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1 Introduction

A general optimization problem can be expressed in the form

min{cx : x ∈ S}, (1)

where x ∈ R
n is the vector of decision variables, c ∈ R

n is a linear objective
function and S ⊂ R

n is the set of feasible solutions of (1). Because S is generally
hard to deal with, a possible approach for tackling (1) is to optimize the objective
function over a suitable relaxation (i.e., easy to solve) P ⊇ S. Let x∗ be the
optimal solution over P . If x∗ ∈ S the problem is solved. Otherwise, one can
derive a valid inequality for S in order to separate x∗ from S, i.e., an inequality
αx ≥ β satisfied by all the feasible solutions in S and such that αx∗ < β. The
addition of the cutting plane αx ≥ β to the constraints defining P leads to a
tighter relaxation P ′ = P ∩ {x ∈ R

n : αx ≥ β} and the process can eventually
be iterated.

The disjunctive approach to the separation problem, as introduced by Balas
[5], considers defining an intermediate set Q ⊇ S not containing x∗ and sepa-
rating x∗ from Q. The set Q is obtained by applying to P a valid disjunction
D for the set S, such as

D := {x ∈ R
n :

q∨

h=1

Dhx ≥ dh
0}, (2)

where Dh ∈ R
mh×n, dh

0 ∈ R
mh (h = 1, . . . , q), and S ⊆ D (i.e., any feasible

solution of (1) satisfies at least one of the conditions of D). Thus, the set Q,
denoted as the disjunctive hull of D, is defined as Q := conv(P ∩ D), and any
valid inequality for Q that cuts off x∗ is a disjunctive cut for the problem (1).
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Since the early Nineties, disjunctive inequalities have been successfully ex-
ploited both in the context of Mixed Integer Linear Programs (MILPs) as well
as in that of Mixed Integer Nonlinear Programs (MINLPs). Entry #1.4.4.1
gives a general overview of disjunctive programming. In the present entry we
survey some applications and extensions of disjunctive inequalities with special
emphasis to recent developments. The paper is organized as follows. In Sec-
tion 2 we recall the basic ingredients of disjunctive inequalities for MILPs and
we report on recent results on this topic. In Section 3 the application of dis-
junctive constraints both as modeling tool and cutting planes is discussed for
MINLPs. Finally, in Section 4 we consider the fairly new context of application
of disjunctive inequalities as sophisticated branching conditions in enumerative
algorithms.

2 Disjunctive inequalities in MILP

In the special case of a Mixed Integer Linear Program, S is defined as S =
{x ∈ R

n : Ax ≥ b, x ≥ 0, xi ∈ Z ∀i ∈ N I}, where A ∈ R
m×n, b ∈ R

m and
N I ⊆ {1, . . . , n} is the set of variables constrained to be integer. In this context,
the intrinsic difficulty of the problem is due to the integrality restrictions on the
variables in N I . Thus, the relaxation P that is typically considered is the
polyhedron associated with S, i.e., P = {x ∈ R

n : Ax ≥ b, x ≥ 0}, hence the
disjunctive hull Q (for a fixed disjunction D) is defined as a union of polyhedra.
More precisely,

Q := conv

(
q⋃

h=1

Ph

)
,

with Ph := P ∩ {x ∈ R
n : Dhx ≥ dh

0}. In such a case, Balas [5, 7] has shown
that Q is a polyhedron as well. Even if a full description of Q in the space of
the x variables may require an exponential number of constraints, the key result
of Balas [5, 7] is that Q has a compact representation in a higher-dimensional

space. Namely, there exists a polyhedron Q̃ := {(x, y) ∈ R
n+p : Bx + Cy ≥ d}

whose projection onto the x-space is Q, and Q̃ has around qn variables and
qm +

∑q

h=1 mh constraints. This implies that separating x∗ from Q can be
solved by linear programming.

Indeed, each polyhedron Ph (h = 1, . . . , q) can be defined as Ph = {x ∈
R

n+1 : Ahx ≥ bh, x ≥ 0}, where

Ah =

[
A
Dh

]
and bh =

[
b
dh
0

]
.

Another key result of Balas [7] is that all the inequalities αx ≥ β valid for Q
are described by the polyhedral cone

Q# = {(α, β) ∈ R
n+1 : α ≥ uhAh, β ≤ uhbh for some uh ≥ 0, h = 1, . . . , q}.

