
Journal of Global Optimization manuscript No.
(will be inserted by the editor)

Reduced RLT Representations for Nonconvex Polynomial
Programming Problems

Hanif D. Sherali · Evrim Dalkiran · Leo Liberti

November 3, 2010

Abstract This paper explores equivalent, reduced size Reformulation-Linearization Tech-
nique (RLT)-based formulations for polynomial programming problems. Utilizing a basis
partitioning scheme for an embedded linear equality subsystem, we show that a strict subset
of RLT defining equalities imply the remaining ones. Applying this result, we derive signifi-
cantly reduced RLT representations and develop certain coherent associated branching rules
that assure convergence to a global optimum, along with static as well as dynamic basis
selection strategies to implement the proposed procedure. In addition, we enhance the RLT
relaxations with v-semidefinite cuts, which are empirically shown to further improve the
relative performance of the reduced RLT method over the usual RLT approach. We present
computational results for randomly generated instances to test the different proposed reduc-
tion strategies and to demonstrate the improvement in overall computational effort when
such reduced RLT mechanisms are employed.

Keywords Reformulation-Linearization Technique (RLT), reduced basis techniques,
polynomial programs, global optimization, semidefinite cuts, BARON.

1 Introduction

The Reformulation-Linearization Technique (RLT) offers a unified framework for solving
nonconvex discrete and continuous optimization problems [11]. In this paper, we focus on
applying the RLT to general polynomial programming problems, and explore the generation
of equivalent, reduced size RLT representations, augmented with additional valid inequali-
ties, in order to enhance the solvability of such problems via a branch-and-bound algorithm.
Accordingly, consider the following polynomial program PP of order δ ≥ 2, where nota-
tionally, given any set S ⊆N ≡ {1, . . . ,n}, we let S d denote a multi-set of order d, which

Hanif D. Sherali · Evrim Dalkiran
Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061 E-mail: hanifs@vt.edu, dalkiran@vt.edu

Leo Liberti
CNRS LIX, École Polytechnique, F-91128 Palaiseau, France E-mail: liberti@lix.polytechnique.fr

2 Hanif D. Sherali et al.

is comprised of distinct combinations of indices (arranged in nondecreasing order) that be-
long to the Cartesian product S × . . .×S , where the latter involves d repetitions of S .
Hence, in particular, S 1 ≡S .

PP: Minimize φ0(x) (1a)

subject to

φr(x)≥ βr,∀r = 1, . . . ,R1 (1b)

φr(x) = βr,∀r = R1 +1, . . . ,R (1c)

Ax = b (1d)

x ∈Ω ≡ {0≤ l j ≤ x j ≤ u j < ∞,∀ j ∈N }, (1e)

where
φr(x)≡ ∑

t∈Tr

αrt

[
∏
j∈Jrt

x j

]
, for r = 0, . . . ,R,

and where Tr is an index set for the terms defining φr(.), with αrt being real coefficients
associated with the monomials ∏ j∈Jrt x j, ∀t ∈ Tr, r = 0, . . . ,R, where each Jrt ⊆ ∪δ

d=1N
d .

Here, we have especially identified the presence of a linear equality system (1d), where A
is m× n of rank m < n, and where (1c) then accommodates any other nonlinear equality
restrictions defining the model formulation.

Following the RLT procedure described in [16], given the lower and upper bounds in
(1e), we define the bound-factors (x j− l j)≥ 0 and (u j−x j)≥ 0, ∀ j ∈N , and generate the
corresponding bound-factor product (RLT) constraints composed by taking the products of
the bound-factors δ at a time (including repetitions) as follows:

∏
j∈J1

(x j− l j) ∏
j∈J2

(u j− x j)≥ 0,∀(J1∪ J2)⊆N δ . (2)

These implied (2n+δ−1
δ

) restrictions are then appended to Problem PP, along with any other
(optionally generated) RLT constraints obtained by multiplying the original inequality con-
straints in (1b) with themselves as well as with bound-factors, while preserving the degree
of the resulting augmented polynomial program as δ . Similarly, the equality constraints
(1c) and (1d) can be utilized to generate RLT constraints by multiplying each of them with
distinct monomials of the form ∏ j∈J x j such that the resulting restrictions are of degree
less than or equal to δ . It is worthwhile noting that whereas appending Problem PP with
such RLT constraints other than (2) potentially tightens the relaxation, they are not required
for establishing the convergence of the algorithm proposed in [16] to solve Problem PP to
global optimality. Moreover, we limit the generation of RLT polynomial constraints to de-
gree δ only to curtail the size of the resulting relaxation, although higher order restrictions
can further tighten the derived representation.

Next, we linearize the augmented polynomial program by replacing each distinct mono-
mial ∏ j∈J x j with a new (RLT) variable wJ , for J ⊆ ∪δ

d=2N
d . Note that this produces

(n+δ

δ
)− (n+1) such additional so-called RLT variables. The corresponding RLT-based lin-

ear programming (LP) relaxation is constructed via this substitution process upon dropping
from the formulation the defining identities wJ = ∏ j∈J x j,∀J. At each node of the branch-
and-bound tree, a lower bound is thus computed via the RLT-based LP relaxation associated
with the revised sub-hyperrectangle Ω that defines the current node problem. Accordingly,
at the top of the loop in this branch-and-bound process, we select a node having the least

Reduced RLT Representations for Nonconvex Polynomial Programs 3

lower bound for further partitioning. Denoting (x̄, w̄) as the LP relaxation solution obtained
for this node, we select a branching variable index as

j∗ ∈ argmax
j∈N

θ j,

where θ j is computed as follows:

θ j ≡
δ−1

∑
d=1

∑
J∈N d

∣∣w̄J∪ j− w̄J x̄ j
∣∣ ,∀ j ∈N .

We then partition the selected interval [l j∗ ,u j∗] at the current LP relaxation solution value x̄ j∗

according to the dichotomy that {x j∗ ∈ [l j∗ , x̄ j∗]}∨{x j∗ ∈ [x̄ j∗ ,u j∗]} provided that min{x̄ j∗−
l j∗ ,u j∗ − x̄ j∗} ≥ 0.05(u j∗ − l j∗); else, we split the interval at its mid-point. This particular
choice of branching variable selection and partitioning strategy preserves the arguments of
the convergence proof presented in [16]. Whenever the lower bound LB computed for any
node subproblem satisfies (v∗−LB)≤ ε|v∗|, where v∗ is the incumbent solution value and ε

is a specified optimality gap tolerance, we fathom the corresponding node. The branch-and-
bound algorithm terminates when no active node exists.

Notwithstanding the standard RLT constraint generation process, the resulting LP re-
laxation can be further tightened by utilizing v-semidefinite cuts (or simply SDP cuts) as
described in [13, 14]. These cuts are generated by imposing positive semidefinite restric-
tions on dyadic variable-product matrices composed as M = [vvt]L � 0, where [.]L denotes
the linearization of [.] via the RLT variable substitution process, and where v≡ [1,{∏ j∈J x j :
J ⊆J }] for certain appropriately defined sets J involving selected monomials of order up
to bδ/2c (see [13]). In this strategy, having solved an RLT-based LP relaxation, and letting
M̄ denote the matrix M evaluated at the resulting solution, in case M̄ is not positive semidef-
inite, a suitable unit-norm vector γ̄ is derived (in polynomial time) having γ̄T M̄γ̄ < 0, which
yields an associated v-semidefinite cut [(γ̄T v)2]L ≥ 0. Incorporating particular classes of
such cuts can significantly enhance the performance of the RLT-based algorithm for solving
polynomial programming programs as demonstrated in [13].

Additionally, to accelerate the RLT solution approach for polynomial programs, cer-
tain constraint filtering techniques are proposed in [19] that select only a subset of the RLT
bound-factor restrictions to incorporate within the model formulation based on the signs of
the coefficients of the original monomials in the objective function or constraints. For ex-
ample, in an inequality constraint (1b), if αrt is positive (negative), then the associated RLT
variable wJrt might have a tendency to be larger (smaller) than ∏ j∈Jrt x j in the RLT-based
LP relaxation, and so, restrictions that provide upper (lower) bounds on wJrt are more likely
to be relevant in tightening the relaxation. Rules of this type for retaining only such bound-
factor product constraints along with certain additional restrictions that provide significant
support for the monomials involved in the retained constraints are developed in [19]. How-
ever, for the sake of theoretical convergence, the algorithm must ultimately consider the
entire set of bound-factor constraints (2).

