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Abstract
Wepresent a newmethodology for producing low-dimension-

al word vectors based on distance geometry and dimensional

reduction techniques. We use these word vectors in order to

construct sentence vectors. We evaluate their usefulness in a

sentence classification task performed by a simple artificial

neural network. Compared to n-gram incidence vectors, the

new methodology is shown to yield lower loss values.
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1 Introduction
Many Natural Language Processing (NLP) tasks concern clus-

tering and classification applied to excerpts of text (words,

sentences, documents) in a corpus [18, 34]. The default com-

puter representation of words, sentences and documents is

a string of ASCII characters. A common approach for clus-

tering a set of strings is to define a similarity graph, having

strings as vertices and edges representing string similarity,

and then use a graph clustering methodology [2, 40]. On the

other hand, some of the unsupervised learning methodolo-

gies for clustering sets of vectors (e.g. k-means [6, 33]) are

known to be fast and effective. This provides a first motiva-

tion for a need to transform words, sentences, documents

into vectors.
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A second motivation is given by supervised learning meth-

odologies, most of which are based on vector input: e.g. sup-

port vector machines, logistic regression, artificial neural

networks (ANN). A third motivation is given by semantic

compositionality. Formal languages are semantically com-

positional: the meaning of a formal language sentence is

completely determined by the meaning of each of its parts

[25]. Natural languages have varying degrees of semantic

compositionality, but it is clear to every human that the

meaning of a natural language sentence is rarely completely

determined by the meaning of its parts [24]. While we are

still unable to devise a computer program to understand nat-

ural language as a human, the transformation of linguistic

units into vectors in a Euclidean space yields an elusive, yet

tantalizing promise of multifaceted semantic composition-

ality possibilities: there are many ways to combine sets of

vectors to yield other vectors or sets thereof.

Euclidean vectors representing linguistic units (words,

sentences, documents) are required to reflect the relations

between the units. In other words, related units should yield

related vectors. The nature of the relation varies between

methodologies; its effectiveness is usually verified empiri-

cally on some common NLP task (e.g. the word vectors pro-

posed in [42] are tested on analogies, similarity and named

entity recognition tasks).

It stands to reason, then, that the first step in turning

strings to vectors is to form a graph, which is simply a rep-

resentation of a relation on a set. Word vectors are derived

from graphs having words as vertices, and some relation on

the words encoded by the edges (e.g. the word vectors in

[36] encode some syntactic and semantic relationships). In

this paper we consider the graph-of-words representation

of [43], which is based on word contiguity in a given text

(usually a paragraph or a short text). Other methods exist:

the WordNet graph captures semantic hierarchies [38], and

the popular bag-of-words binary vectors are derived from a

co-occurrence relation of words in a document of any length

[35].

The process of mapping the vertices of an edge-weighted

graph to vectors in a Euclidean spaceRK (for some integerK )
is called graph realization [28]. The name graph embedding
is more general, and refers to an embedding of a graph in

a topological space [14]. If the graph vertices are words,

realizing the graphs produces word vectors. Currently, many
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word vector construction methods (with corresponding sets)

are available: e.g. Glove [42], Word2Vec [37], fastText [7].

All of these word vector sets have proved their worth on a

number of NLP tasks [20]. Usually, their dimension K ranges

in the hundreds, e.g. K = 300 for a public Word2Vec word

vector set available from Google and constructed from an

analysis of text fromGoogleNews, see en.wikipedia.org/wiki/
Word2vec.

By a high-dimensional phenomenon called distance reso-
lution limit (also known as “concentration of distances”), as

the dimension of a set of vectors sampled from any proba-

bility distribution increases, the difficulty of distinguishing

between smallest and largest distance of the vectors to a

given point also increases [1, 4]. More precisely, the largest

distance is bounded above by a (1 + ε) factor of the smallest

distance, for any ε > 0, with probability 1. This phenome-

non may have a negative impact on clustering algorithms

such as k-means, where one wants to distinguish between

smallest and second-smallest (let alone largest) distance to

a centroid, as well as on other clustering tasks on vectors.

This motivates the need for low-dimensional word vectors.

In this paper we exploit Distance Geometry (DG) and

dimensional reduction methodologies for producing low-

dimensional word vectors (K = 10) out of a given corpus.

