
RAIRO Operations Research

Will be set by the publisher

REFORMULATIONS IN MATHEMATICAL

PROGRAMMING: DEFINITIONS AND SYSTEMATICS

Leo Liberti1

Abstract. A reformulation of a mathematical program is a formu-
lation which shares some properties with, but is in some sense better
than, the original program. Reformulations are important with respect
to the choice and efficiency of the solution algorithms; furthermore, it is
desirable that reformulations can be carried out automatically. Refor-
mulation techniques are very common in mathematical programming
but interestingly they have never been studied under a common frame-
work. This paper attempts to move some steps in this direction. We
define a framework for storing and manipulating mathematical pro-
gramming formulations, give several fundamental definitions categoriz-
ing reformulations in essentially four types (opt-reformulations, narrow-
ings, relaxations and approximations). We establish some theoretical
results and give reformulation examples for each type.

Keywords: reformulation, formulation, model, linearization, mathe-
matical program

Mathematics Subject Classification. 90C11, 90C26, 90C27,
90C30, 90C99

February 22, 2008.

1 LIX, Ecole Polytechnique, F-91128 Palaiseau, France liberti@lix.polytechnique.fr

c© EDP Sciences 2001

2

Résumé. Une reformulation d’un programme mathématique est une
formulation qui a des propriétés communes avec la formulation orig-
inelle, mais qui apporte des améliorations. Les reformulations sont
importantes pour le meilleur choix d’algorithme de résolution, surtout
quand il est possible de les accomplir automatiquement. Les tech-
niques de reformulation sont très communes dans la programmation
mathématique, et néanmoins elles n’ont jamais étées etudiées de façon
unifiée. Le but de cet article est de definir des structures de données
pour stocker et manipuler les formulations de programmation mathématique,
de donner des definitions fondamentales qui categorisent les reformula-
tions dans essentiellement quatre types (opt-reformulations, rétrécissements,
relaxations et approximations), d’établir des résultats théoriques géné-
raux, et de donner des examples de reformulations de chaque type.

1. Introduction

Mathematical programming is a descriptive language used to formalize opti-
mization problems by means of parameters, decision variables, objective func-
tions and constraints. Such diverse settings as combinatorial, integer, continu-
ous, linear and nonlinear optimization problems can be defined precisely by their
corresponding mathematical programming formulations. Its power is not lim-
ited to its expressiveness; it also often allows hassle-free solution of the problem.
Most general-purpose solution algorithms solve optimization problems cast in their
mathematical programming formulation, and the corresponding implementations
are typically hooked into modelling environments which allow the user to input
and solve complex optimization problems easily. It is well known that several
different formulations may share the same numerical properties (feasible region,
optima) though some of them are easier to solve than others with respect to the
most efficient available algorithms. Being able to cast the problem in the best
possible formulation is therefore a crucial aspect of any solution process.

When a problem with a given formulation P is cast into a different formulation
Q, we say that Q is a reformulation of P . Curiously, the term “reformulation”
appears in conjunction with “mathematical programming” over 400,000 times on
Google; and yet there are surprisingly few attempts to formally define what a
reformulation in mathematical programming actually is [10,71]. Further motives in
support of a unified study of reformulations in mathematical programming are that
there is a remarkable lack of literature reviews on the topic of reformulations [46]
and that modelling languages such as AMPL [24] or GAMS [17] offer very limited
automatic reformulation capabilities.

The importance that reformulations have in mathematical programming (spe-
cially automatic reformulations) cannot be underestimated. Solution algorithms
usually target problems belonging to different classes, such as Linear Programming

TITLE WILL BE SET BY THE PUBLISHER 3

(LP), Mixed-Integer Linear Programming (MILP), convex Nonlinear Program-
ming (cNLP), Nonlinear Programming (NLP), convex Mixed-Integer Nonlinear
Programming (cMINLP), Mixed-Integer Nonlinear Programming (MINLP). Typ-
ically, solution algorithms require their input problems to be cast in a particular
form, called the standard form with respect to the algorithm. For example, the
simplex algorithm [18] requires problems cast in LP standard form (that is, sub-
ject linear equality constraints only). Being able to cast a problem to a standard
form for which there is an efficient algorithm is a a pre-processing step, but it is
fundamental part of the solution process.

Furthermore, there often exist different formulations of a given problem that
can all be cast to the same standard form, whilst the corresponding solution al-
gorithm yields remarkably different solution performances depending on which
formulation is used. One example of this is provided by the reduced RLT con-
straints reformulation [48,56], which reformulates a possibly nonconvex quadratic
nonlinear programming (NLP) problem with linear equality constraints to a dif-
ferent quadratic NLP with more linear equality constraints and fewer quadratic
terms than in the original problem. Since the reformulated problem has fewer
quadratic terms, its convex relaxation is tighter: hence, any spatial Branch-and-
Bound (sBB) algorithm for nonconvex quadratic programming based on finding
bounds at each node through the convex relaxation of the problem [49, 79] will
improve its performance when acting on the reformulation. Yet, both the problem
and the reformulation belong to the same class of problems and have the same
standard form.

Reformulation is also useful within commercial-grade optimization software
from the end user’s point of view: if the software is capable of automatically
reformulating a given problem to a more convenient form, the modeller need not
be aware of all the solution algorithm details (and relative standard forms) em-
bedded in the software. Limited to linear and convex quadratic problems, this
is evident both in CPLEX [41] and XPress-MP [31] at the solver level; more in
general, it occurs in AMPL [24], GAMS [17] and other mathematical programming
language environments at the modelling level.

Finally, some algorithms do not only employ reformulations as a pre-processing
phase needed to simplify the problem or cast it in a particular standard form, but
actually use reformulation in an iterative way. In the MILP world, the extremely
successful Branch-and-Cut algorithm can be seen as an iterative reformulation
algorithm insofar as cutting planes and tightened formulations are considered as
reformulations [96]. An effective and novel NLP solution algorithm based on blend-
ing two completely different formulations for the same problem is described in [65].

The mathematical programming glossary [84] defines “reformulation” as “ob-
taining a new formulation of a problem that is in some sense better, but equivalent
to a given formulation.” The main purpose of this paper is to give a precise mean-
ing to this definition. We propose a data structure for storing and manipulating
mathematical programming formulations, give several definitions linked to the
concept of reformulation (with some associated theoretical results), and describe
some of the commonly known reformulations and relaxations within the proposed

4 TITLE WILL BE SET BY THE PUBLISHER

framework by means of symbolic algorithms. The theory is validated by some
examples.

The original content of this paper is a unified “theory of reformulations” that
attempts to provide tools for the systematic study of reformulations and their
algorithmic implementation. This paper also serves as the basis for a forthcoming
reformulation software that will be able to automatically apply reformulations to
given mathematical programming problems. Aside from the few reformulation
examples given in this paper, an extended reformulation library described within
the proposed framework can be found in [51] (http://www.lix.polytechnique.
fr/∼liberti/hdr.pdf).

The rest of this paper is organized as follows. In Sect. 2 we briefly review
the formal definitions of reformulations found in the literature. Sect. 3 describes
the theoretical framework for handling formulations and reformulations. Sect. 4
contains examples of reformulations within the given framework.

2. Existing work

2.1. Definitions

The general consensus on the term “reformulation” in the field of mathematical
programming seems to be that given a formulation of an optimization problem,
a reformulation is a different formulation having the same set of optima. Various
authors make use of this (informal) definition without actually making it explicit,
among which [16, 30, 42, 56, 68, 78, 83, 92]. Many of the proposed reformulations,
however, stretch this implicit definition somewhat. Liftings, for example (which
consist in adding variables to the problem formulation), usually yield reformula-
tions where an optimum in the original problem is mapped to a set of optima in
the reformulated problem. Furthermore, it is sometimes noted how a reformula-
tion in this sense is overkill because the reformulation only needs to hold at global
optimality [1]. Furthermore, reformulations sometimes really refer to a change of
variables, as is the case in [65].

Sherali [71] proposes the following definition.

Definition 2.1. A reformulation in the sense of Sherali of an optimization prob-
lem P (with objective function fP) is a problem Q (with objective function fQ)
such that there is a pair (σ, τ) where σ is a bijection between the feasible region of
Q and that of P , and τ is a monotonic univariate function with fQ = τ(fP).

This definition imposes very strict conditions by requiring the existence of the
bijection σ, resulting in many useful problem transformations, which should oth-
erwise be described as reformulations, not to satisfy the definition. Under some
regularity conditions on σ, however, this definition does present some added ben-
efits, such as e.g. allowing easy correspondences between partitioned subspaces of
the feasible regions and mapping sensitivity analysis results from reformulated to
original problem.

TITLE WILL BE SET BY THE PUBLISHER 5

Hansen and co-workers [10] borrow some tools from complexity theory to pro-
pose the following definition.

Definition 2.2. Let PA and PB be two optimization problems. A reformulation
in the sense of Hansen B(·) of PA as PB is a mapping from PA to PB such that,
given any instance A of PA and an optimal solution of B(A), an optimal solution
of A can be obtained within a polynomial amount of time.

In [10], this definition is used to establish a complexity comparison between
different problem classes (specifically, BiLevel Programming (BLP) and Mixed-
Integer Programming (MIP)) based on solution via a Branch-and-Bound (BB)
algorithm. It turns out that a BB algorithm applied to MIP can be mapped
precisely into one applied to BLP, thus allowing the authors to conclude that BLP
is practically at least as difficult as MIP, and not just from a worst-case complexity
viewpoint. On the other hand, requiring a polynomial time reformulation can be
just too slow practically, or might prevent non-polynomial time reformulations
to belong to this class even when they might be carried out within practically
reasonable amounts of time. Furthermore, a reformulation in the sense of Hansen
does not necessarily preserve local optimality or the number of global optima,
which might in some cases be a desirable reformulation feature.

