
Les Cahiers du GERAD ISSN: 0711–2440

Mathematical Programming-Based

Approach to Scheduling of

Communicating Tasks

T. Davidović, L. Liberti
N. Maculan, N. Mladenović

G–2004–99

December 2004

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs

auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la

recherche sur la nature et les technologies.

Mathematical Programming-Based Approach to

Scheduling of Communicating Tasks

Tatjana Davidović

Mathematical Institute
Serbian Academy of Science and Arts

11000 Belgrade, Yugoslavia
tanjad@mi.sanu.ac.yu

Leo Liberti

Dipartimento di Elettronica e Informazione
Politecnico di Milano
20133 Milano, Italy
liberti@elet.polimi.it

Nelson Maculan

COPPE-Systems Engineering
Federal University of Rio de Janeiro

21941-972 Rio de Janeiro, Brazil
maculan@cos.ufrj.br

Nenad Mladenović

GERAD, HEC Montréal
Montréal (Québec) Canada H3T 2A7

nenad@mi.sanu.ac.yu

December 2004

Les Cahiers du GERAD

G–2004–99

Copyright c© 2004 GERAD

Abstract

We present a MILP mathematical programming formulation for static scheduling of
dependent tasks onto homogeneous multiprocessor system of an arbitrary architecture
with communication delays. We reduce the number of constraints by applying a Re-
duction Constraint reformulation to the model. We solve several small-scale instances
of the reformulated problem by using CPLEX 8.1. Upper bounds are computed with
the Variable Neighborhood Search meta-heuristic applied directly to the graph-based
formulation of the problem, whereas lower bounds are obtained by solving linear relax-
ations of the MILP formulation, further tightened by using load balancing and critical
path method arguments.

Key Words: Static scheduling, homogeneous multiprocessors, communication de-
lays, reduction constraints, VNS.

Résumé

Nous présentons une formulation sous la forme d’un modèle de programmation
linéaire en nombres entiers (PLNE) pour le problème d’ordonnancement avec des tâches
dépendantes dans un système de multiprocesseurs homogènes associés à une architec-
ture arbitraire en présence de délais de communications. Pour diminuer le nombre
de contraintes nous utilisons une reformulation du modèle à l’aide d’une procédure
de Réduction de Contraintes. Nous avons résolu plusieurs exemples de petite taille
du modèle reformulé avec CPLEX 8.1. Les bornes supérieures ont été calculées par
des techniques VNS appliquées directement à une formulation basée sur la théorie des
graphes. Les bornes inférieures ont été obtenues en résolvant des relaxations linéaires
de la formulation PLNE et améliorées par des méthodes du chemin critique et par des
techniques de balancement de charges.

Les Cahiers du GERAD G–2004–99 1

1 Introduction

Parallel computing has been a very attractive research field for more than forty years [8].
One of the main problems is scheduling modules (tasks) to processors, i.e. definition of
distribution among processors and execution order of tasks. There is a bulk of papers
considering different variants of scheduling problems; a recent survey can be found in [1].
This problem is known to be NP-hard in the majority of cases, although there are several
special cases that can be solved in polynomial time. Therefore, heuristic methods for
finding good solutions are essential. Such suboptimal solutions can be used as upper
bounds for an exact solution method based on Branch-and-Bound.

There are several possible ways to formulate scheduling problems: using graph rep-
resentation for the program and/or multiprocessor architecture [3, 10, 26], via sets of
instructions [20], or as a mathematical programming problem. In the literature one can
find mathematical formulations for different variants of scheduling problems. For example,
in [22] the formulation for scheduling of independent tasks is given. Scheduling of depen-
dent tasks without communication is modelled in several different ways [2, 18, 27]. In [17]
the authors considered the problem of scheduling dependent tasks onto completely con-
nected heterogeneous multiprocessor architecture, but with negligible communication time.
All these models do not involve data communication among processors. Moreover, it has
always been assumed that the processor grid is completely interconnected. In this paper,
we are interested in scheduling dependent tasks with communication delays onto a homo-
geneous, arbitrarily connected multiprocessor architecture. This variant of the scheduling
problem has been referred to as Multiprocessor Scheduling Problem With Communication
Delays (MSPCD). In this paper we propose a novel mixed-integer bilinear programming
formulation for the MSPCD.