From these word vectors, by stacking, padding and more

dimensional reduction, we derive sentence vectors of dimen-

sion around 400. We then test these in a sentence classifi-

cation task carried out by means of an ANN, and compare

the results with sentence vectors obtained by the incidence

of consecutive word triplets into the set of all such triplets

in the text, showing that the sentence vectors derived with

DG perform better (see the algorithm description in Sect. 4)

The original contribution of this paper is the application of

known methodologies for graph realization and dimensional

reduction to NLP, and more specifically to graph embeddings

for neural networks. Some technical details are also original,

e.g. Sect. 3.4.

The rest of this paper is organized as follows. In Sect. 2

we briefly recall two dimensional reduction methodologies:

Principal Component Analysis (PCA) and Random Projec-

tions (RP). In Sect. 3 we give a summary of the DG field, and

outline a Mathematical Programming (MP) based methodol-

ogy for graph realization. In Sect. 4 we describe our sentence

classification task, the construction of word and sentence

vectors, and the ANN used for testing. In Sect. 5 we discuss

computational results.

2 Dimensional reduction
Dimensional reduction is a field of data science aiming at

lowering the dimension of a possibly large set of high dimen-

sional vectors while keeping some property of the vectors

approximately invariant.

2.1 Principal Component Analysis
In the well-known PCA method the approximate invariant

is the variance of the data set in an appropriate orthogonal

frame of reference [15]. PCA requires a target dimension as

input, and produces lower-dimensional versions of the input

vectors such that as much as possible of the variability of

the original data set is preserved in the lower-dimensional

vectors.

2.2 Random projections
Let X = {xi | i ≤ n} ∈ Rm be the initial, high-dimensional

set of vectors. We consider X also as a matrix of column

vectors inRm×n
. Given an ε > 0 andk = O( 1

ε2
lnn), a random

projection is a (random) matrix T ∈ Rk×m such that ∀i < j ≤
n,

(1 − ε)∥Xi − X j ∥2 ≤ ∥TXi −TX j ∥2 ≤ (1 + ε)∥Xi − X j ∥2. (1)

The Johnson-Lindenstrauss lemma states that RPs exist [17].

If T is a matrix where each component is sampled from a

Gaussian distribution with zero mean and
1√
k
standard devi-

ation, it can be shown that resampling T sufficiently many

times can make Eq. (1) hold with arbitrarily high probability

[12]. Therefore, RPs are a dimensional reduction technique

aiming to keep congruence approximately invariant. In other

words, the vector setsX andTX have “almost the same shape”

(although X has exponentially many more dimensions than

TX . It is interesting to note that the lower dimension k does

not depend on the original dimensionm, but only on ε (as-
sumed fixed) and the number n of vectors.

2.3 Concentration of measure
A result such as that of Eq. (1) is surprising at first sight. It

does not hold in lower dimensional spaces, so it is impossible

to visualize. It follows from a high-dimensional geometric

phenomenon called “concentration of measure”. Quoting [3],

“The value of a well behaved function at a random point of

a big probability space is very close to the mean value of

the function. [...] In a sense, measure concentration can be

considered as an extension of the law of large numbers.” This

was exploited for a number of algorithmic and MP purposes

[8, 16, 45, 46].

3 Distance geometry
DG is geometry based on the concept of distance rather than

points and lines. For example, a subset Y of a metric space

(S,d) is metrically convex if, for all y, z ∈ Y there is an x
between y, z; and for any triplet x ,y, z ∈ S we say that x
is between y and z if the d(x ,y) + d(y, z) = d(x , z). Thus
one can define convexity by distance alone. DG has had a

profound impact on mathematics, from Heron’s theorem to

Cayley-Menger determinants, to a lesser-known theorem

of Gödel on DG on a sphere [26]. In this paper we focus on

methods for solving the main problem in DG, see below.

en.wikipedia.org/wiki/Word2vec
en.wikipedia.org/wiki/Word2vec
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3.1 The main problem in DG
The main problem in DG today is dictated by applications:

in many cases it is possible to measure some of the distances

between a set of entities having unknown position. The

Distance Geometry Problem (DGP) consists in finding po-

sitions for the entities so that they are compatible with the

given distances [27]. The positions are given by vectors in

some Euclidean space of given dimension K . Typical applica-
tions are to clock synchronization (K = 1), sensor network

localization (K = 2), protein conformation from Nuclear

Magnetic Resonance experiments (K = 3), rigidity of 3D

structures (K = 3) and more [28].