2.2. Reformulations

The term “reformulation” in MILPs mostly refers to preprocessing simpli-
fications (of the type implemented in most good level MILP solvers, such as
e.g. CPLEX [41]) and cutting planes [92], although a considerable number of
standard forms can be transformed to MILPs [10, 26, 42, 70]. Binary Quadratic
Programs (BQP) have attracted a considerable amount of attentions, mostly be-
cause of the fact that there is an easy exact linearization [22] that presents some
practical drawbacks. Extensive work was carried out by research teams led by
A. Billionnet [13], F. Glover [1], P. Hammer [35], P. Hansen [36] (see Sect. 4.1),
Ph. Michelon [32], H. Sherali [76] (see Sect. 4.4). We refer the reader to three
recent papers [14,33,37] and the references contained therein for a more complete
picture of reformulations for BQPs. Reformulations of polynomial [34, 57, 73, 93]
and posynomial [75, 95] programs also attracted considerable attention. Most
work in geometric programming rests on a convex reformulation [40]; a symbolic
method to model problems so that the corresponding mathematical program is
convex is described in [30]. Reformulations are used within algorithms [65], spe-
cially in decomposition-based ones [7]. An interesting reformulation of a robust
LP to a simple LP, involving the LP dual, is given in [12]. Reformulations are very
common within applications, to treat problems with certain determined struc-
tures [8, 9, 11,19,52,53].

6 TITLE WILL BE SET BY THE PUBLISHER

3. Reformulation theory

In this section we give a formal definition of a mathematical programming
formulation in such terms that can be easily implemented on a computer. We
refer to a mathematical programming problem in the most general form:

min f(x)
g(x) ⋚ b

x ∈ X,

(1)

where f, g are function sequences of various sizes, b is an appropriately-sized real
vector, and X is a cartesian product of continuous and discrete intervals.

Formulation (1) above is actually a formulation schema, i.e. it represents dif-
ferent formulations according to the form of f, g, x,X. We remark that (1) may
represent a structured formulation (i.e. one where f, g involve quantifiers ∀,

∑

,
∏

)
or a flat formulation (i.e. one where no such quantifier appears). Formulations
are usually given by researchers and practitioners in structured form, and later
automatically translated by modelling software such as AMPL [24] or GAMS [17]
in flat form. This translation is necessary as almost all solution algorithm imple-
mentations take their input in some flat form variant.

The rest of this section is organized as follows. In Subsect. 3.1 we formally
describe a data structure for storing mathematical programming formulations and
give some examples. This will be used in the sequel to state symbolic reformulation
algorithms unambiguously. In Subsect. 3.3 we define the fundamental notion on
which our reformulation systematics is based, i.e. that of auxiliary problems. Aux-
iliary problems of various categories and their properties are defined in Subsections
3.4-3.8.

3.1. A data structure for formulations

Having a well-defined, unified data structure for formulations is important for
two reasons: firstly, it allows us to unambiguously state symbolic reformulation
algorithms acting on the formulation. Secondly, it provides a bridge between struc-
tured formulations and flat formulations. Having said that, the precise form of the
data structure is not of crucial importance: there are many available alternatives,
some of which are openly documented (e.g. the Optimization Services project [25]
in COIN-OR [58]) and some others which are not (e.g. the internal memory repre-
sentation used by AMPL [23,24,27]). The data structure we propose is the basis for
the Moron optimization software framework [49] and is semantically equivalent
to the InstanceData class within Optimization Services (see [25], p. 30).

Our definition lists the following primary formulation elements: parameters
and variables (with types and bounds); expressions that depend on parameters and
variables; objective functions and constraints depending on the expressions. We let
P be the set of all mathematical programming formulations and M be the set of all
matrices. This is used in Defn. 3.1 to define leaf nodes in mathematical expression

TITLE WILL BE SET BY THE PUBLISHER 7

trees, so that the concept of a formulation can also accommodate multilevel and
semidefinite programming problems.

Definition 3.1. Given an alphabet L consisting of countably many alphanumeric
names NL and operator symbols OL, a mathematical programming formulation P

is a 7-tuple (P,V, E ,O, C,B, T), where:

• P ⊆ NL is the sequence of parameter symbols: each element p ∈ P is a
parameter name;

• V ⊆ NL is the sequence of variable symbols: each element v ∈ V is a
variable name;

• E is the set of expressions: each element e ∈ E is a directed tree e =
(Ve, Ae) such that:
(a) Ve ⊆ L is a finite set
(b) there is a unique vertex re ∈ Ve such that δ−(re) = ∅ (such a vertex

is called the root vertex)
(c) all vertices v ∈ Ve such that δ+(v) = ∅ (called leaf vertices — their

set is denoted by λ(e)) are such that v ∈ P ∪ V ∪ R ∪ P ∪ M

(d) for all v ∈ Ve such that δ+(v) 6= ∅, v ∈ OL

(e) two weightings χ, ξ : Ve → R are defined on Ve: χ(v) is the node
coefficient and ξ(v) is the node exponent of the node v.

Elements of E are sometimes called expression trees; nodes v ∈ OL repre-
sent an operation on the nodes in δ+(v), denoted by v(δ+(v)), with output
in R;

• O ⊆ {−1, 1} × E is the sequence of objective functions; each objective
function o ∈ O has the form (do, fo) where do ∈ {−1, 1} is the optimization
direction (−1 stands for minimization, +1 for maximization) and fo ∈ E;

• C ⊆ E × S × R (where S = {−1, 0, 1}) is the sequence of constraints c of
the form (ec, sc, bc) with ec ∈ E , sc ∈ S, bc ∈ R:

c ≡

ec ≤ bc if sc = −1
ec = bc if sc = 0
ec ≥ bc if sc = 1;

• B ⊆ R|V| × R|V| is the sequence of variable bounds: for all v ∈ V let
B(v) = [Lv, Uv] with Lv, Uv ∈ R;

• T ⊆ {0, 1, 2}|V| is the sequence of variable types: for all v ∈ V, v is called
a continuous variable if T (v) = 0, an integer variable if T (v) = 1 and a
binary variable if T (v) = 2.

We remark that for a sequence of variables z ⊆ V we write T (z) and respec-
tively B(z) to mean the corresponding sequences of types and respectively bound
intervals of the variables in z. Given a formulation P = (P,V, E ,O, C,B, T), the
cardinality of P is |P | = |V|. We sometimes refer to a formulation by calling it an
optimization problem or simply a problem.

Consider a mathematical programming formulation P = (P,V, E ,O, C,B, T)
and a function x : V → R|V| (called point) which assigns values to the variables.

8 TITLE WILL BE SET BY THE PUBLISHER

A point x is type feasible if: x(v) ∈ R when T (v) = 0, x(v) ∈ Z when T (v) = 1,
x(v) ∈ {Lv, Uv} when T (v) = 2, for all v ∈ V; x is bound feasible if x(v) ∈ B(v)
for all v ∈ V; x is constraint feasible if for all c ∈ C we have: ec(x) ≤ bc if sc = −1,
ec(x) = bc if sc = 0, and ec(x) ≥ bc if sc = 1. A point x is feasible in P if it is
type, bound and constraint feasible. A point x feasible in P is also called a feasible
solution of P . A point which is not feasible is called infeasible. Denote by F(P)
the feasible points of P . A feasible point x is a local optimum of P with respect
to the objective o ∈ O if there is a non-empty neighbourhood N of x such that
for all feasible points y 6= x in N we have dofo(x) ≥ dofo(y). A local optimum
is strict if dofo(x) > dofo(y). A feasible point x is a global optimum of P with
respect to the objective o ∈ O if dofo(x) ≥ dofo(y) for all feasible points y 6= x.
A global optimum is strict if dofo(x) > dofo(y). Denote the set of local optima
of P by L(P) and the set of global optima of P by G(P). If O(P) = ∅, we define
L(P) = G(P) = F(P).

Example 3.2. A quadratic optimization problem. This example illustrates
how flat form formulations can be embedded in the proposed data structure. Con-
sider the problem of minimizing the quadratic form 3x2

1 + 2x2
2 + 2x2

3 + 3x2
4 +

2x2
5 + 2x2

6 − 2x1x2 − 2x1x3 − 2x1x4 − 2x2x3 − 2x4x5 − 2x4x6 − 2x5x6 subject
to x1 + x2 + x3 + x4 + x5 + x6 = 0 and x1, . . . , x6 ∈ {−1, 1}. For this problem,

• P = ∅;
• V = (x1, x2, x3, x4, x5, x6);
• E = (e1, e2) where e1, e2 are the graphs shown in Fig. 1;
• O = (−1, e1);
• C = ((e2, 0, 0));
• B = ([−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1]);
• T = (2, 2, 2, 2, 2, 2).

Example 3.3. Balanced Graph Bisection Problem. In this example we con-
sider a structured formulation. Example 3.2 is the (scaled) mathematical program-
ming formulation of a balanced graph bisection problem instance. This problem is
defined as follows.

Balanced Graph Bisection Problem (BGBP). Given an un-
directed graph G = (V,E) without loops or parallel edges such that

|V | is even, find a subset U ⊂ V such that |U | = |V |
2 and the set

of edges C = {{u, v} ∈ E | u ∈ U, v 6∈ U} is as small as possible.