Traditionally, scheduling problems are solved by purpose-built heuristics; attempting
to solve the MSPCD via a general purpose solver like CPLEX [9] is not usually a viable
alternative. In this paper we suggest that, at least for small-scale instance, the MSPCD
can actually be solved to optimality by using CPLEX 8.1. Upper bounds are computed by
using Variable Neighborhood Search (VNS — see Section 4.2); lower bounds are obtained
by solving a continuous relaxation of the problem which has been suitably reformulated
by using Reduction Constraints [14, 12, 15], which are a subset of RLT constraints [24]
(see Section 4.1). Further tightening of the lower bound is performed with considerations
based on load balancing and critical path.

The paper is organized as follows. In the next section we give a description of the
MSPCD problem based on graph theory. Section 3 contains the mathematical program-
ming formulation of the problem, and shows an exact reformulation containing less con-
straints. Section 4 discusses the methods used to derive tight lower and upper bounds to
be used in the Branch-and-Bound algorithm in CPLEX 8.1. Computational results are
described in Section 5.

Les Cahiers du GERAD G–2004–99 2

2 Problem description

The Multiprocessor Scheduling Problem With Communication Delays (MSPCD) is defined
as follows: tasks (or modules) have to be executed on several processors; we have to find
where and when each task will be executed, such that the total completion time is minimum.
The duration of each task is known as well as the precedence relations among tasks, i.e.
what tasks should be completed before some other could begin. In addition, if dependent
tasks are executed on different processors, the data transferring times (or communication
delays) are also considered as part of the set of input parameters.

The set of tasks to be scheduled is represented by a Directed Acyclic Graph (DAG)
[3, 10, 26] defined by a quadruplet G = (M, E, C, Λ) where M = {1, . . . , n} denotes the
set of tasks (modules); E = {eij | i, j ∈ M} represents the set of communication edges;
C = {cij | eij ∈ E} denotes the set of edge communication costs; and Λ = {L1, . . . , Ln}
represents the set of task computation times (execution times, lengths). The communi-
cation cost cij ∈ C denotes the amount of data transferred between tasks i and j if they
are executed on different processors. If both tasks are scheduled to the same processor the
communication cost equals zero. The set E defines precedence relation between tasks. A
task cannot be executed unless all of its predecessors have completed their execution and
all relevant data is available. Task preemption and redundant executions are not allowed.

The multiprocessor architecture A = {1, 2, . . . , p} is assumed to contain p identical
processors with their own local memories which communicate by exchanging messages
through bidirectional links of the same capacity. This architecture is modelled by a p × p

distance matrix [3, 7]. The (k, l)-th element of the distance matrix D = (dkl) is equal to the
minimum distance between the nodes k and l. Here, the minimum distance is calculated as
the number of links along the shortest path between two nodes. It is obvious that distance
matrix is symmetric with zero diagonal elements.

The scheduling of DAG G onto A consists of determining the index of the associated
processor and starting time instant for each of the tasks from the task graph in such a
way as to minimize some objective function. The usual objective function (which we use
in this paper as well) is completion time of the scheduled task graph Tmax (also referred
to as makespan, response time or schedule length). The starting time of a task i depends
on the completion times of its predecessors and the amount of time needed for transferring
the data from the processors executing these predecessors to the processor that has to
execute the task i. Depending on multiprocessor architecture the time that is spent for
communication between tasks i and j can be calculated in the following way:

γkl
ij = cij · dkl · ccr, (1)

where it is assumed that task i will be executed on processor k, task j on processor l

and ccr represents the Communication-to-Computation-Ratio which is defined as the ratio
between time for transferring the unit amount of data and the time spent for performing
single computational operation. This parameter is used to describe the characteristics of
multiprocessor system. In message passing systems ccr usually has a large value because

Les Cahiers du GERAD G–2004–99 3

communication links are very slow. For shared–memory multiprocessors the communi-
cation is faster since it consists of writing data from main (electronic) memory of one
processor into global (also fast) memory and then into main memory of another processor.
If the tasks are scheduled to the same processor, i.e. k = l, the amount of communication
equals zero since dkk = 0.