Furthermore, for a full-dimensional polyhedron Q there is a one to one corre-
spondence among the extreme rays of Q# and the facets of Q.
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2.1 Separating disjunctive cuts in MILP

Typically, disjunctive cuts are separated by considering a very special subset of
2-term disjunctions (i.e., with q = 2), namely, the so-called split disjunctions of
the form

πx ≤ π0

∨
πx ≥ π0 + 1, (3)

with π ∈ Z
n, π0 ∈ Z, πi = 0 ∀i /∈ N I . Disjunctive cuts arising from disjunctions

of the form (3) are also known as split cuts, see, e.g., Cook, Kannan, and
Schrijver [19] and entry #1.4.3.7.

Given a solution x∗ of P \ S, a common approach for separating x∗ from S
is to consider an elementary split disjunction of the form

xi ≤ π0

∨
xi ≥ π0 + 1, (4)

where xi ∈ N I , x∗
i /∈ Z, π = ei is the i-th unit vector and π0 = ⌊x∗

i ⌋
1. Thus,

the disjunctive hull Q is simply defined as the union of the two polyhedra P0 =
{x ∈ P : xi ≤ π0} and P1 = {x ∈ P : xi ≥ π0 + 1}. By Farkas lemma, a
most-violated disjunctive cut αx ≥ β valid for Q can be found by solving the
so-called Cut Generating Linear Program (CGLP), that determines the Farkas
multipliers (u, u0, v, v0) associated with the inequalities defining P0 and P1 so
as to maximize the violation of the resulting cut with respect to x∗:

(CGLP) min αx∗ − β
α ≥ uA − u0ei, β ≤ ub − u0π0,
α ≥ vA + v0ei, β ≤ vb + v0(π0 + 1),
u, v, u0, v0 ≥ 0.

(5)

Once a violated cut has been found as a solution of (5), the cut can be easily
strengthened a posteriori through the Balas and Jeroslow [10] procedure. Such
a strengthening can be seen as finding the best split disjunction for a given set
of Farkas multipliers.

By construction, any feasible CGLP solution with negative objective func-
tion value corresponds to a violated disjunctive cut. However, the feasible CGLP
set is a cone and needs to be truncated by means of a suitable normalization
condition, so as to produce a bounded LP in case a violated cut exists. Different
normalization conditions might lead to completely different results in terms of
the strength of the separated cuts because they heavily affect the choice of the
optimal CGLP solution.

Several normalizations have been proposed in the literature, see, e.g., Ceria
and Soares [17], Balas and Perregaard [11] and Fischetti, Lodi and Tramontani
[24]. The most natural and simple normalization is

u0 + v0 = 1, (6)

1For 0–1 mixed integer programs, split cuts arising from elementary disjunctions of the
form (4) are denoted as lift-and-project cuts (see, e.g., [9] and entry #1.4.3.8).
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and takes into account only the dual multipliers of the disjunctive constraints.
Such a normalization has been considered, for instance, by Balas and Saxena
[13] to optimize over the first split closure, i.e., the polyhedron obtained by
adding to P all split cuts which could be derived from the original set of linear
constraints (see, entries #1.4.3.1 and #1.4.3.7). One of the most widely-used
(and effective) truncation condition reads instead

eu + ev + u0 + v0 = 1, (7)

where e = (1, . . . , 1). This latter condition was proposed by Balas [6] and
investigated, for instance, by Ceria and Soares [17] and Balas and Perregaard
[11, 12].

Recently, Fischetti, Lodi and Tramontani [24] analyzed computationally the
two above normalization conditions, thus showing that the truncation condition
(7) generally outperforms (6). Indeed, normalization (7) naturally enforces the
separation of sparse and low rank inequalities that turn out to be more effective
in terms of the percentage of the integrality gap closed.