The problem instance considered in Example 3.2 is shown in Fig. 2. To all vertices

i ∈ V we associate variables xi =

1 i ∈ U
0 i 6∈ U

. The number of edges in C is counted

by 1
4

∑

{i,j}∈E

(xi − xj)
2. The fact that |U | = |V |

2 is expressed by requiring an equal

number of variables at 1 and -1, i.e.
∑6

i=1 xi = 0. We can also express the problem

TITLE WILL BE SET BY THE PUBLISHER 9

^ ^ ^ ^ ^ ^

+

××××××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

33 2222

222222

−2−2−2−2−2−2−2

x1

x1x1x1 x2x2

x2

x3x3

x3

x4x4x4

x4

x5x5

x5

x6x6

x6

+

x1 x2 x3 x4 x5 x6

Figure 1. The graphs e1 (above) and e2 (below) from Example 3.2.

in Example 3.2 as a particular case of the more general optimization problem:

minx x⊤Lx

s.t. x1 = 0
x ∈ {−1, 1}6,

where

L =

3 −1 −1 −1 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
−1 0 0 3 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

and 1 = (1, 1, 1, 1, 1, 1)
⊤
. We represent this class of problems by the following

mathematical programming formulation:

• P = (Lij | 1 ≤ i, j ≤ 6);
• V = (x1, x2, x3, x4, x5, x6);
• E = (e′1, e2) where e′1 is shown in Fig. 3 and e2 is shown in Fig. 1 (below);

10 TITLE WILL BE SET BY THE PUBLISHER

• O = (−1, e′1);
• C = ((e2, 0, 0));
• B = ([−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1], [−1, 1]);
• T = (2, 2, 2, 2, 2, 2).

1

2

3

4

5

6

Figure 2. The BGBP instance in Example 3.2.

^

2

^

2

^

2

^

2

^

2

^

2

+

××××××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

L11 L22 L33 L44 L55 L66

L
′
12

L
′
13

L
′
14 L

′
23

L
′
45 L

′
46 L

′
56

x1

x1x1x1 x2x2

x2

x3x3

x3

x4x4x4

x4

x5x5

x5

x6x6

x6

Figure 3. The graph e′1 from Example 3.3. L′
ij = Lij + Lji for all i, j.

3.2. Standard forms

Solution algorithms for mathematical programming problems read a formula-
tion as input and attempt to compute an optimal feasible solution as output. Nat-
urally, algorithms that exploit problem structure are usually more efficient than
those that do not. In order to be able to exploit the structure of the problem,

TITLE WILL BE SET BY THE PUBLISHER 11

solution algorithms solve problems that are cast in a standard form that empha-
sizes the useful structure. A good reformulation framework should be aware of
the available solution algorithms and attempt to reformulate given problems into
the most appropriate standard form. In this section we review the most common
standard forms.

3.2.1. Linear Programming

A mathematical programming problem P is a Linear Programming (LP) prob-
lem if (a) |O| = 1 (i.e. the problem only has a single objective function); (b) e is a
linear form for all e ∈ E ; and (c) T (v) = 0 (i.e. v is a continuous variable) for all
v ∈ V.

3.2.2. Mixed Integer Linear Programming

A mathematical programming problem P is a Mixed Integer Linear Program-
ming (MILP) problem if (a) |O| = 1; and (b) e is a linear form for all e ∈ E .

3.2.3. Nonlinear Programming

A mathematical programming problem P is a Nonlinear Programming (NLP)
problem if (a) |O| = 1 and (b) T (v) = 0 for all v ∈ V. Many fundamentally
different solution algorithms are available for solving NLPs, and most of them
require different standard forms. One of the most widely used is Sequential Qua-
dratic Programming (SQP) [21, 29], which requires problem constraints c ∈ C to
be expressed in the form lc ≤ c ≤ uc with lc, uc ∈ R ∪ {−∞,+∞}.

3.2.4. Mixed Integer Nonlinear Programming

A mathematical programming problem P is a Mixed Integer Nonlinear Pro-
gramming (MINLP) problem if |O| = 1. The situation as regards MINLP stan-
dard forms is generally the same as for NLPs, save that a few more works have
appeared in the literature about standard forms for MINLPs [49, 67, 82, 83]. In
particular, the Smith standard form [83] is purposefully constructed so as to make
symbolic manipulation algorithms easy to carry out on the formulation. A MINLP
is in Smith standard form if:

• O = {do, eo} where eo is a linear form;
• C can be partitioned into two sets of constraints C1, C2 such that c is a

linear form for all c ∈ C1 and c = (ec, 0, 0) for c ∈ C2 where ec is as follows:
(1) r(ec) is the sum operator
(2) δ+(r(ec)) = {⊗, v} where (a) ⊗ is a nonlinear operator where all

subnodes are leaf nodes, (b) χ(v) = −1 and (c) v ∈ V.

Essentially, the Smith standard form consists of a linear part comprising objective
functions and a set of constraints; the rest of the constraints have a special form
⊗(x, y) − v = 0, with v, x, y ∈ V(P) and ⊗ a nonlinear operator in OL. By
grouping all nonlinearities in a set of equality constraints of the form “variable =
operator(variables)” (called defining constraints) the Smith standard form makes it
easy to construct auxiliary problems. The Smith standard form can be constructed

12 TITLE WILL BE SET BY THE PUBLISHER

by recursing on the expression trees of a given MINLP [81]. Solution algorithms
for solving MINLPs are usually extensions of BB type algorithms [47,49,66,83,89].

3.2.5. Separable problems

A problem P is in separable form if (a) O(P) = {(do, eo)}, (b) C(P) = ∅ and
(c) eo is such that:

• r(eo) is the sum operator
• for all distinct u, v ∈ δ+(r(eo)), λ(u) ∩ λ(v) ∩ V(P) = ∅.

The separable form is useful because it allows a very easy problem decompo-
sition: for all u ∈ δ+(r(eo)) it suffices to solve the smaller problems Qu with
V(Q) = λ(v) ∩ V(P), O(Q) = {(do, u)} and B(Q) = {B(P)(v) | v ∈ V(Q)}. Then

⋃

u∈δ+(r(eo))

x(V(Qu)) is a solution for P .

3.2.6. Factorable problems

A problem P is in factorable form [63,80,89,94] if:

(1) O = {(do, eo)}
(2) r(eo) ∈ V (consequently, the vertex set of eo is simply {r(eo)})
(3) for all c ∈ C:

• sc = 0
• r(ec) is the sum operator
• for all t ∈ δ+(r(ec)), either (a) t is a unary operator and δ+(t) ∈ λ(ec)

(i.e. the only subnode of t is a leaf node) or (b) t is a product operator
with δ+(t) = {u, v} such that u, v are both unary operators with only
one leaf subnodes.

The factorable form is useful because it is easy to construct many auxiliary prob-
lems (including convex relaxations, [3, 63, 80]) from problems cast in this form.
In particular, factorable problems can be reformulated to separable problems
[63,66,89].

3.2.7. D.C. problems

The acronym “d.c.” stands for “difference of convex”. Given a set Ω ⊆ Rn,
a function f : Ω → R is a d.c. function if it is a difference of convex functions,
i.e. there exist convex functions g, h : Ω → R such that, for all x ∈ Ω, we have
f(x) = g(x) − h(x). Let C,D be convex sets; then the set C\D is a d.c. set. An
optimization problem is d.c. if the objective function is d.c. and Ω is a d.c. set.
In most of the d.c. literature, however [39, 86, 91], a mathematical programming
problem is d.c. if:

• O = {(do, eo)};
• eo is a d.c. function;
• c is a linear form for all c ∈ C.

D.C. programming problems have two fundamental properties. The first is that
the space of all d.c. functions is dense in the space of all continuous functions. This

TITLE WILL BE SET BY THE PUBLISHER 13

implies that any continuous optimization problem can be approximated as closely
as desired, in the uniform convergence topology, by a d.c. optimization problem
[39, 91]. The second property is that it is possible to give explicit necessary and
sufficient global optimality conditions for certain types of d.c. problems [86, 91].
Some formulations of these global optimality conditions [85] also exhibit a very
useful algorithmic property: if at a feasible point x the optimality conditions do
not hold, then the optimality conditions themselves can be used to construct an
improved feasible point x′.

3.2.8. Linear Complementarity problems

Linear complementarity problems (LCP) are nonlinear feasibility problems with
only one nonlinear constraint. A mathematical programming problem is defined
as follows [28], p. 50:

• O = ∅;
• there is a constraint c′ = (e, 0, 0) ∈ C such that (a) t = r(e) is a sum

operator; (b) for all u ∈ δ+(t), u is a product of two terms v, f such that
v ∈ V and (f, 1, 0) ∈ C;

• for all c ∈ C r {c′}, ec is a linear form.

Essentially, an LCP is a feasibility problem of the form:

Ax ≥ b

x ≥ 0
x⊤(Ax− b) = 0,

where x ∈ Rn, A is an m × n matrix and b ∈ Rm. Many types of mathematical
programming problems (including MILPs with binary variables [28, 42]) can be
recast as LCPs or small extensions of LCP problems [42]. Furthermore, some types
of LCPs can be reformulated to LPs [59] and as separable bilinear programs [60].
Certain types of LCPs can be solved by an interior point method [28,43].

3.2.9. Bilevel Programming problems

The bilevel programming (BLP) problem consists of two nested mathematical
programming problems named the leader and the follower problem. Formally, a
BLP is a pair of formulations (L,F) (leader and follower) and a subset ℓ 6= ∅ of
the set of all leaf nodes of the expressions in E(L) such that any leaf node v ∈ ℓ

has the form (x, F) where x ∈ V(F).
The usual mathematical notation is as follows [10,20]:

miny F (x(y), y)
minx f(x, y)

s.t. x ∈ X, y ∈ Y,

(2)

where X,Y are arbitrary sets. This type of problem arises in economic applica-
tions. The leader knows the cost function of the follower, who may or may not
know that of the leader; but the follower knows the optimal strategy selected by

14 TITLE WILL BE SET BY THE PUBLISHER

the leader (i.e. the optimal values of the decision variables of L) and takes this
into account to compute his/her own optimal strategy.

BLPs can be reformulated exactly to MILPs with binary variables and vice-
versa [10], where the reformulation is as in Defn. 2.2. Furthermore, two typical
Branch-and-Bound (BB) algorithms for the considered MILPs and BLPs have the
property that the the MILP BB can be “embedded” in the BLP BB (this roughly
means that the BB tree of the MILP is a subtree of the BB tree of the BLP);
however, the contrary does not hold. This seems to hint at a practical solution
difficulty ranking in problems with the same degree of worst-case complexity (both
MILPs and BLPs are NP-hard).