3 Mathematical formulation

In this section we give a mathematical programming formulation of the MSPCD. Let us
denote the set of immediate predecessors of task j by Pred(j), i.e. Pred(j) = {i ∈ M |
eij ∈ E}.

Let

ys
jk =

{

1, if task j is the s-th task executed on processor k,
0, otherwise,

∀j ∈ M , k ∈ A. Variables tj denote the starting time of task j for all j ∈ M .

The MSPCD can be formulated as follows:

min
y,t

max
j≤n

{tj + Lj} (2)

subject to:
p
∑

k=1

n
∑

s=1

ys
jk = 1 ∀j ≤ n (3)

n
∑

j=1

y1
jk ≤ 1 ∀k ≤ p (4)

n
∑

j=1

ys
jk ≤

n
∑

j=1

ys−1
jk ∀k ≤ p ∀s ∈ {2, . . . , n} (5)

tj ≥ ti + Li +

p
∑

k=1

n
∑

s=1

p
∑

l=1

n
∑

r=1

γkl
ij ys

iky
r
jl (6)

∀i ∈ Pred(j),∀j ≤ n

tj ≥ ti + Li − α

[

2 −

(

ys
ik +

n
∑

r=s+1

yr
jk

)]

(7)

∀k ≤ p,∀s ≤ n − 1,∀i, j ≤ n

ys
jk ∈ {0, 1}, ∀j, s ≤ n ∀k ≤ p (8)

tj ≥ 0 ∀j ≤ n, (9)

Les Cahiers du GERAD G–2004–99 4

where α ≫ 0 is a sufficiently large penalty coefficient and γkl
ij represent the amount of

communication between tasks i and j as defined in (1).

Equations (3) ensure that each task is assigned to exactly one processor. Inequali-
ties (4)-(5) state that each processor can not be simultaneously used by more than one
task. (4) means that at most one task will be the first one at k, while (5) ensures that if

some task is the sth one (s ≥ 2) scheduled to processor k then there must be another task
assigned as (s−1)-th to the same processor. Inequalities (6) express precedence constraints
together with communication time required for tasks assigned to different processors. Con-
straints (7) define the sequence of the starting times for the set of tasks assigned to the
same processor. They express the fact that task j must start at least Li time units after
the beginning of task i whenever j is executed after i on the same processor k. If tasks
i and j are not assigned to the same processor and they are mutually independent, the

previous reasoning does not hold: even being rth (r > s) task on some other processor
l, j may start before i completes its execution. The last term of inequalities (7), i.e.

α
[

2 −
(

ys
ik +

∑n
r=s+1 yr

jk

)]

, is added to cover that case.

The mathematical formulation of MSPCD given by (2)-(9) contains bilinear terms in
the y variables, and therefore belongs to the class of mixed integer bilinear programs.
Variables ys

ik are of 0-1 type and variables ti are continuous. It is possible to linearize this
model by introducing a new set of (continuous) variables zsr

ijkl ∈ [0, 1] which replace the

bilinear terms ys
iky

r
jl in Eq. (6).

Variables zsr
ijkl have to satisfy the following linearization constraints:

ys
ik ≥ zsr

ijkl (10)

yr
jl ≥ zsr

ijkl (11)

ys
ik + yr

jl − 1 ≤ zsr
ijkl (12)

∀i, j, s, r ≤ n, ∀k, l ≤ p, which guarantee that zsr
ijkl = ys

iky
r
jl. The following constraints:

zsr
ijkl = zrs

jilk (13)

zss
iikk = ys

ik, (14)

based on the observations that ys
iky

r
jl = yr

jly
s
ik (commutativity of product) and (ys

ik)
2 =

ys
ik (a squared binary variable has the same value as the variable itself), are also valid

constraints. In particular, (13) makes it possible to reduce the number of z variables by
about half. The number of variables in the original model is O(n6). Constraints (14) can
be added to the formulation.

