 = 1 and that the constraint Y = xxt is not convex, so it is
replaced by Y � xx or Y − xx � 0 to have a convex constraint; We also relax the
rank one restriction on Y . We would then have:

C • Z =

[

0 1
2c

t

1
2c 0

]

•
[

x0

x

] [

x0

x

]t

= tr

[

0 1
2c

t

1
2c 0

] [

1 xt

x xxt

]

= tr

[

1
2c

tx 1
2c

txxt

1
2c

1
2cx

t

]

= ctx



A Semidefinite Relaxation for the QCLP 235

Also

Aix− bix0 =

[

−bi 1
2Ai

1
2Ai

t 0

]

•
[

x0

x

] [

x0

x

]t

= Bi • Z

Similarly, we can write (2.8) as:

xtQjx− τjx2
0 =

[

−τj 0
0 Qj

]

•
[

x0

x

] [

x0

x

]t

= Dj • Z

Note that C, Bj , Dj in Sk×k are sparse, and Z ∈ Sk×k
+ .

Finally, we replace the binary variables xj by the nonlinear inequalities :

xj(xj − 1) 6 0

−xj(xj − 1) 6 0

Now, lumping the coefficient matrix of all the constraints, and denoting it by
Gi, for simplicity, we would have the following so called vector lifting semi-definite
relaxation of problem (P ):

(38.11) (P ′′) max C • Z
st:

Gi • Z ≤ 0 ,∀i(38.12)

Z � 0(38.13)

(38.14)

Solving (P ′′) , will provide an upper bound for our problem (P ).

References

1. Alizadeh, F. (1991) Combinatorial Optimization with Semi-Definite Matrices,
in E. Balas, G. Cornuejols, and R. Kanan (eds.), Integer Programming and
Combinatorial Optimization, pp. 385-405.

2. Baron, O., Berman, O., and Krass, D., (2008) Facility Location with Stochas-
tic Demand and Constraints on Waiting Time, Manufacturing & Operations
Management 10(3), 484-505.

3. Batta, R., and Berman, O., (1989) A Location Model for a Facility Operating
as an M/G/k Queue, Networks 19, 717-728.

4. Berman, O., and Krass D. (2002) Facility Location problems with Stochastic
Demands and Congestion, in Z. Drezner and H. W. Hamacher (eds.), Facility
location: Applications and Theory, Springer, pp. 329-371.

5. Berman, O., Larson, R. C., and Chiu, S.S., (1985) Optimal Server Location
on a Network Operating as an M/G/1 Queue, Operations Research 33 (4)
746-771.



236 Kakhki, Moghadas

6. Correa, F. D. A., Lorena, L. A. N., and Ribiero, G. M., (2009). A decom-
position approach for the probabilistic maximal covering location-allocation
problem, Computers & Operations Research, 36 (10), 2729-2739.

7. Ding, Y. and H. Wolkowicz, (2008) A Low Dimensional Semidefinte Relaxation
for the Quadratic Assignment problem, Optimization online (April 19).

8. Erkut, E., Ingolfson, A., Sim, T., and Erdogan, G. (2009), Computational
Comparison of Five Maximal Covering Models for Locating Ambulances, Ge-
ographical Analysis 41, 43-65.

9. Goemans, M.X., and Rendl, F. (2000) Combinatorial Optimization, in Hand-
book of Semidefinite Programming: Theory, Algorithms, and Applications,
Kluwer Academic Publishers, pp. 343-360.

10. Goemans, M.X., and Willamson, D.P.(1994) 0.878-approximation algorithms
for MAX CUT and MAX 2SAT, ACM Symposium on Theory of Computing
(STOC).

11. Goldberg, J. B., (2004) Operations Research Model for the Deployment of
Emergency Services Vehicles, EMS Management Journal 1 (1), 20-39.

12. Marianov, V. (2003), Location of Multiple Server Congestible Facilities for
Maximizing Expected Demand when Services are Non-essential, Annals of Op-
erations Research 123, 125-141.

13. Marianov, V., and ReVelle, C. (1996), The Queueing Maximal Availability
Location problems: A Model for the Siting of Emergency Vehichles, European
Journal of Operational Research 93, 110-120.

14. Marianov, V., and Serra, D. (1998) Probabilistic , Maximal Covering Location-
Allocation Models for Congested Systems. Journal of Regional Science 38(3)
, 401-424.

15. Nesterov, Y., Wolkowicz, H., and Ye, Yinyu (2000) Nonconvex quadratic opti-
mization, in Handbook of Semidefinite Programming: Theory, Algorithms, and
Applications, Kluwer Academic Publishers, pp.361-420.

16. Rendl, F. (2010) Semidefinite Relaxations for Integer Programming, in Jünger,
M.; Liebling, Th.M.; Naddef, D.; Nemhauser, G.L.; Pulleyblank, W.R.;
Reinelt, G.; Rinaldi, G.; Wolsey, L.A. (eds.), 50 Years of Integer Programming
1958-2008 From the Early Years to the State-of-the-Art, Springer, pp. 687-726.

17. Silva, F., and Serra, D., (2008) Locating emergency services with different
priorities : the priority queuing covering location problem, Journal of the
Operational Research Society 59, 1229-1238.

18. Wolkowicz, H., Saigal, R. and Vandenberghe, L. (eds.) (2000), Handbook of
Semidefinite Programming: Theory, Algorithms, and Applications, Kluwer
Academic Publishers.



39

On the existence and efficient
construction of general cutting planes for

mixed integer quadratic programs

Thomas Lehmann

Department of Computer Science
University of Bayreuth

Bayreuth, 95440, Germany

thomas.lehmann@uni-bayreuth.de

Abstract

We propose an algorithmic procedure, that either constructs general
cutting planes for mixed integer quadratic programs efficiently, or
shows their non-existence. The method generalizes an algorithm pre-
sented by Balas and Perregard for efficient construction of disjunctive
cutting planes, such that it is applicable for non-basic solutions.
Keywords: mixed integer quadratic programming, disjunctive cut-
ting planes.

1. Disjunctive Programming

We want to solve the strictly convex mixed integer quadratic programming problem
(MIQP) subject to linear equality and inequality constraints

(39.1)

min
x∈X, y∈Y

1
2

(

xT , yT
)

C

(

x
y

)

+ dT

(

x
y

)

s.t. aT
j

(

x
y

)

+ bj = 0, j = 1, . . . ,me,

aT
j

(

x
y

)

+ bj > 0, j = me + 1, . . . ,m,

237



238 Lehmann

where x and y denote the vectors of the continuous and integer variables, respec-
tively. The two sets X and Y are defined by

X := {x ∈ Rnc : xlb 6 x 6 xub} ,(39.2)

Y := {y ∈ Nni : ylb 6 y 6 yub} ,(39.3)

(39.4)

where nc is the number of continuous variables and ni is the number of integer
variables. The total number of variables is denoted by n, i.e., n := ni +nc. C is an
n by n positive definite matrix, while d is an n-dimensional vector. The constraints
are given by an m by n matrix A = (a1, . . . , am)T , and an m-vector b. Lower and
upper bounds for the continuous and integer variables are denoted by xlb, xub, ylb

and yub.
Since the combination of branch and bound and cutting plane techniques led

to a tremendous speed-up for solving mixed-integer linear programming problems
(MILP), we want to apply this state-of-the-art technique to solve MIQP (39.1).
Most cutting plane techniques relay either on the fact that the current relaxed
solution to be cut off is a feasible basis solution, i.e., a corner of the feasible poly-
hedral set, or on special structures of some constraints or the whole feasible region.
In general, the solution of a relaxed quadratic program is not basic, nor is spe-
cial information about the constraints available in most cases. This is probably
the main reason why only very few results on applying cutting planes for solving
mixed-integer quadratic programming problems of the form (39.1) exist.

The mixed-integer nonlinear programming (MINLP) toolbox developed by Exler,
Lehmann and Schittkowski [4] is our main motivation for considering convex MIQP
problems. It is based on the mixed-integer sequential quadratic programming
method MISQP [3] and contains very efficient solvers for realistic MINLP applica-
tions, associated with expensive function calls. All solvers rely on the successive
solution of convex MIQP problems (39.1) and exhibit a excellent performance on
an academic MINLP test case collection [5].

In Section 1 we introduce the theory of disjunctive programming going back
to Balas [2] and we review a method for constructing disjunctive cutting planes in
the original problem dimension, developed by Perregaard [6]. Section 2 proposes
a generalized algorithm for constructing disjunctive cuts for non-basic solutions
efficiently.

Consider the solution (x̄, ȳ) of the continuous relaxation of a mixed-integer
linear program. Let k be the index of an integer variable yk possessing a fractional
value at (x̄, ȳ). Then we know that either yk > ⌈ȳk⌉ or yk 6 ⌊ȳk⌋ holds at the
optimal solution (x∗, y∗) of the original mixed integer program. This condition
can be expressed via a logical condition, which is called a disjunction ∨ and was
introduced by Balas [2], i.e.,

y∗k > ⌈ȳk⌉ ∨ y∗k 6 ⌊ȳk⌋.(39.5)

Using this disjunctive condition we can build the so-called disjunctive relaxation,
which extends the continuous relaxation by requiring condition (39.5) to hold. The
disjunctive relaxation can be used to generate cutting planes for the original prob-
lem. The reason is that there exists a compact representation of the convex hull
of the union of h ∈ Q polyhedra in a higher dimension, where Q is a finite index



Cutting Planes for MIQP Problems 239

set. This convex hull can be projected back to the original space yielding so-called
disjunctive cutting planes.

Originally these cutting planes are constructed by solving the so-called cut
generating linear program (CGLPk) corresponding to disjunction (39.5):

(39.6)

min
(a,β)∈Rn×R, (u,u0)∈Rm×R, (v,v0)∈Rm×R

aT

(

x̄
ȳ

)

− β

s.t. a−ATu+ u0ek > 0,

a−AT v − v0ek > 0,

−β + bTu− u0⌊ȳk⌋ = 0,

−β + bT v + v0⌈ȳk⌉ = 0,

u, u0, v, v0 > 0,

together with a normalization constraint of the form

(39.7)

m
∑

i=1

ui + u0 +

m
∑

i=1

vi + v0 = 1.

The optimization variables (a, β) correspond to the coefficients of the resulting cut-
ting plane, whereas the variables (u, u0, v, v0) ensure the validity of this constructed
cut.

The simple disjunctive cut πT sJ > π0 is also derived from disjunction (39.5)
for some fractional yk and is given by

π0 := (ȳk − ⌊ȳk⌋)(⌈ȳk⌉ − ȳk),

πi := max{π1
i , π

2
i }, ∀i ∈ J,(39.8)

π1
i := (ȳk − ⌈ȳk⌉)(A−1

J )ki,

π2
i ” := (ȳk − ⌊ȳk⌋)(A−1

J )ki,

where J is the index set of the basic variables.
The equivalence of the simple disjunctive cut (39.8) and a basic solution of the

CGLPk (39.6), which was established by Balas and Perregard [1], can be used to
solve the cut generating linear program implicitly in the original problem dimension.
This procedure suggested by Perregard [6] yields substantial advantages since it
decreases the computational effort significantly. Apart from working within the
original problem dimensions, the computation time is significantly decreased by
the reduction of degeneracy. The reason is that the partition of J into M1 and M2,
introduced in the subsequent theorem, can be automatically determined by the sign
of (A−1

J )kj .