Another RLT constraint reduction strategy is explored in [15] for first-level RLT rep-
resentations (RLT-1) of 0-1 linear mixed-integer programs. Employing optimal dual multi-
pliers to the LP relaxation RLT-1 of RLT-1, it is shown that there exists an equivalent rep-
resentation using only one of each identified pair of RLT restrictions within RLT-1, which
provides the same lower bound as that obtained via RLT-1. Promising computational results
are presented for a proposed constraint selection strategy that attempts to a priori predict
such an existing equivalent reduced size RLT representation.

4 Hanif D. Sherali et al.

For quadratic or bilinear programs having an embedded linear equality system of the
form Ax = b, where A is m× n of rank m, a different technique was developed in [5] to
reduce the number of bilinear terms in the RLT formulation while maintaining an equivalent
representation. Specifically, consider the RLT constraints obtained by multiplying the linear
equality restrictions with the variable xk, ∀k ∈N , to yield Awk−bxk = 0, ∀k ∈N , where
the RLT variable vector wk ≡ (wk

j,∀ j ∈N) represents the product terms (xkx j,∀ j ∈N).
Accordingly, examining a so-called companion system Azk = 0, ∀k ∈N , where zk

j ≡ wk
j−

xkx j,∀ j ∈N , and where this system has a rank between m(m+1)
2 and (n−m)m, it was shown

that such a companion system with rank r implies r of the defining RLT substitution identi-
ties, which can therefore be dropped from the formulation without weakening it. Based on
this result, basic feasible solutions were explored to the companion system of size mn×n2

to determine which bilinear terms to explicitly retain in the formulation, where the latter cor-
respond to the nonbasic variables for this expanded system. The efficiency and applicability
of the foregoing method for solving sparse problems in which the number of w-variables
might be considerably larger than the rank of the associated companion system was also
discussed in [5]. To handle such cases more effectively, certain graph theoretical algorithms
were introduced in [7] to select valid sets of RLT constraints that contain a reduced number
of w-variables. For quadratic programming problems, an algorithm was proposed in [6] to
construct a basis for the companion system by selecting a set of variables that maximizes
the convexity gap, where for each RLT variable, the convexity gap was formulated as the
area (or volume) between the corresponding RLT substitution constraint and the associated
bound-factor product constraints. The concepts developed in [5, 6] were further extended in
[1] to address polynomial programming programs, wherein each linear equality restriction
was multiplied with monomials up to degree δ − 1 in order to generate a similar compan-
ion system of size m[(n+δ−1

δ−1)− 1]× [(n+δ

δ
)− (n + 1)], and then a basis of this companion

system was utilized to derive a reduced RLT representation. A technique for deriving a con-
vexity gap estimate for each candidate basis was also proposed, where the recommended
procedure then selected a basis having the maximum such value. Using randomly generated
continuous quadratic knapsack problems having up to 10 variables, it was demonstrated that
the computational effort decreased substantially when using the reduced RLT approach in
lieu of the full RLT representation in six out of the nine test cases.

The present paper makes the following specific contributions. First, we introduce equiv-
alent, reduced size RLT formulations for polynomial programming problems that directly
utilize bases of the matrix A as opposed to bases of substantially larger companion sys-
tems as adopted in [5] and [1]. Second, we design and test several static and dynamic basis
selection methods to implement the proposed reduction strategy. Third, we enhance the
relaxations via v-semidefinite cuts along with the developed basis reduction mechanisms
within a branch-and-bound algorithm to solve polynomial programs to global optimality,
and we provide extensive computational results that demonstrate a significant performance
improvement using the proposed approach.

The remainder of this paper is organized as follows. To set the stage and facilitate the
presentation, Section 2 first considers quadratic polynomial programming problems having
an embedded linear equality system, and presents the proposed equivalent, reduced RLT
representation for this structured problem. Section 3 then extends the theory to address more
general higher order polynomial programs, which is the main focus of this paper, and Section
4 describes several static and dynamic basis selection methods for constructing such reduced
representations. Computational results are presented in Section 5, and Section 6 concludes
the paper with a summary and recommendations for future research.

Reduced RLT Representations for Nonconvex Polynomial Programs 5

2 Quadratic Polynomial Programming Problems

Consider the following nonconvex quadratic polynomial programming problem having an
embedded equality subsystem:

P: Minimize cT
0 x+ xT H0x (4a)

subject to

cT
i x+ xT Hix≤ hi,∀i = 1, . . . ,Q (4b)

Ax = b (4c)

0≤ l j ≤ x j ≤ u j < ∞,∀ j ∈N ≡ {1, . . . ,n}, (4d)

where A is m×n of rank m < n, and where ci ∈Rn and Hi ∈Rn×n, ∀i = 0,1, . . . ,Q. Problem
P arises in several applications and is of interest in its own right (see [3]), but such a repre-
sentation might also be an equivalent quadratic reformulation of a more general polynomial
program (see [20] and [18]).

Given a basis B of A for the linear system of equations (4c), we adopt the familiar
partitioning of x into basic and nonbasic variables xB and xN , respectively, to write (4c) in
the form:

BxB +NxN = b, (5)

where B represents the columns of the xB-variables, and N represents the columns of the xN-
variables. Let JB and JN denote the respective index sets of the basic and nonbasic variables,
where JB∪ JN = N .

Now, following the RLT process, we multiply (5) by each x j for j ∈N , and linearize
the resulting system using the substitution

wi j = xix j, ∀1≤ i≤ j ≤ n. (6)

Denoting by [.]L the linearization of [.] under (6), and letting

w(i j) =

{
wi j if i≤ j
w ji if i > j ,

(7a)

with w≡ w(i j) ∈ Rn(n+1)/2, and defining

w(B j) ≡ [xBx j]L , w(N j) ≡ [xNx j]L , and w(. j) ≡ [xx j]L , ∀ j ∈N , (7b)

the foregoing RLT operation yields the following system:

Bw(B j) +Nw(N j) = bx j,∀ j ∈N . (8)

Proposition 1 Let the system Ax = b be partitioned according to (5) for any basis B of A,
and define

Z = {(x,w) : (4c), (8), and wi j = xix j, ∀i≤ j with i, j ∈ JN}. (9)

Then, we have (6) holding true for any (x,w) ∈ Z.

6 Hanif D. Sherali et al.

Proof Let (x,w) ∈ Z. Then, from (8) and (9), we get

Bw(B j) = (b−NxN)x j,∀ j ∈ JN . (10)

But (5) implies that xB = B−1(b−NxN), which together with (10) yields

w(B j) = xBx j, ∀ j ∈ JN , i.e., w(i j) = xix j, ∀i ∈ JB, j ∈ JN . (11)

Furthermore, from (8) written for j ∈ JB, and noting (11), we get that,

Bw(B j) = (b−NxN)x j,∀ j ∈ JB. (12)

Again, together with (5), this implies that

w(B j) = xBx j, ∀ j ∈ JB, i.e., w(i j) = xix j, ∀i, j ∈ JB. (13)

The result now follows by observing (9), (11), and (13). �

Remark 1 Noting that |JN | = (n−m) from (4c) and (5), Proposition 1 asserts that subject
to (4c) (or (5)) and (8), if we enforce (6) for just the (n−m)(n−m + 1)/2 identities cor-
responding to i ≤ j in JN , then the remaining identities in (6) will automatically hold true.
This concept can be used to curtail RLT relaxations and branching decisions, and improves
upon the strategy expounded in [5, 6] and [7] by permitting a reformulation based directly
on the selection of suitable bases B of A, rather than requiring the examination of bases of an
enlarged (mn× n2) companion system as developed in the latter works. In the same spirit,
reduced RLT relaxations for polynomial programs employing bases of a linear companion
system of size m[(n+δ−1

δ−1)−1]× [(n+δ

δ
)−(n+1)] are proposed in [1]. A more compact gen-

eralization of Proposition 1 to polynomial programming problems is likewise presented in
Section 3 below. �

For the sake of interest, we note that the following more general result holds true, al-
though we shall focus on Proposition 1 to achieve computational expediency.

Proposition 2 There exists a partitioning of w ∈ Rn(n+1)/2 according to w = (wQ1 ,wQ2),
where wQ1 ∈ Rm(n−m)+m(m+1)/2 and wQ2 ∈ R(n−m)(n−m+1)/2 are such that the columns of
wQ1 in (8) are linearly independent. Moreover, for any such partitioning of w, any feasible
solution to the system

Ax = b, Aw(. j) = bx j, ∀ j ∈N , (14)

along with the identities (6) for the wQ2 -variables, will also automatically have (6) holding
true for the wQ1 -variables.