A partial set of distances is naturally represented by an

edge-weighted graph G = (V ,E,d): an edge {u,v} with

weight duv is in E if the distance duv between u and v is

known. The DGP is the problem of realizing a graph as a

sequence of vectors x = (xv ∈ RK | v ∈ V ) defining the

positions of the vertices in RK . Formally, the DGP consists

in solving the following system of quadratic equations:

∀{u,v} ∈ E ∥xu − xv ∥
2

2
= d2

uv . (2)

We remark that the realization x is also represented as a tall,

slim matrix in Rn×K , the v-th row of which is the vector

corresponding to vertex v ∈ V .

3.2 MP based solution methods for the DGP
Many different solution methods exist for the DGP, some

of which are general, while some are specific to some given

graph classes [30]. Most of the general methods are based

on MP. In this paper we focus on the algorithm described in

[32], which provides an efficient heuristic method for graph

realization in a given dimension K .

1. Formulate and solve a Semidefinite Programming (SDP)

relaxation [22] of Eq. (2):

min

∑
{u,v }∈E

(Xuu + Xvv − 2Xuv )

∀{u,v} ∈ E Xuu + Xvv − 2Xuv = d2

uv
X ⪰ 0,

 (3)

to get an n × n matrix solution X̄ , with n = |V |.

2. From X̄ obtain a graph realization of G in RK , rep-
resented by the matrix x ′ ∈ Rn×K , using Barvinok’s

naive algorithm [3] applied to the DGP [32]:

a. factor X̄ intoYY⊤
, using e.g. spectral decomposition;

b. sample each component of a matrixy ∈ Rn×K from a

Gaussian distribution with zero mean and standard

deviation
1√
K
;

c. let x ′ = Y y ∈ Rn×K .
3. Formulate and locally solve, using a local Nonlinear

Programming (NLP) solver [47], the following quartic

unconstrained formulation [23] of Eq. (2):

min

∑
{u,v }∈E

(∥xu − xv ∥
2

2
− d2

uv )
2, (4)

using x ′
as a starting point; call x∗ ∈ Rn×K the result.

4. Output x∗ as the realization of G.

It was shown in [32] that the above algorithm is efficient

and finds good solutions for protein graphs. We shall see

later (Sect. 4.2) that protein graphs are not so different from

graph-of-words.

3.3 Multistart
We remark that Eq. (4) by itself can be used to form a Multi-

Start (MS) heuristic for the DGP over general graphs: namely,

Eq. (4) is solved locally, using a local NLP solver, starting

from randomly sampled starting points, a fixed number of

times: the algorithm then outputs the best solution found

over its run.

3.4 Error analysis of Barvinok’s naive algorithm for
the DGP

Since X̄ is the Gramian of Y by construction, Y is an n-
dimensional solution of Eq. (2), i.e. a high-dimensional real-

ization of G. We note that the random n × K matrix y acts

as a RP on Y . If K is O(lnn), by Eq. (1) this would show that

x ′
is approximately congruent with Y ; moreover, since x∗ lo-

cally minimizes the error of Eq. (4) w.r.t x ′
, x∗ approximately

solves Eq. (2), so we can expect a low feasibility error.

If, on the other hand, the dimension K of the word vec-

tors is given, the above reasoning fails to apply. A different

probabilistic guarantee on x ′
is given in [3] for K = 1, and

extended in [32] to arbitrary K . For each {u,v} ∈ E let

Auv = {x ∈ Rn×K | ∥xu − xv ∥
2

2
= d2

uv }. Then

∀{u,v} ∈ E dist(x ′,Auv ) ≤ c

√
∥X̄ ∥2 lnn, (5)

with arbitrarily high probability, where c is a constant which
depends (linearly) only on lognm. The probability that Eq. (5)

holds can be made arbitrarily high by choosing a specific

tolerance in the proof of [32, Thm. 5].

Although the above argument applies to fixedK , and states
that x ′

is unlikely to be far from satisfying Eq. (2), the error

bound on the right hand side of Eq. (5) grows with n and

∥X̄ ∥2. While

√
lnn has a slow growth,

√
∥X̄ ∥2 might grow

faster. We have, however, the following:√
∥X̄ ∥2 =

√
∥Y⊤Y ∥2 ≤

√
∥Y⊤∥2∥Y ∥2 =

√
∥Y ∥2

2
= ∥Y ∥2.