The number of linearization constraints (10)-(12) is rather large: O(n6). These lin-
earization constraints were experimentally observed to slow down the solution process con-
siderably, even when the y variables were relaxed to continuous. It was shown in [13] that
assignment constraints like (3) can be multiplied by each yr

jl variables (and successively

linearized by substituting each resulting bilinear term with the appropriate z variable) to

Les Cahiers du GERAD G–2004–99 5

obtain reduction constraints which, together with constraints (13), turn out to be equiv-
alent to the linearization constraints (10)-(12). The reduction constraint system for the
MSPCD is as follows:

p
∑

k=1

n
∑

s=1

zsr
ijkl = yr

jl ∀i, j, r ≤ n, l ≤ p. (15)

Notice that there are only O(n4) reduction constraints. Next, we show that a reformulation
of the problem containing the reduction constraint system instead of the usual linearization
constraints (10)-(12) is exact.

3.1 Proposition

Constraints (3), (13), (15) imply the linearization constraints (10)-(12).

Proof. By (13) and (15), we have

∀i, j, s, r ≤ n ∀k, l ≤ p (zsr
ijkl ≤ ys

ik ∧ zsr
ijkl ≤ yr

jl). (16)

By (16), for any set J of index pairs (f, t) with f ≤ p, t ≤ n, we have
∑

(f,t)∈J ztr
ijfl ≤

∑

(f,t)∈J yt
if . Pick k ≤ p, s ≤ n and consider the set J = M × M\{(k, s)}. For each

i, j, r ≤ n and l ≤ p, we have:

∑

(f,t) 6=(k,s)

yt
if ≥

∑

(f,t) 6=(k,s)

ztr
ijfl ⇒ (add and subtract zsr

ijkl)

∑

(f,t) 6=(k,s)

yt
if ≥

p
∑

f=1

n
∑

t=1

ztr
ijfl − zsr

ijkl ⇒ (substitute yr
jl by (15))

zsr
ijkl ≥ yr

jl −
∑

(f,t) 6=(k,s)

yt
if ⇒ (add and subtract ys

ik)

zsr
ijkl ≥ ys

ik + yr
jl −

p
∑

f=1

n
∑

t=1

yt
if ⇒ (substitute 1 by (3))

zsr
ijkl ≥ ys

ik + yr
jl − 1. (17)

Constraints (16) and (17) are exactly the linearization constraints (10)-(12), as claimed. 2

Our computational results show that this reformulation is much faster to solve than the
original formulation.

4 Bounds

In this section we discuss the methods used to find tight lower and upper bounds T , T to
the objective function value throughout the Branch-and-Bound solution process, as simply
using CPLEX built-in lower and upper bounding procedures was found to be inefficient.

Les Cahiers du GERAD G–2004–99 6

4.1 Lower bound

A continuous relaxation of the above MILP formulation can be used to find a valid lower
bound to the objective function value at each step of the Branch-and-Bound algorithm
in CPLEX. This bound can be further tightened in two ways: Load Balancing (LB) and
the Critical Path Method (CPM). The optimal solution cannot have a shorter execution
time than the ideal load balancing case, i.e. when there is no idle time intervals and all
the processors complete the execution exactly at the same time. In other words, if we
let Tmax = maxj≤n{tj + Lj} denote the objective function, we have Tmax ≥ 1

p

∑n
i=1 Li =

TLB. Furthermore, the length of final schedule can not be smaller that the length of
the critical path, the longest path connecting a node with no predecessors to a node
without successors. Let us denote by Succ(j) the set of immediate successors of task j,
i.e. Succ(j) = {j′ : ejj′ ∈ E}. By using CPM the corresponding lower bound TCP can be
defined as TCP = maxj≤n CP (j) where

CP (j) =

{

Lj , if Succ(j) = ∅,
Lj + max

j′∈Succ(j)
CP (j′), otherwise,

Let T be the greatest of the bounds obtained by LB and CPM; a constraint of the form
Tmax ≥ T is then also added to the formulation. Notice that this lower bound is valid
throughout the whole solution process and does not depend on the current Branch-and-
Bound node being solved.