Theorem 1.1. Let (a, β, u, u0, v, v0) be a non-trivial basic, feasible solution to the
CGLPk (39.6), i.e., u0, v0 > 0 and (a, β) basic. Assume that the basic components
of u and v are indexed by M1 and M2 respectively. Let s̄ correspond to the surplus

variables of A

(

x
y

)

> b corresponding to the solution (x̄, ȳ). After introducing

standard notation

ākj := −(ekA
−1
J )j , āij := −(aiA

−1
J )j , āk0 := ekA

−1
J bJ , āi0 := (aiA

−1
J bJ − bi),



240 Lehmann

the reduced costs for ui and vi, i /∈ J ∪ {k} at this basic solution are respectively

rui
:= −σ − τ − āi0(ȳk − ⌈ȳk⌉),(39.9)

rvi
:= −σ + τ + āi0(ȳk − ⌈ȳk⌉) + s̄i,

with

σ :=

∑

j∈M2
ākj s̄j + (āk0 − ⌊ȳk⌋)(ȳk − ⌈ȳk⌉)

1 +
∑

j∈J |ākj |
,(39.10)

τ := σ
∑

j∈M1

āij − σ
∑

j∈M2

āij +
∑

j∈M2

āij s̄j ,(39.11)

where s̄j denotes the value of the slack variable sj of constraint j at (x̄, ȳ)

Theorem 1.1 can be used to identify unaccounted constraints, that strengthen
the current simple disjunctive cut. If all reduced costs (39.9) are positive the
CGLPk (39.6) is implicitly solved to optimality. The next theorem shows how
one can identify the constraint that should be removed from the current simple
disjunctive cut to be replaced by another improving constraint.

Theorem 1.2. The pivot column in row i of the LP simplex tableau that is most
improving with respect to the cut from row k is indexed by l∗ ∈ J , that minimizes
f+(γl) if āklāil < 0 or f−(γl) if āklāil > 0 over all l ∈ J , where γl := − ākl

āil
and for

any γ,

f+(γ) =

∑

j∈J(max{0,−(ākj + γāij)}s̄j)

1 + |γ|+∑j∈J |ākj + γāij |

+
(⌈āk0 + γāi0⌉ − āk0 − γāi0)(⌊āk0 + γāi0⌋ − ȳk)

1 + |γ|+∑j∈J |ākj + γāij |
,

f−(γ) =

∑

j∈J(max{γāij ,−ākj}s̄j)

1 + |γ|+∑j∈J |ākj + γāij |

+
(⌈āk0 + γāi0⌉ − āk0 − γāi0)(⌈āk0 + γāi0⌉ − ȳk) + āk0 − ⌈āk0 + γāi0⌉

1 + |γ|+∑j∈J |ākj + γāij |
.

2. Disjunctive Cutting Planes for Non-basic Solutions

The aim of this section is to construct disjunctive cutting planes efficiently for non-
basic solutions (x̄, ȳ) of the continuous MIQP relaxation, i.e., less than n constraints
are active, or to proof that none exists for the current disjunction.

The straight forward way to construct disjunctive cutting planes by solving the
full CGLPk for every fractional integer variable is inefficient. Therefore we want
to generalize the method presented in the last section, such that it is applicable
for non-basic solutions. One key property is the correspondence of the simple
disjunctive cut (39.8) and a feasible, basic solution of the CGLPk (39.6). Since
we cannot construct a simple disjunctive cut for a non-basic solution a priori no
starting point is known.

Once we are able to provide a feasible, basic solution of the CGLPk, we can
apply the method of Balas and Perregard without further adjustments. Consider a
basic solution (x̃, ỹ), determined by all na < n constraints, that are active in (x̄, ȳ).



Cutting Planes for MIQP Problems 241

Additionally n−na constraints are chosen, such that all constraints, indexed by J ,
are linearly independent.

If we now consider a fractional integer variable ȳk, two possibilities arise. Either
⌊ȳk⌋ = ⌊ỹk⌋ or ⌊ȳk⌋ = ⌊ỹk⌋ + l with l ∈ Z, l 6= 0 holds. In case one we already
found a feasible basic solution to start, since the simple disjunctive cut determined
by ỹk is a basic, feasible solution for the CGLPk corresponding to (x̄, ȳ).

In general if ȳk and ỹk lie within different disjunctions, i.e., ⌊ȳk⌋ = ⌊ỹk⌋+ l with
l ∈ Z, l 6= 0, (x̃, ỹ) is no basic feasible solution of the CGLPk, since the constraints
determining the right hand side β of the resulting cutting plane are violated.

By replacing one of the constraints in J by an artificial constraint, denoted by

(39.12) aa

(

x
y

)

> ba,

we can construct a basic solution (x̂, ŷ) lying in the correct disjunction, i.e., ⌊ȳk⌋ =
⌊ŷk⌋ holds. This basic solution (x̂, ŷ) is in principle an appropriate starting point
for the algorithm presented in the last section.

The drawback is that the simple disjunctive cut determined by (x̂, ŷ) is not valid
for the original quadratic program, since the additional constraint (39.12) is not
part of the constraints of MIQP (39.1). The subsequent lemma shows a situation
where the artificial constraint does not influence the original method.

Lemma 2.1. Let the basic solution (x̂, ŷ) satisfy ⌊ȳk⌋ = ⌊ŷk⌋. Furthermore let

one of the constraints, say aa

(

x
y

)

> ba, determining (x̂, ŷ) be artificial, i.e., it is

not part of the original set of constraints. Suppose that the simple disjunctive cut
corresponding to (x̂, ŷ) does not cut off the relaxed solution (x̄, ȳ). Furthermore
assume that the reduced costs for every constraint, inactive at (x̂, ŷ), are positive.
Then no disjunctive cut for (x̄, ȳ) exists in the current disjunction.

Therefore we have to find a way to construct a basic solution that yields no
simple disjunctive cutting plane for the relaxed solution (x̄, ȳ).

The trivial basic solution of the CGLPk, given u0 and v0 satisfying u0v0 = 0,
corresponds to a simple disjunctive cut, that is a non-negative linear combination
of the original constraints. Furthermore this simple disjunctive cut is determined
by a basic solution (x̂, ŷ) with ŷk = ⌊ȳ⌋ or ŷk = ⌈ȳ⌉. Therefore it satisfies the
requirements of Lemma 2.1. Furthermore the simple disjunctive cut corresponding
to this trivial basic solution (x̂, ŷ) can be considered as the limit with ǫ → 0 for
ŷk + ǫ = ⌈ȳk⌉ of the simple disjunctive cut (39.8) or analogue as the limit ǫ→ 0 for
ŷk − ǫ = ⌊ȳk⌋.

In principle it is possible to use (x̂, ŷ) as starting point, since all terms of the
reduced algorithm can be determined by the corresponding basis matrix AJ and
its inverse.

As we will see in Lemma 2.2, the artificial constraint (39.12) has to possess an

additional property. Consider a constraint a′a

(

x
y

)

> b′a that is determined such



242 Lehmann

that (x̂, ŷ) is the unique optimal solution of the linear program

min
x∈X,y∈YR

a′a

(

x
y

)

(39.13)

s.t. AJ

(

x
y

)

= bJ ,

where YR := {y ∈ Rni : ylb 6 y 6 yub} holds. As a consequence (x̂, ŷ) is the only

point satisfying all constraints AJ

(

x
y

)

> bJ and a′a

(

x
y

)

> b′a. We now define

the artificial constraint by aa := −a′a and ba := −b′a.

Lemma 2.2. Let (x̂, ŷ) be a basic solution with ŷk = ⌊ȳk⌋. Let the corresponding
basic variables be indexed by J and the corresponding basic matrix be denoted

by AJ . Suppose that AJ contains one artificial constraint aa

(

x
y

)

> ba, which

is determined as stated above and indexed by a, while all other constraints are
indexed by 1, . . . , n − 1, i.e., J = {1, . . . , n − 1, a}. Furthermore let there be an
improving simple disjunctive cut, which is constructed by replacing constraint s :

as

(

x
y

)

> bs, s ∈ J with constraint j, aj

(

x
y

)

> bj , j /∈ J .

Then an improving cut is also determined by the constraints ai

(

x
y

)

> bi, ∀i ∈

J\{a} and aj

(

x
y

)

> bj .

Lemma 2.1 and Lemma 2.2 allow the generalization of the algorithm introduced
in the previous section for non-basic solutions. Applying Lemma 2.1, we can proof
that no disjunctive cuts exists for the current disjunction (39.5). Otherwise Lemma
2.2 guarantees, that we can construct a disjunctive cut analogue to the method of
Perregaard in the original problem dimensions.

References

1. Perregaard M. Balas E. A precise correspondence between lift-and-project cuts,
simple disjunctive cuts, and mixed integer gomory cuts. Mathematical Program-
ming, 94:221–245, 2003.

2. Balas E. Disjunctive programming. Annals of Discrete Mathematics, 5:3–51,
1979.

3. Schittkowski K. Exler O. A trust region sqp algorithm for mixed-integer non-
linear programming. Optimization Letters, 1:269–280, 2007.

4. Schittkowski K. Exler O., Lehmann T. An outer approximation algorithm for
nonlinear mixed-integer programming based on sequential quadratic program-
ming with trust region stabilization. to appear.

5. Schittkowski K. A collection of 100 test problems for nonlinear mixed-integer
programming in fortran - user’s guide. Report, Department of Computer Science,
University of Bayreuth, 2009.

6. Perregaard M. Generating disjunctive cuts for mixed integer programs. Doctoral
Dissertation, Carnegie Mellon University Pittsburgh, USA, 2003.



40

SOC avatars for solving MINLPs (in 3-D)

Ashutosh Mahajan Todd S. Munson

Argonne National Laboratory,
9700 S Cass Avenue,

Argonne, IL 60439, USA
{mahajan,tmunson}@mcs.anl.gov

A Mixed Integer Nonlinear Program (MINLP) is a mathematical problem of finding
the best solution for a system of nonlinear inequalities when some or all variables
are constrained to certain discrete values. A large variety of problems arising in
design, planning and operations of complex systems like energy-distribution, basic
infrastructure, engineering design, networks, etc., are expressed as MINLPs. Most
of these problems have constraints that are nonconvex and it makes these problems
hard to solve. In this work, we devise a reformulation strategy by which certain
nonconvex constraints can be reformulated after branching as Second Order Cones
(SOCs). Efficient nonlinear solvers can then be used to quickly search over these
convex regions.

When a constraint only has quadratic and linear functions, we use a reformu-
lation technique based on eigenvalue decomposition. Besides giving us a branching
variable that converts the constraint into an SOC, this reformulation can also be
used to identify if the problem is infeasible or if a constraint is redundant. We also
extend this technique to other types of functions: higher order polynomials, expo-
nential functions and multilinear constraints. In each of these cases, we reformulate
the problem in such a way that the new formulation becomes convex after branch-
ing. We also describe automatic procedures for reformulating such constraints.

We show by some computational experiments that for problems with such con-
straints, our technique can be faster than existing state-of-the-art MINLP solvers
by several orders of magnitude. We also provide a geometric view of how this
technique works with the help of 3-D stereographic images.

