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Abstract Given a simple weighted undirected graph G = (V,E, d) with d : E → R+,

the Molecular Distance Geometry Problem (MDGP) consists in finding an embedding

x : V → R
3 such that ||xu −xv|| = duv for each {u, v} ∈ E. We show that under a few

assumptions usually satisfied in proteins, the MDGP can be formulated as a search in

a discrete space. We call this MDGP subclass the Discretizable MDGP (DMDGP). We

show that the DMDGP is NP-hard and we propose a solution algorithm called Branch-

and-Prune (BP). The BP algorithm performs remarkably well in practice in terms of

speed and solution accuracy, and can be easily modified to find all incongruent solutions

to a given DMDGP instance. We show computational results on several artificial and

real-life instances.

Keywords distance geometry · branch-and-prune · molecular conformation · protein ·

NMR

CR Subject Classification 92E10 · 90C26 · 90C27 · 65K05

1 Introduction

It is well known that the role and function of a molecule is determined by both its

chemical structure (the atoms that compose it and the way they bond) and its three-

dimensional structure [17]. Supposing the chemical structure is known, finding the
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conformation of the atoms in R
3 is usually tackled by a mixture of chemical analysis

and mathematical methods. Some insight as to the molecular spatial conformation can

be gained by employing Nuclear Magnetic Resonance (NMR) techniques [27], which

are able to give a measure of the distance between (but not of the positions of) pairs

of atoms closer than around 5 to 6Å [63], p. 19. The problem of finding the atomic

positions given a subset of atomic distances can be formalized as follows.

Molecular Distance Geometry Problem (MDGP): given a weighted sim-

ple undirected graph G = (V,E, d), is there an embedding x : V → R
3 such

that ||xu − xv|| = duv for each {u, v} ∈ E?

The set V represents the atoms, the set E are the atom pairs {u, v} for which the

distance duv is known. The MDGP has been shown to be NP-hard via a reduction

from 3-Partition [62], although the problem is solvable in linear time when all the

inter-atomic distances are known [20]. The MDGP is usually formulated as a continuous

nonconvex optimization problem:

min
x

g(x),

where

g(x) =
∑

{u,v}∈E

(||xu − xv||
2 − d2uv)

2. (1)

Obviously, x is a solution if and only if g(x) = 0.

It should be noted that we refer to the MDGP as a precisely formalized decision

problem, and not as a practical chemical problem. We therefore make three assump-

tions that in real life may be easily challenged: (a) a subset of exact distances (as

opposed to approximate) is given as part of the input; (b) no measurement errors oc-

cur; (c) the optimal 3D embedding of the graph is not influenced by a potential energy

minimization term on the objective function. Concerning points (a) and (b), there are

two types of experimental errors arising from NMR distance measurements: system-

atic uncertainty on each measurement, and a certain (low) percentage of completely

wrong measurements [5]. Errors of the first type are usually dealt with by introducing

distance bounds [51], for which a suitable modification of the method described in this

paper exists [52]. To the best of our knowledge, errors of the second type have only

been tackled by the Error Correcting Code (ECC) proposed in [5]. Naturally, this ECC

could be applied to the protein backbone distance matrix as a preprocessing step to

our method.

The present work falls into three main application categories:

1. molecular conformation, and proteomics in praticular [18];

2. sensor network localization [3,65,8];

3. graph drawing (www.graphdrawing.org) and rigidity [59,16].

The important common point of the above applications is Euclidean distance geom-

etry [13], i.e. finding the geometrical locus in R
K of the vertices of weighted graphs

so that Euclidean distances are consistent with the edge weights. In the rest of the

paper, we follow proteomics as our main application theme. Many contributions to

distance geometry, however, have been made in recent years from researchers working

in sensor networks, graph drawing and rigidity. Sensor network localization differs from

proteomics in that (a) the position of a subset of vertices (called anchors) is known a

priori — these usually correspond to the fixed parts of the communication network;

(b) the positions are mostly (but not necessarily) sought in R
2 rather than R

3. The
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complexity of sensor network localization has been discussed in [22]: the problem is

NP-hard in general (this follows from [62]) but given a specific vertex order, called tri-

lateration order, the problem becomes polynomially solvable. Several works on sensor

networks formulate the MDGP as a Semidefinite Programming (SDP) problem, using

the well-known relationship between MDGP, Euclidean Distance Matrices (EDM) and

Semidefinite Programs (SDP) [64]; the solution of the SDP only provides a relaxation

of the MDGP, which is subsequently refined in order to obtain a feasible embedding

of the given graph [11,12,9,7]. Recently, SDP techniques for the MDGP were given a

boost by the successful application of facial analysis of the semidefinite matrix cone [4].

The SDP-based facial reduction algorithm described in [32,33] exploits the fact that

SDPs related to distance geometry problems are generally highly degenerate. In fact,

the presence of cliques in the instance graphs implies that the corresponding semidef-

inite matrices may have a very low rank. The SDP cone faces are characterized and

used for reducing the problem to several subproblems of smaller size. The main idea

is to increase the size of the cone faces by finding the intersection of smaller faces, for

which the corresponding SDP has already been solved. This allows the solution of the

original problem in a finite number of steps.

In practice, the MDGP is usually solved via continuous optimization methods (see

[40,48] for overviews). In [28], the molecule is decomposed into uniquely realizable

maximally rigid clusters; each cluster’s 3D structure is determined independently of

the others. The graph minor resulting from contracting each cluster to a single vertex

is then embedded using a multi-start continuous search approach; this last step makes

this method into a heuristic one. In [10], the molecule is also decomposed into clusters

and a semidefinite programming relaxation is used to localize each cluster. In [50,

51], a Gaussian smoothing of (1) is derived in a closed analytical form depending

on a smoothing parameter λ. The proposed algorithm is called Global Continuation

Algorithm (GCA): the smoothed problem is locally solved for iteratively increasing

values of λ (this brings the smoothed problem closer and closer to the original problem),

each local solution process starting from the solution of the previous smoothing. In [1,

2], the MDGP is formulated as D.C. (difference of convex functions) programming

problems and solved using a variant of the D.C. Algorithm (DCA). In [38,45,47], three

Variable Neighborhood Search-based algorithms are proposed. Other methods are the

alternating projection algorithm [25], the multi-scaling algorithm [31,66], the geometric

build-up algorithm [20,21,68,69], a stochastic/perturbation algorithm by Zou, Bird,

and Schnabel [70] and a population-based metaheuristic [26]. Two completely different

approaches to solving the MDGP are given in [37] (based on quantum computation)

and [67] (based on algebraic geometry).

One of the most stringent limitations of MDGP algorithms is solution accuracy. Be-

cause there exist many different spatial conformations having objective function values

very near zero, being able to discriminate between very small numbers is important.

Compared with continuous methods, combinatorial methods are usually more suitable

to produce extremely accurate values; this provides sufficient motivation to work on a

combinatorial algorithm for (a subclass of) the MDGP.

A protein consists of a main backbone and several “dangling” side chains. The

NMR technique can of course be applied to proteins in particular, and indeed many

of the algorithms to solve the general MDGP have been tested on proteins. In par-

ticular, we consider in this paper the protein backbones, i.e. the sequences of bonded

atoms defining a sort of chain in the protein conformations. For each amino acid, we

consider the three atoms N , Cα and C. The particular structure of this chain of atoms
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makes it possible to formulate the MDGP applied to protein backbones as a discrete

search problem: this has an enormous impact on speed and solution accuracy, as float-

ing point arithmetics calculations are fewer than with continuous search methods. We

formalize this by introducing the Discretizable Molecular Distance Geometry Prob-

lem (DMDGP), which consists of a certain subset of MDGP instances (to which most

protein backbones belong) for which a discrete formulation can be supplied. The deter-

mination of the spatial position of the side chains is called the Side Chain Placement

Problem (SCPP) [60,61]. Although in this paper we only consider the determination

of the protein backbone, it is clear that given a set of likely backbones, some of them

can be discarded if the resulting SCPP instance turns out to be infeasible. In this sense,

the DMDGP and the SCPP are largely complementary.

1.1 DMDGP definition

When a total order is explicitly given on V , and u, v are the i-th and j-th indices

respectively, we also write dij for duv.

Discretizable Molecular Distance Geometry Problem (DMDGP): given

a simple weighted undirected graphG = (V,E, d) such that there exists an order

v1, . . . , vn of V satisfying the following requirements:

1. E contains all cliques on quadruplets of consecutive vertices:

∀i ∈ {4, . . . , n} ∀j, k ∈ {i− 3, . . . , i} ({j, k} ∈ E);

2. the following strict triangular inequality holds:

∀i ∈ {2, . . . , n− 1} di−1,i+1 < di−1,i + di,i+1,

is there an embedding x : V → R
3 such that ||xu − xv|| = duv for each

{u, v} ∈ E?