4.2 Upper bound

CPLEX is supplied with a general purpose heuristic that finds sub-optimal solutions for
the problem at hand. For any given Branch-and-Bound region, some of the variables
are fixed. For MILPs which model a combinatorial problems, more efficient heuristics are
usually available based on the graph structure of the problem. In particular, several efficient
heuristics and meta-heuristics exist for the MSPCD. These heuristics are seldom applicable
to a Branch-and-Bound algorithm because at any given Branch-and-Bound iteration, some
of the variables are fixed — and it is usually difficult to force the graph-based heuristics to
constrain the parts of the graph structure which correspond to the fixed variables. At the
first iteration, however, no variables are fixed, which makes it possible to apply the efficient
graph-based heuristics as a kind of pre-processing step to the whole Branch-and-Bound run.

In our tests, we used VNS [21] to compute tight upper bounds T to the objective
function value, and a constraint Tmax ≤ T was added to the formulation prior to starting
CPLEX. We employed the VNS based method proposed in [6] which is very efficient in
solving the MSPCD.

5 Numerical experiments

In this section we discuss the numerical results obtained by solving the proposed model with
CPLEX 8.1. We describe our test examples in the next subsection, while the comparative
numerical results are presented in Subsection 5.3.

Les Cahiers du GERAD G–2004–99 7

5.1 Description of test examples

Several small size test instances known from the literature [3, 11, 19, 23, 25] were used in our
experiments. In addition, we tested a few examples with known optimal solutions generated
as in [5] (which proved to be hard instances for meta-heuristic methods). We selected
examples with different characteristics in order to examine the influence of task graph
parameters on the efficiency of model-based solution methods. The relevant parameters to
describe an instance of the task graph are for example:

• n- the number of tasks;

• ρ - the density of task graph edges;

• fp - level of parallelism, i.e. average value of mutually independent tasks;

• fc - the ratio between the required computation and communication time; and so on.

The value for fp is calculated based on the number of processors, number of levels within
task graph and the average number of tasks per level. This definition is different from the
one given in [11] and it is more realistic since it depend on various parameters. Our fc is
equivalent to the CCR parameter of [11] and is calculated as follows

fc =

∑

j Lj
∑

i

∑

j cij

.

Moreover, there are two parameters describing the target multiprocessor architecture,
namely the number of processors p and the distance matrix D describing the processor
interconnection network.

According to the small size of test instances, we select the following values for these
parameters

p = 2 with D =

[

0 1
1 0

]

; p = 3 with D =





0 1 1
1 0 1
1 1 0



; and p = 4 with D =









0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0









.

Task graphs used in this paper are illustrated on the figures below and are selected as
the representative examples for different characteristics. For example, the counter is task
graph containing 5 tasks that was used in [3] to illustrate the need of combining different
heuristics during the scheduling process. Its CP based schedule onto 2-processor system
happen to have longer execution time then the sequential one. Test is multistage graph
with a good balance between parallelism and dependencies between tasks.

The task graph density was also shown to be an important parameter [4] and therefore
we selected several examples with the same number of tasks and different densities. The
parameters describing each particular task graph example are listed in the table containing
scheduling results given in the next subsection.

Task graphs with known optimal solutions generated with the procedure proposed in [5]
are all named with the prefix ogra. The optimal solution value is obtained when the tasks
are well packed (as in ideal schedule) in the order defined by the task indices. For these

Les Cahiers du GERAD G–2004–99 8

n1

n2

n3

n4
n5

-

-

��
�*

HHHj
3

5

12

8

i 1 2 3 4 5

Li 2 3 5 8 4

a)

n2

n1
n3

n4

n5

n6
���

@@R

���

@@R

@
@
@R-

�
�
��

3

2

7

1

4

4

2

i 1 2 3 4 5 6

Li 5 12 8 3 3 7

b)

Figure 1: a) counter – Task graph example from [3]; b) test – Task graph with 6 nodes

n5

n1
n2

n3

n6

n4

n7 n8
���

@@R

@@R

-

-

�
�
��

-

3
2

3

1

1

4

2

i 1 2 3 4 5 6 7 8

Li 5 6 2 3 6 4 4 2

a)

n1

n5

n2

n3

n4

n6

n7

n8

n9

�
��
-
@
@R
B
B
B
BBN

PPPPPPq

���:HHHj
HHHj

-

Q
Q
QQs-

��
��*

1
4

1
1

1
1

3

1

1

5

6

5

i 1 2 3 4 5 6 7 8 9

Li 2 3 3 4 5 4 4 4 1

b)

Figure 2: a) sih91 – Task graph example from [25]; b) kwok – Benchmark task graph from [11]

task graphs it is always the case that Tmax = TLB = TCP . This means that they have a
special structure which makes them very hard instances for heuristic methods. In other
words, in the cases when the task graph density is small, i.e. the number of mutually
independent tasks is large, it is hard to find the task ordering which yields the optimal
schedule.