243





41

Tightening the Linear Relaxation of a
Mixed Integer Nonlinear Program Using

Constraint Programming

Sylvain Mouret1 Ignacio Grossmann1 Pierre Pestiaux2

Carnegie Mellon University
5000, Forbes Avenue

Pittsburgh, 15213, USA

smouret,grossmann@cmu.edu

Total Refining & Marketing
Z.I. du port autonome du Havre

76700, Harfleur, France

pierre.pestiaux@total.com

Keywords: mixed-integer nonlinear programming, constraint programming, Mc-
Cormick convex envelope, crude-oil operations scheduling.

Many optimization problems arising in the chemical industry involve nonconvex
nonlinear functions which makes them difficult to solve to global optimality. In
this work, we study the crude-oil scheduling problems introduced in [1]. It consists
in preparing various types of crude-oil blends throughout the horizon in order to
continuously feed each crude distillation unit (CDU), while satisfying the demand
for each crude blend. The scheduling system is composed of crude tankers, storage
and charging tanks, and CDUs. Three types of crude transfer operations are avail-
able: unloading from crude-oil marine vessels to storage tanks, transfer between
tanks, and transfers from charging tanks to CDUs. The goal is to determine which
operations will be executed, how many times and when they will be performed, and
the amount of crude to be transferred. The objective is to minimize the logistics
costs which include sea waiting costs and unloading costs for marine vessels, storage
costs in tanks, and CDU switching costs.

The problem is formulated as a nonconvex mixed integer nonlinear program-
ming (MINLP) model developed in [3] which is based on a continuous-time schedul-
ing representation. The model involves scheduling, sequencing, inventory, demand,
and CDU specification constraints. The objective function is nonlinear as it con-
tains bilinear terms expressing the storage costs in inventories.

245



246 Mouret, Grossmann, Pestiaux

The solution procedure proposed is a simple two-step MILP-NLP procedure.
In the first step, an MILP relaxation is solved. The solution returned during this
step may not satisfy all nonlinear constraints. In such case, the binary variables
of the models are fixed, which means that the sequence of operations is fixed, and
the resulting nonlinear programming (NLP) model is solved. This NLP model
contains all constraints from the MINLP, including nonlinear constraints, with all
binary variables fixed. The solution obtained during this step might not be the
global optimum of the full model, but the optimality gap can be estimated from
the lower bound given by the MILP solution and the upper bound given by the NLP
solution. The quality of the final solution obtained with this procedure, estimated
by the optimality gap, strongly depends on the tightness of the MILP relaxation.

The MINLP is classically reformulated by replacing the bilinear terms in the
objective function with new variables, which are defined by new bilinear constraints.
Therefore, the objective function becomes linear and the bilinearities are embedded
in the constraints. Using variable lower and upper bounds, these bilinear terms can
be replaced by their corresponding McCormick convex envelopes [2], leading to a
tighter MILP relaxation.

However, rather than than applying these McCormick constraints at the root
node, they are generated on the fly during the MILP Branch & Bound search.
At each node, whenever an integer feasible is found, new variables bounds can be
generated for the corresponding node subproblem using Constraint Programming
(CP). These new bounds are tighter than the bounds obtained at the root node as
many decision variables have already been fixed, and can be used to generate new
tighter McCormick cuts. Those that are violated are then added to the current
node subproblem, which is iteratively re-solved in a cutting-plane fashion until no
new constraints can be added. The solution obtained for the node subproblem is
generally more accurate as the linear relaxation of the bilinear terms is tighter, and
therefore it is more suitable for the NLP step.

The four problems introduced in [1] have been solved using two algorithms.
The BasicRelaxation algorithm consists of initially adding McCormick constraints
to the MILP model without generating new cuts during the search. The Extende-
dRelaxation algorithm consists of adding McCormick constraints to the MILP and
new cuts during the search. Both approaches have been developed in C++ using
Ilog Cplex 11.0 (MILP) and Ilog Solver 6.5 (CP). The NLPs have been solved with
CONOPT 3.

The results show that using the ExtendedRelaxation approach leads to impor-
tant reductions of the optimality gap compared to the BasicRelaxation algorithm
(3.48% vs 14.83% average optimality gap). Besides, a better feasible solution (3.3%
cost reduction) has been found for problem 2 when using ExtendedRelaxation algo-
rithm.

In terms of computational efficienty, the average CPU time increases by 9.5%
for the ExtendedRelaxation procedure. This is due to the increase of the number
of nodes explored in some cases (problems 2 and 3), the increase of the model size
for subproblems for which McCormick cuts have been generated, and the time used
for performing constraint propagation on the CP model (4.7% of total CPU time).

Finally, both approaches are compared with state-of-the-art NLP local and
global solvers. Although the smallest problem 1 remains solvable by local optimiz-
ers, these solvers are not suitable for directly solving any of the 3 larger problems.



Tightening the Linear Relaxation of an MINLP using CP 247

References

1. H. Lee, J. M. Pinto, I. E. Grossmann, and S. Park. Mixed-integer linear
programming model for refinery short-term scheduling of crude oil unloading
with inventory management. Industrial and Engineering Chemistry Research,
35(5):1630–1641, 1996.

2. G. P. McCormick. Computability of global solutions to factorable nonconvex
programs: Part 1 - convex underestimating problems. Mathematical Program-
ming, 10:147–175, 1976.

3. S. Mouret, I. E. Grossmann, and P. Pestiaux. A novel priority-slot based
continuous-time formulation for crude-oil scheduling problems. Industrial and
Engineering Chemistry Research, 48(18):8515–8528, 2009.





42

Using DRL* relaxations for quadratically
constrained pseudoboolean optimization:

application to robust Min-Cut

Michel Minoux Hacene Ouzia

LIP6, Université de Paris 6
ave. P. Kennedy 75016, Paris, France

hacene.ouzia@lip6.fr

Keywords: mixed integer programming, pseudoboolean optimization, Min-Cut,
robust optimization, Reformulation-Linearization-Technique.

In this work we focus on solving quadratically constrained pseudoboolean opti-
mization problems with quadratic objective as mixed integer linear programs. The
standard mixed integer linear formulation of such problems is strengthened us-
ing valid inequalities derived from solving Reformulation-Linearization relaxation
called partial DRL* relaxation. The proposed PDRL* relaxation features block-
decomposable structure which are exploited to improve computational efficiency.
We present computational results obtained with the rank 2 PDRL*, showing that
the proposed mixed integer linear formulation gives rise to significant reduction
factors (typically more than 1000) in the size of the branch and bound trees on
instances of robust minimum cut problem with weight constraints.

249





43

A t-linearization to exactly solve 0-1
quadratic knapsack problems

Carlos-Diego Rodrigues1,2 Dominique Quadri1

Philippe Michelon1 Serigne Gueye3

1 LIA, Université d’Avignon
Avignon, F-84911 Cedex 9, France

{carlos-diego.rodrigues,dominique.quadri,philippe.michelon}@

univ-avignon.fr

2 Universidade Federal do Ceará
Campus do Pici, Fortaleza, Brasil

3 LMAH, Université du Havre
25 rue Philippe Lebon, BP 540, 76058 Le Havre

serigne.gueye@univ-lehavre.fr

Abstract

This paper presents an exact solution method based on a new lin-
earization scheme for the 0-1 Quadratic Knapsack Problem (QKP)
which consists of maximizing a quadratic pseudo-Boolean function
with non negative coefficients subject to a linear capacity constraint.
Contrasting to traditional linearization schemes, our approach only
adds one extra variable. We first convert (QKP) into an equivalent
problem using only one additional real decision variable t and a qua-
dratic constraint. We then replace the additional quadratic constraint
by a set of linear constraints derived from the characterization of the
induced integer quadric hull. The linear relaxation of the resulting
problem (called the t-relaxation) provides an upper bound used in
branch-and-bound scheme. This upper bound is numerically com-
pared with the Billionnet et al. [2] bound, and the Branch-and-Bound
scheme with the exact algorithm of Pisinger et al. [12]. The experi-
ments show that our upper bound is competitive with the best upper
bound method known [2] for (QKP) (less than 1% from the optimum).
In addition, the proposed branch-and-bound clearly outperforms the
exact algorithm [12] for low density instances (25% and 50%) for all
problem sizes up to 300 variables.
Keywords: 0-1 Quadratic Knapsack Problem, linearization tech-
niques, upper bounds, exact solution method.

251



252 Rodrigues, Quadri, Michelon, Gueye

1. Introduction

Knapsack problems are among the most famous and studied problems in Operations
Research [10], due to their simplicity in definition, hardness in solving [6] and
broadly applicability in both practical and theoretical problems [8]. The 0 − 1
Knapsack Problem can be defined as {max ctx : ax 6 b, x ∈ {0, 1}n}, where the
inclusion of the object in the knapsack is defined by the decision vector x and
a, b, c ∈ Rn+.

When modeling the cases where the combinations of objects are more important
than their individual inclusion in the knapsack, we usually consider the quadratic
knapsack problem, which has been shown to be NP-hard [9] and can be expressed
as follows

(QKP )







max
∑n

i=1 cixi +
∑n−1

i=1

∑n
j=i+1 qijxixj

s.t.

∣

∣

∣

∣

∑n
i=1 aixi 6 b

xi ∈ {0, 1} i = 1, ..., n

where qij (i = 1, ..., n − 1, j = i + 1, ..., n) , ci, ai (i = 1, ..., n) and b are positive
reals.

The quadratic summation is nonlinear and can not be treated easily. In order
to solve this problem, a common approach is to linearize the objective function (see
[5], [7], [4]). The linearization procedures proposed in the literature imply a large
number of additional variables in comparison with the initial program. In order
to get around this diffuclty, we propose here a orginal linearization scheme (called
t-linearization) where only one extra variable is added.

The next section is dedicated to briefly describe the t-linearization. Section 3
describes the bound procedure. In the Section 4 the branch-and-bound algorithm is
presented. Section 5 presents numerical experiments. We finaly conclude in Section
6.

2. t-linearization scheme

The t-linearization technique we propose consists of two steps. We first replace the
quadratic terms of the objective function of (QKP) by a real variable t and add a
quadratic constraint to the initial capacity constraint of (QKP). The second step
is dedicated to rewrite the additional quadratic constraint as a set of linear ones.
These are derived from the characterization of the quadric convex hull resulting
from the linearization of the unconstrained 0-1 quadratic program.

Since all coefficients qij are positive, (QKP) can be rewritten as

(LP (Q))















max t+
∑n

i=1 cixi

s.t.

∣

∣

∣

∣

∣

∣

∑n
i=1 aixi 6 b

t 6
∑n−1

i=1

∑n
j=i+1 qijxixj

t ∈ R, xi ∈ {0, 1} i = 1, ..., n

where ci, qij , ai and b are positive reals.
Problems (LP(Q)) and (QKP) are equivalent. The objective function is now

linear nevertheless the additional constraint is quadratic. Therefore, the second
step of the proposed linearization framework consists of replacing this constraint
by a set of linear constraints. This step is a straight consequence of the following
Theorem.