The distances di−1,i are called bond lengths, for i ∈ {2, . . . , n}, and the angles θi−2,i

between atoms vi−2, vi−1, vi are called bond angles, for i ∈ {3, . . . , n}. The ordering on

V is called the backbone ordering. Furthermore, we partition E in two sets H and F

such that H = {{i, j} ∈ E | |i − j| ≤ 3} and F = E rH. In this paper, the order on

V is defined by a linear chain of atoms connected to each other by covalent bonds.

In practice, Assumption 1 requires that the bond lengths and angles, as well as

the distances between atoms separated by three consecutive bond lengths are known.

The distances between atoms separated by two consecutive bond lengths may of course

be trivially computed from the bond lengths and angles. Assumption 2 says that no

bond angle may be a multiple of π. Assumption 1 is applicable to many proteins as

NMR is able to compute distances of atoms which are close together, and groups of

four consecutive atoms in the backbone ordering are usually closer than the threshold

value of 6Å [17,63]. Assumption 2 is also applicable to proteins as, to the best of

our knowledge, no protein has bond angles of exactly π. Furthermore, the probability

measure of a protein having a bond angle of exactly π is zero.

Given an MDGP instance, determining whether it is a DMDGP one involves finding

an order that satisfies Assumptions 1-2. We discuss the problem of finding a vertex order

satisfying Assumption 1 in [36], showing that for embeddings in R
3 such orders can be

found in polynomial time. On the other hand, 2 is satisfied with probability 1 when d

is a partial distance function (i.e. a distance function defined on a proper subset E of

the set of all index pairs {i, j} for i 6= j ∈ V ): the set of triplets of values satisfying

the triangular inequality at equality has Lebesgue measure zero in the set of all such

triplets.
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Fig. 1 Definitions of bond lengths, bond angles and torsion angles.

1.2 Original contributions

In [46], we proposed a discrete search algorithm, called Branch-and-Prune (BP), for

finding solutions to certain MDGP instances, and tested it on artificial instances. In

a sequence of recent conference papers [41,42,52,54,56] we explored several different

aspects of the BP algorithm. Other solution methods having some relations with BP

are [21,15]. In this paper we formalize an important set of MDGP instances that can be

solved by a discrete search as a separate decision problem and investigate some of its

theoretical properties. We then discuss comparative computational results on artificial

as well as real instances.

The rest of this paper is organized as follows. In Section 2, we derive the discrete

formulation of the DMDGP. In Section 3, we prove that the DMDGP is NP-hard. In

Section 4, we discuss the BP algorithm to solve the DMDGP to optimality. Section 5

presents the computational results on some artificial and real-life instances. In Section 6

we discuss the relationship between the DMDGP and the Euclidean distance matrix

completion problem. Section 7 concludes the paper and presents ongoing work.

2 Discrete formulation of the MDGP

In the following, we will restrict our attention to the DMDGP. In order to describe a

molecule with n atoms, in addition to the bond lengths di−1,i, for i = 2, . . . , n, and the

bond angles θi−2,i, for i = 3, . . . , n, we also have to consider the dihedral or torsion

angles ωi−3,i, for i = 4, . . . , n, which are the angles between the normals through the

planes defined by the atoms i− 3, i− 2, i− 1 and i− 2, i− 1, i (see Fig. 1). Note that,

in most molecular conformation calculations, all the bond lengths and bond angles are

assumed to be known a priori. Thus, the first three atoms of the molecule can be fixed

and the fourth atom can be determined by the torsion angle ω1,4. The fifth atom can

be determined by the torsion angles ω1,4 and ω2,5, and so on.

The geometrical intuition behind the discrete formulation is that the i-th atom lies

on the intersection of three spheres centered at atoms i−3, i−2, i−1 having respective
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Fig. 2 Discretization of the problem. The atom i can only be in the two shown positions (i
and i′) in order to be feasible with the distance di−3,i.

radii di−3,i, di−2,i, di−1,i. By Assumptions 1 and 2, and the fact that no two atoms

can ever take the same position in space, the intersection of the three spheres defines

at most two points (labeled i and i′ in Fig. 2). This allows us to express the position

of the i-th atom in terms of the preceding three, giving us 2n−3 possible molecules. Of

course some of these will be infeasible with respect to the distances in F (i.e. distances

between atoms which are further apart than 4 units in the backbone ordering).

Given bond lengths d1,2, . . . , dn−1,n, bond angles θ1,3, . . . , θn−2,n, and torsion an-

gles ω1,4, . . . , ωn−3,n of a molecule with n atoms, it is well known [57] that the Cartesian

coordinates (xi1 , xi2 , xi3) for each atom i in the molecule can be obtained as:








xi1
xi2
xi3
1









= B1B2B3 · · ·Bi









0

0

0

1









, i ∈ {4, . . . , n},

where the matrices are defined inductively as follows:

B1 =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









,

B2 =









−1 0 0 −d1,2
0 1 0 0

0 0 −1 0

0 0 0 1









, B3 =









− cos θ1,3 − sin θ1,3 0 −d2,3 cos θ1,3
sin θ1,3 − cos θ1,3 0 d2,3 sin θ1,3

0 0 1 0

0 0 0 1









, (2)

Bi=







− cos θi−2,i − sin θi−2,i 0 −di−1,i cos θi−2,i

sin θi−2,i cosωi−3,i − cos θi−2,i cosωi−3,i − sinωi−3,i di−1,i sin θi−2,i cosωi−3,i

sin θi−2,i sinωi−3,i − cos θi−2,i sinωi−3,i cosωi−3,i di−1,i sin θi−2,i sinωi−3,i

0 0 0 1






(3)
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for i ∈ {4, . . . , n}. Thus, the Cartesian coordinates of all atoms in the molecule are

completely determined by cosωi−3,i and sinωi−3,i for i ∈ {4, . . . , n}.

Lemma 1 For DMDGP instances, cosωi−3,i can be computed in O(1) for all i ∈

{4, . . . , n}.

Proof This follows by the cosine law for torsion angles [58] (p. 278) and by the fact

that all distances among the atoms i− 3, i− 2, i− 1, i are known. ⊓⊔

Theorem 1 Given a DMDGP instance G = (V,E, d), the number of embeddings x :

V → R
3 such that ||xu − xv|| = duv for each {u, v} ∈ E is finite, up to translations

and rotations.

Proof The proof is by induction. For a molecule with 4 atoms, we can use the bond

lengths d1,2, d2,3 and the bond angle θ1,3 in order to determine the matrices B2 and

B3, defined in (2), and obtain the partial embedding:

x1 =





0

0

0



 ,

x2 =





−d1,2
0

0



 ,

x3 =





−d1,2 + d2,3 cos θ1,3
d2,3 sin θ1,3

0





fixing the first three atoms. Since we also know the distance d1,4, by Lemma 1 we

can obtain the value of cosω1,4. Thus, sinω1,4 can take at most two possible values

±
√

1− cos2 ω1,4. Consequently, by (3), we obtain at most two possible positions x4, x
′
4

for the fourth atom of the molecule, given by

x4 =







−d1,2 + d2,3 cos θ1,3 − d3,4 cos θ1,3 cos θ2,4 + d3,4 sin θ1,3 sin θ2,4 cosω1,4

d2,3 sin θ1,3 − d3,4 sin θ1,3 cos θ2,4 − d3,4 cos θ1,3 sin θ2,4 cosω1,4

d3,4 sin θ2,4

(

√

1− cos2 ω1,4

)






,

x′4 =







−d1,2 + d2,3 cos θ1,3 − d3,4 cos θ1,3 cos θ2,4 + d3,4 sin θ1,3 sin θ2,4 cosω1,4

d2,3 sin θ1,3 − d3,4 sin θ1,3 cos θ2,4 − d3,4 cos θ1,3 sin θ2,4 cosω1,4

d3,4 sin θ2,4

(

−
√

1− cos2 ω1,4

)






.

We remark that the only difference in x4 and x′4 is a sign change in the last component.

Now assume that for i ≥ 4 atoms we have a finite number of embeddings solving

the DMDGP instance. Adding one more atom in the molecule and using Lemma 1

again, we can obtain the value of cosωi−2,i+1. From each partial embedding with

i atoms, at most two extensions to the (i + 1)-st atom can be obtained by using

sinωi−2,i+1 = ±
√

1− cos2 ωi−2,i+1 in matrix Bi+1, given in (3). ⊓⊔

Corollary 1 For a DMDGP instance with n ≥ 4 atoms, there are at most 2n−3

possible embeddings up to translations and rotations.
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Informally, a graph is rigid if it has no uncountable set of embeddings modulo

translations and rotations. Precise definitions can be found in [59].