Unfortunately, any normalization can in some cases produce weak cuts. The
projection of the disjunctive cone (5) onto the polar space (α, β) yields precisely
the cone Q#. As discussed, for a full-dimensional polyhedron Q there is a one
to one correspondence among the extreme rays of Q# and the facets of Q. How-
ever, this correspondence is lost in the cone (5), that is defined in a lifted space
that explicitly involves the Farkas multipliers (u, v, u0, v0). Indeed, there are
many extreme rays of the CGLP cone that correspond to dominated cuts, and
this property is independent of the normalization used to truncate the cone.
Fischetti, Lodi and Tramontani [24] gave a theoretical characterization of weak

rays of the disjunctive cone (5) that lead to dominated cuts, and showed how the
presence of redundant constraints in the formulation of P0 and P1 increases the
number of weak rays in (5), thus affecting the quality of the generated disjunc-
tive cuts. It remains an open question how to find a computationally efficient
way of dealing with redundant constraints in the separation.

A key step in the separation of disjunctive cuts for MILPs is the work by
Balas and Perregaard [12]. Even if disjunctive cuts can be separated by lin-
ear programming, solving the CGLP in the lifted space (u, v, u0, v0) may be in
general too time consuming. Addressing the normalization (7), Balas and Per-
regaard [12] provided a precise correspondence between the bases of the CGLP
truncated with (7) and the bases of the original LP Ax − Is = b, x ≥ 0, s ≥ 0.
Then, they developed an elegant and efficient way of solving the CGLP by per-
forming pivot operations in the original tableau involving (x, s) variables only.

In particular, Balas and Perregaard [12] also showed that the Mixed Integer

Gomory (MIG) cut [27] associated with the row of the basic variable xi, i ∈
N I , in the optimal simplex tableau of the system Ax − Is = b, x ≥ 0, s ≥ 0,
corresponds to a basic solution of the CGLP truncated with (7). Thus, solving
the CGLP with normalization (7) can be interpreted as a way of strengthening
the MIG cut from the tableau. Lately, Fischetti, Lodi and Tramontani [24]

4



have shown that the basic CGLP solution yielding the MIG cut is, in fact, an
optimal solution if the CGLP is truncated with normalization (6). Hence, the
strengthening of the MIG cut lies in the better behavior of the normalization
(7) with respect to (6).

The work by Balas and Perregaard [12] has been recently extended by Balas
and Bonami [8]. In [8], the authors considered different normalization conditions
of the form

λu + λv + u0 + v0 = λ0,

with λ ∈ R
m
+ , λ0 ∈ R+, and developed a procedure that iteratively combines

the “pivoting mechanism” of [12] for finding the best set of Farkas multipliers
for a fixed disjunction, with the Balas and Jeroslow [10] strengthening of the
disjunction for a given set of multipliers. The results presented in [8] show that
disjunctive inequalities can be profitably used to improve on the performance
of general purpose Branch-and-Cut algorithms.

3 Disjunctive inequalities in MINLP

Disjunctions are essential for modeling several types of nonconvex constraints,
including those arising in MINLP. For these problems, S is defined as

S = {x ∈ R
n : gj(x) ≤ 0 ∀j ∈ M,xi ∈ Z ∀i ∈ N I},

where, for all j ∈ M , gj : R
n → R is a multivariate (possibly nonconvex)

function. When all of the gj are affine, we have an MILP, which is therefore a
subclass of MINLP.

While the integrality of a subset of variables represents an important class of
nonconvex constraints, there exist other nonconvexities in MINLP that can give
rise to disjunctions, and that can be used by Branch-and-Bound algorithms.
Below we describe a few examples of how disjunctions are used to generate
disjunctive inequalities for the general MINLP case and for some special cases.

3.1 General nonconvex MINLP

Despite the more general nonlinear setting, most of the literature in MINLP
and global optimization consider linear disjunctions of the form (2). Horst and
Tuy [32] described a general procedure whereby disjunctions of the form (2) are
repeatedly generated and, correspondingly, a linear cut is separated that is valid
for all sets S ∩ {x ∈ R

n : Dhx ≥ dh
0} for all elements of a disjunction, i.e., for

all h = 1, 2 . . . , q. They proceeded to prove that such a procedure is guaranteed
to converge under mild conditions.