A t-linearization scheme to exactly solve QKP 253

Theorem 3. Consider the two following sets:

X =







(x, t) ∈ Rn+1 | t 6
∑

16i<j6n

qijxixj , x ∈ {0, 1}n






and

QPn =







(x, t) ∈ Rn+1 | t 6

n
∑

i=2

i−1
∑

j=1

qπ(j)π(i)xπ(i), x ∈ [0, 1]n ∀ π ∈ Sn







where Sn is the set of all the permutations of {1, ..., n}.

We have QPn = Co(X) (Co(X) represents the convex hull of the set X). 1

Since the convex hull is origninaly defined for the unconstrained 0-1 quadratic
problem (cf. Theroem 1), we have to extend the result to the constraint case and
incorporate the capacity constraint relative to (QKP). We can now establish the
0-1 linear program denoted by (LP) which is equivalent to (QKP) :

(LP )















max t+
∑n

i=1 cixi

s.t.

∣

∣

∣

∣

∣

∣

∑n
i=1 aixi 6 b

t 6
∑n−1

i=1

∑n
j=i+1 qπ(j)π(i)xπ(i), ∀π ∈ Sn

t ∈ R, xi ∈ {0, 1} , i = 1, ..., n

Constrasting to the unconstrained case the separation problem is more difficult
to solve. Consequently, we propose to work with the relaxation of the integer vari-
ables of (LP) and compute heuristically only a subset of suitable constraints that
is to say constraints which design as well as possible the quadric polytope. Hence,
a relaxation method is proposed, called t-relaxation and an upper bound of (LP) is
obtained that implies an upper bound of (QKP). We detail this t-relaxation in the
following section.

3. Deriving an upper bound: the t-relaxation

The upper bound method we suggest for (QKP) is provided by the optimal value of
LP which is the continuous variables relaxation of (LP) (i.e. xi ∈ [0, 1] , i = 1, ..., n)
for which a subset of suitable constraints is computed. A key step of the resolution
of the relaxation of (LP) is the generation of these constraints based on the different
permutations. Consequently we propose a constraint generation method. Given a
permutation π of the variables, we generate the suitable constraint t 6 απx and
test whether it is violated or not. If so, we add it to the continuous linearized model
and solve it. This process should be repeated until we cannot find a permutation
that gives a violated constraint. Figure 2 provides an outline of the main steps of
this procedure.

Step 3 is the retrieving of a permutation π from x the optimal solution of LP .
This is done by ordering the indices of the variables in a non-decreasing order of
x. As a secondary criterium we use the reduced costs c provided by the optimal
solution of LP . Since the separation problem is solved by an heuristic, there is

1The proof of the present theorem can be found in the Appendix section.



254 Rodrigues, Quadri, Michelon, Gueye

1. Find a permutation of the variables.
To initiate the procedure we choose the permutation associated to a
feasible solution we compute using the heuristic of Billionnet and Calmels [1].
The corresponding constraint is added to LP .

2. Solve the resultant LP .

3. Solve heuristically the separation problem. Let π the permutation found.

4. If the constraint corresponding to π is violated
then add the constraint to LP and go to step 2 else stop.

Figure 1. Main steps to compute the proposed upper bound for (QKP)

no garantee that a violated constraint may be found. In step 4, we check if either
or not the permutation of step 3 discards the current optimal solution. In case of
success, we add :

t 6 απx =

n−1
∑

i=1

n
∑

j=i+1

qπ(i)π(j)xπ(i)

This step corresponds to heuristically solving the separation problem of our
constraint generation phase in order to obtain the t-linearization upper bound.

Since the generation of the constraint is heuristic we suggest to improve the
quality of the constraints used. That can be done by adding to the separation
problem the knapsack constraint. In addition one could also consider to include
the integrality constraint to the separation problem model. This would result in a
knapsack problem. The resolution of a knapsack problem can be very time consum-
ing when compared to its LP-relaxed counterpart. Indeed it is possible to solve the
LP-relaxation of a knapsack problem in linear time on the number of variables (see
[10]), while the original problem is NP-hard. Therefore, it seems knowledgeable for
us to work with the LP-relaxation of the knapsack problem. This ensures that we
take into account the domain of the original problem while not having to solve O(n)
NP-hard problems at each constraint generation iteration. The separation problem,
for each coefficient in the generated constraint, can be expressed as follow:

(43.1) απ(j) = max

{

j−1
∑

i=1

qπ(i)π(j)xi :

j−1
∑

i=1

aixi 6 b− aj , x ∈ [0, 1]n

}

.

4. The developped branch-and-bound algorithm

The branch-and-bound algorithm we propose for solving the linearized problem
(LP(Q)), and hence (QKP), starts by finding a feasible solution xH to the problem.
The chosen heuristic is the one presented by Carprara et al. [3]. This solution xH

allows us to build a permutation πH given by a non-increasing order of xH . As

tie-breakers we used the ratio:
ci+

Pn
j=1

qij

ai
defined for each variable xi ∀i = 1, ..., n.

Then the constraint t 6 απH
x is added to our root node model.



A t-linearization scheme to exactly solve QKP 255

Before the branching phase, as the constraint generation procedure could gen-
erate too many constraints we often consider to select a subset of constraints to
carry over for the descendent nodes. Here we will do an aggregation of the con-
straints in the node in order to pass only one constraint over. This will severally
reduce the size of our model, allowing us to have more nodes at the same time in
the branch-and-bound tree and reducing the time to solve the relaxed model itself.
As a disadvantage, some constraints may have to be generated again in the children
nodes, this time stronger, depending on which values the variables were assigned.

The aggregation procedure for a set of constraint indexes K consists of adding
a new constraint t 6 α̃Kx on which:

α̃K(j) =
∑

i∈K

µi · απi
(j)

∑

k∈K

µk

where µi is the dual value resulting from the linear relaxation solution related to the
constraint t 6 απi

x. Let K⋆ be the index set that includes all indexes of generated
constraints. We can show that

∑

k∈K⋆ µk = 1. That simplifies the expression for
each α̃K⋆(j):

α̃K⋆(j) =
∑

i∈K⋆

µi · απi
(j).

Moreover, we can show that the linear relaxed model in which all constraints
t 6 απi

x for i ∈ K⋆ are substituted for t 6 α̃K⋆x has the same objective value
than the model with all the constraints in K⋆. To prove this, consider the problem
in which variable x is fixed to x, the linear problem solution. Then we have t =
{max t : t 6 απi

· x,∀i ∈ K⋆}. From the Strong Duality Theorem, we have that

∑

i∈K⋆

(απi
· x) · µi = t.

At this point it should be clear that cTx + t is the optimal value of the t-
relaxation model.

Hence, the constraint t 6 α̃K⋆x is in our branch-and-bound the only constraint
passed down to the children nodes. The branching rule follows the classical cri-
terium of least integral variable, the one which linear solution value is the closest
to 0.5.

5. Numerical experiments

In this section we conduct several computational experiments to test the perfor-
mance of both our upper bound method and our exact solution algorithm. For
these experiments, we use the same instances as in Billionnet et al. [2] and the
same generator as in Pisinger et al. [12].

More specifically, we report computational results concerning: (i) the quality of
our upper bound and the computational in comparison with the lagrangean upper
bound proposed by Billionnet et al. [2]; (ii) the computational performance of the
proposed branch-and-bound compared to that of the nowadays best branch-and-
bound algorithm known Pisinger et al. [12].



256 Rodrigues, Quadri, Michelon, Gueye

Table 1. Comparison of the quality of the upper bounds

Method Opt [2] t-relaxation Integral t-relaxation
No. UB Gap(%) UB Gap(%) UB Gap(%) NGC
1 18558 18910.56 1.90 19124.1 3.05 18865 1.65 109
2 56525 56574.63 0.09 56576 0.09 56525 0.00 32
3 3752 3807.68 1.48 3900.53 3.96 3785 0.88 312
4 50382 50448.08 0.13 51064.5 1.35 50589 0.41 580
5 61494 61623.22 0.21 61621 0.21 61494 0.00 6
6 36360 36464.87 0.29 36654.9 0.81 36399 0.11 283
7 14657 14749.58 0.63 14853.5 1.34 14657 0.00 445
8 20452 20525.15 0.36 20528.5 0.37 20452 0.00 46
9 35438 35485.16 0.13 35487 0.14 35438 0.00 361
10 24930 25191.5 1.05 25496.9 2.27 20190 1.04 401

Average 32255 32378.04 0.63 32530.7 0.85 32339.6 0.26 257.5

We coded our upper bound method as well as the proposed branch-and-bound
algorithm in C++ and all experiments were conducted on a Pentium 4 2.66 GHz
Intel processor and 1024 MB of RAM, exepted the results relative to [2] and [12].

5.1. Upper bounds comparison

The quality of our upper bound provided by the proposed t-relaxation is compared
to that of : (i) the upper method suggested by Billionnet et al. [2] (which is
based on a Langrangean decomposition); (ii) the Integral t-relaxation we developped
(which consists of solving the final t-linearized model with 0 − 1 variables instead
of continuous variables).

The comparison of the quality of those three bounds procedures are reported in
Table 1. The experiments has been performed on a HP9000 for [2] and on a Pentium
4 2.66 GHz Intel processor and 1024 MB of RAM. Because of the difference between
the CPU used by Billionnet et al. [2] and for our upper bound methods, comparing
these two CPU times is not fair or representative. Thus, in our tables, processing
times have been omitted.

The three upper bound methods (cf. Table 1) were tested on instances with
100 variables and 25% density on the quadratic member, as presented in [2].

Table 1 displays the resulting upper bounds values for each method and the
deviation (denoted by gap in %) of each upper bound to the optimal value (which is
refered in column Opt). In addition, the number of generated constraints (column
NGC) is given for the t-linearization procedure.

The bound provided by [2] is of better quality than the bound given by the
t-linearization. Nevertheless, the last remains, in average, within less than 1%
from the optimum. When the integer variables are considered, the Integral t-
linearization bound is clearly better (the gap is lesser than 0.5%). We can also
state that the number of generated constraints is smaller than the total number of
permutations (O(n!)). In the light of the average deviation (0.26%) of the integral
t-linearization, as well as the little average number of additional constraints (257.5),
it may be observed that our method is able to describe properly the optimal solution
neighborhood with few constraints compared to the O(n2) constraints of the classic
linearization.



A t-linearization scheme to exactly solve QKP 257

Table 2. Average time for 100 and 200-variables instances in seconds

t-linearization [12]
Instance Set Time Opt Time Opt
GHS100.25 0.78 10 210.7 10
GHS100.50 1.54 10 54.2 10
GHS100.75 0.41 10 6.7 10
GHS100.100 0.2 10 2.7 10
Average 0.73 100% 68.56 100%

t-linearization [12]
Instance Set Time Opt Time Opt
GHS200.25 42.32 10 860 9
GHS200.50 13.09 10 168.9 10
GHS200.75 27.84 10 23 10
GHS200.100 397.11 10 76.5 10
Average 120.09 100.0% 267.28 97.5%

Table 3. Average time for each 300 and 400-variables instances in seconds

t-linearization [12]
Instance Set Time Opt Time Opt
GHS300.25 74.92 10 4031 10
GHS300.50 1480.18 9 556.8 10
GHS300.75 2134.21 10 94.7 10
GHS300.100 2163.94 9 90.3 10
Average 1444.43 95% 1193.2 100%

t-linearization [12]
Instance Set Time Opt Time Opt
GHS400.25 87.97 10 1190.1 9
GHS400.50 1468.31 10 978.3 10
GHS400.75 2698.21 9 275.0 10
GHS400.100 516.45 9 173.2 10
Average 1170.92 95% 640.41 97.5%

5.2. Exact solution methods

We compare in this section the computational performance of the proposed branch-
and-bound based on a t-linearization with the branch-and-bound algorithm pre-
sented by Pisinger et al.[12].
A time limit of twelve hours was imposed to each instance.