Corollary 2 DMDGP instance graphs are rigid.

A rigid graph is uniquely realizable if it only has one embedding modulo translations

and rotations [28]. DMDGP instances are rigid graphs but may fail to be uniquely re-

alizable. Moreover, for interesting DMDGP instances such as protein backbone graphs,

the uniquely realizable subgraphs may be fairly small. This makes the application of

heuristic methods such as ABBIE [28] possible but not promising.

Note that each possible embedding of the DMDGP is defined by a sequence of

torsion angles ω1,4, . . . , ωn−3,n. By using the matrices Bi (see (3)), this sequence can

be converted to a sequence x = (x1, . . . , xn) ∈ R
3n of Cartesian vectors and, using the

objective function g defined in (1), the validity of an embedding can be established

simply by testing if g(x) = 0.

2.1 Fourth level symmetry

In this section, we show that there is a symmetry around the plane defined by the first

three atoms of the conformations which are embeddings solving the DMDGP. This

allows us to reduce computational costs by half. First, we need two lemmata (whose

proofs are in the appendix).

Lemma 2 Let the matrix Qi be defined by

Qi = B4 · · ·Bi,

for i ∈ {4, . . . , n}, where its elements are denoted by

Qi =









qi11 qi12 qi13 qi14
qi21 qi22 qi23 qi24
qi31 qi32 qi33 qi34
0 0 0 1









.

If we invert the sign of sinωi−3,i in all the matrices Bi, for i ∈ {4, . . . , n}, and denote

the new matrices obtained by B′
i, then the elements of the matrix Q′

i, defined by

Q′
i = B′

4 · · ·B
′
i,

are given by

Q′
i =









qi11 qi12 −qi13 qi14
qi21 qi22 −qi23 qi24

−qi31 −qi32 qi33 −qi34
0 0 0 1









,

for i ∈ {4, . . . , n}.

Lemma 3 Let x1, . . . , xn ∈ R
3 be the Cartesian coordinates defined by the torsion

angles ω1,4, . . . , ωn−3,n. If we invert the sign of sinωi−3,i in all the matrices Bi, for

i ∈ {4, . . . , n}, then the new Cartesian coordinates x′1, . . . , x
′
n ∈ R

3 are given by




x′i1
x′i2
x′i3



 =





xi1
xi2

−xi3



 ,

for i ∈ {1, . . . , n}.
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Theorem 2 Let x : V → R
3 be an embedding solving a given DMDGP instance,

defined by the torsion angles ω1,4, . . . , ωn−3,n. If we invert the sign of sinωi−3,i in all

the matrices Bi, for i ∈ {4, . . . , n}, we obtain another embedding x′ : V → R
3 solving

the same instance.

Proof Let X = {x1, . . . , xn} be the conformation associated to an embedding x :

V → R
3 solving the DMDGP, defined by the torsion angles ω1,4, . . . , ωn−3,n, X

′ =

{x′1, . . . , x
′
n} be the conformation obtained by inverting the sign of sinωi−3,i in all the

matrices Bi, for i ∈ {4, . . . , n}, and R : R3 → R
3 be the function defined by

R(xi1 , xi2 , xi3) = (xi1 , xi2 ,−xi3).

Since R is an orthogonal operator,

||xi − xj || = ||R(xi)−R(xj)|| ∀(i, j). (4)

By Lemma (3),

||R(xi)−R(xj)|| = ||x′i − x′j || ∀(i, j). (5)

Since x solves the given DMDGP instance,

||xi − xj || = di,j ∀{i, j} ∈ E, (6)

where E is the set of pairs of atoms (i, j) whose Euclidean distances dij are known.

Thus, by (4), (5), and (6), we get

||x′i − x′j || = di,j ∀{i, j} ∈ E,

stating that x′ is also an embedding solving the given DMDGP instance. ⊓⊔

3 Complexity

In this section, we show that the DMDGP is NP-hard by reduction from the Subset-

Sum problem:

Subset-Sum. Given nonnegative integers a1, . . . , an, is there a partition into

two sets, encoded by s ∈ {−1,+1}n, such that each subset has the same sum,

i.e.
∑n

i=1
s(i)ai = 0?

The MDGP is shown to be NP-hard in [62] (a helpful sketch of the proof is given

in [50]) by reducing Subset-Sum to a 1-dimensional MDGP with distance constraints

between successive atoms (in an arbitrary atomic ordering) plus a single distance con-

straint between the first and the last atom, forcing this distance to be zero. As has been

mentioned above, the MDGP in an arbitrary dimension K is NP-hard by reduction

from 3-Partition [62].

For the special case of the DMDGP, we have to consider additional distance con-

straints between any pairs of atoms 1, 2 or 3 indices apart in the atom sequence.

Theorem 3 The DMDGP is NP-hard.
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Proof We reduce from Subset-Sum. Given an instance a1, . . . , an of the latter, we

define an instance of DMDGP on 3n+ 1 points numbered 0 to 3n, with the following

distance constraints:

di,i+1 = a⌊i/3⌋ + 1 ∀i ∈ {0, ..., 3n− 1}, (7)

di,i+2 =
√

d2i,i+1
+ d2i+1,i+2

∀i ∈ {0, ..., 3n− 2}, (8)

di,i+3 =
√

d2i,i+1
+ d2i+1,i+2

+ d2i+2,i+3
∀i ∈ {0, ..., 3n− 3}, (9)

d0,3n = 0. (10)

Now we claim that the Subset-Sum instance has a solution iff the DMDGP instance

has a solution. First, let s ∈ {−1,+1}n be a solution to the Subset-Sum-problem.

We define the 3n + 1 points as follows: x0 = (0, 0, 0) and for every 0 < i ≤ 3n with

i = 3(k − 1) + j we set xi = xi−1 + skakej , where e0 = (1, 0, 0), e1 = (0, 1, 0) and

e2 = (0, 0, 1). By inspection, this is a solution to the DMDGP instance.

In the rest of the proof, we use the symbol x to mean both an embedding and the

first coordinate of Euclidean 3-space — the meaning will be clear from the context.

Assume that the DMDGP instance has a solution X = {xv1 , . . . , xvn
}. Without loss

of generality, we can assume that xv1 = (0, 0, 0) and that xv2 lays on the x-axis. Now

equation (8) implies that the bond angle between xv1 , xv2 , xv3 is π
2
. Again, without

loss of generality, assume that the second segment is parallel to the y-axis. By Eq. (9),

there are only two possibilities for xv4 , and they force the third bond to be parallel to

the z-axis. The same arguments apply to all other bonds, which shows that the bond

β between vi−1 and vi is parallel to the (i mod 3)-th axis (where x = 0, y = 1, z = 2).

Now give the bond β an orientation from vi−1 to vi (which can either be in the same or

in the opposite direction of this axis). We define a sign vector s ∈ {−1,+1}3n, which

encodes these orientations. In this setting, point 3n has coordinates (x, y, z) defined by

x =
∑

i mod 3=0

sia⌊i/3⌋,

y =
∑

i mod 3=1

sia⌊i/3⌋,

z =
∑

i mod 3=2

sia⌊i/3⌋.

By equation (7), we actually have (x, y, z) = (0, 0, 0). Now let s0, s1, s2 be three vectors

from {−1,+1}n, which are s restricted to indices i mod 3 = 0, i mod 3 = 1 or i mod 3 =

2, respectively. Then any of those is a solution to the original Subset-Sum problem by

the previous equations. ⊓⊔

It is interesting to note that Assumption 1 in the definition of the DMDGP is,

in a certain sense, the tightest possible for the problem to be NP-hard. Assumption

1 states that each quadruplet of consecutive vertices in the defined order is a clique

in the distance graph. Tightening the assumption further, we might ask whether the

problem would still be NP-hard if each quintuplet of consecutive vertices were a clique.

This, however, fails to be the case. A trilateration graph [22] in R
D is a graph with

an order (v1, . . . , vn) on the vertices such for all vertices vi with i > D + 1, {j, i} ∈ E

for all j ∈ {i − D − 2, . . . , i − 1} (i.e. each vertex is adjacent to the preceding D + 1

vertices). In three-dimensional space, this implies having distances to at least 4 vertices
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earlier in the order, which means having a clique for each consecutive quintuplet. By

[22] (Theorem 9), the MDGP problem associated to a trilateration graph can be solved

in polynomial time.

4 Branch-and-Prune algorithm

In this section, we present a solution algorithm for the DMDGP called Branch-and-

Prune (BP). At each step, we can place the i-th atom in two possible positions xi, x
′
i.

However, either or both of these positions may be infeasible with respect to a number

of constraints. The search is branched on all atomic positions that are feasible with

respect to all constraints; by contrast, if a position is not feasible the search scope

is pruned. In this context, we call the feasibility verifications pruning tests. We note

in passing that BP is not an exact algorithm for the DMDGP insofar as it is not

clear whether the DMDGP is in NP or not. The embeddings produced by BP are

approximate solutions to the DMDGP.