Proof First of all, note that a partitioning of w as stated in the proposition exists by Propo-
sition 1 and Remark 1, as for example, by selecting any basis B of A and letting wQ1 and
wQ2 be respectively composed of the sets of variables {w(B j) for j ∈ JN ;w(B j) for j ∈ JB},
and {w(N j) for j ∈ JN}. Now, for any given feasible solution x to (4c), let the wQ2 -variables
be determined according to (6), and consider the resulting residual system (8) in the wQ1 -
variables. Since the columns of wQ1 in (8) are linearly independent, this system either has a
unique solution or has no solution. But by construction, fixing the wQ1 -variables according
to (6) yields a feasible solution to (8), and therefore this must be the unique completion of
the solution to the residual system in (8) or (14). �

Reduced RLT Representations for Nonconvex Polynomial Programs 7

Now, defining the variables w∈Rn(n+1)/2 according to (6) and adopting the notation (7),
we can rewrite (4) as follows, where gi ∈Rn(n+1)/2 for i = 0,1, . . . ,Q are appropriate vectors
that represent the pure quadratic forms appearing in (4a, 4b), and where we have included
the RLT constraints (14) obtained by multiplying Ax = b with x j,∀ j ∈ J, within (15d), as
well as the RLT bound-factor constraints (2) within (15e). (Note that the algebraic notation
in (15e) represents the quadruple bound-factor product relationships [(xi− li)(x j− l j)]L ≥
0, [(xi− li)(u j− x j)]L ≥ 0, [(ui− xi)(x j− l j)]L ≥ 0, and [(ui− xi)(u j− x j)]L ≥ 0 linearized
under (6), ∀1 ≤ i ≤ j ≤ n, where it is understood that for i = j, we retain only one of the
duplicating second and third product restrictions.)

P1: Minimize cT
0 x+gT

0 w (15a)

subject to

cT
i x+gT

i w≤ hi,∀i = 1, . . . ,Q (15b)

Ax = b (15c)

Aw(. j) = bx j, ∀ j ∈N (15d)

[(li ≤ xi ≤ ui)∗ (l j ≤ x j ≤ u j)]L ≥ 0, ∀1≤ i≤ j ≤ n (15e)

l ≤ x≤ u (15f)

wi j = xix j, ∀1≤ i≤ j ≤ n. (15g)

Next, following the concept discussed in Proposition 1, we partition Ax = b according to
(5), and correspondingly derive a reduced form of Problem P1 as stated below by enforcing
(15g) only for i≤ j in JN , and also retaining (15e) corresponding to only these same indices
i≤ j in JN , and where we have additionally included the implied bounding constraints lil j ≤
wi j ≤ uiu j, ∀1 ≤ i ≤ j ≤ n in (16f) for tightening the underlying LP relaxation obtained
upon deleting (16g).

P2: Minimize cT
0 x+gT

0 w (16a)

subject to

cT
i x+gT

i w≤ hi,∀i = 1, . . . ,Q (16b)

Ax = b (16c)

Bw(B j) +Nw(N j) = bx j, ∀ j ∈N (16d)

[(li ≤ xi ≤ ui)∗ (l j ≤ x j ≤ u j)]L ≥ 0, ∀i≤ j, with i, j ∈ JN (16e)

l ≤ x≤ u, lil j ≤ wi j ≤ uiu j, ∀1≤ i≤ j ≤ n (16f)

wi j = xix j, ∀i≤ j with i, j ∈ JN . (16g)

Remark 2 Note that the equality constraints of type Ax = b can also be used to directly elim-
inate the basic variables xB for any given basis B via the substitution xB = B−1(b−NxN), and
we can then correspondingly apply the regular RLT process described in [16] to the resulting
problem in the space of the n−m nonbasic variables. In this context, the RLT procedure is
invariant under such affine transformations as shown in [17]. However, a potential drawback
of implementing this transformation is that the sparse nonlinear constraints (as well as non-
linear objective terms) may possibly become dense and the resulting linear programming
relaxations might become relatively more difficult to solve. In our computations, we com-
pare the relative efforts for solving problems using the proposed reduced RLT procedure as
well as by applying RLT to the reduced nonbasic variable space problem representation. �

8 Hanif D. Sherali et al.

Let RLT(P1) denote the RLT-based branch-and-bound algorithm described in [16, 17]
as applied to Problem P1, where lower bounds are computed via the LP relaxation (15a
-15f), and where partitioning is performed on the hyperrectangle defined by (15f). In ad-
dition, denote by RLTSDP(P1) the foregoing solution process in which we also incorporate
semidefinite programming (SDP)-based cuts as in [13, 14]. Likewise, define RLT(P2) and
RLTSDP(P2) with respect to Problem P2, where in particular, the branching is now performed
only on the sub-hyperrectangle defined by l j ≤ x j ≤ u j, ∀ j ∈ JN . By Proposition 1 and the
theory expounded in [16], we are assured (infinite) convergence to a global optimum by this
partial partitioning process.

Remark 3 Note that the linear programming relaxation P2 of Problem P2 can be tightened
by including (15e) in lieu of the constraints (16e) and the implied bound restrictions in
(16f). This would be similar to solving P1 itself via an RLT approach, but while parti-
tioning on just the nonbasic variable intervals. We refer to this strategy as RLTNB(P1) and
RLTNB

SDP(P1), respectively implemented without and with SDP cuts. Moreover, as alluded
earlier, we mention (but do not adopt in our implementation) that we can further strengthen
P2 by incorporating RLT bound-factor product constraints of order δ ′ > δ ; in this context,
note that the constraints in (16e) are implied by bound-factor constraints generated via all
(J1∪ J2)⊆ Jδ ′

N as proven in [16]. However, this can significantly increase the size of the re-
sulting relaxations and needs a careful design of additional filtering mechanisms. The iden-
tities xB = B−1b−B−1NxN can be used to further tighten the bounds on the basic variables,
xB, and hence the implied bounds on the w-variables in (16f), by consecutively minimizing
and maximizing B−1

i b−B−1
i NxN subject to (16b)-(16f), ∀i = 1, . . . ,m, where Bi is the ith

row of B. Hence, whenever a node is partitioned, we can perform such a range reduction for
the basic variables (see also [2, 9, 17, 19]). However, we do not implement this additional
strategy in order to assess the independent effect of the approach proposed herein, but we
recommend its consideration for future research. �

3 Extension to Polynomial Programming Problems

In this section, we generalize the theory and strategies of Section 2 to address nonconvex
polynomial programming problems. For the polynomial program PP of order δ as given by
(1a-1e), as part of the RLT reformulation process, we multiply the linear equality constraints
Ax = b in (1d) with distinct monomials ∏ j∈J x j of order d = 1, . . . ,δ−1. Hence, introducing
the RLT-variables

wJ = ∏
j∈J

x j, ∀J ⊆N d ,d = 2, . . . ,δ , (17)

where we also designate w j ≡ x j when J = { j} ⊆N , we impose the linearized RLT con-
straints: [

(Ax = b)×∏
j∈J

x j

]
L

, yielding Aw(.J) = bwJ , ∀J ⊆N d ,d = 1, . . . ,δ −1,

where w(.J) ≡ (w(1, J),w(2, J), . . . ,w(n, J)), and where (j,J) is the multi-set that combines j
with the indices in J in nondecreasing order. Partitioning Ax = b according to BxB +NxN = b
as before, where B is a basis of A, and using notation similar to that in (8), the foregoing set
of equations can be written in the corresponding partitioned form as follows:

Bw(BJ) +Nw(NJ) = bwJ , ∀J ⊆N d ,d = 1, . . . ,δ −1. (18)

Reduced RLT Representations for Nonconvex Polynomial Programs 9

Furthermore, notationally, given a multi-set J ⊆N d for any d ∈ {2, . . . ,δ}, define JB∩J as
the (multi-) subset of J that contains only the basic variable indices.

Proposition 3 Let the equality system Ax = b in (1d) be partitioned as BxB + NxN = b for
any basis B of A, and define

Z =

{
(x,w) : (1d), (18), and wJ = ∏

j∈J
x j, ∀J ⊆ Jd

N , for d = 2, . . . ,δ

}
. (19)

Then, we have (17) holding true for any (x,w) ∈ Z.

Proof We establish this result by induction on d = 2, . . . ,δ . For the case d = 2, we have
(17) holding true for any (x,w) ∈ Z by Proposition 1, using (1d), (18) written for d = 1, and
wJ = ∏ j∈J x j for J ⊆ J2

N from (19).
Hence, assume that the result is true for {2, . . . ,d}, where 2≤ d ≤ δ −1, i.e.,

wJ = ∏
j∈J

x j, ∀J ⊆N ∆ ,∆ = 2, . . . ,d, (20)

and examine the case of d +1.
Consider the RLT product constraints (18) for J ⊆ Jd

N . Since wJ = ∏ j∈J x j and w(NJ) =
xN ∏ j∈J x j = xNwJ , ∀J ⊆ Jd

N by (19), we get from (18) that

w(BJ) = B−1(b−NxN)wJ = xBwJ = xB ∏
j∈J

x j, ∀J ⊆ Jd
N .