3.2.10. Semidefinite Programming problems

Consider known symmetric n × n matrices C,Ak for k ≤ m, a vector b ∈ Rm

and a symmetric n × n matrix X = (xij) where xij is a problem variable for all
i, j ≤ n. The following is a semidefinite programming problem (SDP) in primal
form:

minX C •X
∀k ≤ m Ak •X = bi

X � 0,

(3)

where X � 0 is a constraint that indicates that X should be positive semidefinite,
and A •B = tr(A⊤B) . We also consider the SDP in dual form:

maxy,S b⊤y
∑

k≤m ykAk + S = C

S � 0,

(4)

where S is a symmetric n × n matrix and y ∈ Rm. Both forms of the SDP
problem are convex NLPs, so the duality gap is zero. Both forms can be solved by
a particular type of polynomial-time interior point method (IPM), which implies
that solving SDPs is practically efficient [6, 90]. SDPs are important because
they provide tight relaxations to (nonconvex) quadratically constrained quadratic
programming problems (QCQP), i.e. problems with a quadratic objective and
quadratic constraints.

SDPs can be easily modelled with the data structure described in Defn. 3.1, for
their expression trees are linear forms where each leaf node contains a symmetric
matrix. There is no need to explicitly write the semidefinite constraints X �
0, S � 0 because the IPM solution algorithms will automatically find optimal X,S
matrices that are semidefinite.

3.3. Auxiliary problems

If two problems are related, we say that one is an auxiliary problem of the other.
We sometimes refer to auxiliary problems with the term “problem transformation”
or the generic term of “reformulation”.

TITLE WILL BE SET BY THE PUBLISHER 15

Definition 3.4. Any problem Q that is related to a given problem P by a formula
f(Q,P) = 0 is called an auxiliary problem with respect to P .

Among the several possible auxiliary problem types, four are specially interest-
ing and used quite commonly: transformations preserving all optimality proper-
ties (opt-reformulations); transformations preserving at least one global optimum
(narrowings); transformations based on dropping constraints, variable bounds or
types (relaxations); transformations that are one of the above types “in the limit”
(approximations).

3.4. Opt-reformulations

Opt-reformulations are auxiliary problems that preserve all optimality informa-
tion. We define them by considering local and global optima.

Definition 3.5. Q is a local reformulation of P if there is a function ϕ : F(Q) →
F(P) such that (a) ϕ(y) ∈ L(P) for all y ∈ L(Q), (b) ϕ restricted to L(Q) is
surjective. This relation is denoted by P ≺ϕ Q.

A local reformulation transforms all optima of the original problem into optima
of the reformulated problem, although more than one reformulated optimum may
correspond to the same original optimum. A local reformulation does not lose any
local optimality information and makes it possible to map reformulated optima
back to the original ones; on the other hand, a local reformulation does not keep
track of globality: some global optima in the original problem may be mapped to
local optima in the reformulated problem, or vice-versa.

Example 3.6. Consider the problem P,Q as follows:

P ≡ min
x∈[−2π,2π]

x+ sin(x)

Q ≡ min
x∈[−2π,2π]

sin(x).

It is easy to verify that there is a bijection between the local optima of P and those
of Q. However, although P has a unique global optimum, every local optimum in
Q is global.

Definition 3.7. Q is a global reformulation of P if there is a function ϕ : F(Q) →
F(P) such that (a) ϕ(y) ∈ G(P) for all y ∈ G(Q), (b) ϕ restricted to G(Q) is
surjective. This relation is denoted by P �ϕ Q.

A global reformulation transforms all global optima of the original problem into
global optima of the reformulated problem, although more than one reformulated
global optimum may correspond to the same original global optimum. Global
reformulations are desirable, in the sense that they make it possible to retain the
useful information about the global optima whilst ignoring local optimality. At
best, given a difficult problem P with many local minima, we would like to find a
global reformulation Q where L(Q) = G(Q).

16 TITLE WILL BE SET BY THE PUBLISHER

Example 3.8. Consider a problem P with O(P) = {f}. Let Q be a problem

such that O(Q) = {f̆} and F(Q) = conv(F(P)), where conv(F(P)) is the convex

hull of the points of F(P) and f̆ is the convex envelope of f over the convex hull
of F(P) (in other words, f is the greatest convex function underestimating f on
F(P)). Since the set of global optima of P is contained in the set of global optima
of Q [38], the convex envelope is a global reformulation.

Unfortunately, finding convex envelopes in explicit form is not easy. A consid-
erable amount of work exists in this area: e.g. for bilinear terms [5, 63], trilinear
terms [64], fractional terms [88], monomials of odd degree [44, 55] the envelope is
known in explicit form (this list is not exhaustive). See [87] for recent theoretical
results and further references.

We write P ≺ Q (resp. P �Q) if there is a ϕ such that P ≺ϕ Q (resp. P �ϕQ).

Definition 3.9. Q is an opt-reformulation of P (denoted by P < Q) if P ≺ Q

and P �Q.

This type of reformulation preserves both local and global optimality informa-
tion. It turns out that several well-known reformulations in the literature are
opt-reformulations.

Definition 3.10. An exact linearization of a problem P is an opt-reformulation
Q of P where all expressions e ∈ E(P) are linear forms.

Lemma 3.11. The relations ≺,�, < are reflexive and transitive, but in general
not symmetric.

Proof. For reflexivity, simply take ϕ as the identity. For transitivity, let P ≺ Q ≺
R with functions ϕ : F(Q) → F(P) and ψ : F(R) → F(Q). Then ϑ = ϕ ◦ ψ
has the desired properties. In order to show that ≺ is not symmetric, consider a
problem P with variables x and a unique minimum x∗ and a problem Q which
is exactly like P but has one added variable w ∈ [0, 1] not appearing in objective
functions or constraints. It is easy to show that P ≺ Q (take ϕ as the projection
of (x,w) on x). However, since for all w ∈ [0, 1] (x∗, w) is an optimum of Q, there
is no function of a singleton to a continuously infinite set that is surjective, so
Q 6≺ P . �

Given a pair of problems P,Q where ≺,�, < are symmetric on the pair, we call
Q a symmetric reformulation of P .

The most important consequence of Lemma 3.11 is that we can compose ele-
mentary opt-reformulations together to create more complex opt-reformulations.

3.5. Change of variables

Continuous reformulations are based on a continuous map τ (invertible on the
variable domains) acting on the continuous relaxation of the feasible space of the
two problems.

Definition 3.12. For P,Q having the following properties:

TITLE WILL BE SET BY THE PUBLISHER 17

(a) |P | = n, |Q| = m,
(b) V(P) = x,V(Q) = y,
(c) O(P) = (f, d),O(Q) = (f ′, d′) where f is a sequence of expressions in

E(P) and d is a vector with elements in {−1, 1} (and similarly for f ′, d′),
(d) C(P) = (g,−1,0), C(Q) = (g′,−1,0) where g is a sequence of expressions

in E(P), 0 (resp. 1) is a vector of 0s (resp. 1s) of appropriate size (and
similarly for g′),

(e) f, f ′ are continuous functions and g, g′ are sequences of continuous func-
tions,

Q is a continuous reformulation of P with respect to a reformulating bijection
τ (denoted by P ≈τ Q) if τ : Rn → Rm is a continuous map, invertible on the
variable domains

∏

xi∈x B(xi), such that f ′ ◦τ = f , g′ ◦τ = g and B(y) = τ(B(x)),

and such that τ−1 is also continuous.

It is easy to show that τ is an invertible map F(P) → F(Q). Changes of vari-
ables usually provide continuous reformulations [65]. Continuous reformulations
are similar to reformulations in the sense of Sherali: they are stronger, in that
they require the invertible mapping to be continuous; and they are weaker, in
that they impose no additional condition on the way the objective functions are
reformulated. We remark that ≈τ is an equivalence relation.

Lemma 3.13. If P ≈τ Q with |P | = n, |Q| = m, for all x ∈ Rn which is bound
and constraint feasible in P , τ(x) is bound and constraint feasible in Q.

Proof. Suppose without loss of generality that the constraints and bounds for P
can be expressed as g(x) ≤ 0 for x ∈ Rn and those for Q can be expressed as
g′(y) ≤ 0 for y ∈ Rm. Then g′(y) = g′(τ(x)) = (g′ ◦ τ)(x) = g(x) ≤ 0. �

Proposition 3.14. If P ≈τ Q with V(P) = x,V(Q) = y, |P | = n, |Q| = m,
|O(P)| = |O(Q)| = 1 such that (f, d) is the objective function of P and (f ′, d′) is
that of Q, d = d′, T (x) = 0, T (y) = 0, then τ is a bijection L(P) → L(Q) and
G(P) → G(Q).

Proof. Let x ∈ L(P). Then there is a neigbourhoodN(P) of x such that for all x′ ∈
N(P) with x′ ∈ F(P) we have df(x′) ≤ df(x). Since τ is a continuous invertible
map, N(Q) = τ(N(P)) is a neighbourhood of y = τ(x) (so τ−1(N(Q)) = N(P)).
For all y′ ∈ F(Q), by Lemma 3.13 and because all problem variable are continuous,
τ−1(y′) ∈ F(P). Hence for all y′ ∈ N(Q) ∩ F(Q), x′ = τ−1(y′) ∈ N(P) ∩ F(P).
Thus, d′f ′(y′) = df ′(τ(x′)) = d(f ′ ◦ τ)(x′) = df(x′) ≤ df(x) = d(f ◦ τ−1)(y) =
d′f ′(y). Thus for all x ∈ L(P), τ(x) ∈ L(Q). The same argument applied to τ−1

shows that for all y ∈ L(Q), τ−1(y) ∈ L(P); so τ restricted to L(P) is a bijection.
As concerns global optima, let x∗ ∈ G(P) and y∗ = τ(x∗); then for all y ∈ F(Q)
with y = τ(x), we have d′f ′(y) = d′f ′(τ(x)) = d(f ◦ τ)(x) = df(x) ≤ df(x∗) =
d′(f ◦ τ−1)(y∗) = d′f ′(y∗), which shows that y∗ ∈ G(Q). The same argument
applied to τ−1 shows that τ restricted to G(P) is a bijection. �

18 TITLE WILL BE SET BY THE PUBLISHER

Theorem 3.15. If P ≈τ Q with V(P) = x,V(Q) = y, |P | = n, |Q| = m, |O(P)| =
|O(Q)| = 1 such that (f, d) is the objective function of P and (f ′, d′) is that of Q,
d = d′, T (x) = 0, T (y) = 0, then P < Q and Q < P .