As we remarked earlier, the n × n matrix Y represents a

realization in Rn of the graph G with n vertices: specifically,

its v-th row is the position vector of vertex v ∈ V . We note

that Y is obtained by spectral decomposition of X̄ : namely

Y =
√
ΛP , where P is a matrix of orthonormal row eigenvec-

tors and Λ = diag(λ) is a diagonal matrix of eigenvalues λ of

X̄ (we assume that λ = (λ1, . . . , λn) and λ1 ≥ λ2 ≥ · · · ≥ λn ).
This implies that ∥Y ∥2 grows as

√
λ1, which measures the

spread of the realization vectors along the component of

maximum variance.
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A realization in Rn is a set of n vectors in Rn . The compo-

nent with maximum variance is the direction vector along

which the points in the set have maximum variability. A

bound to this variability is:

∥Y ∥2 ≤
1

n

( ∑
{u,v }∈E

duv − max

{u,v }∈E
duv

)
.

This bound is given by the worst-case situation of a graph

which encodes an extreme metric over the vertices, where

the maximum distance is equal to the sum of the other

distances. Since this graph must be a cycle realized over

a segment (i.e. in a one-dimensional affine subspace), we

have |E | = |V | and
∑

{u,v }∈E
duv = 2 max

{u,v }∈E
duv , which yields

∥Y ∥2 ≤ 1

n max

{u,v }∈E
duv . If we assume, moreover, that all of

the distances are unit, we have max

{u,v }∈E
duv = n − 1, giving

∥Y ∥2 ≤ n−1

n , which tends to 1 as n increases. For tighter

bounds, one must take the graph structure into account.

3.5 Concentration of distances
In this section we explain in some more detail the motivation

given in the introduction in favor of devising methods for

low-dimensional word embeddings.

Letm ∈ N. For each i ≤ m consider an infinite sequence of

random variablesXn
i (for n ∈ N), each of which is associated

to a multivariate distribution of n elements: samples from

Xn
i yield vectors xi ∈ Rn . We assume that, for each fixed

n, the different Xn
i are identically distributed. Consider also

another sequence of random variablesZn
(for n ∈ N), such

that its samples are vectors z ∈ Rn .
We now sample vectors xi fromXn

i for i ≤ m, and a vector

z fromZn
. We let X = {xi | i ≤ m} ⊂ Rn . We are interested

in finding the smallest distance dn
min

and the largest distance

dn
max

between z and X , where dn : Rn × Rn → R+ is a

family of distance functions. We then want to show that

dn
max

≤ (1 + ε)dn
min

with probability 1 for any ε > 0.

To this purpose we define dependent random variable se-

quencesDn
min
= mini d

n(Zn ,Xn
i ) andD

n
max
= maxi d

n(Zn ,Xn
i ).

Assuming that for some i ≤ m the following holds:

lim

n→∞
Var

(
dn(Zn ,Xn

i )

E(dn(Zn ,Xn
i ))

)
= 0, (6)

then it is shown in [4] that, for any ε > 0, we have

lim

n→∞
Prob(Dn

max
≤ (1 + ε)Dn

min
) = 1. (7)

The proof of this striking result is wholly based on basic

properties of distributions. It uses the concept of convergence

in probability, Slutsky’s theorem [49], and some elementary

steps in probability theory. From Eq. (6), it derives the fact

that
Dn

max

Dn
min

converges to 1 in probability asn increases, whence

the result.

The assumption, Eq. (6), informally states that the growth

of the distances between Zn
and the Xn

i with n is somehow

“regular”: the variances of the distance, scaled by its average,

tends to zero as the dimensions grow. While this is different

from concentration of measure (Sect. 2.3), informally it is

somehow reminiscent of this phenomenon. Thus the name

“concentration of distances”.

4 A sentence classification task
In this section we present and discuss our experiment, de-

signed to ascertain which graph embedding method yields

the best loss performance of an ANN for clustering sentences

in a text. Our pipeline works as follows:

1. it reads a text file, “cleans” it, and splits it into sentences

(Sect. 4.1);

2. it constructs a graph-of-words (Sect. 4.2) from each

sentence;

3. it uses DG methods to map graphs-of-words to real-

izations (Sect. 3), which are word vectors;

4. it stacks these realizations onto single vectors (i.e. it

concatenates the rows of a realization) and zero-pads

the shorter vectors to fit all vectors to a same size,

yielding sentence vectors;

5. it shortens the sentence vectors using dimensional

reduction (Sect. 2);

6. it clusters the sentence vectors using k-means [33] in

order to produce a ground truth;

7. it constructs training sets (Sect. 4.4) corresponding

to each ground truth, DG and dimensional reduction

method employed previously;

8. it trains and tests an ANN (Sect. 4.3) with these training

sets, and reports results (Sect. 5).