This identity can be restated as follows:

wJ = ∏
j∈J

x j, ∀J ⊆N d+1 : |JB∩J|= 1. (21)

Next, consider (18) for J⊆N d such that |JB∩J|= 1. Noting that wJ = ∏ j∈J x j, and w(NJ) =
xN ∏ j∈J x j = xNwJ , ∀J ⊆N d with |JB∩J|= 1 by (20) and (21), we get from (18) that

w(BJ) = B−1(b−NxN)wJ = xBwJ = xB ∏
j∈J

x j, ∀J ⊆N d : |JB∩J|= 1.

The foregoing identity essentially states that

wJ = ∏
j∈J

x j, ∀J ⊆N d+1 : |JB∩J|= 2. (22)

Continuing in this fashion, by considering (18) for J ⊆N d such that |JB∩J| = 2, we
get similar to (21) and (22) that (17) holds true for all J ⊆ N d+1 such that |JB∩J| = 3.
Finally, by considering (18) for J ⊆N d such that |JB∩J| = d, we get that (17) holds true
for all J ⊆ N d+1 such that |JB∩J| = d + 1, i.e., for the case where all indices are basic.
Consequently, (17) holds true for the case d +1. �

10 Hanif D. Sherali et al.

Upon including the RLT restrictions (18) along with the bound-factor RLT constraints
as in (23e) and (23f) below, and substituting wJ for the monomial ∏ j∈J x j,∀J ⊆N d ,d =
2, . . . ,δ , we reformulate Problem PP as follows, where (23a), (23b), and (23c) are lineariza-
tions of (1a), (1b), and (1c), respectively:

PP1: Minimize [φ0(x)]L (23a)

subject to

[φr(x)]L ≥ βr,∀r = 1, . . . ,R1 (23b)

[φr(x)]L = βr,∀r = R1 +1, . . . ,R (23c)

Ax = b (23d)

Bw(BJ) +Nw(NJ) = bwJ ,∀J ⊆N d ,d = 1, . . . ,δ −1 (23e)[
∏
j∈J1

(x j− l j) ∏
j∈J2

(u j− x j)
]

L
≥ 0,∀(J1∪ J2)⊆N δ (23f)

l ≤ x≤ u (23g)

wJ = ∏
j∈J

x j,∀J ⊆N d ,d = 2, . . . ,δ . (23h)

Utilizing Proposition 3, we reduce the number of defining identities in (23h) by imposing
them only for J ⊆ Jd

N , ∀d = 2, . . . ,δ , within (24h) below. Likewise, since we are only re-
quired to enforce (24h) instead of (23h), we retain the RLT bound-factor product constraints
in (23f) derived only for (J1 ∪ J2) ⊆ Jδ

N . Furthermore, similar to Problem P2, we explic-
itly include the implied interval bounding constraints for the wJ-variables as in (24g) for
strengthening the underlying linear programming relaxation obtained upon deleting (24h).

PP2: Minimize [φ0(x)]L (24a)

subject to

[φr(x)]L ≥ βr,∀r = 1, . . . ,R1 (24b)

[φr(x)]L = βr,∀r = R1 +1, . . . ,R (24c)

Ax = b (24d)

Bw(BJ) +Nw(NJ) = bwJ ,∀J ⊆N d ,d = 1, . . . ,δ −1 (24e)[
∏
j∈J1

(x j− l j) ∏
j∈J2

(u j− x j)
]

L
≥ 0,∀(J1∪ J2)⊆ Jδ

N (24f)

l≤x≤u, and ∏
j∈J

l j ≤ wJ ≤∏
j∈J

u j,∀J ⊆N d, d =2,. . . ,δ , |JB∩J|≥1 (24g)

wJ = ∏
j∈J

x j,∀J ⊆ Jd
N ,d = 2, . . . ,δ . (24h)

To enhance the foregoing reduced RLT-based relaxation, we append within (24f) in PP2
those additional constraints from (23f) for which the LP relaxation PP1 of PP1 yields pos-
itive associated dual variables. Hence, in the branch-and-bound process for solving the re-
duced form PP2, we initially solve the LP relaxation PP1 at the root node, and identify the
subset of constraints from (23f) given by

J+duals ≡ {(J1,J2) : (J1∪ J2)⊆N δ \ Jδ
N and u(J1, J2) > 0},

where u(J1, J2) denotes the value of the dual variable associated with the corresponding con-
straint in (23f) at an optimal solution for PP1. We then include the particular constraints

Reduced RLT Representations for Nonconvex Polynomial Programs 11

from (23f) for (J1,J2) ∈ J+duals within the reduced relaxation PP2 for each node subprob-
lem, appropriately updated based on the variable bounding intervals for the current node.
Let us refer to this set of additional constraints at any node as C+duals. Note that when-
ever we branch on some variable xk, say, by splitting its current interval lk ≤ xk ≤ uk at the
value x̄k ∈ (ll ,uk) as discussed in Section 1 to obtain the respective bounding restrictions
lk ≤ xk ≤ x̄k and x̄k ≤ xk ≤ uk for the two child-nodes, we may not obtain a monotonic in-
crease in the lower bound from the parent node to the child-nodes. The reason for this is
that, because we have included only a selected subset of constraints (C+duals) correspond-
ing to (J1,J2) ∈ J+duals from (23f) within (24f) (after further revising the bound on xk), the
imposed bound-factor constraints do not necessarily imply all corresponding lower order
bound-factor constraints as per the result in [16]. Hence, in order to preserve monotonicity
in the lower bounds, we include certain additional sets of constraints from the parent node
subproblem within the current node relaxation as explained next.

Whenever we branch on some variable xk, then in addition to incorporating the con-
straints C+duals within PP2 for the child-node subproblem, we also include those bound-
factor constraints in C+duals from the parent node formulation (in the same form therein)
that involve the particular bound-factor that is associated with the branching restriction.
An exception to this rule is when some latter type of constraint contains the corresponding
branching restriction bound-factor only once. In this case, Proposition 4 below advocates
the inclusion of a tighter constraint instead (i.e., Constraint (27) below in lieu of (25)).

Proposition 4 For any parent node problem, consider the following associated bound-
factor RLT constraint in C+duals for some (J1,J2) ∈ J+duals:[

∏
j∈J1

(x j− l j) ∏
j∈J2

(u j− x j)

]
L

≥ 0. (25)

Suppose that we branch on a variable xk, and consider the child-node for which we impose
the additional restriction xk ≥ x̄k > lk (the case for the child-node corresponding to the
restriction xk ≤ x̄k < uk is similar). Suppose further that we have k ∈ J1 and k 6∈ (J1∪ J2)−
{k}, so that the child-node constraint for this particular (J1,J2) ∈ J+duals is given by[

(xk− x̄k) ∏
j∈J1−k

(x j− l j) ∏
j∈J2

(u j− x j)

]
L

≥ 0. (26)

Let Fδ−1(J1− k,J2)≡∏ j∈J1−k(x j− l j)∏ j∈J2
(u j− x j), and consider the corresponding

bound-factor constraint:
[Fδ−1(J1− k,J2)]L ≥ 0. (27)

Then, (26) and (27) imply (25).

Proof Let (x,w) be feasible to (26) and (27). Then, the left-hand side of (25) evaluated at
such a solution is given by:

[(xk− lk)Fδ−1(J1− k,J2)]L = [xkFδ−1(J1− k,J2)]L− lk[Fδ−1(J1− k,J2)]L
≥ [xkFδ−1(J1− k,J2)]L− x̄k[Fδ−1(J1− k,J2)]L
= [(xk− x̄k)Fδ−1(J1− k,J2)]L
≥ 0. �

12 Hanif D. Sherali et al.

As alluded above, in the case described in Proposition 4 (and similarly for the child-
node corresponding to the additional restriction xk ≤ x̄k), we include (26) and (27) for the
particular (J1,J2) ∈ J+duals in lieu of (26) and (25) in order to derive a tighter child-node
relaxation.