The Direct Distance Feasibility (DDF) pruning test is as follows: for all distance

pairs {j, i} ∈ F (with j < i) we check that |‖xj − xi‖ − dji| < ε, where ε > 0 is a

given tolerance. If the inequality does not hold, we prune the search node. Even though

this pruning test is very simple, it is very effective. The BP algorithm is therefore an

algorithmic framework whose definition is completed by expliciting the pruning tests.

These can be of geometrical or of physical-chemical nature. An important feature of

BP is that, in exponential worst-case (but practically very short) time, it will find all

incongruent solutions to a given instance.

4.1 Algorithmic framework

Let T be a graph representation of the search tree. Initially, T is initialized to the

search nodes 1 → 2 → 3 → 4 (no branching), since the first three atoms can be fixed

to feasible positions x1, x2, x3 and the fourth atom x4 can be fixed to any of its two

possible positions by Theorem 2. By the current rank of the search tree, we mean the

index of the atom being placed at the current node. At each search tree node of rank

i we store:

– the position xi ∈ R
3 of the i-th atom;

– the cumulative product Qi =
∏i

j=1
Bj of the torsion matrices;

– a pointer to the parent node P (i);

– pointers to the subnodes L(i), R(i) (initialized to a dummy value PRUNED if

infeasible).

Notice that the edge structure of the graph T is encoded in the operators P (), L(), R()

defined at each node. The recursive procedure at rank i − 1 is given in Algorithm 1.

Let y = (0, 0, 0, 1)⊤, ε > 0 a given tolerance and v a node with rank i− 1 in the search

tree T .

4.2 Euclidean bounds pruning tests

Step 8 in Alg. 1 can be enhanced in several ways. We describe here an improvement

based on shortest path computations; in particular, we employ the fact that inter-

atomic distances are assumed to be Euclidean. Much like the pruning of the search
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Algorithm 1 BP algorithm.

1: BranchAndPrune(T , v, i)
2: if (i ≤ n− 1) then

3: // Compute the possible placements for i-th atom:
4: calculate the torsion matrices Bi, B

′

i via Eq. (3);
5: retrieve the cumulative torsion matrix Qi−1 from the parent node P (v);
6: compute Qi = Qi−1Bi, Q

′

i = Qi−1B
′

i and xi, x
′

i from Qiy,Q
′

iy;
7: let λ = 1, ρ = 1;
8: // Pruning tests:
9: if (xi is feasible) then

10: create a node z, store Qi and xi in z, let P (z) = v and L(v) = z;
11: set T ← T ∪ {z};
12: BranchAndPrune(T , z, i+ 1);
13: else

14: set L(v) = PRUNED;
15: end if

16: if (x′

i is feasible) then

17: create a node z′, store Qi and xi in z′, let P (z) = v and R(v) = z′;
18: set T ← T ∪ {z′};
19: BranchAndPrune(T , z′, i+ 1);
20: else

21: set R(v) = PRUNED;
22: end if

23: else

24: // Rank n reached, a solution was found:
25: solution stored in parent nodes ranked n to 1, output by back-traversal;
26: end if

scope in point-to-point Dijkstra shortest-path searches on Euclidean graphs, we can

prune away an atomic position i if it is too far with respect to the given distances.

Consider atoms h, i, k with h < i < k such that {h, k} ∈ E (so that dhk is known).

Assume that the BP has already placed atom h and that we are now verifying feasibility

for atom i. Let D(i, k) be an upper bound to the distance ||xi − xk|| for all possible

embeddings x : V → R
3 which are feasible DMDGP solutions.

Lemma 4 If D(i, k) < ||xh−xi||−dhk for all feasible x : V → R
3, then the BP search

node for atomic position xi can be pruned.

Proof Suppose, to get a contradiction, that position xi is feasible for the DMDGP

instance being solved. By definition, D(i, k) ≥ ||xi−xk||. Since distances are Euclidean,

||xi−xk|| ≥ ||xh −xi|| − ||xh −xk||. Hence D(i, k) ≥ ||xh−xi|| − dhk > D(i, k), which

is a contradiction. ⊓⊔

By Lemma 4, every upper bound D(i, k) to the distance ||xi−xk|| provides a valid

pruning test. Furthermore, in all Euclidean graphs the Euclidean distance between two

vertices is a lower bound to the cost of all paths joining the two vertices in the graph.

We therefore let D(i, k) be the cost of the shortest path from i to k in G, which provides

a valid pruning test. However, we will show in Section 5 that this pruning test is able

to improve the overall performances of the BP algorithm in few examples only. This

pruning test will be referred to as DSP (Dijkstra Shortest-Paths).
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5 Computational results

In order to benchmark the proposed method, we test a class of artificial MDGP in-

stances described in [35] and some real instances (proteins) from the Protein Data Bank

(PDB) [6], which can be accessed at http://www.rcsb.org/pdb/. In all the tables, the

instances are described by their names, their atomic sizes n and the number of given

distances |E|. The results in Tables 1-7 refer to comparative results obtained from four

methods: BP stopped after the first solution is found (BP-One), BP run to completion

(BP-All), an implementation of the GCA algorithm called DGSOL [51] and SDP-based

facial reduction [32].

We compare these methods using three measures: CPU time, Largest Distance

Error (LDE), defined as

LDE =
1

|E|

∑

{i,j}∈E

| ||xi − xj || − dij |

dij
,

and Root Mean Square Deviation (RMSD) [14], which is a distance from a given

conformation which is considered correct. Although the RMSD is often used to show

how well algorithms perform in terms of distance to the “right” protein listed in the

PDB, it has the disadvantage that it requires a solution to be known a priori. Not all

measures are meaningful when applied to all methods: for example the RMSD is only

meaningful for conformations whose LDE is zero or close to zero (i.e. if the LDE is

large then obviously the conformation is far from the correct one).

For the BP-One method we report CPU time and LDE in Tables 1-2 and 4-5;

the RMSD value is reported for BP-All (Table 3) but not for BP-One because its

solution is also in the set of all solutions found by BP-All. For BP-All we also report

the cardinality of the solution set (#Sol; the number of solutions is in fact 2 ×#Sol,

due to Theorem 2) in Tables 1-2 and 5. For DGSOL we report CPU and LDE in Tables

4-5; we do not report the RMSD because the LDE values are too large. For the SDP

facial reduction algorithm we report CPU, LDE (Table 6) and RMSD (Table 7).

Benchmarking a single method for a new problem is difficult because of the lack

of alternative methods. Our comparisons, based on DGSOL and the SDP-based facial

reduction technique, are unfair from an algorithmic point of view: neither the SDP-

based techniques nor DGSOL require a vertex order satisfying Assumptions 1-2, and

both can also work with interval distances. On the other hand, no technique but BP-All

can find all incongruent conformations satisfying the distance constraints.

Overall, as far as CPU time is concerned, we have the order BP-One < BP-All <

SDP-based technique < DGSOL (this is contradicted by very few instances). As for the

LDE, we have SDP-based technique < BP-One = BP-All < DGSOL: in particular, the

LDEs found by SDP-based technique and BP-One/BP-All are virtually the same (in

the interval [10−14, 10−9]), whereas DGSOL is closer to 10−1, which essentially means

that the conformation is wrong. Concerning the RMSD, the order is BP-All < BP-One

= SDP-based techniques; we recall that we did not compute the RMSD for DGSOL

because of the fairly large LDE scores. For practical applications to proteomics, the

unique feature of BP-All of being able to compute all incongruent solutions is very

valuable, as the practitioner will be able to choose the correct conformation based on

biochemical criteria. Although the version of BP-All described in this paper cannot deal

with interval distances (a necessary feature for working with proteins), an extension in

this direction is currently under way [52].
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All tests have been carried out on a single core of an Intel Core 2 CPU 6400 @ 2.13

GHz with 4GB RAM, running Linux. The code implementing the BP algorithm has

been compiled by the GNU C++ compiler v.4.1.2 with the -O3 flag.

5.1 Instances

We consider two types of instances: artificially generated “Lavor” instances [35] and

a set of 25 protein backbones obtained from the PDB. The Lavor instances are based

on the model proposed by [57], whereby a molecule is represented as a linear chain

of atoms. Bond lengths and angles are kept fixed, and a set of likely torsion angles

is generated randomly. Depending on the initial choice of bond lengths and angles,

the Lavor instances give rather more realistic models of proteins than other randomly

generated instances do (such as for example the instances described in [51]). We name

the Lavor instances as lavorn, where n is the number of atoms in the molecule. We

generate and test different Lavor instances for each size n ∈ {10, . . . , 70} ∪ {100i|1 ≤

i ≤ 10}.