One of the lower bounding procedures for nonconvex MINLP consists of re-

formulating the set of constraints into a set of nonconvex equality constraints
of the form xk = fk(x1, x2 . . . , xk−1), with fk : R

k−1 → R nonlinear [52, 54].
A lower bound can then be obtained by solving an LP relaxation of the refor-
mulation, with n̄ ≥ n variables: PLP = {x ∈ R

n̄ : Ax ≥ b}. PLP is constructed
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x2 = x2
1

x1

ℓ1 u1

(x⋆
1, x

⋆
2)

(a) An LP relaxation of a non-
convex constraint

x2 = x2
1

x1

ℓ1 u1π0

(x⋆
1, x

⋆
2)

(b) A simple MINLP disjunction

Figure 1: An MINLP disjunction. In (a), the shaded area is the LP relaxation
of the constraint x2 = f2(x1) = (x1)

2 with x1 ∈ [ℓ1, u1], whereas (x⋆
1, x

⋆
2) is the

value of x1 and x2 in the optimum of the LP relaxation. In (b), a disjunction
x1 ≤ π0 ∨ x1 ≥ π0, albeit not violated by (x∗

1, x
∗
2), can be used to generate two

LP relaxations (the two smaller shaded areas) which in turn allow to construct
a disjunction D1x ≥ d1 ∨ D2x ≥ d2 violated by x∗.

by adding, for each constraint xk = fk(x1, x2 . . . , xk−1), a system of linear con-
straints Akx ≥ bk. An example of this step is shown in Figure 1(a) for the
constraint x2 = f2(x1) = x2

1, where the inequalities of Akx ≥ bk delimit the
shaded area.

Let x∗ be the optimal solution to PLP. If x∗ satisfies integrality constraints
and all nonlinear constraints xk = fk(x1, x2 . . . , xk−1), the problem is solved. If
it satisfies all integrality constraints while violating at least one of the nonlinear
ones, a disjunction is sought that is violated by x∗. The simple disjunction
xi ≤ π0 ∨ xi ≥ π0, although valid for MINLP, is clearly not violated. However,
the linear relaxations P ′

LP and P ′′
LP of S′ = S ∩ {x ∈ Rn : xi ≤ π0} and

S′′ = S ∩{x ∈ Rn : xi ≥ π0}, respectively, depicted in Figure 1(b), contain new
linear constraints that can be used to construct a disjunction of type (2) that
is violated by x∗.

Since a disjunctive inequality for P ′
LP ∪ P ′′

LP is also valid for S′ ∪ S′′, a
procedure similar to that used in MILP, where the CGLP is solved using the LP
relaxation, can be applied—see for instance Belotti [14]. Zhu et al. [55] proposed
a simple extension to MINLP where the CGLP is solved for disjunctions on
binary variables.

3.2 Special classes of MINLP

Specific classes of disjunctions arise from MINLPs with a certain structure.
For MINLP with binary variables and whose continuous relaxation is convex,
Stubbs and Mehrotra [53] generalized the procedure proposed by Balas, Ceria
and Cornuéjols [9] and described a separation procedure based on a convex
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optimization problem.
A similar (specialized) procedure has been successfully applied to Mixed

Integer Conic Programming (MICP) problems, which can be thought of as MILP
amended by a set of conic constraints. The second order cone and the cone
of symmetric semidefinite matrices are among the most important classes of
conic constraints in this class. Çezik and Iyengar [18] and lately Drewes [23]
proposed, for MICP where all disjunctions are generated from binary variables,
an application of the lifting procedure to the conic case, whereby disjunctive
inequalities are obtained by solving a continuous conic optimization problem.
Analogously to Frangioni and Gentile [26], restricting to a special type of convex
constraint (second order or semidefinite cone) allows to obtain more specialized
and thus efficient procedures for obtaining a disjunctive inequality.

Mathematical Programs with Equilibrium Constraints (MPEC). These
MINLPs contain nonconvex constraints x⊤y = 0, with x ∈ R

k
+, y ∈ R

k
+. These

can be more easily stated as xiyi = 0 for all i = 1, 2 . . . , k, and give rise to
simple disjunctions xi = 0 ∨ yj = 0. Júdice et al. [33] studied an MPEC where
the only nonlinear constraints are the complementarity constraints. Relaxing
the latter yields an LP. Disjunctive cuts are generated from solutions of the LP
that violate a complementarity constraint (i.e., xi > 0 and yj > 0) through the
observation that both variables are basic and by applying standard disjunctive
arguments to the corresponding tableau rows.

Disjunctive cuts have been proposed by Audet, Haddad and Savard [4] in
the context of Linear Bilevel Programming, where the optimality of a lower level

subproblem is required for a solution to be feasible for the upper level problem,
and is enforced through complementarity constraints.