Furthermore, along any branch within the branch-and-bound tree, constraints of the type
(25) or (27) (as explained above) that are generated at the upstream nodes are progressively
inherited by the downstream nodes. Although this inheritance procedure guarantees tighter
child-node relaxations, in order to preserve monotonicity in the lower bounds while keep-
ing the size of the relaxations from growing excessively, we do the following. Consider
any node (other than the root node) where, in addition to (24f), we have the constraints
C+duals plus other restrictions inherited from upstream nodes. Denote Cinherit as the latter
set of constraints. Now, suppose that we branch on some variable xk and consider the child-
node obtained for the branching restriction xk ≥ x̄k (the case of xk ≤ x̄k is similar). Then, to
construct Cinherit for this child-node’s relaxation, denoted Cchild

inherit , let Cactive denote the con-
straints in the parent’s node relaxation that have associated positive dual variables, let Cparent

inherit
denote the inherited constraints present in the parent node relaxation, and let Cparent

k denote
those bound-factor restrictions within C+duals for the parent node relaxation that involve the
bound-factor (xk− lk). Accordingly, we set

Cchild
inherit = {Cparent

k ∩Cactive}∪{Cparent
inherit ∩Cactive}, (28)

where for any restriction of the type (25) in Cparent
k ∩Cactive that satisfies the conditions of

Proposition 4, we utilize the corresponding tighter relaxations (27). Let LBparent and LBchild
be the lower bounds thus obtained for the parent and child-node, respectively. Then, we have
the following result:

Proposition 5 LBchild ≥ LBparent .

Proof Let PP2parent and PP2child respectively denote the parent and child-node LP relax-
ations. Consider Problem PP2parent

active that is constructed from the parent node relaxation
PP2parent by removing those bound-factor restrictions that have associated zero dual val-
ues at optimality from among the constraints in C+duals ∪Cparent

inherit . Hence, v(PP2parent
active) =

v(PP2parent) = LBparent , where v(P) denotes the optimal objective function value for any
given problem P. But PP2child contains stronger restrictions of the type (24b) - (24g) than
PP2parent (or PP2parent

active) based on the updated bound on the branching variable xk (by [11]),
plus all the remaining constraints (other than (24b) - (24g)) from PP2parent

active by (28) (possibly
tightened via Proposition 4), in addition to other constraints in C+duals. Hence, LBchild =
v(PP2child)≥ v(PP2parent

active) = LBparent .�

In our computational results, we found that this enhancement of PP2 significantly tight-
ens the underlying relaxations, while suitably filtering the RLT constraints to control its size.
Henceforth, we shall therefore assume that PP2 has been thus enhanced.

We refer to the likewise generalized RLT-based branch-and-bound algorithms described
in Section 2 as applied to Problems PP1 and (the enhanced) PP2, by RLT(PP1) and RLT(PP2),
respectively. Similarly, the respective algorithms that incorporate SDP cuts are denoted by
RLTSDP(PP1) and RLTSDP(PP2). Furthermore, note that the discussions in Remarks 2-3 hold
true for polynomial programming problems as well. In particular, the RLT-based branch-
and-bound algorithms RLTNB(PP1) and RLTNB

SDP(PP1) as applied to Problem PP1 involve
partitioning on just nonbasic variables, and are implemented without and with SDP cuts, re-
spectively. For the variants RLT(PP2), RLTSDP(PP2), RLTNB(PP1), and RLTNB

SDP(PP1) that
branch only on the nonbasic variables, we select a branching variable index as

Reduced RLT Representations for Nonconvex Polynomial Programs 13

j∗ ∈ argmax
j∈JN

θ j,

where θ j is computed as follows:

θ j ≡
δ−1

∑
d=1

∑
J∈Jd

N

∣∣w̄J∪ j− w̄J x̄ j
∣∣ ,∀ j ∈ JN .

The remainder of the branch-and-bound algorithm remains the same as that described in
Section 1.

4 Static and Dynamic Basis Selection Techniques

In this section, we propose techniques for selecting a basis B for implementing the RLT
reduction process for polynomial programming problems, which is then accordingly em-
ployed in generating Problem PP2 and optimizing it via RLT(PP2) and RLTSDP(PP2), or
utilized within the algorithmic procedures RLTNB(PP1) and RLTNB

SDP(PP1). We refer to this
as a static approach. We also describe a dynamic approach in which the basis B is suitably
revised during the algorithmic process in order to restructure Problem PP2 in a desirable
fashion. Several alternative mechanisms are devised to obtain different variants of these
static and dynamic approaches.

4.1 Static Approach

In this approach, we begin by solving the LP relaxation PP1 of Problem PP1, which is de-
rived by deleting (23h). Let (x̄, w̄) be the optimal solution obtained for Problem PP1, and let
λJ ,∀J ⊆N δ , be the maximum of the resulting dual multipliers associated with the bound-
factor constraints in (23f) that contain the variable wJ . The following alternative procedures
determine an ordered set L of indices j ∈N , for each of which the corresponding basis B
is then determined by utilizing the first m linearly independent columns of A that are asso-
ciated with the variables having indices selected in the order in which they appear within L.
The motivation for these methods is to explicitly enforce the product relationships (17) for
the variables that are less likely to take on values at their range bounds, thereby tending to
accelerate the convergence of the branch-and-bound process.

Method S.1: For the first method, we examine λJ ,∀J ⊆N δ , in nonincreasing order and
select the index set J = J∗1 having the largest λJ-value. Accordingly, we incorporate
the distinct indices j ∈ J∗1 in arbitrary (say, increasing) order within the list L, and next
consider the ordered list of λJ ,∀J ⊆N δ −J∗1 , to select the second index set J∗2 to insert
within L. Continuing in this fashion, we construct the ordered list L of indices j =
1, . . . ,n, and then we reverse the order of indices in this list for subsequently selecting
the corresponding basis B.

Method S.2: As an alternative to Method S.1, we construct the list L by arranging the
indices j ∈ N in nondecreasing order of ∑J⊆N δ−1(1 + k jJ)λ({ j}∪J), where k jJ is the
number of times that j appears within J.

Method S.3: For the third method, we compute the number of bound-factor constraints,
Q, to be generated in (24f) for the reduced RLT strategy. After sorting the constraints in

14 Hanif D. Sherali et al.

(23f) in nonincreasing order of their dual values, we pick the first Q (possibly fewer) con-
straints associated with nonzero dual values to construct the set N δ

Q of the correspond-
ing multi-sets J ∈ (J1∪J2). For each variable index j ∈N , we compute ∑J⊆N δ

Q
k jJ and

sort the variables in nondecreasing order of this measure to form the list L.
Method S.4: This method constructs the desired list L based on an aggregate violation

measure with respect to the RLT variable relationships. More specifically, for each
j ∈ N , we compute the total violation with respect to (17) via ∑

δ−1
d=1 ∑J⊆N d |x̄ jw̄J −

w̄({ j}∪J)|, and sort the variables j = 1, . . . ,n in nondecreasing order of this measure
within the list L.

4.2 Dynamic Approach

In this approach, for Method D.k, k = 1, . . . ,4, we respectively implement the method S.k,
k = 1, . . . ,4, at the root node of the branch-and-bound tree to commence the branch-and-
bound algorithm. Then, based on a specified depth-parameter ∆ , for any active node selected
at depth ∆ in the branch-and-bound tree, we compute an updated vector of (dual) multipliers
associated with (23f) as given by taking an element-wise maximum of the corresponding
dual multipliers associated with (23f) that were computed for PP1 at the root node, and the
corresponding dual multipliers for the current node (where we take undefined elements as
zero in the latter case). Accordingly, we invoke the particular Method S.k, k ∈ {1, . . . ,4},
at the current node using this resulting updated (dual) vector to recompute the basis B of A.
The recomputed basis is then subsequently used to formulate (the enhanced) Problem PP2
for the present node and for all its descendents. Note that different bases can therefore be
possibly specified for reformulating Problem PP2 at the different active nodes at depth ∆ ,
and the particular reduced RLT algorithmic procedure is applied accordingly to each node’s
reformulated problem.

Remark 4 As a variant of Methods D.k for k = 1, . . . ,4, we could specify multiple depth pa-
rameters ∆1 < ∆2 < .. . < ∆D for some D≥ 2, and invoke a similar reformulation of Problem
PP2 based on the determination of a revised basis for nodes at each of the levels ∆1,. . . ,∆D

of the branch-and-bound tree. We advocate this investigation for future research. �

5 Computational Results

In this section, we evaluate the relative effectiveness of utilizing the proposed reduced size
RLT formulations as compared to the original RLT formulation within a branch-and-bound
algorithm. We begin by studying the performance of the different delineated static basis
selection methods for implementing RLT(PP2), both with and without v-semidefinite cuts
(Algorithms RLT(PP2) and RLTSDP(PP2)). Next, utilizing the best performing (static) basis
selection method as identified in the foregoing experiment, we compare the performance
of RLT implemented on Problems PP1 and PP2, where for the former, we also investigate
partitioning the bounding intervals only for the nonbasic variables (Algorithms RLT(PP1),
RLTNB(PP1), and RLT(PP2), respectively). In addition, we also examine the performance
of these procedures with SDP cuts (RLTSDP(PP1), RLTNB

SDP(PP1), and RLTSDP(PP2), respec-
tively). All algorithms were implemented on a workstation having a 2.33 GHz Intel Xeon
processor with 3.25 GB of RAM and running Windows XP. Furthermore, we also present
corresponding results using the commercial software BARON (Version 9.0.6) [10, 21] run

Reduced RLT Representations for Nonconvex Polynomial Programs 15

on a workstation having two 2.13 Ghz Intel Xeon processors with 4GB of RAM and running
Windows 7. (The latter runs were implemented on a different workstation since BARON
and CPLEX 11.1 were installed on different computers in our laboratory.) The RLT algo-
rithms employ the dual optimizer with the steepest descent pricing rule implemented within
CPLEX (Version 11.1) while using default settings for solving the underlying LP relax-
ations, and utilize SNOPT Version 7 [4] as the nonlinear programming (local search) solver
for computing upper bounds by initializing this search process from the respective solutions
obtained for the corresponding LP relaxations. Furthermore, we used Matlabr (Version
R2008a [8]) for determining the rank of the candidate matrices during the basis selection
process.