Proof. The fact that P < Q follows from Prop. 3.14. The reverse follows by
considering τ−1. �

Proposition 3.16. Let P,Q be two problems with V(P) = x,V(Q) = y, |P | =
n, |Q| = m, |O(P)| = |O(Q)| = 1 such that (f, d) is the objective function of P
and (f ′, d′) is that of Q, d = d′, L(P) and L(Q) both consist of isolated points in
the respective Euclidean topologies, and assume P ≺ Q and Q ≺ P . Then there is
a continuous invertible map τ : F(P) → F(Q).

Proof. Since P ≺ Q there is a surjective function ϕ : L(Q) → L(P), which implies
|L(Q)| ≥ |L(P)|. Likewise, since Q ≺ P there is a surjective function ψ : L(P) →
L(Q), which implies |L(P)| ≥ |L(Q)|. This yields |L(P)| = |L(Q)|, which means
that there is a bijection τ : L(P) → L(Q). Because L(P) ⊆ Rn and L(Q) ⊆
Rm only contain isolated points, there is a way to extend τ to Rn so that it is
continuous and invertible on the x variable domains, and so that τ−1 enjoys the
same properties. �

In summary, continuous reformulations of continuous problems are symmetric
reformulations, whereas symmetric reformulations may not necessarily be contin-
uous reformulations, unless the set of local optima consists of isolated points. We
also remark that continuous reformulations applied to discrete problems may fail
to be opt-reformulations. This happens because integrality constraints do not
transform with the map τ along with the rest of the problem constraints.

3.6. Narrowings

Narrowings are auxiliary problems that preserve at least one global optimum.

Definition 3.17. Q is a narrowing of P if there is a function ϕ : F(Q) → F(P)
such that (a) ϕ(y) ∈ G(P) for all y ∈ G(Q).

Narrowings come in specially useful in presence of problems exhibiting many
symmetries: it may then be the huge amount of global optima that is preventing
a search from being successful. An example of narrowing is given by the local cuts
obtained from the symmetry group of the problem, presented in [61] (see Sect. 4.3).

The fact that all opt-reformulations are a special case of narrowings follows di-
rectly from the definition. By a similar argument to Lemma 3.11, it is easy to show
that narrowings can be chained to obtain more complex narrowings. Likewise, the
chaining of an opt-reformulation and a narrowing is a narrowing.

3.7. Relaxations

Loosely speaking, a relaxation of a problem P is an auxiliary problem of P
with fewer constraints. Relaxations are useful because they often yield problems

TITLE WILL BE SET BY THE PUBLISHER 19

which are simpler to solve yet they provide a bound on the objective function
value at the optimum. Such bounds are mainly used in Branch-and-Bound type
algorithms, which are the most common exact or ε-approximate (for a given ε > 0)
solution algorithms for MILPs, nonconvex NLPs and MINLPs. A further use
of bounds provided by mathematical programming formulations is to evaluate
the performance of heuristic algorithms without an approximation guarantee [19].
Bounds are sometimes also used to guide heuristics [69].

Definition 3.18. Q is a relaxation of P if F(P) (F(Q).

The fundamental theorem of relaxations states that relaxations provide bounds
to the objective function.

Theorem 3.19. Let Q be a relaxation of P and let (f, d) be an objective function
of P , x ∈ G(P) and y ∈ G(Q). Then df(y) ≥ df(x).

Proof. Since F(Q) ⊇ F(P), for all x ∈ G(P), x ∈ F(Q), which implies the result.
�

Defn. 3.18 is not used very often in practice because it does not say anything
on how to construct Q. The following elementary relaxations are more useful.

Definition 3.20. Q is a:

• constraint relaxation of P if C(Q) (C(Q);
• bound relaxation of P if B(Q) (B(Q);
• a continuous relaxation of P if ∃v ∈ V(P) (T (v) > 0) and T (Q) = 0.

It is easy to show that opt-reformulations and narrowings are special types
of relaxations, that relaxations can be chained to obtain other relaxations, and
that chains of relaxations with opt-reformulations and narrowings are themselves
relaxations.

3.8. Approximations

Definition 3.21. Q is an approximation of P if there is a countable sequence of
problems Qk (for k ∈ N), a positive integer k′ and an auxiliary problem Q∗ of P
such that: (a) Q = Qk′ ; (b) for all expression trees f∗ ∈ O(Q∗) there is a sequence
of expression trees fk ∈ O(Qk) that represent functions converging uniformly to the
function represented by f∗ (c) for all c∗ = (e∗, s∗, b∗) ∈ C(Q∗) there is a sequence
of constraints ck = (ek, sk, bk) ∈ C(Qk) such that: (i) the functions represented by
ek converge uniformly to the function represented by e∗; (ii) sk = s∗ for all k; (iii)
bk converges to b.

Since approximations can be defined for all types of auxiliary problems, we can
have approximations to opt-reformulations, narrowings, relaxations and approxi-
mations themselves. Approximations are very useful to reformulate MINLPs into
MILPs. In general, approximations have no guarantee of optimality, i.e. solving
an approximation may give results that are arbitrarily far from the optimum. In
practice, however, approximations manage to provide solutions of good quality.

20 TITLE WILL BE SET BY THE PUBLISHER

Opt-reformulations, narrowings and relaxations are special types of approxima-
tions, since they are all auxiliary problems and one can take the trivial sequence
Qk = Q∗ for all k. Chaining approximations and other auxiliary problems yields
an approximation.

4. Reformulation examples

In this section we provide some examples for each type of reformulation (opt-
reformulation, narrowing, relaxation, approximation) proposed above. For a more
complete reformulation library, see [51].

4.1. Hansen’s Fixing Criterion as an opt-reformulation

This method applies to unconstrained quadratic 0-1 problems of the form

min
x∈{0,1}n

x⊤Qx

where Q is an n×n matrix [36], and relies on fixing some of the variables to values
guaranteed to provide a global optimum.

Let P be a problem with P = {n ∈ N, {qij ∈ R | 1 ≤ i, j ≤ n}}, V = {xi | 1 ≤
i ≤ n}, E = {f =

∑

i,j≤n qijxixj}, O = {(f,−1)}, C = ∅, B = [0, 1]n, T = 2. This
can be restricted as follows:

• initialize two sequences V = ∅, A = ∅;
• for all i ≤ n:

(1) if qii +
∑

j<i min(0, qij) +
∑

j>i min(0, qij) > 0 then append xi to V
and 0 to A;

(2) (else) if qii +
∑

j<i max(0, qij)+
∑

j>i max(0, qij) < 0 then append xi

to V and 1 to A;
• apply Restrict(P, V,A).

This opt-reformulation is denoted by HansenFix(P).
Essentially, any time a binary variable consistently decreases the objective func-

tion value when fixed, independently of the values of other variables, it is fixed.

4.2. The reduced RLT constraints opt-reformulation

This reformulation concerns a problem P with quadratic terms and linear equal-
ity constraints. More precisely, we require P to exhibit the following properties:

• there is a subset x ⊆ V with |x| = n and a set E = {(i, j) | 1 ≤ i ≤ j ≤ n}
in P such that the terms xixj appear as sub-expressions in the expressions
E for all (i, j) ∈ E;

• there is a number m ≤ n, an m × n matrix A = (aij) and an m-vector b
in P such that (

∑

j≤n aijxj , 0, bi) ∈ C for all i ≤ m.

Let F = {(i, j) | (i, j) ∈ E ∨ ∃k ≤ m(akj 6= 0}. Under these conditions, P can be
reformulated as follows:

TITLE WILL BE SET BY THE PUBLISHER 21

• for all (i, j) ∈ F add continuous variables wij with T (wij) = 0 and
B(wij) = [−∞,+∞];

• for all (i, j) ∈ E replace sub-expression xixj with wij in the expressions
E ;

• for all i ≤ n, k ≤ m add the constraints (
∑

j≤n akjwij −bkxi, 0, 0) to C: we

call this linear system the Reduced RLT Constraint System (RRCS) and
(
∑

j≤n akjwij , 0, 0) the companion system;

• let B = {(i, j) ∈ F | wij is basic in the companion};
• let N = {(i, j) ∈ F | wij is non-basic in the companion};
• add the constraints (wij − xixj , 0, 0) for all (i, j) ∈ N .

This opt-reformulation is denoted by RRLT(P), and its validity was shown in [48].
It is important because it effectively reduces the number of quadratic terms in the
problem (only those corresponding to the set N are added). This reformulation
can be extended to work with sparse sets E [56], namely sets E whose cardinality
is small with respect to 1

2n(n+ 1).
Essentially, the constraints wij = xixj for (i, j) ∈ B are replaced by the RRCS

∀i ≤ n (Awi = xi), where wi = (wi1, . . . , win).