All instances were generated as in [11], [3] and [12]. Coefficients ci and qij of the
objective function are integers uniformly distributed between 0 and 100, the weights
ai of the constraint are uniformly distributed between 0 and 50. The right-hand
side of the constraint, b, is a random number between 50 and max{50,

∑n
i=1 ai}.

CPU times are presented in seconds (s) and concern the average time of exact so-
lution of 10 instances in a given set.

We compare the CPU time given by our algorithm with the best results known
for this problem. These results are due to Pisinger et al. [12]. It is important
to notice that the instance sets used in these comparisons are not the same, but
generated similarly. The computational environement is different, as well. Pisinger
et al. [12] use a Pentium IV 2.4Ghz with 1GB RAM. Pisinger et al. [12] computing
quality is sightly lower than ours but remains very close to our environment. Thus,
a fair comparison between the two methods is possible.

In Tables 2 and 3 we can see that our branch-and-bound clearly outperforms the
algorithm proposed by Pisinger et al. [12] for the smallest problem sizes (n = 100)
whatever the density. For 75% and 100% density and 200 variables the branch-and-
bound suggested by Pisinger et al. [12] behaves better than the solution method we
present. Nevertheless, on average our branch-and-bound is approximately 2 times
faster than the second approach [12] for n = 200. For 300 and 400 variables, the re-
duction proposed by [12] keeps the problem size small enough to guarantee a good
performance in average. This means that only the low density (25%) instances are
outperformed by the t-linearization approach.



258 Rodrigues, Quadri, Michelon, Gueye

6. Conclusion

We developed in this paper a branch-and-bound algorithm to solve the 0-1 quadratic
knapsack problem (QKP). The upper bound method suggested is based on a original
linearization scheme requiring only one extra variable. The resulting upper bound is
competitive with the best upper bound method known [2] for (QKP). Our branch-
and-bound clearly outperforms other existing methods for low density instances
(25% and 50%) for small problems (100 and 200 variables). A possible way to
improve the CPU time of our method would consist of incorporating the reduction
procedure proposed by [12]. This a non trivial task, requiring mathematical and
algorithmical analysis that will be the subjects of future developments.

References

1. A. Billionnet and F. Calmels. Linear programming for the 0-1 quadratic knap-
sack problem. European Journal of Operational Research, 92:310–325, 1996.

2. A. Billionnet, A. Faye, and E. Soutif. An upper bound for the 0-1 quadratic
knapsack problem. European Journal of Operational Research, 112:664–672,
1999.

3. A. Caprara, D. Pisinger, and P. Toth. Exact solution of the quadratic knapsack
problem. INFORMS Journal on Computing, 11:125–137, 1999.

4. W. Chaovalitwongse, P.M. Pardalos, and O.A. Prokopyev. A new linearization
technique for multi-quadratic 0-1 programming problems. Operations Research
Letters, 32:517–522, 2004.

5. R. Fortet. Application de l’algèbre de boole en recherche opérationelle. Revue
Française de la Recherche Opérationelle, 4:17–25, 1960.

6. M.R. Garey and D.S. Johnson. Computers and intractability. A guide to the
theory of NP-completness. San Francisco, 1979.

7. F. Glover. Improved linear integer programming formulations of nonlinear in-
teger problems. Management Science, 22(4):455–460, 1975.

8. H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Verlag,
2005.

9. G.S. Lueker. Two np-complete problems in nonnegative integer programming.
Computer Science Labatory, Princenton, NJ, report 178 (A6), 1975.

10. S. Martello and P. Toth. Knapsack Problems: Algorithms and computer im-
plementations. John Wiley and Sons Inc, 1990.

11. P. Michelon and L. Veilleux. Lagrangean methods for the 0-1 quadratic knap-
sack problem. European Journal of Operational Research, 92:326–341, 1996.

12. W.D. Pisinger, A.B. Rasmussen, and R. Sandvik. Solution of large quadratic
knapsack problems through aggressive reduction. INFORMS Journal on Com-
puting, 19(2):280–290, 2007.

Appendix

Theorem 4. Consider the two following sets:

X =







(x, t) ∈ Rn+1 | t 6
∑

16i<j6n

qijxixj , x ∈ {0, 1}n








A t-linearization scheme to exactly solve QKP 259

and

QPn =







(x, t) ∈ Rn+1 | t 6

n
∑

i=2

i−1
∑

j=1

qπ(j)π(i)xπ(i), x ∈ [0, 1]n ∀ π ∈ Sn







where Sn is the set of all the permutations of {1, ..., n}.

We have QPn = Co(X) (Co(X) represents the convex hull of the set X).

Proof. Let us first show that QPn ⊂ Co(X). Let (x, t) ∈ QPn. We have to show
that :

∃ p ∈ N , (xi, ti) ∈ X , βi > 0 (0 6 i 6 p) |
p
∑

i=0

βi(x
i, ti) = (x, t) ,

p
∑

i=0

βi = 1.

Without loss of generality, we can suppose that the components of x are sorted
in decreasing order. Let α1, α2, ..., αm be the values (also sorted in decreasing order)
taken by the component of x. Then:

x = (α1, α1, ..., α1, α2, α2, ..., α2, ..., αm, αm, ..., αm).

More formally, by denoting kj the greatest index l such that xl = αj (l ∈
{1, ..., n} and j ∈ {1, ...,m}), we can write:

xl = αj , kj−1 < l 6 kj

with k0 = 0 and α0 = 1− α1.

Now, let us denote by x0 the null vector of Rn and by xi (1 6 i 6 m) the point
of Rn defined by:

xi
l =

{

1, if l 6 ki

0, otherwise

We then have x =
m−1
∑

i=1

(αi − αi+1)x
i + αmx

m + α0x
0. Hence, by considering

that p = m and

βi =







α0 = 1− α1, if i = 0
αi − αi+1, if 1 6 i 6 p− 1
αm, if i = p

it follows that x =
p
∑

i=0

βix
i with βi > 0 (since 1 > α1 > ... > αm > 0) and

p
∑

i=0

βi = β0 + (α1 − α2) + (α2 − α3) + ...+ αm = β0 + α1 = 1.

Now, for an index i = 1, ..., p and a scalar δ 6 0, let us consider the following
value:

tiδ =
n−1
∑

l=1

n
∑

u=l+1

qlux
i
lx

i
u + δ =

n
∑

l=2

l−1
∑

u=1

qulx
i
lx

i
u + δ =

ki
∑

l=2

l−1
∑

u=1

qul + δ

by the construction of tiδ and by the definition of X, (xi, tiδ) ∈ X.



260 Rodrigues, Quadri, Michelon, Gueye

In addition, by defining t0δ = δ, we have (x0, t0δ) ∈ X. Thus, it remains to prove

that ∃ δ > 0 such that t =
p
∑

i=0

βit
i
δ.

Given that (x, t) ∈ QPn, we have

t 6

n
∑

l=2

l−1
∑

u=1

qπ(u)π(l)xπ(l), ∀ π ∈ Sn.

In particular, for the identity permutation, we obtain the following inequality

t 6

n
∑

l=2

l−1
∑

u=1

qulxl =

p
∑

i=1

αi(

ki
∑

l=ki−1+1

l−1
∑

u=1

qul).

Let δ = t −
p
∑

i=1

αi(
ki
∑

l=ki−1+1

l−1
∑

u=1
qul). We then have δ > 0 and it is a fastidious

but straightforward calculation to see that
p
∑

i=0

βit
i
δ = t. Hence, (x, t) is written as

a convex combination of points of X.
Conversely we need to show that Co(X) ⊂ QPn. For this purpose, it is sufficient

to establish that any of the inequalities defining QPn is valid for X, or, in other
words, we have to establish that

∀(x, t) ∈ X, ∀π ∈ Sn t 6

n
∑

i=2

i−1
∑

j=1

qπ(j)π(i)xπ(i).

Since (x, t) ∈ X, we have t 6

n−1
∑

i=1

n
∑

j=i+1

qijxixj and therefore, it is suficient to

show that

∀(x, t) ∈ X, ∀π ∈ Sn

n−1
∑

i=1

n
∑

j=i+1

qijxixj 6

n
∑

i=2

i−1
∑

j=1

qπ(j)π(i)xπ(i).

This is easily achieved by noting that

n−1
∑

i=1

n
∑

j=i+1

qijxixj =

n−1
∑

i=1

n
∑

j=i+1

qπ(i)π(j)xπ(i)xπ(j)

=

n
∑

i=2

xπ(i)(

i−1
∑

j=1

qπ(i)π(j)xπ(j))

for any permutation π and by taking into account that xπ(j) ∈ {0, 1} and qπ(j)π(i) >

0 (so that qπ(j)π(i)xπ(j) 6 qπ(j)π(i)).
�



44

Optimization to measure performance in
the Tailorshop test scenario — structured

MINLPs and beyond

Sebastian Sager Carola M. Barth Holger Diedam
Michael Engelhart Joachim Funke

Interdisciplinary Center for Scientific Computing
Department of Psychology

University of Heidelberg
INF 368, 69120 Heidelberg, Germany

sebastian.sager@iwr.uni-heidelberg.de

Abstract

Obtaining objective means to measure performance is of crucial im-
portance in the research field Complex Problem Solving. While for
traditional tests like the Tower of Hanoi the correct solutions were
known, this is more difficult for modern, complex, simulation-based
test scenarios, as the Tailorshop. We derive a problem class of non-
convex mixed-integer nonlinear programs (MINLPs) which stem from
such economic test scenarios. In a round based scenario participants
need to make decisions. A posteriori a performance indicator is cal-
culated and correlated to their ability of emotion regulation. We
solve altogether 2088 optimization problems with different size and
initial conditions. They are based on real world experimental data
from 12 rounds of 174 participants. The goals are twofold: first,
from the solutions we gain additional insight into a complex system,
which facilitates the analysis of a participant’s performance in the
test. Second, we propose a methodology to automatize this process
by providing a new criterion based on the solution of a series of opti-
mization problems. We disprove the assumption that the “fruit fly of
complex problem solving”, the Tailorshop scenario that has been used
for dozens of published studies, is not mathematically accessible. By
providing a detailed mathematical description and the computational
tool Tobago [12] for an optimization-based analysis we hope to foster
further interdisciplinary research between psychologists and applied
mathematicians and provide a source for benchmarking of MINLP
solvers.

261



262 Sager, Barth, Holger, Diedam, Engelhart, Funke

Keywords: mixed integer programming, nonlinear programming,
cognitive psychology.

1. Introduction

Psychologists define complex problem solving as a high-order cognitive process. The
complexity may result from one or several different characteristics, such as a cou-
pling of subsystems, nonlinearities, dynamic changes, intransparency, or others [6].
The main intention of the research field complex problem solving of human beings
is the desire to understand how certain variables influence a solution process. In
general, personal and situational variables are differentiated. In our study we ana-
lyze the personal variable emotion regulation. Other interesting personal variables
are working memory, amount of knowledge, and intelligence.