5.2 Bounds

Together with the optimal solutions, we also computed bounds to the objective function
values. The upper bounds were obtained by running a custom-built implementation of the
VNS metaheuristic applied to this problem (see Section 4.2). We computed three classes
of lower bounds: T is the maximum between Load Balancing and CPM applied to the
problem, as described in Section 4.1. LB1 is the lower bound obtained by solving a linear
relaxation of the linearized model from Section 3 using the CPLEX LP solver. LB2 is

Les Cahiers du GERAD G–2004–99 9

n1

n6

n2
n3

n7

n4
n5 n8

n9
�
�
�
���

Z
Z
Z
Z
Z
Z~

XXXXXXz

��

��
�*

J
JĴ

PPPPPPPPPPPPq
HHj

���
���

��:

-

���
���

���
��:

ZZ~
hhhhhh-

@@R

8

3

10

4

4

3
7

1
8

6
3 12

12

10

5

i 1 2 3 4 5 6 7 8 9
Li 60 30 15 40 15 30 35 50 40

Figure 3: ss91 – The task graph example from the [23]

n1

n3

n2

n4

n5

n7

n6

n8

n9

n10�
�
��

-
A
A
AU

-
A
A
AU

-�
�
��

-

-

-

�
�
��

A
A
AU

A
A
AU

�
�
��

1

3

2

1

2

1
2

3

2

2

1

1

2
1

3

i 1 2 3 4 5 6 7 8 9 10
Li 6 8 7 10 8 12 9 6 8 7

Figure 4: mt91 – Example from [19]

the lower bound obtained by globally solving the continuous nonconvex problem obtained
from the model in Section 3 by simply relaxing the binary variables to lie in [0, 1]. This
bound was computed by running a VNS solver for continuous global optimization [16] on
the problem instances.

5.3 Computational results

In Table 1 we present the computation times required by CPLEX 8.1 to find the optimal
solutions of selected examples for different improvements and modifications of proposed
model. All our computational results were obtained on a Pentium IV 2.66GHz processor
with 1GB RAM running Linux.

The first column of Table 1 contains the names of the test examples. The second
one contains the number of processors p in the target multiprocessor architecture. The
next six columns contain parameters that characterize each particular task graph: number
of tasks n, task graph density ρ, level of parallelism fp, ratio between computation and
communication time fc. The computation times of different versions of the MILP model for
MSPCD are given in the next four columns. Mod. 1 denotes the basic model with the lower
bound given by Load Balancing (LB) and Critical Path Method (CPM) constraint Tmax ≥

Les Cahiers du GERAD G–2004–99 10

T = max{TLB, TCP }. Mod. 2 is like Mod. 1 with symmetry and square constraints (13)
and (14). Mod. 3 is obtained from Mod. 2 by replacing the linearization constraints (10)-
(12) with the reduction constraint system (15). Mod. 4 is Mod. 3 where the upper bound to
the root node of the Branch-and-Bound process has been obtained by heuristically solving
the problem with VNS. The running time taken by VNS to find the good initial solution
is estimated to be around 1% of the time needed by Mod. 3, which means that it can
be neglected compared to the CPLEX 8.1 execution time required by Mod. 4. The last
five columns contain: the length of optimal schedule Tmax, the length of upper-bounding
heuristic solution TV NS obtained with VNS, and the three lower bounds to Tmax (T , LB1

and LB2) discussed in Section 5.2.

Note that parameter α from the inequality (7) was set to 2000 for all the examples.
The “—” symbol is used in Table 1 to denote cases when CPLEX 8.1 was interrupted due
to excessive CPU time requirements.