Quadratically Constrained Quadratic Programming (QCQP). Sax-
ena, Bonami and Lee [50, 51] proposed two classes of disjunctive cuts for QCQP
problems, which contain constraints of the type x⊤Qx + b⊤x + c ≤ 0, i.e., non-
convex because in general Q 6� 0. These problems are reformulated as linear
programs with an extra nonconvex constraint of the form Y = xx⊤, where Y is
an n×n matrix of auxiliary variables. Relaxing these constraints to Y −xx⊤ � 0,
thereby allowing solutions such that xx⊤ − Y � 0, leads to a (convex) semidef-
inite program, which yields good lower bounds [31, 49].

Moreover, Saxena, Bonami and Lee [50, 51] used the nonconvex constraint
xx⊤ − Y � 0 to obtain disjunctive cuts as follows. Disjunctions are derived
from the nonconvex constraint (v⊤x)2 ≥ v⊤Y v, where vector v is obtained from
the negative eigenvalues of the matrix x̄x̄⊤ − Ȳ , and (x̄, Ȳ ) is a solution of the
relaxation. In the second paper [50], this procedure is refined to generate cuts
for the non-reformulated problem, thus avoiding the need of the auxiliary matrix
variable Y .
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3.3 Generalized Disjunctive Programming.

Generalized Disjunctive Programming (GDP) is an extension of Disjunctive
Programming [5] originally proposed in [48] as a modelling framework (with a
Branch-and-Bound based general-purpose solution algorithm) targeting prob-
lems in chemical engineering and process synthesis. GDP explicitly formulates
conditional constraints via boolean variables and logic formulæ. This empha-
sizes the role that logic-based transformations (such as De Morgan’s laws or
passing from conjunctive to disjunctive normal forms) have on the formulation.
Furthermore, it allows the specification of different lower bounding problems.

The GDP is formulated as follows:

min f(x) +
∑

k∈K

ck (8)

g(x) ≤ 0 (9)

∀k ∈ K
∨

i∈Dk

(Yik ∧ ck = γik ∧ rik(x) ≤ 0) (10)

Ω(Y ) ∧ x ∈ X ⊆ R
n ∧ c ∈ R

|K|, (11)

where K and Dk (k ∈ K) are sets of indices, γik is a known parameter for all
k ∈ K, i ∈ Dk, Y are boolean and x, c are continuous decision variables, Ω is
a Conjunctive Normal Form (CNF) logic formula having free variables Y and
containing the clauses

∨
i∈Dk

Yik for all k ∈ K, with ∨ denoting “exclusive or”.

The formula Ω(Y ) acts as a constraint in the sense that it should be true in
order for Y to be a feasible solution of (8)-(11).

It is clear that (8)-(11) can be reformulated to an MINLP by replacing
ck = γik by Yik(ck − γik) = 0 and rik(x) ≤ 0 by Yikrik(x) ≤ 0, and writing
Ω(Y ) as the corresponding boolean expression in the {0, 1}-variables Y . When
X is a vector of non-empty intervals (say [0, U ]), the products involving the Y
variables can be further reformulated to “big-M” type constraints, which are
convex whenever rik(x) are convex. Thus, a “big-M” convex relaxation can
be easily obtained from (8)-(11) using well-known techniques on the possibly
nonconvex functions f and g (see, e.g., [15]). The interest of formulation (8)-
(11), however, is that it can be used to yield a different convex relaxation [29]
which is in general stronger than the “big-M” one, and rests on a convex-hull
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type reformulation of the disjunctive constraints (10):

∀k ∈ K x =
∑

i∈Dk

vjk

∀k ∈ K ck =
∑

i∈Dk

λikγik

∑

i∈Dk

λik = 1

∀k ∈ K, i ∈ Dk λikrik(vjk/λik) ≤ 0

∀k ∈ K, i ∈ Dk 0 ≤ vik ≤ λikU

∀k ∈ K, i ∈ Dk λik ∈ [0, 1].