The set of 25 protein backbones from the PDB includes some of the proteins used

by Biswas, Toh and Ye in [10], by Wu and Wu in [68], and by Hendrickson in [28].

We do not consider proteins formed by more than one chain of amino acids; for each

protein, only distances between atoms not greater than 6Å are considered as input for

the algorithms.

5.2 Experiments on BP

Both BP-One and BP-All implement the two pruning tests DDF and DSP, where we

set ǫ = 0.001 when the pruning test DDF is used. We investigate the efficiency of

the methods when only DDF is used or both of them are used. We always use DDF

because it is very simple and it represents a very natural way for pruning atoms: if the

known and obtained distances do not match, the computed atom position cannot be

considered. The pruning test DSP is more complex: it requires that shortest paths in

the graph G need to be computed. This task can be computationally demanding, and

moreover the same shortest path may be needed more than once during the algorithm.

For this reason, we compute all the possible shortest paths in G before the BP algo-

rithm starts, using the well-known Floyd-Warshall algorithm [24]: this is the standard

algorithm for computing all shortest paths in a graph; its complexity is O(n3). In the

Tables 1 and 2, #DDF and #DSP represent, respectively, the number of times the

pruning tests DDF and DSP pruned atom positions. Note that DDF is always applied

before DSP and that, if DDF prunes an atom, there is no need to use DSP.

In Table 1, BP-One and BP-All only employ the DDF pruning test. BP-One is

very fast in finding a solution with good accuracy. It never takes more than 10 seconds

on large instances, with LDE values ranging from 10−6 to 10−16. The time obviously

increases when BP-All is used, due to the large number of solutions. We remark that

a limit of 1h of user CPU time is enforced on BP-All.

In Table 2, the two methods employ both pruning tests (DDF and DSP). The

quality is comparable to Table 1. The CPU time is different due to the use of both

pruning tests. For all instances, the number of atoms pruned by DDF when it is used

by itself (see Table 1) is never greater than the number of atoms pruned by DDF and
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Instance BP-One BP-All

Name n |E| CPU #DDF LDE CPU #DDF #Sol

lavor10 10 24 0.00 0 1.63e-16 0.00 0 64

lavor15 15 70 0.00 7 1.08e-09 0.00 11 1

lavor20 20 103 0.00 9 1.28e-09 0.00 16 1

lavor25 25 106 0.00 10 1.62e-09 0.00 49 2

lavor30 30 219 0.00 15 3.86e-09 0.00 381 2

lavor35 35 166 0.00 13 1.22e-09 0.00 169 16

lavor40 40 306 0.00 16 5.61e-06 0.00 136 2

lavor45 45 351 0.00 30 4.79e-09 0.00 58 1

lavor50 50 203 0.00 49 6.50e-10 0.07 23364 512

lavor55 55 224 0.00 26 1.43e-09 3.45 1304580 262144

lavor60 60 227 0.00 17 2.05e-09 0.62 262428 8192

lavor65 65 455 0.00 1165 7.89e-09 0.02 5184 8

lavor70 70 331 0.00 25 1.23e-08 16.30 2798220 4194304

lavor100 100 605 1.94 815010 5.58e-09 5.31 2230462 1

lavor200 200 1844 0.00 394 7.60e-08 0.05 17649 16

lavor300 300 2505 0.03 9265 1.45e-08 0.05 19182 2

lavor400 400 2600 0.02 2592 3.37e-09 1h 728896182 41600953

lavor500 500 4577 0.50 133833 1.62e-07 1h 617225487 1148416

lavor600 600 5473 0.00 1538 5.06e-08 1h 171487104 249589548

lavor700 700 4188 0.24 55579 3.62e-08 1h 423613358 1852485

lavor800 800 6850 9.79 1132948 1.67e-08 1h 371154974 307152

lavor900 900 7965 2.52 908990 6.30e-08 1h 228252250 52905984

lavor1000 1000 8229 4.04 182362080 2.00e-08 1h 250543954 399

Table 1 Lavor instances solved by the methods BP-One and BP-All, where only the pruning
test DDF is used.

Instance BP-One BP-All

Name n |E| CPU #DDF #DSP LDE CPU #DDF #DSP #Sol

lavor10 10 24 0.00 0 0 1.63e-16 0.00 0 0 64

lavor15 15 70 0.00 7 0 1.08e-09 0.00 11 0 1

lavor20 20 103 0.00 9 0 1.28e-09 0.00 16 0 1

lavor25 25 106 0.00 8 1 1.62e-09 0.00 24 5 2

lavor30 30 219 0.00 15 0 3.86e-09 0.00 277 10 2

lavor35 35 166 0.00 9 1 1.22e-09 0.00 145 8 16

lavor40 40 306 0.00 16 0 5.61e-06 0.00 64 4 2

lavor45 45 351 0.00 17 2 4.79e-09 0.00 39 3 1

lavor50 50 203 0.00 24 8 6.50e-10 0.05 5924 5648 512

lavor55 55 224 0.00 22 2 1.43e-09 7.02 1173508 65536 262144

lavor60 60 227 0.00 13 2 2.05e-09 1.22 221462 16387 8192

lavor65 65 455 0.00 720 115 7.89e-09 0.01 3200 528 8

lavor70 70 331 0.00 25 0 1.23e-08 38.50 2732664 32774 4194304

lavor100 100 605 0.44 39800 4560 5.58e-09 1.23 108864 12238 1

lavor200 200 1844 0.02 113 9 7.60e-08 0.10 3289 307 16

lavor300 300 2505 0.09 649 63 1.45e-08 0.16 2719 298 2

lavor400 400 2600 0.17 937 292 3.37e-09 1h 150759333 7451646 9626711

lavor500 500 4577 0.42 851 623 1.62e-07 1h 44790111 27674559 1784456

lavor600 600 5473 0.58 481 100 5.06e-08 1h 56466165 623012 39866479

lavor700 700 4188 2.35 4223 2143 3.62e-08 1h 51582169 14136943 406571

lavor800 800 6850 29.40 59181 38122 1.67e-08 1h 22143204 3924390 174294

lavor900 900 7965 21.80 223996 23440 6.30e-08 1h 57254854 454984 13480402

lavor1000 1000 8229 8.35 48482 4341 2.00e-08 1h 43128660 3833147 416

Table 2 Lavor instances solved by the methods BP-One and BP-All, where both the pruning
tests DDF and DSP are used.

DSP in cooperation (see Table 2). This means that DSP is able to prune atoms that

DDF does not prune. In practice, when DDF and DSP work together, more atomic

position are marked as infeasible and pruned earlier on the search tree, so that fewer

search nodes are explored. Unfortunately, this reduction in the number of search nodes

is counterbalanced by longer processing times for each node.

In Table 3 we compare LDE and RMSD values. Only instances having no more

than 4 solutions in total (including the ones that can be generated by the symmetry

given by Theorem 2) are considered. Two symmetric solutions have exactly the same

LDE values, but they can have different RMSD values. In all the cases, there is at

least one solution with small RMSD value. Since the original PDB files we used for

generating the instances are precise to the third decimal digit [6,14], the values we

obtained (in the order of 10−7) are enough to decide that the conformation is correct.
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Name n |E| solution LDE RMSD