4.1 The text
We considered the essay On the duty of civil disobedience
by H. Thoreau [44], initially stored in an text file named

walden.txt downloaded from archive.org. This file has
116608 words organized in 10108 lines. The file size is 661146

bytes. We removed common words, stopwords, punctuation

and unusual characters, which reduced the text to 4083 sen-

tences over a set of 11431 words. We note that, since some

sentences contained less than three words after text cleaning,

only 3940 sentences remained in the sentence set S .

4.2 Graph-of-words
Given a sentence s represented as a sequence of words s =
(s1, . . . , sm), an n-gram is a subsequence of n consecutive

words of s . Each sentence obviously has at most (m − n + 1)

n-grams. In a graph-of-words G = (V ,E) of order n, V is the

set of words in s , i.e. each unique word in s is associated to

a single vertex, even if the same word appears more than

once in s . Two words have an edge only if they appear in the

same n-gram. The weight of the edge is equal to the number

of n-grams in which the two words appear [43]. This graph
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may also be enriched with semantic relations between the

words, obtained e.g. from WordNet.

There is an interesting connection between graphs-of-

words and protein graphs: namely that both have an order

over the vertex set (the sentence s for graphs-of-words and
the backbone for protein graphs), and that both have a mini-

mum subset of edges defined by contiguity (word proximity

in the sentence for graphs-of-words, and atomic distances

known by bond lengths and angles for protein graphs) [19].

The most prominent difference between these two graph

structures is given by the fact that, when the same word

appears more than once in a sentence, it is assigned a unique

vertex. On the other hand, if the same atom type appears

more than once in a protein graph, every occurrence is as-

signed a separate vertex.

The connection between graphs-of-words and protein

graphs is interesting because the structure of protein graphs

has been deeply studied in the literature, see e.g. [9, 29, 31].

Adapting these studies to graphs-of-words appears to be a

promising line of research.

4.3 The artificial neural network
Like many other models, ANNs are parametric models de-

signed to represent a function f : Rn → Rk with an un-

known description, but which can be called as a black-box

oracle. In this section we shall give a definition according

to the point of view of MP. We note that, given a directed

graph (digraph) G = (V ,A), we define

∀j ∈ V N −(j) = {i ∈ V | (i, j) ∈ A}.

An ANN can be represented by a digraphG = (V ,A) with
a tripartition defined on V , namely V = I Û∪H Û∪O , where Û∪

denotes the disjoint union, such that |I | = n and |O | = k .
The n nodes in I are called “input nodes”, and the k nodes in

O are called “output nodes”. The rest of the nodes, in H , are

the “hidden nodes”.

All other decisions about the topology ofG are debatable,

but common sense and experience [13] recommend that:

• I has no incoming arc and O has no outgoing arc;

• G is acyclic, i.e. it is a Directed Acyclic Ggraph (DAG);

• H is multipartite, so H = H1
Û∪ · · · Û∪Hh for some h ∈ N;

• each node set in the partition {I ,H1, . . . ,Hh ,O} in-

duces an empty DAG, i.e. all arcs connect a node in a

set to a node in a different set of the partition;

• each node j ∈ V has an associated value uj ;
• each non-input node j ∈ V ∖ I has an associated “ac-

tivation function” ϕ j : R → R (mostly, it is assumed

that all of the ϕ j are the same function, say ϕ, aside
perhaps for the output nodes in O) and a threshold bj ;

• each arc {i, j} ∈ A has a weightwi j ;

• the relationship between node values and arc weights

is as follows:

∀j ∈ V ∖ I uj = ϕ j
©«

∑
i ∈N −(j)

wi jui + bj
ª®¬ .

Usually, the common activation function ϕ is decided a
priori, mostly based on experience w.r.t. the task at hand.