Psychologists have been working in the research fields of problem solving for ap-
proximately 80 years. Since the 1970s and 1980s also computer-based test scenarios
are in use. The overall idea, compared to early works in problem solving, is still the
same: one evaluates the performance of a participant by calculating an indicator
function and either correlates it to personal attributes or analyzes the influence of
different experimental conditions for groups of participants. The main difference is
that for the early test scenarios the correct solution is known at every stage. For
more complex scenarios the performance evaluation is not so straightforward. The
availability of an objective performance indicator is an obstacle for analysis and it
has often been argued that inconsistent findings are due to the fact that

“. . . it is impossible to derive valid indicators of problem solving perfor-
mance for tasks that are not formally tractable and thus do not pos-
sess a mathematically optimal solution. Indeed, when different dependent
measures are used in studies using the same scenario (i.e., Tailorshop
[7, 13, 11]), then the conclusions frequently differ.”

as stated by Wenke and Frensch [15, p.95]. The Tailorshop is sometimes re-
ferred to as the “Drosophila” for problem solving researchers [9] and thus a promi-
nent example for a computer-based test scenario. In Section 2 we will derive a
mathematical model for the Tailorshop. In Section 3 we will discuss mathemati-
cally optimal solutions, and finally formulate a valid indicator function in Section 4.

To our knowledge, numerical optimization methods have only scarcely been
used for the analysis of participants’ decisions. The general approach to compare
performance to optimal solutions has been discussed by [10]. However, the authors
do not provide a mathematical model for their test scenario EPEX. Hence, they
need to use the software as a black box for brute-force simulation or derivative
free strategies, such as Nelder-Mead. Such strategies result in significantly higher
computational runtimes, give less insight, and have poor theoretical convergence
properties.

2. Tailorshop MINLP Model

The Tailorshop has been developed and implemented as a test scenario in the 1980s
by Dörner [6]. It has been used in a large number of studies. Also comprehensive re-
views on studies and results in connection with the Tailorshop have been published,
e.g., [8].



Optimization to Measure Performance 263

A participant has to take economic decisions to maximize the profit of a small
company, specialized in the production and sales of shirts. The scenario com-
prises twelve rounds (months), in which the participant can modify infrastructure
(employees, machines, distribution vans), financial settings (wages, maintenance,
prices), and logistical decisions (shop location, buying raw material). As feedback
he gets some key indicators in the next round, such as the current number of sold
shirts, machines, employees, and the like. Arrows next to the indicators show if the
value increased or decreased with respect to the previous round.

We derive a mathematical formulation as an optimization problem. The basic
idea is that for different initial values (the current state in round ns of a participant’s
test run) the optimal solution for the remaining N − ns rounds can be calculated.
The optimal solution can then either be used for a manual comparison and analysis
of the participant’s decisions, Section 3, or for an automated indicator function, as
discussed in Section 4.

The Tailorshop has been developed as a test scenario in GW-Basic code. On the
basis of this code we derived a mathematical optimization problem for a participant
and month 0 ≤ ns < N as

max
x,u,s

F (xN )

s.t. xk+1 = G(xk, uk, sk, p), k = ns . . . N − 1,
0 ≤ H(xk, xk+1, uk, sk, p), k = ns . . . N − 1,
uk ∈ Ω, k = ns . . . N − 1,
xns

= xp
ns
.

(44.1)

The model is dynamic with a discrete time k = 0 . . . N , where N = 12 is the
number of rounds. The control vector uk = u(k) has 15 (or 13 when van purchase is
fixed) entries for each k = 0 . . . N−1 corresponding to the decisions the participant
can make in the test. The vector of dependent state variables xk = x(k) comprises
16 entries. We define

(xp, up) = (xp
0 , . . . , x

p
N , u

p
0 , . . . , u

p
N−1)

to be the vector of decisions and state variables for all months of a participant.
Certain entries xp

ns
enter (44.1) as fixed initial values. The goal is to find decisions

uk that maximize the overall balance at the end of the time horizon. The objective
function is given by F (xN ) = xOB

N . The resulting problem is a nonconvex mixed-
integer nonlinear program with ns–dependent dimension.

3. Optimization and numerical results

We want to solve a series of optimization problems of the form (44.1) for different
participant data that has been obtained experimentally.

3.1. Implementation

To be able to analyze and visualize the data in a convenient way, to have a simu-
lation environment for own studies, and to be able to automatize the optimization
of all 2088 = 174 · 12 problems, we implemented the software framework Tobago
[12]. It is publically available under an open source license, includes a GUI, and
may as well be used for experimental setups. This data generation and analysis
tool can be hooked to a variety of optimization solvers. Currently the software
supports AMPL interfaces. This allows for the usage of solvers from the COIN-OR



264 Sager, Barth, Holger, Diedam, Engelhart, Funke

Figure 1. Top row: state variable x
W100

k
that indicates how many workers

for the 100 machines are employed. The left and right column show the results

for two different participants. For both the optimal strategy is to have a fixed
number of 0 to 4 workers which is decreasing as ns increases. Note that the
values are solutions of the relaxed problem where also non-integer values are

possible.

initiative, which are also available under a public license. In this study we use the
global solver Couenne [3] and the local solvers Bonmin [4] and Ipopt [14]. We used
the currently latest stable version 0.2.2 of Couenne, and for better comparability
the versions 1.1.1 of Bonmin and 3.6.1 of Ipopt it is interfaced with. For all solvers
we used the default settings exclusively and the MA27 sparse solver for numerical
linear algebra.

It turns out, however, that the size and complexity of the problems presented
in this paper leads to extremely long runtimes of the global solver and can only be
used on a small subset of the problems. We present a problem-specific cut to avoid
bad local minima and guarantee monotonicity of the analysis function that builds
on the locally optimal objective function values.

3.2. Optimal Solutions

In total, 2088 optimization problems have been solved. Depending on the value of
ns in (44.1), each consists of 13(N − ns) control, 16(N − ns) state, and 5(N − ns)
slack values. The total number of optimized variables for all 174 participants sums
up to

nvar = 174
N−1
∑

ns=0

34(N − ns) = 174 · 2652 = 461448.

This many variables are obviously difficult to discuss and visualize comprehensively.
As an illustration, in Figure 1 the state variable xW100

k is depicted. It indicates how
many workers for the 100 machines are employed at time k.

3.3. Local minima and integer solutions

The optimization problems (44.1) are nonconvex. Depending on initial values for
the optimization variables different local minima can be found. Hence one has to
use a global optimization solver, such as Couenne or one of the solvers listed on [5].
As mentioned above, we used three different solvers to obtain solutions. Table 1



Optimization to Measure Performance 265

S 0 1 2 3 4 5 6 7 8 9 10 11
1 0.15 0.13 0.17 0.11 0.1 0.06 0.05 0.03 0.02 0.02 0.0 0.0
2 1183 264 1552 1464 356 36 5 4 16 3 0.2 0.2

Table 1. CPU times in seconds for the solution of (44.1) for one participant.

The columns show the start month ns. Solver S 1: Ipopt for the relaxation of
(44.1). Solver S 2: Bonmin. The global solver Couenne could only solve the
problem for ns = 11 in 3 seconds, for ns = 10 the B&B tree grew too fast.

shows an overview of computational times that have been obtained with Ipopt and
Bonmin. Note that the runtime is not monotonically increasing as ns is reduced.
The reason is that the solution process strongly depends upon the local minima of
the relaxations that need to be solved.

The global solver Couenne was able to solve (44.1) for ns = 11 in 3 seconds.
For the next larger problem, ns = 10, however, no results could be obtained. The
solver terminated after processing 600.000 nodes in 7 hours, because the computer
ran out of memory. The stack comprised about 2.000.000 open nodes at that
time. To reduce the search space, we introduced and tightened the bounds on all
variables to extremal values found with the local approaches. However, even with
this restriction and a relaxation of all integer variables the same happened, now
after 8.800.000 processed nodes with 2.9 million NLPs still on the tree. The best
solution at that time was 500497 with the upper bound of 506610 still leaving a
certain gap. For comparison: the objective function values found by Bonmin and
Ipopt are 490385 and 500779, respectively. When heuristic non-convexity options
num resolve at root and num resolve at node are used with a value of 1 (or
2) for Bonmin, an integer solution with value 500188 (500438) is found after 142
(317) seconds, which is considerably higher than the 0.2 seconds with the standard
settings.

Obviously already for one participant data set the computational times are pro-
hibitive for global approaches. For the analysis of all 174 participants we therefore
solved 2088 NLP relaxations with the local optimizer Ipopt.

A crucial feature of our method is that the How much is still possible–function,
see Section 4.1, decreases monotonically with ns increasing. To take this into ac-
count, we exploit this knowledge in our a posteriori analysis. We define

(x∗, u∗, s∗) = (x∗ns
, . . . , x∗N , u

∗
ns
, . . . , u∗N−1, s

∗
ns
, . . . , s∗N−1)

as a locally optimal solution obtained by solving problem (44.1) for month ns.
We initialize the variables for problem (44.1) with a feasible solution. To avoid

local minima with a worse performance, we add the additional cut

xOB
N ≥ x∗,OB

N(44.2)

to (44.1).
Computational experience shows that the primal-dual interior point solver we

are using cannot exploit the initialization to its full extent and in many cases Ipopt
converged to locally infeasible points although it started from a primally feasible
one. Future studies should therefore include active set based solvers. For this study
we iterated in an inner loop with random initializations until the objective function
cut (44.2) was fulfilled for all problems.



266 Sager, Barth, Holger, Diedam, Engelhart, Funke

Figure 2. Left: optimal choices of site for one participant and all start months

ns, calculated with Ipopt (green, relaxed values between 1.1 and 1.9) and Bon-

min (blue, integer values of 0, 1, and 2). Right: How much is still possible–
function for one participant, calculated with Ipopt (green, upper curve) and
Bonmin (blue, lower curve). The integer gap seems to be largest for interme-
diate values of ns.

Within our analysis approach, local minima can lead to a violation of the goal
to have an objective measurement for participant performance. Whenever possible,
global solvers with a guaranteed, deterministic global minimum should be used. If
the size of the problem is still too large for current algorithms and computational
platforms, we propose to use relaxations and include the cut (44.2) as a compromise.
The difference between participant’s performance and global optimum seems to be
so far apart compared to the distance between global and local minimum, especially
when the cuts (44.2) are used, that the analysis based on a local How much is still
possible–function should still be valid.

Several of the control variables are restricted to integer values. A comparison
of (locally) optimal relaxed and integer solutions shows that some of the variables
show typical behavior for most xp

ns
, such as the maintenance uMA

k or the purchase

of raw material u∆MS
k . Others, in particular the numbers of machines and workers,

the shirt price uSP
k , and the choice of the site uCS

k are more sensitive to local optima
and/or the fixation of some of the variables to integer values. Figure 2 shows an
example.

3.4. Analyzing Lagrange Multipliers

Using optimization as an analysis tool yields insight on several levels. Structural
properties of the problem, e.g., the unboundedness, can be understood. Also the
performance of a participant can be compared to the optimal solution, and the
How much is still possible–function to be discussed in Section 4 delivers a temporal
resolution of this performance. But even a more detailed analysis is possible. While
an analysis of the How much is still possible–function indicates at what rounds the
participant made particularly good or bad decisions, the question of what of the
decisions contributed significantly to the success or failure remains and might be of
importance in a given test scenario.