Table 1: Comparison results for different variants of MSPCD model

Instance p n ρ fp fc Mod. 1 Mod. 2 Mod. 3 Mod. 4 Tmax TV NS T LB1 LB2

counter 2 5 40.00 0.83 0.78 0:13 0:03 0:01 0:00 20 23 11 15 15

test 2 6 46.67 1.00 1.65 1:14 0:15 0:05 0:04 25 25 19 22 22

sih91 2 8 25.00 1.00 2.00 50:12 10:27 4:41 0:55 16 16 16 16 16

kwok 3 9 33.33 0.75 1.00 62:13:11 105:44:43 32:58:05 27:47:23 15 16 10 11 11

ss91 2 9 41.67 0.64 3.28 2:18:04 55:11 1:03:43 1:27:50 250 250 157.5 250 250

ogra 1 3 9 13.89 1.50 2.50 14:05:34 13:16:47 5:11:05 2:14:51 20 20 20 13 13
ogra 2 3 9 27.78 1.00 1.46 40:57:50 9:59:16 1:59:56 34:31 20 20 20 20 20
ogra 3 3 9 41.67 0.75 1.05 32:22:54 7:01:19 3:51:18 16:34 20 20 20 20 20
ogra 4 3 10 13.33 1.11 3.00 — 55:29:40 25:07:32 15:42:27 25 25 25 19 19
ogra 5 3 10 26.67 1.11 1.23 — 97:03:57 26:06:48 1:13:14 25 25 25 25 25
ogra 6 3 10 40.00 1.11 0.86 — — 31:51:57 1:12:31 25 25 25 25 25

mt91 2 10 31.11 1.00 3.24 17:13:44 33:03:06 6:05:46 46:05 53 53 40.5 51 51

It appears clear, from our computational results, that the importance of the formulation
is paramount for improving the solution speed taken by the Branch-and-Bound algorithm.
Usually, this is taken to mean that a tightening reformulation, i.e. a formulation with
added valid cuts which improve the lower bound, is bound to be better than the original
formulation. In this case, the reduction constraints were shown to be an exact reformulation
for the usual linearization constraints. However, the reformulation is not tighter in the
sense of improved lower bounds, but rather because there are O(n4) reduction constraints
instead of the O(n6) linearization constraints. The upshot of this is that each LP relaxation
is solved in a much shorter time. In some cases, the reduction constraints reformulation
(Mod. 3 in the table) was the only way to actually obtain the optimal solution, as the other
methods took inordinately long times (more than 120h of CPU time). This leads us to think
that in some Branch-and-Bound nodes (certainly not the root one, and possibly quite deep
in the node tree) the lower bounds provided by the reduction constraints reformulation
are actually tighter than those given by the LP relaxation of the original problem; but we
have no proof of this as yet.

Les Cahiers du GERAD G–2004–99 11

It is also clear that an optimality approach through generic MILP methods (like Branch-
and-Bound) to the solution of the MSPCD is necessarily limited to small-scale examples.
This is certainly a stringent practical limit for real-life cases. However, when assessing the
performance of a new heuristic method, it is customary to run it on instances with known
optima. Our methods can successfully be used to generate a test set of small instances
with known optima, which can then be used for comparison with heuristic methods.

6 Conclusion

In this paper, we proposed a bilinear MILP formulation for the multiprocessor scheduling
problem with communication delays, where the processor grid has arbitrary topology. The
formulation is linearized in a very efficient manner by using reduction constraints. We solve
small-scale instances of the problem to optimality using CPLEX, where upper bounds are
provided by VNS and lower bounds by solving a continuous relaxation of the problem,
further tightened using load balancing and critical path arguments. It appears that the
largest improvements in terms of computation time are given by the reduction constraints
reformulation, which reduces the number of linearization constraints in the problem.

References

[1] J. Blazewicz, M. Drozdowski, and K. Ecker. Management of resources in parallel
systems. In J. Blazewicz, K. Ecker, B. Plateau, and D. Trystram, editors, Handbook
on Parallel and Distributed Processing, pages 263–341. Springer, 2000.

[2] E. H. Bowman. The schedule-sequencing problem. Oper. Res., 7(5):621–624, 1959.

[3] T. Davidović. Exhaustive list–scheduling heuristic for dense task graphs. YUJOR,
10(1):123–136, 2000.