1brv 57 476 1 1.39e-14 4.17e+00

2 1.39e-14 5.60e-08

1aqr 120 929 1 7.42e-07 6.94e+00

2 3.10e-13 6.94e+00

3 3.10e-13 7.10e-08

4 7.42e-07 8.08e-04

2erl 120 1136 1 1.33e-14 3.69e-07

2 1.33e-14 6.26e+00

1crn 138 1250 1 2.24e-13 3.86e-06

2 2.24e-13 6.50e+00

1ahl 147 1205 1 9.98e-13 1.45e-06

2 9.98e-13 7.54e+00

1ptq 150 1263 1 2.30e-13 2.40e-06

2 2.30e-13 7.47e+00

1brz 159 1394 1 4.48e-13 1.95e-07

2 3.60e-07 6.86e-04

3 3.60e-07 7.79e+00

4 4.48e-13 7.79e+00

1hoe 222 1995 1 3.18e-13 3.54e-06

2 3.18e-13 7.67e+00

1lfb 232 2137 1 5.31e-14 2.50e-06

2 5.31e-14 9.44e+00

1pht 249 2283 1 2.73e-12 8.93e-07

2 2.73e-12 1.06e+01

1jk2 270 2574 1 2.09e-13 6.37e-06

2 2.09e-13 8.32e+00

1f39a 303 2660 1 1.88e-08 4.13e-06

2 1.88e-08 1.04e+01

1acz 324 3060 1 2.75e-12 1.69e-06

2 1.31e-07 2.22e-04

3 1.40e-07 1.85e-04

4 2.71e-07 2.88e-04

5 2.71e-07 9.75e-00

6 1.40e-07 9.75e-00

7 1.31e-07 9.75e-00

8 2.75e-12 9.75e-00

1poa 354 3193 1 1.36e-13 5.83e-06

2 1.36e-13 8.73e+00

1fs3 378 3443 1 8.08e-13 1.40e-06

2 8.08e-13 1.16e+01

1mbn 459 4599 1 1.36e-09 1.11e+01

2 1.36e-09 6.06e-07

1rgs 792 7626 1 4.22e-13 1.24e-06

2 4.22e-13 1.53e+01

1m40 1224 20382 1 1.00e-12 5.20e-07

2 1.00e-12 1.52e+01

1bpm 1443 14292 1 2.85e-13 1.86e+01

2 2.85e-13 5.09e-06

1n4w 1610 16940 1 1.19e-12 1.96e+01

2 1.19e-12 6.51e-07

1mqq 2032 19564 1 4.90e-12 2.05e+01

2 4.90e-12 9.78e-06

1rwh 2265 21666 1 2.08e-13 9.44e-07

2 2.08e-13 2.16e+01

3b34 2790 29188 1 1.17e-11 1.30e-06

2 1.17e-11 2.43e+01

2e7z 2907 42098 1 4.26e-12 7.68e-07

2 4.26e-12 2.27e+01

1epw 3861 35028 1 3.44e-12 4.98e-06

2 3.44e-12 2.02e+01

Table 3 Comparisons between the solutions found by BP and the original protein conforma-
tions. The solutions that can be obtained by symmetry are also included.

As explained above, at each step the BP algorithm checks the feasibility of two

possible atom positions, corresponding with the two possible choices of the sign of the

sine of the torsion angle ω: + or −. The first three atoms always have a positive sign.

The fourth sign is also fixed to + in the BP algorithm: if BP finds #Sol solutions,

then other #Sol solutions can be obtained by symmetry inverting all the signs from

the fourth to the last one, as stated in Theorem 2. Note that two different solutions of

the same instance can differ only in the sign of one torsion angle. A different torsion

angle in only one point of the protein backbone can change the associated RMSD value

dramatically. For example, if we consider the instance 1aqr, we can see (Tables 5 and

3) that BP is able to find 2 solutions, and therefore we have 4 solutions in total. The

solutions 3 and 4 correspond with small RMSD values, and, in particular, the solution
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(1) (2)

(3) (4)

Fig. 3 The four solutions of the instance 1aqr. Solutions (1) and (2) are found by BP-All.
Solutions (3) and (4) are symmetric with respect to the other two.

3 corresponds with the smallest one. Solutions 3 and 4 only differ by one torsion angle,

and this change is able to increase the associated RMSD value from about 10−8 to

about 10−4. For the same instance 1aqr, the RMSD values for the solution 1 and 2 are

apparently the same. However, when we computed the RMSDs with a higher precision,

we found that there is a positive difference, caused by the only different torsion angle:

the RMSD associated to the solution 1 is 6.938957, and the RMSD associated to the

solution 2 is 6.938940.

Figure 3 shows the backbone of the four solutions related to the instance 1aqr.

Solutions (1) and (2) are found by BP-All. Solutions (3) and (4) are obtained by

symmetry applying the Theorem 2. The colors used for representing the conformations

range from blue (first amino acid) to red (last amino acid). Note that only the protein

backbone is shown, which is usually represented as the set of segments connecting

consecutive Cα Carbon atoms in the conformation. The only difference between the

two solutions (1) and (2) is in only one torsion angle. The only difference between the

two solutions (3) and (4) obtained by symmetry is in the same torsion angle.

We also performed more extensive tests on a much larger set of protein instances

from the PDB: we queried the PDB website for monomeric proteins (i.e. with only one

chain of amino acids) having a resolution ranging from 0 and 1.5Å. From this set, we

eliminated all proteins having a sequence similarity greater than 30%. The resulting set

contains about 700 protein conformations: for each of these, we generated a DMDGP

instance by only keeping distances smaller than 6Å, and we only kept those whose
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Instance DGSOL

Name n |E| CPU LDE

lavor10 10 24 0.03 3.01e+01

lavor15 15 70 0.05 0.00e+00

lavor20 20 103 0.08 0.00e+00

lavor25 25 106 0.24 2.62e-02

lavor30 30 219 1.02 4.43e-07

lavor35 35 166 1.38 1.00e-01

lavor40 40 306 0.57 1.94e-06

lavor45 45 351 1.33 9.47e-07

lavor50 50 203 1.55 7.43e-02

lavor55 55 224 2.06 2.31e-03

lavor60 60 227 0.41 1.50e+03

lavor65 65 455 2.94 1.27e-01

lavor70 70 331 5.10 9.60e-02

lavor100 100 605 4.40 1.67e-01

lavor200 200 1844 43.94 4.08e-01

lavor300 300 2505 58.81 3.49e-01

lavor400 400 2600 65.35 6.87e-01

lavor500 500 4577 239.97 8.06e-01

lavor600 600 5473 244.45 6.99e-01

lavor700 700 4188 223.52 4.99e-01

lavor800 800 6850 447.27 6.07e-01

lavor900 900 7965 440.30 6.41e-01

lavor1000 1000 8229 534.97 6.95e-01

Table 4 Lavor instances solved by DGSOL.

natural backbone order satisfied Assumptions 1-2 (see [36] for those orders that fail to

satisfy the assumptions). On this large set, BP-All never took more than 0.1 seconds

for finding all incongruent solutions. The quality of the solutions is very accurate in

all the cases: the LDE value is, in most of the cases, about 10−13. When BP-All is

applied, the number of solutions is almost always 1; two solutions are found for 1hx0,

1itx, 1r6x, four solutions are found for 2p9w and thirty-two for 1iom.

5.3 Comparison with DGSOL

In Table 4, we show computational results obtained using DGSOL for solving the same

instances used in Tables 1 and 2. Comparing the LDE values of the solutions, it is easy

to see that BP is able to find much more accurate solutions than DGSOL in less time.

Table 5 shows the results for the set of protein instances.

5.4 Comparison with the SDP-based facial reduction technique

The BP algorithm was compared to the SDP-based facial reduction technique on the set

of protein instances. Table 6 reports the LDE comparison, whereas Table 7 reports the

RMSD comparison. The average LDE found by BP is in the order of 10−10, whereas

the SDP-based technique yields 10−13; if we eliminate the three outliers in the BP

columns, the average score for BP is in the order of 10−12. The RMSD comparison is

in favour of the BP-All because it explores the set of all incongruent solutions, which

must also contain the correct solution. The BP algorithm is faster than the SDP-based

technique. We recall that the comparative tests are limited to protein backbones.

6 Relations with the Euclidean Distance Matrix Completion Problem

The MDGP is closely related to the following problem:



19

Instance BP-One BP-All DGSOL

Name n |E| CPU LDE CPU #Sol CPU LDE

1brv 57 476 0.00 1.54e-14 0.00 1 1.48 2.74e-01

1aqr 120 929 0.00 1.86e-09 0.00 2 7.77 4.88e-01

2erl 120 1136 0.00 1.33e-14 0.00 1 9.38 2.92e-01

1crn 138 1250 0.00 2.24e-13 0.00 1 9.47 2.24e-01

1ahl 147 1205 0.00 1.50e-09 0.00 2 6.95 1.46e-01

1ptq 150 1263 0.00 2.30e-13 0.00 1 9.16 1.21e-01

1brz 159 1394 0.00 3.53e-13 0.00 2 11.39 4.66e-01

1hoe 222 1995 0.00 3.18e-13 0.00 1 16.83 2.06e-01

1lfb 232 2137 0.00 5.31e-14 0.00 1 38.94 2.88e-01

1pht 249 2283 0.00 2.73e-12 0.00 1 42.50 2.00e-01

1jk2 270 2574 0.00 2.09e-13 0.00 1 86.98 4.05e-01

1f39a 303 2660 0.00 2.68e-12 0.00 1 37.24 2.80e-01

1acz 324 3060 0.00 3.15e-12 0.02 8 35.97 3.97e-01

1poa 354 3193 0.00 1.36e-13 0.00 1 64.03 4.67e-01

1fs3 378 3443 0.00 8.08e-13 0.01 1 54.68 2.69e-01

1mbn 459 4599 0.00 1.36e-09 0.00 1 124.24 4.46e-01

1rgs 792 7626 0.00 4.22e-13 0.01 1 237.93 4.69e-01

1m40 1224 20382 0.02 1.00e-12 5.26 1 1142.49 4.89e-01

1bpm 1443 14292 0.02 2.85e-13 0.02 1 398.29 5.06e-01

1n4w 1610 16940 0.02 1.19e-12 0.02 1 994.51 5.26e-01

1mqq 2032 19564 0.02 4.90e-12 0.06 1 451.58 5.40e-01

1rwh 2265 21666 0.02 2.08e-13 0.06 1 934.29 5.38e-01

3b34 2790 29188 0.07 1.17e-11 0.07 1 940.95 6.47e-01

2e7z 2907 42098 0.08 4.26e-12 0.09 1 915.39 6.40e-01

1epw 3861 35028 0.16 3.19e-12 0.25 1 2037.86 4.92e-01

Table 5 PDB instances solved by the methods BP-One, BP-All and DGSOL.