We propose to combine two concepts. First, the comparison of the participant’s
decisions at month ns with the optimal solution, up

ns
−u∗ns

, gives a global indication
of differences in the controls. However, it is unclear from this comparison how



Optimization to Measure Performance 267

significant a single deviation is. Therefore we use, second, Lagrange Multipliers
for the participant’s decisions to measure the effect on the objective function. We
augment problem (44.1) with the additional constraint

uns
= up

ns
(44.3)

Note that necessarily it holds x∗ns+1 = xp
ns+1, hence the augmented problem for

month ns has the same solution as problem (44.1) for ns + 1. Hence there is no
need for additional optimization problems to be solved. The advantage is that an
optimization code will also calculate the dual variables or Lagrange multipliers λns

for the constraints (44.3). It is well known that the Lagrange multipliers indicate the
shadow prices, i.e., how much the objective function will vary if the corresponding
constraints were relaxed, assumed that the active set stays constant.

4. A correct indicator function for Tailorshop

We propose to use the solutions of (44.1) for all ns as an indicator function for
the performance of a participant. The approach described in Section 4.1 is generic
and should also be used for other test scenarios in complex problem solving in the
future. In Section 4.2 we describe the results we obtained by using this indicator
function for a psychological study.

4.1. How much is still possible

On an individual basis, the performance of every participant can be better under-
stood by a comparison with optimal solutions as illustrated in Section 3. For an
evaluation of large data sets that shall be related to characteristics of participants
or experimental setup, an automatization and a reduction to an indicator function
is necessary. To measure performance within the Tailorshop scenario different in-
dicator functions have been proposed in the literature, e.g., the evolution of profit
or overall worth of the tailorshop. An obvious drawback of comparing the results
of several rounds with one another is that the main goal of the participant is to
maximize the value at the end of the test, not necessarily in between.

Hence it might happen that decisions are analyzed to be bad, while they are
actually good ones and vice versa. To overcome this problem, we propose to com-
pare the decisions to mathematically optimal solutions. In a certain analogy to
the cost-to-go-function in dynamic programming, the optimal objective function
values for all rounds yield the monotonically decreasing How much is still possible–
function. We look at the series of optimal objective function values F ∗(xN ;ns) for
ns = 0, . . . , N−1. By comparing F ∗(xN ;ns = k) with F ∗(xN ;ns = k+1) we obtain
the exact value of how much less the participant is still able to obtain, assumed he
would take the best solutions from now on.

We conclude that the newly proposed methodology based on the How much is
still possible–function is more reliable and generally applicable to test scenarios in
complex problem solving.

4.2. Impact of Emotion Regulation

In the study 174 data sets have been used, every one from a different participant
who had but one try. For 42 of them a positive feedback was used in the sense
that in every round, regardless of the decisions the participant took, a sum of



268 Sager, Barth, Holger, Diedam, Engelhart, Funke

20.000 money units (MU) was added to the capital. For 42 participants a negative
feedback in form of a reduction of 8000 MUs was implemented. These modifications
are implemented in the model and readjusted in the a posteriori analysis, of course.

In a previous study [1] it was shown that participants who receive a negative
feedback perform better than those who receive positive feedback. In our new
study we additionally considered the ability to regulate emotion. The psychological
results of this study are submitted in a separate paper [2] in which also details on
the experimental setup can be found. As a main result, an interaction between
feedback and emotion regulation could be shown: participants with a high ability
of emotion regulation perform better when they get negative feedback, while those
with a low ability to regulate their emotions perform bad for negative and good for
positive feedback.

Acknowledgments

Financial support of the Heidelberg Graduate School of Mathematical and Com-
putational Methods for the Sciences is gratefully acknowledged.

References

1. C.M. Barth and J. Funke. Negative affective environments improve complex
solving performance. Cognition and Emotion, 2009. (in press).

2. C.M. Barth, J. Funke, and S. Sager. Effects of emotion regulation and affect
on problem solving. Journal of Individual Differences. (submitted).

3. P. Belotti. Couenne: a user’s manual. Technical report, Lehigh University,
2009.

4. P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D.
Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic
framework for convex mixed integer nonlinear programs. Discrete Optimiza-
tion, 5(2):186–204, 2009.

5. M.R. Bussieck. Gams performance world.
http://www.gamsworld.org/performance.

6. D. Dörner. On the difficulties people have in dealing with complexity. Simula-
tion and Games, 11:87–106, 1980.

7. J. Funke. Einige Bemerkungen zu Problemen der Problemlöseforschung oder:
Ist Testintelligenz doch ein Prädiktor? Diagnostica, 29:283–302, 1983.

8. J. Funke. Problemlösendes Denken. Kohlhammer, 2003.
9. J. Funke. Complex problem solving: A case for complex cognition? Cognitive

Processing, 2010. (in press).
10. S. Kolb, F. Petzing, and S. Stumpf. Komplexes Problemlösen: Bestimmung

der Problemlösegüte von probanden mittels verfahren des operations research
– ein interdisziplinärer Ansatz. Sprache & Kognition, 11:115–128, 1992.

11. W. Putz-Osterloh. Über die Beziehung zwischen Testintelligenz und Prob-
lemlöseerfolg. Zeitschrift für Psychologie, 189:79–100, 1981.

12. S. Sager, H. Diedam, and M. Engelhart. Tailorshop: Optimiza-
tion Based Analysis and data Generation tOol. TOBAGO web site
https://sourceforge.net/projects/tobago.

13. H.-M. Süß, K. Oberauer, and M. Kersting. Intellektuelle Fähigkeiten und die
Steuerung komplexer Systeme. Sprache & Kognition, 12:83–97, 1993.



Optimization to Measure Performance 269

14. A. Wächter and L.T. Biegler. On the implementation of an interior-point fil-
ter line-search algorithm for large-scale nonlinear programming. Mathematical
Programming, 106(1):25–57, 2006.

15. D. Wenke and P. A. Frensch. Is success or failure at solving complex prob-
lems related to intellectual ability?, pages 87–126. The psychology of problem
solving. Cambridge University Press, 2003.





45

MINLP model and Lagrangian heuristic
for the newsvendor problem with supplier

discounts

Guoqing Zhang

University of Windsor
Department of Industrial and Manufacturing Systems Engineering

Windsor, Ontario, Canada N9B 3P4

gzhang@uwindsor.ca

Abstract

We study several multi-product newsboy problems with supplier quan-
tity discounts, including single- and multi-constraints. Different from
most previous nonlinear optimization models on the topic, we illus-
trate that those problems are formulated as mixed integer nonlinear
programming models due to price discounts. Lagrangian relaxation
approaches are presented to solve the problems. Computational re-
sults on large-scale test instances indicate that the proposed algo-
rithms are extremely effective for the problems. A comparison with
GAMS/CONOPT is also reported.
Keywords: newsboy, Lagrangian heuristic, quantity discount.

1. Introduction and modeling

The newsboy problem, also known as newsvendor problem or single period problem,
has a rich history. Significant number of articles has been published to address the
variants or extensions of the classical newsboy problem due to its importance to
both inventory theory and practice ([1]-[4]). It has been noted that this topic
has attracted great attentions in recent ten years. Both a budget constraint and
suppliers price discounts are very common in supplier-retailer practice, but to our
knowledge, the newsboy model with taking into account both features has not
been reported in the literature. Typically the optimal order quantity depends on
the purchasing price (and other parameters), which is fixed in previous research.
However, a more realistic situation is that the price is also dependent on the order
quantity.

The purpose of this study is to investigate the affect of both a budget constraint
and supplier quantity discounts on the optimal order quantities in a multi-product

271



272 Zhang

newsboy problem. We present a mixed integer nonlinear programming model to
formulate the problem and developed a Lagrangian relaxation approach.

Indices:
i = 1,..., n: index of products, where n is the total number of products
ki = the number of quantity discounts for product i offered by a supplier
j = 1,..., ki: index of quantity segment j for product i offered by a supplier

Parameters:
pi = unit sales revenue of product i
him = the resource consumed per unit of product i on the resource m
Hm = the limitation of the newsboy on resource m
cij = the unit discounted price of product i on discount segment j, and ci1

is original unit price
dL

ij = the lower bound of the quantity of product i on discount segment j
dU

ij = the upper bound of the quantity of product i on discount segment j
zi = the random variable of the demand for product i
f(zi) = the probability density function followed by the demand of product i
gi = the estimated understocking cost of one unit of product i
si = the estimated overstocking cost of one unit of product i

We define the following decision variables:
Qi : the amount of product i purchased from suppliers
Qij : the amount of product i purchased on discount segment j
yij : 1 if product i is purchased on discount segment j ; otherwise 0

Thus, a multi-product newsboy problem with supplier quantity discounts and
M constraints is formulated as follows:

MaxR =
n
∑

i=1

{
∫ Qi

0

[pizi − si(Qi − zi)]f(zi)dzi +

∫ ∞

Qi

[piQi − gi(zi −Qi)]f(zi)dzi}

−
n
∑

i=1

ki
∑

j=1

cijQij(45.1)

The first term represents the expected revenue minus the overstocking cost
when the order quantities are above the actual demand levels (or plus the salvage
when si is negative). The second term is the expected revenue minus the shortage
cost (including loss of goodwill if any) when the order quantities are lower than the
actual market demands. The third term is the cost for purchasing.

The problem is subject to the following constraints:

• Resource constraints:

n
∑

i=1

himQi 6 Hm, m = 1, ...M(45.2)



MINLP model and Lagrangian heuristic for the newsvendor problem 273

• Quantity discount constraints: The suppliers provide an all-unit quantity
discount scheme.

Qij 6 dU
ijlyij , ∀i, j,(45.3)

Qij > dL
ijyij , ∀i, j,(45.4)

ki
∑

j=1

yij = 1, ∀i,(45.5)

Qi =

ki
∑

j=1

Qij , ∀i.(45.6)

• Other nonnegative and integral constraints:

Qij , Qi > 0, ∀i, j;(45.7)

yij ∈ {0, 1}, ∀i, j.(45.8)

Note that the main difference between our model and the existing models is
the proposed model is a mixed integer nonlinear programming while the previous
constrained newsvendor models are nonlinear programming.

2. Solution approach

We present a Lagrangian relaxation heuristic to solve the problem, mainly for large
scale instances.

2.1. Reformulation and upper bound computation

We relax the resource constraints (1.2) and introduce associated Lagrange multipli-
ers λm (λm > 0), m = 1, ,M, to construct the following Lagrangian dual problem:

Minλm
Max L = R+

M
∑

m=1

λm(Hm −
n
∑

i=1

himQi)(45.9)

Subject to constraint (1.3) to (1.8)(45.10)

The Lagrangian relaxation problem for a given set of values of λm, m = 1, ,M,
is:

Max L = R+
M
∑

m=1

λm(Hm −
n
∑

i=1

himQi)(45.11)

Subject to constraint (1.3) to (1.8).