[4] T. Davidović and T. G. Crainic. Benchmark problem instances for static task schedul-
ing of task graphs with communication delays on homogeneous multiprocessor sys-
tems. Centre de Recherche sur les Transports, CRT-2004-15, (accepted for Comput.
& OR).

[5] T. Davidović and T. G. Crainic. New benchmarks for static task scheduling on homo-
geneous multiprocessor systems with communication delays. Technical report, Centre
de Recherche sur les Transports, CRT-2003-04.

[6] T. Davidović, P. Hansen, and N. Mladenović. Permutation based genetic, tabu and
variable neighborhood search heuristics for multiprocessor scheduling with communi-
cation delays. GERAD Tech. Report, G-2004-19, (accepted for publication in APJOR).

[7] G. Djordjević and M. Tošić. A compile-time scheduling heuristic for multiprocessor
architectures. The Computer Journal, 39(8):663–674, 1996.

[8] T. C. Hu. Parallel sequencing and assembly line problems. Oper. Res, 9(6):841–848,
Nov. 1961.

[9] ILOG. ILOG CPLEX 8.1 User’s Manual. ILOG S.A., Gentilly, France, 2002.

Les Cahiers du GERAD G–2004–99 12

[10] Y.-K. Kwok and I. Ahmad. Efficient scheduling of arbitrary task graphs to multi-
processors using a parallel genetic algorithm. J. Parallel and Distributed Computing,
47:58–77, 1997.

[11] Y.-K. Kwok and I. Ahmad. Benchmarking and comparison of the task graph schedul-
ing algorithms. J. Parallel and Distributed Computing, 59(3):381–422, Dec. 1999.

[12] L. Liberti. Linearity embedded in nonconvex programs. Journal of Global Optimiza-
tion (accepted for publication), 2003.

[13] L. Liberti. Automatic reformulation of bilinear minlps. DEI, Politecnico di Milano,
Technical report n. 2004.24, July 2004.

[14] L. Liberti. Reduction constraints for the global optimization of nlps. International
Transactions in Operations Research, 11(1):34–41, 2004.

[15] L. Liberti and C.C. Pantelides. An exact reformulation algorithm for large nonconvex
nlps involving bilinear terms. Journal of Global Optimization (submitted), 2004.

[16] L. Liberti Writing global optimization software. In L. Liberti and N. Maculan, Global
Optimization: from Theory to Implementation, Nonconvex Optimization and Its Ap-
plications series, Kluwer, Dordrecht (to appear).

[17] N. Maculan, C. C. Ribeiro, S.C.S. Porto, and C. C. de Souza. A new formulation
for scheduling unrelated processors under precedence constraints. RAIRO Recherche
Operationelle, 33:87–90, 1999.

[18] A. S. Manne. On the job–shop scheduling problem. Oper. Res., 8(2):219–223, 1960.

[19] S. Manoharan and P. Thanisch. Assigning dependency graphs onto processor networks.
Parallel Computing, 17:63–73, 1991.

[20] D. A. Menascé and S. C. S. Porto. Processor assignment in heterogeneous parallel
architectures. In Proc. of the IEEE Int. Parallel Processing Symposium, pages 186–
191, Beverly Hills, 1992.

[21] N. Mladenović and P. Hansen. Variable neighborhood search. Comput. & OR,
24(11):1097–1100, 1997.

[22] M. Queyranne and A. Schulz. Polyhedral approaches to machine scheduling. Technical
report, TUB:1994–408, Technical University of Berlin, 1994.

[23] A. K. Sarje and G. Sagar. Heuristic model for task allocation in distributed computer
systems. IEE Proceedings-E, 138(5):313–318, Sept. 1991.

[24] H.D. Sherali and A. Alameddine. A new reformulation-linearization technique for
bilinear programming problems. Journal of Global Optimization, 2:379–410, 1992.

[25] G. C. Sih. Multiprocessor Scheduling to Account for Interprocessor Communication.
PhD thesis, University of California, Berkeley, 1991.

[26] G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Trans. Parallel and Dis-
tributed Systems, 4(2):175–187, February 1993.

[27] H. M. Wagner. An integer linear-programming model for machine scheduling. Nav.
Res. Log. Quart., 6(2):131–140, 1959.