The ANN parameters,w ∈ R |A |
and b ∈ R |V |− |I |

, are decided

by means of a training set, which we formalize as a pair

(X ,Y ) of sets of vectors such that |X | = |Y | = N . X ⊂ Rn

is known as the input set, and Y ⊂ Rk as the output set.

Because input/output sets have the same cardinality N , we

can form a set T of input/output pairs (x ,y) so that x is the

j-th vector of X and y is the j-th vector of Y . The optimal

solution (w∗,b∗) to the following training problem

min

w,b,v

∑
t ≤N

∥vt − yt ∥2

∀t ≤ N , j ∈ I vt j = xt j
∀t ≤ N , j ∈ V ∖ I vt j = ϕ

( ∑
i ∈N −(j)

wi jvt i + bj
)
 (8)

gives the values of the ANN parametersw,b. We note that

Eq. (8) uses a specific type of objective function known, but

there are many alternative objective functions in the litera-

ture, all having the general form minδ (v,y). In general, the

purpose of the objective is to decrease the difference between

the values at the output nodes and the t-th output vector

from a training set.

Consider an ANN based on a DAG with a multipartite

architecture. Once trained, it models the black-box function

ξ = f (χ ), with input argument χ ∈ Rn , by evaluating its

output ξ ∈ Rk as follows:

∀j ∈ I uj = χj
∀j ∈ V ∖ I uj = ϕ j

( ∑
i ∈N −(j)

wi jui + bj
)

∀j ∈ O ξ j = uj .

 (9)

Since each set of the node partition induces an empty sub-

graph, it suffices to evaluate u over each H1, . . . ,Hh ,O in

layers.

In our experiments, the ANN topology was based on a

single hidden node set H with |H | = 20, and an output

set O with |O | = 1. We used a rectified linear unit (ReLu)

activation function [48] for all j ∈ H and a sigmoid function

ϕ j (z) =
1

1+e−z for the single output node. Both activation

functions map to [0, 1]. The output part of our training set
encodes a cluster label, which must be mapped to [0, 1]. We

achieved this by using consecutive integers as labels (say

up to r ∈ N), encoding the integers {1, . . . , r } in [0, 1] by
dividing the interval into r sub-intervals of equal length, and
mapping i ≤ r to the i-th sub-interval of [0, 1].
Finally, we measured the ANN performance using the

mean squared error loss function value

L =
1

N

∑
t ≤N

∥yt − ξt ∥
2

2
,
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where ξt is the output of the ANN when given as input xt ,
and (xt ,yt ) are the input/output pairs ranging over the part

of the training set reserved for testing.

4.4 The training sets
We aim at comparing the ANN performance over different

training sets (X ,Y ). The construction of the input part X
depends on the DG method µ employed to transform graphs-

of-words representations of sentences to realizations, and

on the dimensional reduction method ρ used to shorten

the sentence vectors derived from stacking and padding

the realization. For each X (µ, ρ) we derived a ground truth

Y (µ, ρ) by using the k-means algorithm in order to cluster

X (µ, ρ) in a number q(µ, ρ) of clusters. We recall that output

parts of training sets are 1-dimensional: we encode cluster

labels by assining a corresponding sub-interval of the [0, 1]
scalar interval, as explained above.

4.4.1 “Bag of n-grams” vectors
As a comparison benchmark, we used a variant of the popular

“bag of words” approach: each sentence s is mapped to a

corresponding binary vector xs encoding the incidence of

the n-grams of s in the set G of all of the n-grams in the

text. In other words, the i-th component of xs is 1 if the i-th
n-gram occurs in sentence s , and 0 otherwise. The vector

xs is then shortened using dimensional reduction methods.

Setting n = 3 yields |G | = 48087, so each sentence vector in

our testbed is in {0, 1}48087
.

4.4.2 Graph embedding methods
We let µ range over the set M = {inc, qrt, sdp}, the set of
methods used to derive training sets:

• inc are the “bag of 3-grams” incidence vectors;

• qrt is the quartic unconstrained DG formulation in

Eq. (4) solved by a MS heuristic (Sect. 3.3) on a single

iteration around the IpOpt [11] local NLP solver; each

graph-of-words is mapped to a realization withK = 10,

which is then stacked and padded to a sentence vector;

• sdp is the method presented in Sect. 3.2: the SDP for-

mulation in Eq. (3) is solved by the Mosek [39] SDP

solver, followed by Barvinok’s naive algorithm for real-

ization rank reduction to K = 10 dimensions, followed

by a local NLP solution of Eq. (4); each graph-of-words

is mapped to a realization with K = 10, which is then

stacked and padded to a sentence vector.