4 Disjunctive inequalities and branching

Within the context of a Branch-and-Bound [37] algorithm, a key decision that
has to be repeatedly performed is how to divide a problem into subproblems.
Indeed, Branch-and-Bound makes an implicit use of the concept of disjunction:
whenever we are not able to solve a problem P of the form (1), we choose
a disjunction D of the feasible region of P (i.e., a disjunction D of the form
(2) valid for S), and we divide P into two or more subproblems P1, . . . ,Pq

corresponding to the q terms of the disjunction. Hence, we are guaranteed that
the optimal solution of one of the q subproblems coincides with the optimum of
P. In this case, we say that we branch on the disjunction D.

In MILP, branching is typically done on two-term disjunctions, and in par-
ticular the standard method is to branch on a single variable, i.e., an elementary

disjunction. Let x∗ be the solution to the LP relaxation of the current problem
P, and let i ∈ N I such that x∗

i /∈ Z. Then, we branch on the variable xi by
dividing P into P0 and P1, where P0 is equal to P with the addition of the
constraint xi ≤ ⌊x∗

i ⌋, and P1 is equal to P with the addition of the constraint
xi ≥ ⌈x∗

i ⌉. Choosing which variable should be branched on at each step is of
fundamental importance for the performance of Branch-and-Bound. We refer
to Achterberg, Koch and Martin [2] for a recent survey on this topic.

Even though branching on single variables is the method currently imple-
mented by solvers for integer programs (both linear and nonlinear), it need not
be so. For MILPs, branching can be done on any split disjunction of the form
(3). By integrality, every feasible solution to P satisfies any split disjunction.
In the branching literature, every disjunction which is not elementary is labeled
as a general disjunction. Several approaches to branch on general disjunctions
have been proposed in the MILP literature. These approaches can be ascribed
to one of two categories. The first category contains methods that try to identify
“thin” directions of the polyhedron P associated with the LP relaxation of the
MILP; the second category focuses on improving as much as possible the LP
bound at the children nodes. The concept of thin direction requires the concept
of width of a full-dimensional polyhedron P along a direction u, which is defined
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as maxx,y∈P (ux−uy). Thus, for a pure integer program associated with P , the
integer width is defined as

min
π∈Zn\{0}

max
x,y∈P

(πx − πy).

This definition naturally extends to the mixed integer linear case by considering
integer directions π ∈ R

n\{0} with πj = 0 for j /∈ N I . Mahajan and Ralphs [43]
discussed the formulation of optimization models to select both thin directions
and split disjunctions that yield maximum bound improvement. Note that both
the problems of finding a disjunction with smallest integer width or largest
bound improvement are strongly NP-hard [44].

4.1 Branching on thin directions

Branching on thin directions of the polyhedron P associated with the LP relax-
ation of the MILP is a method that derives from the work of Lenstra [39] on solv-
ing integer programs in fixed dimension in polynomial time (see also [30, 42]).
The idea is as follows. First, some thin directions of P are computed, using the
lattice basis reduction algorithm by Lenstra, Lenstra and Lovász [38]. Then, the
space is transformed so that these directions correspond to unit vectors, and the
problem is solved by Branch-and-Bound in the new space. Branching on simple
disjunctions in this space translates back to branching on general disjunctions
in the original space. This method has proven successful for some particular in-
stances where standard Branch-and-Bound fails because of the huge size of the
enumeration tree: Aardal et al. [1] discussed the solution of the difficult Market
Split instances [20], while Krishnamoorthy and Pataki studied decomposable
knapsack problems [36]. See also Mehrotra and Li [45].

4.2 Branching for maximum bound improvement

Another line of research which has been pursued is that of selecting a good
general disjunction for branching at each node of the Branch-and-Bound tree,
in order to improve as much as possible the bound at the children nodes. Owen
and Mehrotra [46] proposed branching on split disjunctions with coefficients in
{−1, 0, 1} on the integer variables with fractional values at the current node.
They generate all possible such disjunctions, and evaluate them using strong
branching [2], in order to select the one that gives the largest improvement of the
dual bound. Karamanov and Cornuéjols [35] provided a computational study
of branching on the split disjunctions that define the Mixed Integer Gomory
cuts [27] associated with the optimal simplex tableau of the current Branch-
and-Bound node. Several such disjunctions are generated, using the quality of
the underlying cut as a proxy for the strength of the disjunction, and strong
branching is used to select one. A similar approach was proposed by Cornuéjols,
Liberti and Nannicini [21], but instead of considering the split disjunctions as-
sociated with MIG cuts that can be read directly from the optimal simplex
tableau, an improvement step is applied first: the rows of the simplex tableau
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are linearly combined with integer coefficients in order to reduce the coefficients
of the resulting combination. This step corresponds to tilting the underlying
disjunctions so as to produce stronger MIG cuts (see also the Reduce-and-Split
algorithm by Andersen, Cornuéjols and Li [3]).
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[35] M. Karamanov and G. Cornuéjols. Branching on general disjunctions. Tech-
nical report, Carnegie Mellon University, 2005.