4.3. The symmetry group narrowing

This section extends the material in [61, 62] to 0-1 MINLPs. Consider a for-
mulation P in the form (1) where X = {0, 1}n and a constraint set C(P) which
we suppose in the form g(x) ≥ b ∈ Rm. Consider also the symmetric groups
Sn and Sm of permutations acting on sets of n and respectively m objects. For
π ∈ Sn, we denote by xπ the vector obtained by permuting the elements of x, and
by f(x)π the function f(xπ) where the variables x were permuted according to π.
For σ ∈ Sm, we denote by σg(x) the vector-valued function g where the elements
are permuted according to σ. The symmetry group of P is the group:

Ḡ = {π ∈ Sn|∃σ ∈ Sm(∀f ∈ O(P)f(x)π = f(x) ∧ σb = b ∧ σg(x)π = g(x))}. (5)

We remark that the equalities f(x)π = f(x) and σg(x)π = g(x) refer to a recursive
comparison procedure applied to the expression tree graphs of f, g, and this is why
the x variable is unquantified in (5). It is easy to show that Ḡ is indeed a group.

Assume f, g are linear forms, T (xi) = 2 for all i ≤ n (i.e. x is a vector of binary
variables) and |O(P)| = 1; then f(x) = cx for some parameter vector c ∈ Rn and
g(x) ≥ b can be written as Ax ≥ b. We recover Margot’s original definition:

G = {π ∈ Sn|∃σ ∈ Sm(cπ = c ∧ σb = b ∧ σAπ = A)}.

Assume P has a large symmetry group G. When solving P by means of a BB-
type algorithm, few nodes can ever be fathomed because of the large number of
symmetric globally optimal solutions. The symmetry group G is used in [61, 62]
to derive techniques that help the BB algorithm avoid taking symmetric optima
into consideration. Let In = {1, . . . , n}; for a node a of the BB tree, let F a

k = {i ≤

22 TITLE WILL BE SET BY THE PUBLISHER

n | xi fixed at k} for k ∈ {0, 1}. For two nodes a, b of the BB tree, a is isomorphic
to b if there is π ∈ G such that F a

k π = F b
k for k ∈ {0, 1}. For all S ⊆ In let

GS = {π ∈ G | Sπ = S} be the stabilizer and GS = {T ⊆ In | ∃π ∈ G (Sπ = T)}
be the orbit of S in G. Margot suggests a BB branching strategy based on grouping
BB nodes by isomorphism equivalence classes only only consider one representative
per class (this is implemented by considering S ⊆ In a representative if S is the
lexicographically smallest element of GS). Using this branching strategy, linear
inequalities are derived (locally to a given BB node) that cut away some of the
left-over symmetric optima. Let a be a node of the BB tree and Ha = In r F a

0 .
For all J ⊆ Ha having representative J∗ in GF a

1
J and lexicographically smaller

than F a
1 , if some descendant BB node b of a is such that F b

1 contains J it can be
pruned immediately. This can be obtained by adding a cut:

∑

j∈J

xj ≤ |J | − 1

local to the subproblem at node a. The above cuts provide a narrowing denoted
by SymmCutLin(P, a) valid at a and all its descendants. As the above ideas are
not based on the fact that f, g are linear but only on the symmetries of variables
and constraints with the respect to which the mathematical program is invariant,
they extend naturally to the group Ḡ of any MINLP involving binary variables.

4.4. Reformulation-Linearization Technique based relaxation

The Reformulation-Linearization Technique (RLT) is a relaxation method for
mathematical programming problems with quadratic terms. The RLT linearizes all
quadratic terms in the problem and generates valid linear equation and inequality
constraints by considering multiplications of bound factors (terms like xi − xL

i

and xU
i − xi) and constraint factors (the left hand side of a constraint such as

∑n
j=1 ajxj − b ≥ 0 or

∑n
j=1 ajxj − b = 0). Since bound and constraint factors are

always non-negative, so are their products: this way one can generate sets of valid
problem constraints. In a sequence of papers published from the 1980s onwards
(see e.g. [72,74–76,78–80]), RLT-based relaxations were derived for many different
classes of problems, including IPs, NLPs, MINLPs in general formulation, and
several real-life applications. It was shown that the RLT can be used in a lift-
and-project fashion to generate the convex envelope of binary and general discrete
problems [2, 77].

4.4.1. Basic RLT

The RLT consists of two symbolic manipulation steps: reformulation and lin-
earization. The reformulation step is a reformulation in the sense of Defn. 3.9.
Given a problem P , the reformulation step produces a reformulation Q′ where:

• P(Q′) = P(P);
• V(Q′) = V(P);
• E(Q′) ⊇ E(P);

TITLE WILL BE SET BY THE PUBLISHER 23

• C(Q′) ⊇ C(P);
• O(Q′) = O(P);
• B(Q′) = B(P);
• T (Q′) = T (P);
• ∀x, y ∈ V(P), add the following constraints to C(Q′):

(x− Lx)(y − Ly) ≥ 0 (6)

(x− Lx)(Uy − y) ≥ 0 (7)

(Ux − x)(y − Ly) ≥ 0 (8)

(Ux − x)(Ly − y) ≥ 0; (9)

• ∀x ∈ V(P), c = (ec, sc, bc) ∈ C(P) such that ec is an affine form, sc = 1
and bc = 0 (we remark that all linear inequality constraints can be easily
reformulated to this form), add the following constraints to C(Q′):

ec(x− Lx) ≥ 0 (10)

ec(Ux − x) ≥ 0; (11)

• ∀x ∈ V(P), c = (ec, sc, bc) ∈ C(P) such that ec is an affine form, sc = 0
and bc = 0 (we remark that all linear equality constraints can be trivially
reformulated to this form), add the following constraint to C(Q′):

ecx = 0. (12)

Having obtained Q′, we proceed to linearize all the quadratic products engen-
dered by (6)-(12). We derive the auxiliary problem Q from Q′ by reformulating Q′

in Smith’s standard form (see Sect. 3.2.4) and then performing a constraint relax-
ation with respect to all defining constraints; we denote the resulting relaxation
by RLT(P). Smith’s standard form is a reformulation of the lifting type, and the
obtained constraint relaxation Q is a MILP whose optimal objective function value
f̄ is a bound to the optimal objective function value f∗ of the original problem P .
The bound obtained in this way is shown to dominate, or be equivalent to, several
other bounds in the literature [2].

We remark in passing that (6)-(9), when linearized by replacing the bilinear
term xy with an added variable w, are also known in the literature as McCormick
relaxation, as they were first proposed as a convex relaxation of the nonconvex
constraint w = xy [63], shown to be the convex envelope [5], and widely used in
spatiala Branch-and-Bound (sBB) algorithms for global optimization [3, 4, 49, 83,
89]. RLT constraints of type (12) have been the object of further research showing
their reformulating power [45,47,48,50,56] (also see Sect. 4.2).

4.4.2. RLT Hierarchy

The basic RLT method can be extended to provide a hierarchy of relaxations, by
noticing that we can form valid RLT constraints by multiplying sets of bound and

24 TITLE WILL BE SET BY THE PUBLISHER

constraint factors of cardinality higher than 2, and then projecting the obtained
constraints back to the original variable space. In [2,77] it is shown that this fact
can be used to construct the convex hull of an arbitrary MILP P . For simplicity, we
only report the procedure for MILP in standard canonical form (see Sect. 3.2.2)
where all discrete variables are binary, i.e. T (v) = 2 for all v ∈ V(P). Let
|V(P)| = n. For all integer d ≤ n, let Pd be the relaxation of P obtained as
follows:

• for all linear constraint c = (ec, 1, 0) ∈ C(P), subset V ⊆ V(P) and finite
binary sequence B with |V | = |B| = d such that Bx is the x-th term of
the sequence for x ∈ V , add the valid constraint:

ec

∏

x∈V

Bx=0

x

∏

x∈V

Bx=1

(1 − x)

≥ 0; (13)

we remark that (13) is a multivariate polynomial inequality;
• for all monomials of the form

a
∏

x∈J⊆V(P)

x

with a ∈ R in a constraint (13), replace
∏

x∈J

x with an added variable wJ

(this is equivalent to relaxing a defining constraint wJ =
∏

x∈J

in the Smith’s

standard form restricted to (13).

Now consider the projection Xd of Pd in the V(P) variable space. It can be shown
that

conv(F(P)) ⊆ F(Xn) ⊆ F(Xn−1) . . . ⊆ F(X1) ⊆ F(P).

We recall that for a set Y ⊆ Rn, conv(Y) is defined as the smallest convex subset
of Rn containing Y .

A natural practical application of the RLT hierarchy is to generate relaxations
for polynomial programming problems [75], where the various multivariate mono-
mials generated by the RLT hierarchy might already be present in the problem
formulation. We denote the relaxation Pd by RLT(P, d).

4.5. Signomial programming based relaxation

A signomial programming problem is an optimization problem where every
objective function is a signomial function and every constraint is of the form
c = (g, s, 0) where g is a signomial function of the problem variables, and s 6= 0

TITLE WILL BE SET BY THE PUBLISHER 25

(so signomial equality constraints must be reformulated to pairs of inequality con-
straints). A signomial is a term of the form:

a

K
∏

k=1

xrk

k , (14)

where a, rk ∈ R for all k ∈ K, and the rk exponents are assumed ordered so that
rk > 0 for all k ≤ m and rk < 0 for m ≤ k ≤ K. Because the exponents of the
variables are real constants, this is a generalization of a multivariate monomial
term. A signomial function is a sum of signomial terms. In [15], a set of trans-
formations of the form xk = fk(zk) are proposed, where xk is a problem variable,
zk is a variable in the reformulated problem and fk is suitable function that can
be either exponential or power. This yields an opt-reformulation where all the
inequality constraints are convex, and the variables z and the associated (inverse)
defining constraints xk = fk(zk) are added to the reformulation for all k ∈ K (over
each signomial term of each signomial constraint).

We distinguish the following cases:

• If a > 0, the transformation functions fk are exponential univariate,
i.e. xk = ezk . This reformulates (14) as follows:

a e
P

k≤m
rkzk

Q

K

k=m+1
x
|rk|

k

∀k ≤ K xk = ezk .