The relaxation problem can be decomposed into n sub-problems, SPi, as fol-
lows, each for product i:

Max Ri =

∫ Qi

0

[pizi − si(Qi − zi)]f(zi)dzi +

∫ ∞

Qi

[piQi − gi(zi −Qi)]f(zi)dzi

−
ki
∑

j=1

cijQij −
M
∑

m=1

λmhimQi(45.12)

Subject to constraint (1.3) to (1.8).



274 Zhang

Considering constraint (1.5), the sub-problem can be further decomposed into
ki sub-problems, SPij , each for discount segment j:

Max Rij =

Z Qij

0

[pizi − si(Qij − zi)]f(zi)dzi +

Z ∞

Qij

[piQij − gi(zi −Qij)]f(zi)dzi

−

ki
X

j=1

cijQij −

M
X

m=1

λmhimQij(45.13)

Subject to constraint (1.3) to (1.4).

The optimal order quantity for each price segment without considering bound
constraints is

Q∗
ij = F−1(

pi + gi − cij −
∑M

m=1 λmhim

pi + gi + si

).(45.14)

Proposition 1: Let Q+
ij and Q∗

ij be the optimal solutions of problem (SPij)

with and without bound constraints, respectively. Q∗
ij is evaluated as formula (2.6).

Then we have: (i) If the solution Q∗
ij satisfies the bound constraints, i.e., , then

Q+
ij = Q∗

ij . (ii) If Q∗
ij > dU

ij , then Q+
ij = dU

ij . (iii) If Q∗
ij 6 dL

ij , then Q+
ij = dL

ij .

Proposition 1 provides a closed form to solve the optimization problem (SPij).
According to the proposition, we design an algorithm to solve the sub-problem SPi.

2.2. Lower bound computation and subgradient method

We present two heuristic approaches to construct an initial feasible solution and an
updated feasible solution at last iteration respectively, and those feasible solutions
are the lower bounds of the optimal solution. We use subgradient optimization
method to update the the Lagrangian multipliers.

The following heuristic gives the steps to constructing a feasible solution from
the final solution of Lagrangian dual approach, if it is infeasible.

Step 1 Compute the MENBUC for each product i:
Gi = [pi − gi − (pi + si + gi)Fi(Qi)− ci(Qi)]/hi

Step 2 Sort the MENBUCs in an increasing order
Step 3 Choose the product according to the order, and reduce the order
level as the follows:

Qi = max{Qi + (H −∑n
l=1 hiQi)/hi, d

L
ij}

until the budget limit is satisfied. Where dL
ij is the lower bound of the

discount segment j that Qi locates.
Step 4. Update the solution

3. Numerical results

Some test instances are randomly produced with the number of products from 5
to 2,000, and the number of discount segments from 2 to 5. We assume that the
demand of each product follows normal distribution and set the mean from 30 to
100 and the standard deviation from 5 to 15.

We first compare our results against that from GAMS/CONOPT, one effective
solver for MINLP, for some problems with the number of discount segments k = 3
and single constraint. The comparisons are reported in Table 1. For the small
size problems with the number of products from 5 to 20, GAMS/CONOPT got



MINLP model and Lagrangian heuristic for the newsvendor problem 275

the optimal solutions but took much longer time than the proposed Lagrangian
relaxation method (44.7 to 0.084 seconds for the average of computational time).
For the instances with more than 200 products, GAMS/CONPOT could not obtain
the optimal solutions in 30 minutes, while the proposed Lagrangian relaxation
method can find either optimum or extremely good approximate solution in less
than one minute.

We test the Lagrangian relaxation method for multi-constraint case with M =
2 or 3. The test instances for multiple constraints are randomly generated. The
preliminary computational results are reported in Table 2. As seen in Table 2, the
relative gap is 0.641% in the worst case and 0.138% on average.

Table 1. The solution and running time comparisons between Lagrangian
method and GAMS/CONOPT

GAMS/CONOPT Lagrangian method

N Solution CPU (sec.) Bound Solution GAP (%) CPU (sec.)

5 285787.73 18 285787.73 285787.73 0 0.0172

10 626421.66 24 626421.64 626421.64 0 0.109

20 1010006.21 92 1010005.99 1010005.99 0 0.125

200 ? 30 min 12177026.06 12177026.06 0 0.791

2000 ? 30 min 123895894.48 123894835.01 8.55E-04 55.078

Table 2. Test problem size, solution, gap, and running time for multi-
constraint case

N M Bound Solution Gap(%) CPU Time (sec.)
10 2 416448.57 413779.08 0.641 0.344
200 2 10950840.91 10948128.48 0.025 9.24
2000 2 135456831.45 135448777.31 0.006 127.23
10 3 521352.85 520923.00 0.082 0.25
200 3 12120945.94 12114293.77 0.055 3.812
2000 3 116029100.00 116009900.00 0.017 213.25

4. Extensions

A future work is to combine the demand management to the newsvendor model,
for example, considering both supplier discounts and pricing decision in a multi-
product newsboy model with budget and other constraints.

Acknowledgments

Supported by NSERC and CFI.

References

1. Abdel-Malek, L., Areeratchakul, N., A quadratic programming approach to the
multi-product newsvendor problem with side constraints. European Journal of
Operational Research 2007;176; 1607-1619

2. Khouja M, The newsboy problem with multiple discounts offered by suppliers
and retailers. Decision Sciences 1996;27; 589-599



276 Zhang

3. Lau HS, Lau AHL, The newsstand problem: A capacitated multiple-product
single-period inventory problem. European Journal of Operational Research
1996; 94; 29-42

4. Zhang, G.Q., Ma, L.P., Optimal acquisition policy with quantity discounts and
uncertain demands, International Journal of Production Research 2009; 47(9);
2409-2425



Participants 277



278 Participants

Claire Adjiman Imperial College London c.adjiman@imperial.ac.uk 3
Hesham Alfares King Fahd Univ. of Petroleum alfares@kfupm.edu.sa

Kurt Anstreicher University of Iowa kurt-anstreicher@uiowa.edu 5

Pietro Belotti Lehigh University belotti@lehigh.edu 13,159
Daniel Bienstock Columbia University dano@columbia.edu 113
Christian Bliek IBM France bliek@fr.ibm.com

Pierre Bonami LIF-CNRS pierre.bonami@lif.univ-mrs.fr

Sonia Cafieri Ecole Nationale de l’Aviation Civile sonia.cafieri@enac.fr 205
Myun-Seok Cheon ExxonMobil Research & Engineering myun-seok.cheon@exxonmobil.com

Alberto Costa LIX, Ecole Polytechnique costa@lix.polytechnique.fr 219

Zsolt Csizmadia FICO ZsoltCsizmadia@gmail.com

Claudia D’Ambrosio DEIS, University of Bologna c.dambrosio@unibo.it 115
Gravot David Rostudel Operations Research dgravot@noos.fr

Ali Diabat MASDAR Inst. for Science and Tech. adiabat@masdar.ac.ae

Holger Diedam IWR Heidelberg hdiedam@ix.urz.uni-heidelberg.de 261
Laureano Escudero Univdersidad Rey Juan Carlos laureano.escudero@urjc.es 173
Oliver Exler University of Bayreuth oliver.exler@uni-bayreuth.de 119,237
Bernard Fortz Université Libre de Bruxelles bernard.fortz@ulb.ac.be 131

Ulf Friedrich University of Trier friedrich@uni-trier.de

Claudio Gentile IASI-CNR gentile@iasi.cnr.it 139
Ambros Gleixner Zuse Institute Berlin gleixner@zib.de 103

Ignacio Grossmann Carnegie Mellon University grossmann@cmu.edu 67,245
M. Guignard-Spielberg University of Pennsylvania guignard_monique@yahoo.fr 149
Susanne Heipcke FICO SusanneHeipcke@fico.com

Hassan Hijazi Orange Labs & LIF hassan.hijazi@yahoo.com

Hossein T. Kakhki Ferdowsi University taghizad@math.um.ac.ir 231
Michal Kocvara University of Birmingham kocvara@maths.bham.ac.uk 31
Amélie Lambert CEDRIC-ENSIIE lambert.amelie@gmail.com 197
Jean B. Lasserre LAAS-CNRS lasserre@laas.fr 33

Jon Lee IBM TJ Watson Research Center jonlee@us.ibm.com 43
Stephan Lemkens RWTH Aachen University lemkens@math2.rwth-aachen.de

Sven Leyffer Argonne National Laboratory leyffer@mcs.anl.gov 45

Leo Liberti LIX, Ecole Polytechnique leoliberti@gmail.com 205,219
Jeff Linderoth University of Wisconsin-Madison linderoth@wisc.edu 27
Peter Lindroth Chalmers University of Technology peter.lindroth@chalmers.se

Andrea Lodi DEIS, University of Bologna andrea.lodi@unibo.it 25

Nelson Maculan Federal University of Rio de Janeiro maculan@cos.ufrj.br

Ashutosh Mahajan Argonne National Lab mahajan@mcs.anl.gov 243
Jérôme Malick CNRS/LJK/INRIA jerome.malick@inria.fr 61

F. J. Martin-Campo Rey Juan Carlos University javier.martin.campo@urjc.es 95
Frédéric Messine ENSEEIHT-IRIT messine@n7.fr 65
Philippe Michelon Université d’Avignon philippe.michelon@univ-avignon.fr 251
Andrew Miller Université Bordeaux 1 andrew.miller@math.u-bordeaux1.fr 13

Todd Munson Argonne National Lab tmunson@mcs.anl.gov 243
Giacomo Nannicini Tepper School of Business, CMU nannicin@andrew.cmu.edu 159
Adam Ouorou Orange labs adam.ouorou@orange-ftgroup.com

Hacne Ouzia LIP6, Paris 6 h.ouzia@gmail.com 249

Veronica Piccialli Universit di Roma Tor Vergata piccialli@disp.uniroma2.it 57
Mustafa Pinar Bilkent University mustafap@bilkent.edu.tr 209
Thomas Pogiatzis University of Cambridge tp309@cam.ac.uk

Michael Poss Université Libre de Bruxelles mposs@ulb.ac.be 131
Carlos D. Rodrigues Université d’Avignon carlos-diego.rodrigues@univ-avignon.fr 251
Sebastian Sager IWR, Uni Heidelberg sebastian.sager@iwr.uni-heidelberg.de 169,261
Annick Sartenaer University of Namur (FUNDP) annick.sartenaer@fundp.ac.be

Renata Sotirov Tilburg University r.sotirov@uvt.nl 73
Bhagawan Subedi Nepal College of Information Tech. bhagawansubedi@gmail.com

Mohit Tawarmalani Purdue University mtawarma@purdue.edu 77

Philippe Toint University of Namur (FUNDP) philippe.toint@fundp.ac.be 81
Edwin van Dam Tilburg University edwin.vandam@uvt.nl

Stefan Vigerske Humboldt University Berlin stefan@math.hu-berlin.de 181
Andreas Wächter IBM TJ Watson Research Center andreasw@us.ibm.com 83

Robert Weismantel Otto-von-Güricke Univ. Magdeburg weismant@mail.math.uni-magdeburg.de 85
Tapio Westerlund Åbo Akademi University twesterl@abo.fi 89
Angelika Wiegele Alpen-Adria-Universität Klagenfurt angelika.wiegele@uni-klu.ac.at 19
Guoqing Zhang University of Windsor gzhang@uwindsor.ca 271

Yang Zhang Lightweight Struct. Inst., TU München zhang@llb.mw.tum.de