[36] B. Krishnamoorthy and G. Pataki. Column basis reduction and decompos-
able knapsack problems. Discrete Optimization, 6(3):242–270, 2009.

[37] A. H. Land and A. G. Doig. An automatic method of solving discrete
programming problems. Econometrica, 28(3):497–520, 1960.

[38] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 4(261):515–534, 1982.

[39] H. W. Lenstra Jr. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8(4):538–548, 1983.

[40] L. Liberti, C. Lavor, and N. Maculan. A branch-and-prune algorithm for
the molecular distance geometry problem. International Transactions in

Operational Research, 15:1–17, 2008.

[41] L. Liberti, C. Lavor, M. A. C. Nascimento, and N. Maculan. Reformula-
tion in mathematical programming: an application to quantum chemistry.
Discrete Applied Mathematics, 157(6):1309–1318, 2009.

13



[42] L. Lovász and H. E. Scarf. The generalized basis reduction algorithm.
Mathematics of Operations Research, 17(3):751–764, 1992.

[43] A. Mahajan and T. K. Ralphs. Experiments with branching using general
disjunctions. In Proceedings of the Eleventh INFORMS Computing Society

Meeting, 2009. To Appear.

[44] A. Mahajan and T. K. Ralphs. On the complexity of branching on gen-
eral hyperplanes for integer programming. SIAM Journal on Optimization,
2009. To appear.

[45] S. Mehrotra and Z. Li. On generalized branching method for mixed in-
teger programming. Technical report, Northwestern University, Evanston,
Illinois, 2004.

[46] J. Owen and S. Mehrotra. Experimental results on using general disjunc-
tions in branch-and-bound for general-integer linear program. Computa-

tional Optimization and Applications, 20:159–170, 2001.

[47] A. T. Phillips and J. B. Rosen. A quadratic assignment formulation of the
molecular conformation problem. Technical report, CSD, Univ. of Min-
nesota, 1998.

[48] R. Raman and I. Grossmann. Modelling and computational techniques for
logic based integer programming. Computers and Chemical Engineering,
18(7):563–578, 1994.

[49] F. Rendl and R. Sotirov. Bounds for the quadratic assignment problem
using the bundle method. Mathematical Programming, 109(2-3):505–524,
2007.

[50] A. Saxena, P. Bonami, and J. Lee. Convex relaxations of non-convex
mixed integer quadratically constrained programs: Projected formulations,
November 2008. Optimization Online.

[51] A. Saxena, P. Bonami, and J. Lee. Disjunctive cuts for non-convex mixed
integer quadratically constrained programs. In A. Lodi, A. Panconesi, and
G. Rinaldi, editors, Proceedings of the 13th Integer Programming and Com-

binatorial Optimization Conference, volume 5035 of Lecture Notes in Com-

puter Science, pages 17–33, 2008.

[52] E. M. B. Smith and C. C. Pantelides. A symbolic reformulation/spatial
branch-and-bound algorithm for the global optimisation of nonconvex
MINLPs. Computers & Chem. Eng., 23:457–478, 1999.

[53] R. A. Stubbs and S. Mehrotra. A branch-and-cut method for 0-1 mixed
convex programming. Mathematical Programming, 86:515–532, 1999.

14



[54] M. Tawarmalani and N. V. Sahinidis. Convexification and global optimiza-

tion in continuous and mixed-integer nonlinear programming: Theory, al-

gorithms, software and applications, volume 65 of Nonconvex Optimization

and Its Applications. Kluwer Academic Publishers, Dordrecht, 2002.

[55] Y. Zhu, Y. Hu, H. Wu, and M. Nakaiwa. An improved branch-and-cut al-
gorithm for mixed-integer nonlinear systems optimization problem. AIChE

Journal, 54(12):3239–3247, 2008.

15