}

• If a < 0, the transformation functions are power univariate, i.e. xk = z
1
R

k

for k ≤ m and xk = z
− 1

R

k for k > m, where R =
∑

k≤K |rk|. This is also

called a potential transformation. This reformulates (14) as follows:

a
∏

k≤K z
|rk|

R

k

∀k ≤ m xk = z
1
R

k

∀k > m xk = z
− 1

R

k

R =
∑

k≤K |rk|.

This opt-reformulation isolates all nonconvexities in the inverse defining con-
straints. These are transformed as follows:

∀k ≤ K xk = ezk ⇒ ∀k ≤ K zk = log xk

∀k ≤ m zk = xR
k

∀k > m zk = x−R
k ,

and then relaxed using a piecewise linear approximation as per Fig. 4. This requires
the introduction of binary variables (one per turning point).

26 TITLE WILL BE SET BY THE PUBLISHER

Figure 4. Piecewise linear underestimating approximations for
concave (left) and convex (right) univariate functions.

The resulting signomial relaxation, denoted SigRelax(P), is a convex MINLP;
it can be further relaxed to a MILP by outer approximation of the convex terms,
or to a convex NLP by continuous relaxation of the discrete variables.

4.6. Approximation of bilinear products

Consider a problem P with two continuous variables x, y ∈ V such that T (x) =
T (y) = 0, B(x) = [xL, xU] and B(y) = [yL, yU] with xU − xL ≤ yU − yL. Assume
there is a bilinear product xy appearing in some expression tree (objective and/or
constraint). For any positive integer k, the following is an approximation of the
identity opt-reformulation of P :

• add a continuous variable w to V such that T (w) = 0 and B(w) = [wL, wU]
where wL = min(xLyL, xLyU , xUyL, xUyU) and
wU = max(xLyL, xLyU , xUyL, xUyU)];

• for all 1 ≤ i ≤ k add binary variables zi to V with T (zi) = 2;
• for all 0 ≤ i ≤ k add parameters qi to P with distinct values in [xL, xU]

such that q0 = xL, qk = xU and qi < qj for all i < j;
• replace all occurrences of the product xy by the variable w;

• add the assignment constraint (
∑k

i=1 zi, 0, 1) to C;

• for all i ∈ {1, . . . , k} add the (linear) constraints (xi −
∑k

j=1 qjzj ,−1, 0)

and (xi −
∑k

j=1 qj−1zj , 1, 0) to C;

• for all i ∈ {1, . . . , k} add the (linear) constraints (w − qi+qi−1

2 y − (wU −

wL)zi,−1, 0) and (w − qi+qi−1

2 y + (wU − wL)zi, 1, 0) to C.

This approximation is denoted by BilinApprox(P, x, y, q, k). Essentially, we dis-
cretize the range of x (the variable in the product having the smallest range) by
means of k+1 points q; for all values of x ranging in [qi−1, qi] we define w as being

TITLE WILL BE SET BY THE PUBLISHER 27

the straight line qi+qi−1

2 y by means of the constraints:

k
∑

j=1

qj−1zj ≤ xi ≤
k
∑

j=1

qjzj

qi+qi−1

2 y − (wU − wL)(1 − zi) ≤ w ≤ qi+qi−1

2 y + (wU − wL)(1 − zi),

(15)

for all i ∈ {1, . . . , k}. The fact that BilinApprox is an approximation follows
because by (15) we have that for k → ∞, if x = q ∈ [xL, xU] then w → qy.

Although different approximations of the term xy are possible, the one presented
in this section employs a reasonably small number of variables and is not likely to
restrict the feasible region of the problem. Geometrically, this approximation is
depicted in Fig. 5.

Figure 5. Linearizing approximation of a bilinear term.

5. Conclusion

This paper describes a theoretical framework for the analysis and classification
of reformulations for mathematical programs that can be carried out automati-
cally by means of a symbolic/numerical algorithm acting on the formulation. This
fundamental study will serve as the basis for a software that can carry out refor-
mulations of mathematical programs automatically.

28 TITLE WILL BE SET BY THE PUBLISHER

Acknowledgments

The financial support of ANR JCJC grant “ARS” and of EU NEST grant
“Morphex” is gratefully acknowledged.

References

[1] W.P. Adams, R.J. Forrester, and F.W. Glover. Comparisons and enhancement strategies for

linearizing mixed 0-1 quadratic programs. Discrete Optimization, 1:99–120, 2004.
[2] W.P. Adams and H.D. Sherali. A hierarchy of relaxations leading to the convex hull represen-

tation for general discrete optimization problems. Annals of Operations Research, 140:21–47,
2005.

[3] C.S. Adjiman, S. Dallwig, C.A. Floudas, and A. Neumaier. A global optimization method,
αBB, for general twice-differentiable constrained NLPs: I. Theoretical advances. Computers

& Chemical Engineering, 22(9):1137–1158, 1998.
[4] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. A global optimization method, αBB,

for general twice-differentiable constrained NLPs: II. Implementation and computational
results. Computers & Chemical Engineering, 22(9):1159–1179, 1998.

[5] F.A. Al-Khayyal and J.E. Falk. Jointly constrained biconvex programming. Mathematics of

Operations Research, 8(2):273–286, 1983.
[6] F. Alizadeh. Interior point methods in semidefinite programming with applications to com-

binatorial optimization. SIAM Journal on Optimization, 5(1):13–51, 1995.
[7] H.M.T. Ben Amor, J. Desrosiers, and A. Frangioni. Stabilization in column generation.

Discrete Applied Mathematics, accepted for publication.
[8] K.M. Anstreicher. Recent advances in the solution of quadratic assignment problems. Math-

ematical Programming B, 97:27–42, 2003.

[9] C. Audet, J. Brimberg, P. Hansen, S. Le Digabel, and N. Mladenović. Pooling problem:
Alternate formulations and solution methods. Management Science, 50(6):761–776, 2004.

[10] C. Audet, P. Hansen, B. Jaumard, and G. Savard. Links between linear bilevel and mixed 0-1
programming problems. Journal of Optimization Theory and Applications, 93(2):273–300,

1997.
[11] W. Ben-Ameur and H. Kerivin. Routing of uncertain demands. Optimization and Engineer-

ing, 3:283–313, 2005.
[12] D. Bertsimas and M. Sym. The price of robustness. Operations Research, 52(1):35–53, 2004.

[13] A. Billionnet and S. Elloumi. Using a mixed-integer quadratic programming solver for the
unconstrained quadratic 0-1 problem. Mathematical Programming, 109:55–68, 2007.

[14] A. Billionnet, S. Elloumi, and M.-C. Plateau. Improving the performance of standard solvers

via a tighter convex reformulation of constrained quadratic 0-1 programs: the QCR method.
Discrete Applied Mathematics, to appear.

[15] K.-M. Björk, P.O. Lindberg, and T. Westerlund. Some convexifications in global optimiza-
tion of problems containing signomial terms. Computers & Chemical Engineering, 27:669–

679, 2003.
[16] J. Bjorkqvist and T. Westerlund. Automated reformulation of disjunctive constraints in

MINLP optimization. Computers & Chemical Engineering, 23:S11–S14, June 1999.

[17] A. Brook, D. Kendrick, and A. Meeraus. Gams, a user’s guide. ACM SIGNUM Newsletter,
23(3-4):10–11, 1988.

[18] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton,
NJ, 1963.

[19] T. Davidović, L. Liberti, N. Maculan, and N. Mladenović. Towards the optimal solution of
the multiprocessor scheduling problem with communication delays. In MISTA Proceedings,
2007.

TITLE WILL BE SET BY THE PUBLISHER 29

[20] J.E. Falk and J. Liu. On bilevel programming, part i: general nonlinear cases. Mathematical

Programming, 70:47–72, 1995.
[21] R. Fletcher and S. Leyffer. User manual for filter. Technical report, University of Dundee,

UK, March 1999.
[22] R. Fortet. Applications de l’algèbre de boole en recherche opérationelle. Revue Française de

Recherche Opérationelle, 4:17–26, 1960.
[23] R. Fourer. Personal communication. 2004.

[24] R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.
[25] R. Fourer, J. Ma, K. Martin, and W. Sheng. Optimization services 1.0 user manual. Technical

report, COIN-OR, November 2007.

[26] A. Frangioni. On a new class of bilevel programming problems and its use for reformulat-
ing mixed-integer problems. European Journal of Operations Research, 82(3):615–646, May
1995.

[27] S. Galli. Parsing ampl internal format for linear and non-linear expressions, 2004. Didactical

project, DEI, Politecnico di Milano, Italy.
[28] L. Di Giacomo. Mathematical programming methods in dynamical nonlinear stochastic Sup-

ply Chain management. PhD thesis, DSPSA, Università di Roma “La Sapienza”, 2007.

[29] P.E. Gill. User’s Guide for SNOPT 5.3. Systems Optimization Laboratory, Department of
EESOR, Stanford University, California, February 1999.

[30] M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming. In Liberti and Maculan [54],
pages 155–210.

[31] C. Guéret, C. Prins, and M. Sevaux. Applications of optimization with Xpress-MP. Dash
Optimization, Bilsworth, 2000.

[32] S. Gueye and P. Michelon. “miniaturized” linearizations for quadratic 0/1 problems. Annals

of Operations Research, 140:235–261, 2005.

[33] S. Gueye and Ph. Michelon. A linearization framework for unconstrained quadratic (0-1)
problems. Discrete Applied Mathematics, to appear.

[34] K. Hägglöf, P.O. Lindberg, and L. Svensson. Computing global minima to polynomial opti-

mization problems using gröbner bases. Journal of Global Optimization, 7(2):115:125, 1995.
[35] P.L. Hammer and S. Rudeanu. Boolean Methods in Operations Research and Related Areas.