To facilitate an appropriate testing environment, we randomly generated polynomial
programs for given values of the degree δ , number of variables (n), number of constraints
(m and R), and densities of the objective function and constraints. The percentage of nonzero
objective and constraint coefficients were specified as 100% and 25%, of which 50% were
taken as positive, and the degree of the ith constraint was set to [(i− 1) mod δ] + 1,∀i =
1, . . . ,R1. Each of the constraint functions was evaluated at l j and u j,∀ j ∈N , and the right-
hand side was set equal to the average of these two values. The generated instances were
checked for feasibility prior to computational analysis and the right-hand sides of the in-
equality constraints for infeasible instances were suitably decreased to attain feasibility. We
did not include any nonlinear equality constraints; hence R = R1. By varying the degree of
the program, the number of variables and inequality constraints, and the size of the equality
system as controllable problem parameters, we tried to assess the effectiveness of the pro-
posed algorithms over a wide range of polynomial programming test problems. Utilizing
32 relatively moderately-sized problems in a primary analysis as described below, we first
select the best performing basis selection method for formulating Problem PP2, and provide
comparisons against applying RLT to Problem PP1, both with and without SDP cuts. Fol-
lowing this, we further evaluate the most competitive algorithmic variants using a second
set of 10 more challenging larger-sized polynomial programming test problems. (All test
instances are available from the authors upon request.) For our computational experiments,
we used ε = 0.001 as the optimality gap tolerance, and set a run-time limit of 500 and 3600
CPU seconds, respectively, for the relatively moderate and large-sized problem instances.

Table 1 Performances of different static basis selection methods with RLT(PP2) and RLTSDP(PP2).

δ (# of Average CPU Time npremature Average % opt. gap*

instances) S.1 S.2 S.3 S.4 S.1 S.2 S.3 S.4 S.1 S.2 S.3 S.4

R
LT

(P
P2

) 4 (12) 135 110 115 160 2 1 1 3 4.6 2.2 2.2 2.3
5 (12) 199 150 143 197 4 3 3 4 24.9 6.8 6.7 10.9
6 (8) 204 256 204 221 3 4 3 3 6.4 3.1 2.6 2.8

Overall 176 162 148 189 9 8 7 10 14.2 4.3 4.3 5.9

R
LT

SD
P

(P
P2

) 4 (12) 42 35.6 34.6 84.8 0 0 0 1 - - - 0.1

5 (12) 35.1 26.6 25.1 25.7 0 0 0 0 - - - -
6 (8) 22 21.2 23 38.7 0 0 0 0 - - - -

Overall 34.4 28.6 28.1 51.1 0 0 0 1 - - - 0.1
∗ The average % optimality gap computed over the premature termination cases.

16 Hanif D. Sherali et al.

We begin with an explorative analysis to assess the relative performances of the four
different static basis selection methods S.1, . . ., S.4 discussed in Section 4.1, as well as the
effect of v-semidefinite cuts on computational effort. Table 1 provides a summary of the
results obtained by reporting the average CPU times over the stated number of instances
for each δ -value, along with the number of premature termination cases (npremature), and
the associated average percentage optimality gaps over such cases. As evident from Table
1, the performance differences between the tested basis selection methods underscores the
importance of selecting an appropriate basis. The basis selection method S.3 outperformed
the other methods when used within Algorithm RLT(PP2). Upon enhancing this procedure
with the v-semidefinite cuts described in [13] (Algorithm RLTSDP(PP2)), the performance
improved significantly, also alleviating the premature termination cases. The average CPU
time improvements for RLTSDP(PP2) over RLT(PP2) using the respective basis selection
methods S.1, S.2, S.3, and S.4 were 81%, 82%, 81%, and 73%. Moreover, the reductions in
the overall average CPU times for RLTSDP(PP2) using S.3 over the alternatives S.1, S.2, and
S.4 were 18.3%, 1.9%, and 45%, respectively. Based on these results, we designated S.3 as
the basis selection method for all subsequent runs.

It is worth mentioning here that some of the early termination cases were due to numeri-
cal issues encountered while solving the underlying LP relaxations. Decreasing the feasibil-
ity tolerance of CPLEX to 10−9 from its default value of 10−6 helped resolve some of these
premature termination cases, but naturally increased the effort required for other instances.
Hence, we retained the default settings for the feasibility tolerance in our computational
analysis. Another relevant note on implementation issues is related to the inheritance of
SDP cuts. Although the SDP cuts generated for any node subproblem are valid for all de-
scendent nodes, we let each current node relaxation inherit only those SDP cuts that were
generated at upstream nodes up to four levels in our implementation. Note that this limited
SDP cut inheritance scheme can possibly (though not likely) affect the monotonicity of the
lower bounds as established by Proposition 5.

Table 2 presents the detailed results obtained for the best performing static basis selec-
tion method S.3 when utilized within Algorithms RLT(PP2) and RLTSDP(PP2), and also in-
cludes comparative results for Algorithms RLT(PP1) and RLTNB(PP1), along with their SDP
cut-enhanced variants RLTSDP(PP1) and RLTNB

SDP(PP1). Five common instances out of the
32 test problems terminated prematurely using Algorithms RLT(PP2) and RLT(PP1) with
an average optimality gap of 5.9% and 8.0%, respectively. Additionally, RLT(PP1) failed to
solve the instance (δ ,n,m,R) = (4, 10, 3, 4) and terminated with a 0.14% optimality gap,
whereas RLT(PP2) optimized this instance within 397 CPU seconds. Two other instances
with (δ ,n,m,R) = (5, 8, 4, 6) and (6, 5, 3, 6) terminated prematurely using RLT(PP2) with a
0.3% average optimality gap, whereas RLT(PP1) optimized these instances within 34 CPU
seconds, on average. However, when implemented with SDP cuts, all problems were opti-
mized by both procedures within the set time limit, where the average CPU times were 40.4
seconds for RLTSDP(PP1) versus 28.1 seconds for the proposed algorithm RLTSDP(PP2),
yielding a 30.4% savings in effort. We also implemented RLTNB(PP1) and RLTNB

SDP(PP1),
as delineated in Remark 3. Although RLTNB(PP1) decreased the average computational ef-
fort as compared to RLT(PP1), it turned out that when these methods were enhanced with
SDP cuts, RLTNB

SDP(PP1) consumed more effort than both RLTSDP(PP1) and RLTSDP(PP2).
Hence, RLTSDP(PP1) and RLTSDP(PP2) were selected for further comparison.

Using the basis selection method S.3, we also applied Remark 2 to eliminate the basic
variables xB via the substitution xB = B−1(b−NxN), and accordingly reformulated the prob-
lems equivalently in the space of the n−m nonbasic variables. Among the 32 test problems,

Reduced RLT Representations for Nonconvex Polynomial Programs 17

Table 2 CPU times for RLT(PP2), RLT(PP1), and RLTNB(PP1) with and without v-semidefinite cuts.