4.4.3 Dimensional reduction methods
We let ρ range over the set R = {pca, rp}, the set of methods

used to reduce dimension of the vectors:

• pca denotes the PCA method: the target dimension

was the smallest such that the residual variance in

the neglected components was almost zero; for cases

where the reduced dimension is set to 400, the residual

variance was nonzero;

• rp denotes the RP methodology: it yields vector sets

having the same dimension because it only depends

on the number of vectors (Sect. 2.2) in the set, which

is always equal to the number of sentences, i.e. 3940,

as mentioned in Sect. 4.1; the ε in the Johnson-Linden-

strauss lemma was set to 0.2.

We report the dimensionality of input sets and number of

clusters encoded in output sets in Table 1.

Dimensionality of input vectors
µ |σ | = 3940

ρ inc qrt sdp
pca 3 400 400

rp 373 373 373

original 48087 1460 1460
Number of clusters to learn

pca 3 9 14

rp 3 16 14

Table 1. Training set statistics for X (µ, ρ) and number of

clusters in the corresponding output sets.

4.4.4 Construction of the training sets
We remark that, although each ground truth (output set)

Y (µ, ρ) is derived from the corresponding input set X (µ, ρ),
we want to test the ability of the ANN to learn a variety

of ground truths. Therefore, it makes sense to form com-

binations of training sets consisting of different input and

output sets. Accordingly, multiple input/output pair sets

T (µ1, µ2, ρ1, ρ2) are formed by input X (µ1, ρ1) and output

Y (µ2, ρ2) sets.

5 Computational results
All tests were carried out on a 4-CPU Intel Xeon 8-core CPU

with 64GB ram running Linux CentOS. The code was mostly

written in Python 3.

5.1 Implementation details
We parsed and cleaned the input text using some basic NLTK

[5] functions with Python 3. For the construction of graphs-

of-words we re-used a code provided by a colleague, S. Khal-

ife. We used the k-means implementation in scikit-learn
[41]. Graph realizations were obtained by solving the opti-

mization problems in Eq. (3) and (4) with off-the-shelf solvers

Mosek [39] and IpOpt [11]. We implemented the ANN using

the keras python library [10]. The default configuration was
chosen for all layers. We used the Adam solver [21] in order

to solve the training problem Eq. (8). For each training set

we tested, 35% was used for training, 35% for validation, and

30% for testing.
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5.2 Comparison
The computational results are reported in Table 2. Each cell

reports the mean squared error loss value of the ANN trained

with input set X (µ1, ρ1) (first column) in order to predict the

output set Y (µ2, ρ2) (first row). The cells in italics are those

where µ1 = µ2. The last colum sums the losses. It is clear that

Training set outputs

T
r
a
i
n
i
n
g
s
e
t
i
n
p
u
t
s

µ inc inc qrt qrt sdp sdp sum

ρ pca rp pca rp pca rp µ ∈ M
inc
pca 0.052 0.013 0.106 0.164 0.079 0.161 0.575

inc
rp 0.001 0.000 0.106 0.167 0.080 0.159 0.513

qrt
pca 0.063 0.022 0.038 0.218 0.079 0.159 0.579

qrt
rp 0.062 0.024 0.120 0.035 0.076 0.164 0.481
sdp
pca 0.063 0.021 0.126 0.195 0.033 0.149 0.587

sdp
rp 0.059 0.021 0.121 0.176 0.083 0.037 0.497

Table 2. Comparison test results.

that sentence vectors obtained with RP-based dimensional

reduction yield better training sets than those with PCA-

based dimensional reduction. Moreover, the best methods

are DG-based rather than incidence vectors: both methods

scored very close loss values, with qrt slightly outperforming

sdp.

6 Conclusion
In this paper we presented a methodology for deriving low-

dimensional word vector, and correspondingly low-dimen-

sional sentence vectors. The methodology is based on many

existing techniques: distance geometry, mathematical pro-

gramming, concentration of measure, random projections.

These sentence vectors were tested as training sets of a sim-

ple artificial neural network, against a standard benchmark

consisting of incidence vectors of 3-grams, and found to give

better results at predicting various ground truths about the

vector sets.
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