Springer, Berlin, 1968.
[36] P. Hansen. Method of non-linear 0-1 programming. Annals of Discrete Mathematics, 5:53–

70, 1979.
[37] P. Hansen and C. Meyer. Improved compact linearizations for the unconstrained quadratic

0-1 minimization problem. Discrete Applied Mathematics, to appear.

[38] R. Horst. On the convexification of nonlinear programming problems: an applications-
oriented approach. European Journal of Operations Research, 15:382–392, 1984.

[39] R. Horst and Hoang Tuy. Global Optimization: Deterministic Approaches. Springer-Verlag,
Berlin, third edition, 1996.

[40] K.-L. Hsiung, S.-J. Kim, and S. Boyd. Tractable approximate robust geometric program-
ming. Optimization and Engineering, to appear.

[41] ILOG. ILOG CPLEX 10.0 User’s Manual. ILOG S.A., Gentilly, France, 2005.
[42] J. Judice and G. Mitra. Reformulation of mathematical programming problems as linear

complementarity problems and investigation of their solution methods. Journal of Opti-

mization Theory and Applications, 57(1):123–149, 1988.
[43] M. Kojima, N. Megiddo, and Y. Ye. An interior point potential reduction algorithm for the

linear complementarity problem. Mathematical Programming, 54:267–279, 1992.
[44] L. Liberti. Comparison of convex relaxations for monomials of odd degree. In I. Tseveen-

dorj, P.M. Pardalos, and R. Enkhbat, editors, Optimization and Optimal Control. World
Scientific, 2003.

[45] L. Liberti. Reduction constraints for the global optimization of NLPs. International Trans-

actions in Operations Research, 11(1):34–41, 2004.
[46] L. Liberti. Reformulation and Convex Relaxation Techniques for Global Optimization. PhD

thesis, Imperial College London, UK, March 2004.

30 TITLE WILL BE SET BY THE PUBLISHER

[47] L. Liberti. Reformulation and convex relaxation techniques for global optimization. 4OR,
2:255–258, 2004.

[48] L. Liberti. Linearity embedded in nonconvex programs. Journal of Global Optimization,

33(2):157–196, 2005.
[49] L. Liberti. Writing global optimization software. In Liberti and Maculan [54], pages 211–262.
[50] L. Liberti. Compact linearization of binary quadratic problems. 4OR, 5(3):231–245, 2007.
[51] L. Liberti. Reformulation techniques in mathematical programming. Thèse d’Habilitation à

Diriger des Recherches, Université de Paris-Dauphine, Nov. 2007.
[52] L. Liberti, E. Amaldi, N. Maculan, and F. Maffioli. Mathematical models and a constructive

heuristic for finding minimum fundamental cycle bases. Yugoslav Journal of Operations

Research, 15(1):15–24, 2005.
[53] L. Liberti, C. Lavor, M.A. Chaer Nascimento, and N. Maculan. Reformulation in mathe-

matical programming: an application to quantum chemistry. Discrete Applied Mathematics,
accepted for publication.

[54] L. Liberti and N. Maculan, editors. Global Optimization: from Theory to Implementation.
Springer, Berlin, 2006.

[55] L. Liberti and C.C. Pantelides. Convex envelopes of monomials of odd degree. Journal of

Global Optimization, 25:157–168, 2003.
[56] L. Liberti and C.C. Pantelides. An exact reformulation algorithm for large nonconvex NLPs

involving bilinear terms. Journal of Global Optimization, 36:161–189, 2006.
[57] J.A. De Loera, J. Lee, S. Margulies, and S. Onn. Expressing combinatorial optimization

problems by systems of polynomial equations and the nullstellensatz. Technical Report
RC24276(W0706-020), IBM Corporation, 2007.

[58] R. Lougee-Heimer. The common optimization interface for operations research: Promoting
open-source software in the operations research community. IBM Journal of Research and

Development, 47(1):57–66, 2003.
[59] O.L. Mangasarian. Linear complementarity problems solvable by a single linear program.

Mathematical Programming, 10:263–270, 1976.

[60] O.L. Mangasarian. The linear complementarity problem as a separable bilinear program.
Journal of Global Optimization, 6:153–161, 1995.

[61] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94:71–
90, 2002.

[62] F. Margot. Exploiting orbits in symmetric ilp. Mathematical Programming B, 98:3–21, 2003.
[63] G.P. McCormick. Computability of global solutions to factorable nonconvex programs: Part

i — convex underestimating problems. Mathematical Programming, 10:146–175, 1976.

[64] C.A. Meyer and C.A. Floudas. Convex hull of trilinear monomials with mixed sign domains.
Journal of Global Optimization, 29:125–155, 2004.

[65] N. Mladenović, F. Plastria, and D. Urošević. Reformulation descent applied to circle packing
problems. Computers and Operations Research, 32(9):2419–2434, 2005.

[66] I. Nowak. Relaxation and Decomposition Methods for Mixed Integer Nonlinear Program-

ming. Birkhäuser, Basel, 2005.
[67] C.C. Pantelides, L. Liberti, P. Tsiakis, and T. Crombie. Mixed integer linear/nonlinear pro-

gramming interface specification. Global Cape-Open Deliverable WP2.3-04, February 2002.

[68] M.-C. Plateau. Reformulations quadratiques convexes pour la programmation quadratique

en variables 0-1. PhD thesis, Conservatoire National d’Arts et Métiers, 2006.
[69] J. Puchinger and G.R. Raidl. Relaxation guided variable neighbourhood search. In Proc. of

Mini Euro Conference on Variable Neighbourhood Search, Tenerife, Spain, 2005.
[70] A. Saxena, V. Goyal, and M. Lejeune. MIP reformulations of the probabilistic set covering

problem. Technical Report 2007-02-1579, Optimization Online, 2007.
[71] H. Sherali. Personal communication. June 2007.

[72] H. Sherali and L. Liberti. Reformulation-linearization methods for global optimization. In
C. Floudas and P. Pardalos, editors, Encyclopedia of Optimization. Springer, New York, to
appear.

TITLE WILL BE SET BY THE PUBLISHER 31

[73] H. Sherali and C.H. Tuncbilek. A global optimization algorithm for polynomial program-
ming problems using a reformulation-linearization technique. Journal of Global Optimiza-

tion, 2:101–112, 1991.

[74] H. Sherali and C.H. Tuncbilek. New reformulation linearization/convexification relaxations
for univariate and multivariate polynomial programming problems. Operations Research

Letters, 21:1–9, 1997.
[75] H.D. Sherali. Global optimization of nonconvex polynomial programming problems having

rational exponents. Journal of Global Optimization, 12:267–283, 1998.
[76] H.D. Sherali and W.P. Adams. A tight linearization and an algorithm for 0-1 quadratic

programming problems. Management Science, 32(10):1274–1290, 1986.

[77] H.D. Sherali and W.P. Adams. A hierarchy of relaxations between the continuous and con-
vex hull representations for zero-one programming problems. SIAM Journal of Discrete

Mathematics, 3:411–430, 1990.
[78] H.D. Sherali and W.P. Adams. A Reformulation-Linearization Technique for Solving Dis-

crete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Dodrecht, 1999.
[79] H.D. Sherali and A. Alameddine. A new reformulation-linearization technique for bilinear

programming problems. Journal of Global Optimization, 2:379–410, 1992.

[80] H.D. Sherali and H. Wang. Global optimization of nonconvex factorable programming prob-
lems. Mathematical Programming, 89:459–478, 2001.

[81] E.M.B. Smith. On the Optimal Design of Continuous Processes. PhD thesis, Imperial Col-
lege of Science, Technology and Medicine, University of London, October 1996.

[82] E.M.B. Smith and C.C. Pantelides. Global optimisation of nonconvex MINLPs. Computers

& Chemical Engineering, 21:S791–S796, 1997.
[83] E.M.B. Smith and C.C. Pantelides. A symbolic reformulation/spatial branch-and-bound

algorithm for the global optimisation of nonconvex MINLPs. Computers & Chemical Engi-

neering, 23:457–478, 1999.
[84] INFORMS Computing Society. The mathematical programming glossary. http://glossary.

computing.society.informs.org/second.php?page=R.html.

[85] A.S. Strekalovsky. On global optimality conditions for d.c. programming problems. Technical

Paper, Irkutsk State University, 1997.
[86] A.S. Strekalovsky. Extremal problems with d.c. constraints. Computational Mathematics

and Mathematical Physics, 41(12):1742–1751, 2001.

[87] F. Tardella. Existence and sum decomposition of vertex polyhedral convex envelopes. Tech-
nical report, Facoltà di Economia e Commercio, Università di Roma “La Sapienza”, 2007.

[88] M. Tawarmalani and N. Sahinidis. Convex extensions and envelopes of semi-continuous

functions. Mathematical Programming, 93(2):247–263, 2002.
[89] M. Tawarmalani and N.V. Sahinidis. Global optimization of mixed integer nonlinear pro-

grams: A theoretical and computational study. Mathematical Programming, 99:563–591,
2004.

[90] M.J. Todd. Semidefinite optimization. Acta Numerica, 10:515–560, 2001.
[91] H. Tuy. D.c. optimization: Theory, methods and algorithms. In R. Horst and P.M. Parda-

los, editors, Handbook of Global Optimization, volume 1, pages 149–216. Kluwer Academic
Publishers, Dordrecht, 1995.

[92] T.J. van Roy and L.A. Wolsey. Solving mixed integer programming problems using auto-
matic reformulation. Operations Research, 35(1):45–57, 1987.

[93] J.C. Vera, J.F. Pe na, and L.F. Zuluaga. Exploiting equalities in polynomial programming.

Technical Report 2006-05-1338, Optimization Online, 2006.
[94] X. Wang and T.S. Change. A multivariate global optimization using linear bounding func-

tions. Journal of Global Optimization, 12:383–404, 1998.
[95] T. Westerlund. Some transformation techniques in global optimization. In Liberti and Mac-

ulan [54], pages 45–74.
[96] L.A. Wolsey. Integer Programming. Wiley, New York, 1998.