(δ ,n,m,R) RLT(PP2) RLT(PP1) RLTNB(PP1) RLTSDP(PP2) RLTSDP(PP1) RLTNB
SDP(PP1)

(4, 8, 3, 4) 4.3 10.8 10.9 2.6 5 5.1
(4, 8, 3, 6) 20.1 70.2 53.6 18.4 41.6 32.3
(4, 8, 4, 4) 7.1 19.4 25.6 4.1 7.6 7.6
(4, 8, 4, 6) 500.3 500.5 225.1 41.5 84.9 93.8
(4, 9, 3, 4) 21.6 36.6 37.6 12.7 19 19.3
(4, 9, 3, 6) 5.3 6 6.5 6.2 5.1 5.4
(4, 9, 4, 4) 13.7 13.9 14.1 14.1 17.3 13
(4, 9, 4, 6) 30.1 40.9 35 25.5 34.9 32
(4, 10, 3, 4) 397.1 505.9 504.7 156.2 156.1 238.3
(4, 10, 3, 6) 95.3 92.8 93.4 50.3 37.9 38.6
(4, 10, 4, 4) 9.8 9.7 10.2 11.9 7.3 7.8
(4, 10, 4, 6) 272.3 148.5 158 71.1 73.8 74

Average 114.7 121.2 97.9 34.6 40.9 47.3

(5, 6, 3, 4) 17.4 48.5 52.7 4.6 7 6.6
(5, 6, 3, 6) 11.1 25.4 24.2 3 6.3 6.3
(5, 6, 4, 4) 1 1.2 1.2 1.1 1.2 1.1
(5, 6, 4, 6) 1.3 2.2 2.2 1.2 1.2 1.2
(5, 7, 3, 4) 500.8 500.1 152.5 25.3 45.8 45.1
(5, 7, 3, 6) 9.1 8 8.2 8.2 26.9 27.1
(5, 7, 4, 4) 500.6 501.2 500.7 25.5 46.9 50.5
(5, 7, 4, 6) 19.7 44.3 34.7 19.6 36.7 28.7
(5, 8, 3, 4) 85.3 106.9 124.3 76.8 126.6 127.6
(5, 8, 3, 6) 63.1 66.6 96.3 32.6 78.9 80.1
(5, 8, 4, 4) 6.1 5.3 5.3 5.5 5 5.1
(5, 8, 4, 6) 502.1 53.2 96.7 97.3 42.2 163.7

Average 143.1 113.6 91.6 25.1 35.4 45.3

(6, 5, 2, 4) 500.7 500.7 500.6 11.6 22.5 22.5
(6, 5, 2, 6) 3.8 8.2 7.5 4.3 6.9 6.8
(6, 5, 3, 4) 2.5 2.5 2.4 3 2.5 2.6
(6, 5, 3, 6) 500.4 14.9 14.5 3 5.3 4.6
(6, 6, 2, 4) 503.5 501.4 500.6 37.9 93.3 93.8
(6, 6, 2, 6) 92.8 206.2 227.8 101.5 210.7 258.7
(6, 6, 3, 4) 15.5 20.8 21 11.7 24.4 25
(6, 6, 3, 6) 15.9 30.3 34 11.2 12.7 12.4

Average 204.4 160.6 163.5 23 47.3 53.3

Overall Avg. 147.8 128.2 111.9 28.1 40.4 48

we obtained three early termination cases using RLTSDP(PP1) in Rn−m, where the over-
all average CPU effort for this procedure was 52.7 seconds, as compared with 28.1 CPU
seconds (or a savings of 46.7%) for RLTSDP(PP2). However, for individual problems, the
relative effectiveness of RLTSDP(PP2) versus RLTSDP(PP1) in Rn−m mainly depends on the
size of the LP relaxations and the quality of the lower bounds at the root node. RLTSDP(PP1)
in Rn−m typically produces worse lower bounds at the root node than RLTSDP(PP2), but the
size of the relaxations for the former approach is smaller than those for the latter approach,
which results in faster LP solution times for the former algorithm. We therefore designed a
hybrid algorithmic approach, denoted RLTSDP(Hybrid), which is based on a parameter µ

computed as the product of the ratios GAP1
GAP2

and N1
N2

, where GAP1 and GAP2 are the respec-
tive root node optimality gaps obtained using Algorithms RLTSDP(PP2) and RLTSDP(PP1)
in Rn−m (prior to generating SDP cuts), and where N1 and N2 are the respective products

18 Hanif D. Sherali et al.

of the number of variables and constraints in the LP relaxations for these two approaches.
Hence, RLTSDP(Hybrid) computes µ at the root node, and whenever µ < 1, it proceeds by
implementing RLTSDP(PP2); otherwise, it implements RLTSDP(PP1) in Rn−m. This hybrid
algorithm suitably compromises between the robustness of RLTSDP(PP2) and the swiftness
of RLTSDP(PP1) in Rn−m, and it optimized all the 32 test problems within 19.4 CPU sec-
onds on average, versus 28.1 and 52.7 CPU seconds, respectively, for RLTSDP(PP2) and
RLTSDP(PP1) in Rn−m, resulting in respective savings in effort of 31% and 63.2%.

Table 3 Performances of different dynamic basis selection methods with RLT(PP2) and RLTSDP(PP2).

δ (# of Average CPU Time npremature Average % opt. gap*

instances) D.1 D.2 D.3 D.4 D.1 D.2 D.3 D.4 D.1 D.2 D.3 D.4

R
LT

(P
P2

) 4 (12) 127 110 115 130 2 1 1 2 0.7 2.2 2.2 29.4
5 (12) 166 151 144 156 3 3 3 3 32.5 6.3 6.7 10
6 (8) 208 259 210 183 3 4 3 2 6.3 3.7 3.3 1.4

Overall 162 163 149 153 8 8 7 7 14.7 4.5 4.6 13

R
LT

SD
P

(P
P2

) 4 (12) 44.8 35.6 34.9 113.4 0 0 0 1 - - - 28.7

5 (12) 74.6 26.7 25.4 65.9 1 0 0 1 1.5 - - 2
6 (8) 22.5 21.7 24 27.9 0 0 0 0 - - - -

Overall 50.4 28.8 28.6 74.2 1 0 0 2 1.5 - - 15.4
∗ The average % optimality gap computed over the premature termination cases.

Next, we considered the dynamic basis selection methods. Table 3 presents the results
obtained, displaying similar information as in Table 1 for the case of the static methods.
When implemented within RLT(PP2), the dynamic methods D.1 and D.4 with ∆ = 1 out-
performed the corresponding static methods S.1 and S.4, while decreasing the effort by 8.4%
and 19.2%, respectively. However, when utilized within RLTSDP(PP2), the methods D.1 and
D.4 increased the average CPU time as compared with S.1 and S.4 by 46.6% and 45.3%,
respectively. On the other hand, the static and dynamic variants of the other two basis se-
lection methods performed similarly. This experiment reveals that dynamically updating the
basis can have different effects, depending on the basis selection method used and other
accompanying algorithmic strategies implemented such as SDP cuts. On a positive note,
our best performing static basis selection method S.3 remained robustly superior under both
variations of using SDP cuts and dynamically updating the basis. Hence, we continue with
the static basis selection method S.3 for the remaining runs.

Finally, we compare the performances of RLTSDP(PP2), RLTSDP(PP1), BARON, and
RLTSDP(Hybrid) using the set of 10 larger-sized polynomial programming instances, where
S.3 is utilized for selecting the basis within RLTSDP(PP2) and RLTSDP(Hybrid). Table 4
presents the results obtained, including those for the implementation of RLTSDP(PP1) and
BARON in the reduced nonbasic variable space Rn−m. The proposed algorithm RLTSDP(PP2)
reduced the average computational times in comparison with RLTSDP(PP1) and BARON by
37.6% and 61.8%, respectively. RLTSDP(PP1) terminated prematurely for three test cases
with an average optimality gap of 10.9%, whereas all three instances were optimized by
RLTSDP(PP2) within 2846 CPU seconds on average. As seen in Table 4, using the substi-
tution process of Remark 2 to reformulate the original problem itself in Rn−m, reduced the
computational effort required by RLTSDP(PP1) and BARON, in comparison with their re-
spective implementations in Rn by 53.2% and 10.4%. Note that the basis utilized for the

Reduced RLT Representations for Nonconvex Polynomial Programs 19

Table 4 Performances of RLTSDP(PP2), RLTSDP(PP1), BARON, and RLTSDP(Hybrid) for solving the 10
larger-sized problems.