Instance BP-One SDP-based

Name n |E| CPU LDE CPU LDE

1brv 57 476 0.00 1.54e-14 0.03 1.24e-14

1aqr 120 929 0.00 1.86e-09 0.06 2.54e-13

2erl 120 1136 0.00 1.33e-14 0.06 2.52e-13

1crn 138 1250 0.00 2.24e-13 0.06 2.24e-14

1ahl 147 1205 0.00 1.50e-09 0.07 2.41e-14

1ptq 150 1263 0.00 2.30e-13 0.08 2.54e-14

1brz 159 1394 0.00 3.53e-13 0.07 2.01e-13

1hoe 222 1995 0.00 3.18e-13 0.12 1.31e-13

1lfb 232 2137 0.00 5.31e-14 0.11 1.86e-14

1pht 249 2283 0.00 2.73e-12 0.10 9.54e-14

1jk2 270 2574 0.00 2.09e-13 0.15 2.74e-14

1f39a 303 2660 0.00 2.68e-12 0.12 3.91e-13

1acz 324 3060 0.00 3.15e-12 0.13 3.04e-13

1poa 354 3193 0.00 1.36e-13 0.20 2.53e-12

1fs3 378 3443 0.00 8.08e-13 0.17 2.27e-13

1mbn 459 4599 0.00 1.36e-09 0.22 9.67e-14

1rgs 792 7626 0.01 4.22e-13 0.42 1.58e-13

1m40 1224 20382 0.02 1.00e-12 0.71 1.08e-12

1bpm 1443 14292 0.03 2.85e-13 0.76 7.73e-13

1n4w 1610 16940 0.03 1.19e-12 0.86 5.44e-13

1mqq 2032 19564 0.03 4.90e-12 1.22 6.17e-13

1rwh 2265 21666 0.04 2.08e-13 1.38 3.01e-12

3b34 2790 29188 0.07 1.17e-11 1.68 3.00e-13

2e7z 2907 42098 0.24 4.26e-12 1.88 2.88e-13

1epw 3861 35028 0.33 3.19e-12 2.31 1.45e-12

Table 6 PDB instances solved by the BP-One and the SDP-based facial reduction algorithm.

Euclidean Distance Matrix Completion Problem (EDMCP). Given a

simple weighted undirected graph G = (V,E, d) and a positive integer K′, is

there an integer K ≤ K′ and an embedding x : V → R
K such that ∀{u, v} ∈

E (‖xu − xv‖ = duv)?

The above decision problem is usually considered in its optimization version of minimiz-

ing K such that the embedding of G exists in R
K . The EDMCP is usually stated in its

matrix form, with the graph G replaced by its weighted adjacency matrix D = (Dij),

where Dij = dij for all {i, j} ∈ E and Dij unspecified otherwise [34,29,19]. The “par-

tial matrix” is usually assumed to be a pre-distance matrix: i.e. a symmetric square

matrix with 0 diagonal. There is a decevingly minor but fundamental difference be-

tween the MDGP and the EDMCP: the dimension of the embedding Euclidean space

is given as part of the input (the constant 3) in the MDGP, whereas it is part of the
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RMSD

Name n |E| BP-One BP-All SDP-based

1brv 57 476 4.17e+00 5.60e-08 4.17e+00

1aqr 120 929 6.94e+00 7.10e-08 6.93e+00

2erl 120 1136 3.69e-07 3.69e-07 8.06e-05

1crn 138 1250 3.86e-06 3.86e-06 7.03e-05

1ahl 147 1205 1.45e-06 1.45e-06 8.81e-05

1ptq 150 1263 2.40e-06 2.40e-06 6.65e-05

1brz 159 1394 1.95e-07 1.95e-07 5.98e-05

1hoe 222 1995 3.54e-06 3.54e-06 4.02e-05

1lfb 232 2137 2.50e-06 2.50e-06 4.92e-05

1pht 249 2283 8.93e-07 8.93e-07 3.51e-05

1jk2 270 2574 6.37e-06 6.37e-06 2.35e-05

1f39a 303 2660 4.13e-06 4.13e-06 4.13e-05

1acz 324 3060 1.69e-06 1.69e-06 4.14e-05

1poa 354 3193 5.83e-06 5.83e-06 3.80e-05

1fs3 378 3443 1.40e-06 1.40e-06 3.59e-05

1mbn 459 4599 1.11e+01 6.06e-07 1.11e+01

1rgs 792 7626 1.24e-06 1.24e-06 1.39e-05

1m40 1224 20382 5.20e-07 5.20e-07 1.32e-05

1bpm 1443 14292 1.86e+01 5.09e-06 1.86e+01

1n4w 1610 16940 1.96e+01 6.51e-07 1.96e+01

1mqq 2032 19564 2.05e+01 9.78e-06 2.05e+01

1rwh 2265 21666 9.44e-07 9.44e-07 2.93e-05

3b34 2790 29188 1.30e-06 1.30e-06 1.08e-05

2e7z 2907 42098 7.68e-07 7.68e-07 1.01e-05

1epw 3861 35028 4.98e-06 4.98e-06 1.36e-05

Table 7 RMSD comparison between the BP algorithm and the SDP-based technique.

output in the EDMCP. Trivial deductions of complexity results by inclusion are there-

fore impossible. Indeed, whereas the MDGP is NP-hard, there is no known polynomial

reduction from an NP-hard problem to the EDMCP.

By [64], if we border a pre-distance matrix with a left column and top row such

that D00 = 0 and ∀i ≤ k ≤ n Dk0 = D0k = (2n
∑

j Dkj −
∑

ij Dij)/(2n
2) and

define A = (Aij) where Aij = 1
2
(D0i + D0j − Dij) then D is a Euclidean Distance

Matrix (EDM) if and only if A is a Positive SemiDefinite (PSD) matrix. Using SDP

techniques (interior point methods) it is possible to solve the PSD Completion Problem

(PSDCP) to any desired accuracy ε > 0 in polynomial time [30]. In order to obtain

the equivalent EDM one must solve the linear system ∀i, j 2Aij = D0i + D0j − Dij

(this can be done in O(|V |3)). Once D is known, an embedding in R
K with minimum

K can be found using bisection on K (O(log |V |), since |V | is an upper bound for

the embedding space dimension) and solving an MDGP in R
K on a complete graph

(O(|V |) using [20]). This gives a polynomial time reduction from the PSDCP to the

EDMCP. The practical limitation is that it is not clear how the desired accuracy ε

varies with respect to this reduction.

If we consider a natural generalization of the DMDGP to embeddings in arbitrary

dimensionK′, then cliques of quadruplets of consecutive vertices are replaced by cliques

of K′-uples of consecutive vertices in Assumption 1 of the DMDGP definition, and the

strict triangular inequalities of Assumption 2 are replaced by strict simplex inequalities

[13]. The subclass of EDMCP instances that satisfy these generalized assumptions

contains symmetric, zero-diagonal banded matrices whose semi-band height is equal

to K′, with scattered nonzero entries outside the bands. The nonzeros in the band

correspond to the distances that ensure that the search space is discrete. The nonzeros

outside the band correspond to distances used for DDF pruning tests. Naturally, we

also include matrices for which there is a column permutation that transforms them

in the desired banded form. One could then perform a bisection search to identify the

minimum dimension of the embedding space K by running a BP algorithm for each

tested K ≤ K′. We shall develop this idea in further work.
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7 Conclusion

In this paper, we formally define a subclass (called DMDGP) of the Molecular Distance

Geometry Problem, related to proteins, for which a discrete formulation can be sup-

plied. We prove that the DMDGP is NP-hard. We then present a solution algorithm

for the DMDGP whose worst-case running time is exponential, but whose practical

performance allows us to find all incongruent conformations of protein backbones of

almost 4000 atoms in 0.25s with high accuracy, with respect to both LDE and RMSD

error measures.

7.1 Ongoing work

Work is ongoing in several directions.

– Adapting the BP algorithm to work with data coming from NMR experiments. Such

data present several limitations, the main ones being that: (a) the distance function

maps into the set of real intervals (this accommodates measurement errors), (b)

the most reliable distance measurements are between hydrogen atoms. We address

limitation (a) in [43] and (b) in [44].