Original problem in Rn Original problem in Rn−m

RLTSDP(PP2) RLTSDP(PP1) BARON RLTSDP(PP1) BARON RLTSDP(Hybrid)
CPU CPU % opt. CPU % opt. CPU CPU % opt. CPU

(δ ,n,m,R) time time gap time gap time time gap time

(4, 11, 1, 6) 1557 2330 3600 289 1329 3600 290 1561
(4, 11, 2, 6) 354 587 3600 279 948 3600 328 355
(4, 12, 1, 6) 310 453 3600 192 2495 3600 461 316
(4, 12, 2, 6) 1912 3642 0.5 3600 504 1801 3600 547 1915
(5, 9, 1, 6) 320 726 3600 143 752 3600 145 329
(5, 9, 2, 6) 3622 3691 23 3600 336 408 3600 108 498
(6, 7, 1, 6) 1290 3208 3600 179 511 3600 76 1301
(6, 7, 2, 6) 314 1325 3600 119 54 3600 16 318
(7, 6, 1, 6) 3003 3635 9 3600 296 1532 1917 1601
(7, 6, 2, 6) 433 1436 1906 22 37 359

Average 1312 2103 11% 3431 260% 985 3075 246% 855

substitution process greatly influences the performance of RLTSDP(PP1) in Rn−m. For in-
stance, the respective average CPU times were 1838 and 985 seconds when the methods
S.2 and S.3 were utilized for selecting the basis within RLTSDP(PP1) in Rn−m. Continu-
ing with S.3, we observe that although this reduced implementation of RLTSDP(PP1) in
Rn−m also decreased the average computational effort in comparison with RLTSDP(PP2) by
24.9%, the latter performed better on three of the 10 instances. Indeed, as seen from Table 4,
the proposed algorithm RLTSDP(Hybrid) that automatically composes these two procedures
optimized all instances within 855 CPU seconds on average, reducing the computational
effort required by RLTSDP(PP1) and RLTSDP(PP2) in Rn, and by RLTSDP(PP1) in Rn−m, by
59.3%, 34.8%, and 13.2%, respectively. Hence, overall, we advocate RLTSDP(Hybrid) for
implementation.

6 Summary and Conclusions

This paper addresses reduced size Reformulation-Linearization Technique (RLT)-based for-
mulations for polynomial programming problems having linear equality subsystems. It is
shown that a strict subset of the RLT defining identities, selected via a basis partitioning
scheme, implies the remaining defining identities and enables the removal of a major por-
tion of the RLT constraints, while maintaining an equivalent representation.

When both the original and reduced relaxation procedures were enhanced with v-semidefinite
(or SDP) cuts, the static basis selection methods S.1, S.2, and S.3 implemented within
RLTSDP(PP2) outperformed RLTSDP(PP1), decreasing the effort by 14.9%, 29.1%, and 30.4%,
respectively, on a test-bed of 32 moderately sized instances, whereas S.4 increased the av-
erage CPU time for RLTSDP(PP2) by 26.4%. Using the best performing method S.3, which
tends to retain the most contributing bound-factor relationships from the original RLT for-
mulation within the reduced representation, we further solved 10 relatively larger-sized
polynomial programming problems. (As mentioned earlier, all these test problems are avail-
able from the authors upon request.) The results indicated a reduction in CPU times for
the proposed algorithm RLTSDP(PP2) over RLTSDP(PP1) and BARON (Version 9.0.6) by

20 Hanif D. Sherali et al.

37.6% and 61.8%, respectively. Using the basis selection method S.3, we also designed a
hybrid algorithm, denoted RLTSDP(Hybrid), which performs a more extensive node zero
analysis to automatically compose a solution strategy that either implements RLTSDP(PP2)
or the original RLTSDP(PP1) procedure in a reduced nonbasic variable space in Rn−m. This
composite procedure RLTSDP(Hybrid) more robustly optimized all instances, reducing the
average CPU time required by RLTSDP(PP1) and RLTSDP(PP2) in Rn, and by RLTSDP(PP1)
in Rn−m, by 52%, 31%, and 63.2%, respectively, for the 32 moderately sized problems, and
by 59.3%, 34.8%, and 13.2%, respectively, for the 10 larger-sized problems. Hence, we rec-
ommend RLTSDP(Hybrid) as a method of choice among the tested procedures for solving
polynomial programming problems.

This research can be extended in several directions. For instance, additional constraint
filtering techniques (see [15, 19], for example) can be employed to further reduce the size of
the RLT relaxations. Also, similar to the use of SDP cuts, the underlying RLT-based linear
programming relaxation can be tightened via grid-factor product restrictions ([12]) as well as
using suitable higher order RLT constraints. Similarly, we could tighten the variable bounds
by implementing range reduction strategies as recommended in Remark 3 (see also [2, 9, 17,
19] for a general discussion on range reduction strategies), while specifically exploiting the
linear equality system. Finally, as suggested in Remark 4, certain multiple-depth variants of
the dynamic basis selection strategy can be investigated, which utilize information from the
root node and the current node to update the basis dynamically in a repetitive fashion.

Acknowledgements This research has been supported by the National Science Foundation under Grant No.
CMMI-0969169. One of the authors (Leo Liberti) was partially supported by grants: ANR 07-JCJC-0151
“ARS”, Digiteo Chair 2009-14D “RMNCCO”, Digiteo Emergence 2009-55D “ARM”. The authors gratefully
acknowledge Philip E. Gill, Walter Murray, and Michael A. Saunders for permitting the use of the SNOPT
solver.

References

1. Cafieri, S., Hansen, P., Liberti, L., Letocart, L., Messine, F.: Tight and compact convex relaxations for
polynomial programming problems. Manuscript, LIX, École Polytechnique, F-91128 Palaiseau, France

2. Caprara, A., Locatelli, M.: Global optimization problems and domain reduction strategies. Mathemat-
ical Programming. 125(1), 123–137, (2010)

3. Floudas, C. A., Visweswaran, V.: Quadratic optimization. In: R. Horst, P. M. Pardalos. (eds.) Handbook
of Global Optimization, pp. 217–270. Kluwer Academic Publishers, Boston, MA. (1995)

4. Gill, P. E., Murray, W., Saunders, M. A.: An SQP algorithm for large-scale constrained optimization.
SIAM Review. 47(1), 99–131, (2005)

5. Liberti, L.: Linearity embedded in nonconvex programs. Journal of Global Optimization. 33, 157–196,
(2005)

6. Liberti, L.: Effective RLT Tightening in Continuous Bilinear Programs. Internal Report 2003.18, Po-
litecnico di Milano, 20133 Milano, Italy

7. Liberti, L., Pantelides, C. C.: An exact reformulation algorithm for large nonconvex NLPs involving
bilinear terms. Journal of Global Optimization. 36, 161–189, (2006)

8. MATLAB: version 7.6.0 (R2008a). The MathWorks Inc., Natick, MA. (2008)
9. Ryoo, H. S., Sahinidis, N. V.: A branch-and-reduce approach to global optimization. Journal of Global

Optimization. 8(2), 107–138, (1996)
10. Sahinidis, N. V., Tawarmalani, M.: BARON 9.0.6: Global Optimization of Mixed-Integer Nonlinear

Programs. User’s Manual. (2010)
11. Sherali, H. D., Adams, W. P.: A Reformulation-Linearization Technique for solving discrete and con-

tinuous nonconvex problems. Kluwer Academic Publishers, Boston, MA. (1999)
12. Sherali, H. D., Dalkiran, E.: Combined bound-grid-factor constraints for enhancing RLT relaxations for

polynomial programs. Manuscript, Grado Department of Industrial and Systems Engineering, Virginia
Polytechnic and State University, Blacksburg, VA

Reduced RLT Representations for Nonconvex Polynomial Programs 21

13. Sherali, H. D., Dalkiran, E., Desai, J.: Enhancing RLT-based relaxations for polynomial programming
problems via a new class of v-semidefinite cuts. Manuscript, Grado Department of Industrial and Sys-
tems Engineering, Virginia Polytechnic and State University, Blacksburg, VA

14. Sherali, H. D., Fraticelli, B. M. P.: Enhancing RLT Relaxations via a new class of semidefinite cuts.
Journal of Global Optimization. 22, 233-261, (2002)

15. Sherali, H. D., Smith, J. C., Adams, W. P.: Reduced first-level representations via the reformulation-
linearization technique: results, counterexamples, and computations. Discrete Applied Mathematics.
101, 247–267, (2000)

16. Sherali, H. D., Tuncbilek, C. H.: A global optimization algorithm for polynomial programming prob-
lems using a reformulation-linearization technique. Journal of Global Optimization. 2(1), 101–112,
(1992)

17. Sherali, H. D., Tuncbilek, C. H.: A reformulation-convexification approach for solving nonconvex
quadratic programming problems. Journal of Global Optimization. 7, 1–31, (1995)

18. Sherali, H. D., Tuncbilek, C. H.: Comparison of two reformulation-linearization technique based linear
programming relaxations for polynomial programming problems. Journal of Global Optimization. 10,
381–390 (1997)

19. Sherali, H. D., Tuncbilek, C. H.: New reformulation linearization/convexification relaxations for uni-
variate and multivariate polynomial programming problems. Operations Research Letters. 21(1), 1–9
(1997)

20. Shor, N. Z.: Dual quadratic estimates in polynomial and Boolen programming. Annals of Operations
Reserach. 25, 163–168, (1990)

21. Tawarmalani, M., Sahinidis, N. V.: A polyhedral branch-and-cut approach to global optimization.
Mathematical Programming. 103, 225–249 (2005)