– BP parallelization [53]. We are currently able to solve DMDGP instances of 10000

vertices in 13.38s on 1 CPU and on 1.57s on 64 CPUs (computations carried out

on the Grid 5000 — www.grid5000.fr).

– A study of the relation between the number of solutions of the DMDGP and the ε

constant used in pruning tests [52].

– A study of symmetries in the DMDGP, which explains why the number of solutions

is a power of 2 in all presented tables [49].

– An analysis of the average BP execution time attempting to explain the fact that

the observed time increase look linear (instead of exponential) in function of the

input size.

In future work, we plan to extend the BP so that it is able to deal with side chains.

In order to do this we propose use the methods of [36] to find a vertex order that

also includes the side chain atoms. In case such an order is not found, continuous

optimization methods will be employed: once the side chain is embedded independently

of the rest of the protein, it will be possible to establish whether it can be glued to the

main backbone or not. This will provide a further pruning test for the BP.

Eventually, we believe that BP will serve as the primary algorithm in a practically

efficient software to be used by NMR practitioners to study the conformation of new

proteins. Such a software is already under way [55] and the current implementation is

freely distributed http://www.antoniomucherino.it/en/mdjeep.php.
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Appendix

Proof of Lemma 2

The proof is by induction. For n = 4, we obtain:

Q4 =









− cos θ2,4 − sin θ2,4 0 −d3,4 cos θ2,4
sin θ2,4 cosω1,4 − cos θ2,4 cosω1,4 − sinω1,4 d3,4 sin θ2,4 cosω1,4

sin θ2,4 sinω1,4 − cos θ2,4 sinω1,4 cosω1,4 d3,4 sin θ2,4 sinω1,4

0 0 0 1









and

Q′
4 =









− cos θ2,4 − sin θ2,4 0 −d3,4 cos θ2,4
sin θ2,4 cosω1,4 − cos θ2,4 cosω1,4 −

(

− sinω1,4

)

d3,4 sin θ2,4 cosω1,4

sin θ2,4
(

− sinω1,4

)

− cos θ2,4
(

− sinω1,4

)

cosω1,4 d3,4 sin θ2,4
(

− sinω1,4

)

0 0 0 1









.

Suppose now that the assertion is valid for n = i− 1. Rewritting Qi, we get

Qi = (B4 · · ·Bi−1)Bi

= Qi−1Bi,

where the elements of Qi−1 are denoted by

Qi−1 =









qi−1
11

qi−1
12

qi−1
13

qi−1
14

qi−1
21

qi−1
22

qi−1
23

qi−1
24

qi−1
31

qi−1
32

qi−1
33

qi−1
34

0 0 0 1









and

Bi =









− cos θi−2,i − sin θi−2,i 0 −di−1,i cos θi−2,i

sin θi−2,i cosωi−3,i − cos θi−2,i cosωi−3,i − sinωi−3,i di−1,i sin θi−2,i cosωi−3,i

sin θi−2,i sinωi−3,i − cos θi−2,i sinωi−3,i cosωi−3,i di−1,i sin θi−2,i sinωi−3,i

0 0 0 1









.

Considering the product Qi−1Bi, we obtain

Qi−1Bi =

[

V X Y Z

0 0 0 1

]

,

where

V =





qi−1
11

(−b) + qi−1
12

(cd) + qi−1
13

(ce)

qi−1
21

(−b) + qi−1
22

(cd) + qi−1
23

(ce)

qi−1
31

(−b) + qi−1
32

(cd) + qi−1
33

(ce)



 ,

X =





qi−1
11

(−c) + qi−1
12

(−bd) + qi−1
13

(−be)

qi−1
21

(−c) + qi−1
22

(−bd) + qi−1
23

(−be)

qi−1
31

(−c) + qi−1
32

(−bd) + qi−1
33

(−be)



 ,

Y =





qi−1
12

(−e) + qi−1
13

(d)

qi−1
22

(−e) + qi−1
23

(d)

qi−1
32

(−e) + qi−1
33

(d)



 ,

Z =





qi−1
11

(−ab) + qi−1
12

(acd) + qi−1
13

(ace) + qi−1
14

qi−1
21

(−ab) + qi−1
22

(acd) + qi−1
23

(ace) + qi−1
24

qi−1
31

(−ab) + qi−1
32

(acd) + qi−1
33

(ace) + qi−1
34



 ,
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and a = di−1,i, b = cos θi−2,i, c = sin θi−2,i, d = cosωi−3,i, and e = sinωi−3,i.

By induction hypothesis, we have

Q′
i−1 =









qi−1
11

qi−1
12

−qi−1
13

qi−1
14

qi−1
21

qi−1
22

−qi−1
23

qi−1
24

−qi−1
31

−qi−1
32

qi−1
33

−qi−1
34

0 0 0 1









.

Considering the product Q′
i−1B

′
i, where

B′
i =









− cos θi−2,i − sin θi−2,i 0 −di−1,i cos θi−2,i

sin θi−2,i cosωi−3,i − cos θi−2,i cosωi−3,i −
(

− sinωi−3,i

)

di−1,i sin θi−2,i cosωi−3,i

sin θi−2,i(− sinωi−3,i) − cos θi−2,i(− sinωi−3,i) cosωi−3,i di−1,i sin θi−2,i(− sinωi−3,i)

0 0 0 1









,

we obtain

Q′
i−1B

′
i =

[

V ′ X ′ Y ′ Z′

0 0 0 1

]

,

where

V ′ =





qi−1
11

(−b) + qi−1
12

(cd)− qi−1
13

(c(−e))

qi−1
21

(−b) + qi−1
22

(cd)− qi−1
23

(c(−e))

−qi−1
31

(−b)− qi−1
32

(cd) + qi−1
33

(c(−e))



 ,

X ′ =





qi−1
11

(−c) + qi−1
12

(−bd)− qi−1
13

(−b(−e))

qi−1
21

(−c) + qi−1
22

(−bd)− qi−1
23

(−b(−e))

−qi−1
31

(−c)− qi−1
32

(−bd) + qi−1
33

(−b(−e))



 ,

Y ′ =





qi−1
12

(e)− qi−1
13

(d)

qi−1
22

(e)− qi−1
23

(d)

−qi−1
32

(e) + qi−1
33

(d)



 ,

Z′ =





qi−1
11

(−ab) + qi−1
12

(acd)− qi−1
13

(ac(−e)) + qi−1
14

qi−1
21

(−ab) + qi−1
22

(acd)− qi−1
23

(ac(−e)) + qi−1
24

−qi−1
31

(−ab)− qi−1
32

(acd) + qi−1
33

(ac(−e))− qi−1
34



 .

Representing the matrix Qi by

Qi = Qi−1Bi =









qi11 qi12 qi13 qi14
qi21 qi22 qi23 qi24
qi31 qi32 qi33 qi34
0 0 0 1









and comparing the matrices Qi−1Bi and Q′
i−1B

′
i given above, we conclude that

Q′
i = Q′

i−1B
′
i =









qi11 qi12 −qi13 qi14
qi21 qi22 −qi23 qi24

−qi31 −qi32 qi33 −qi34
0 0 0 1









.
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Proof of Lemma 3

For n = 1, 2, 3 the assertion is clearly true. By the previous lemma, we have









xi1
xi2
xi3
1









= B1B2B3Qi









0

0

0

1









= B1B2B3









qi14
qi24
qi34
1









and








x′i1
x′i2
x′i3
1









= B1B2B3Q
′
i









0

0

0

1









= B1B2B3









qi14
qi24

−qi34
1









,

for i = 4, ..., n, and calculating the product B1B2B3, we obtain

B1B2B3 =









cos θ1,3 sin θ1,3 0 −d1,2 + d2,3 cos θ1,3
sin θ1,3 − cos θ1,3 0 d2,3 sin θ1,3

0 0 −1 0

0 0 0 1









.

Thus,









xi1
xi2
xi3
1









= B1B2B3









qi14
qi24
qi34
1









=









−d1,2 + d2,3 cos θ1,3 + qi14 cos θ1,3 + qi24 sin θ1,3
d2,3 sin θ1,3 + qi14 sin θ1,3 − qi24 cos θ1,3

−qi34
1









and








x′i1
x′i2
x′i3
1









= B1B2B3









qi14
qi24

−qi34
1









=









−d1,2 + d2,3 cos θ1,3 + qi14 cos θ1,3 + qi24 sin θ1,3
d2,3 sin θ1,3 + qi14 sin θ1,3 − qi24 cos θ1,3

qi34
1









,

for i = 4, ..., n. That is,




x′i1
x′i2
x′i3



 =





xi1
xi2

−xi3



 ,

for i = 1, ..., n.


