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Introduction

This volume collects the extended abstracts of the contributions that have been selected for
presentation at the Workshop.

An additional special volume of Discrete Applied Mathematics (DAM) devoted to the CTW04
Workshop will be prepared. This volume will contain full-length versions of presentations
given at the workshop, as well as other contributions related to the topics of the workshop.
We hereby invite all participants to submit full-length papers before 30 September 2004.

CTWO04 stands for Cologne-Twente Workshop 2004. These workshops, on Graph Theory
and Combinatorial Optimization, are usually organized bi-annually by either Cologne Uni-
versity or Twente University. As its importance grew over time, it was recognized that the
frequency of the Workshops should be increased to one per year, and that more institutions
should take the leading role in its organization. For the first time, a Cologne-Twente Work-
shop is organized in a place entirely different from either Cologne or Enschede: the CTW04
Workshop is organized by the Operations Research group of the Dipartimento di Elettronica
e Informazione, Politecnico di Milano, and takes place at Villa Vigoni, Menaggio, Como,
Italy, between 31st May and 2nd June 2004.

The local organizers thank the members of the program committee:

E. Amaldi (Milan), H.J. Broersma (Enschede), U. Faigle (Cologne), J.L. Hurink (En-
schede), F. Malucelli (Milan), R. Schrader (Cologne), R. Schultz (Duisburg), G.J. Woeg-
inger (Enschede)

for their help in setting up such an attractive program.

We acknowledge the help of the Dipartimento di Elettronica e Informazione at the Politecnico
di Milano. Special thanks also go to all the anonymous referees.

Leo Liberti
Francesco Maffioli

Milano, 21st April 2004
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Sessions

There are three plenary invited talks (M. Queyranne — Chair: U. Faigle; L. Stougie — Chair:
F. Malucelli; H. Hamacher — Chair: F. Maffioli).

The contributed talks are scheduled into 16 sessions (6 of which are split into two parts).
The order of the talks in each session follows the order of the following list. The name of the
presenting author is typeset in boldface.

e ADVANCES IN OPTIMIZATION I (31/5, 14:30, Sala Marcolini) — IT (31/5, 17, Conference
Hall). Chairs: S. Pickl, R. Schultz.
- D. Lozovanu, S. Pickl, Special dynamic programming technique for multiobjective dis-
crete control and for dynamic games on graph-based networks
- L. Liberti, N. Maculan, S. Kucherenko, The kissing number problem: new results from
global optimization
- A. Chierici, R. Cordone, R. Maja, The demand-dependent optimization of reqular train
timetables
- W. Bein, Knowledge state algorithms and the 2-server problem
- F. Tardella, Connections between continuous and combinatorial optimization problems
through an extension of the fundamental theorem of Linear Programming
- A. Mérkert, R. Schultz, On deviation measures in stochastic integer programming
e ALGEBRAIC STRUCTURES (2/6, 10:30, Sala Marcolini). Chair: R. Schrader.
- H. Gropp, More on orbital matrices
- M.R. Emamy-K., The cut number of the n-cube, boolean methods and a geometric
connection to threshold logic
- F. Maffioli, N. Zagaglia Salvi, A particular class of graphic matroids
APPLICATIONS OF LOCAL SEARCH (1/6, 16:30, Library). Chair: L. Liberti.
- E. Amaldi, L. Liberti, F. Maffioli, N. Maculan, Algorithms for finding minimum fun-
damental cycle bases in graphs
- D. van Dyck, V. Fack, To be or not to be Yutsis
APPROXIMABILITY AND COMPLEXITY (31/5, 14:30, Conference Hall). Chair: F. Maffioli.
- N. Ahuja, A. Baltz, B. Doerr, A. Srivastav, Coloring graphs with minimal edge load
- U. Faigle, B. Fuchs, B. Wienand, Covering graphs by colored stable sets
- F.V. Fomin, D.M. Thilikos, A 3-approximation for the pathwidth of Halin graphs
- T. Doi, T. Fujito, A primal-dual method for approximating tree cover with two weights
BEING HAMILTONIAN (31/5, 17, Sala Marcolini). Chair: V. Deineko.
- S. Zhang, B. Chen, R. Yu, Heavy cycles in k-connected weighted graphs
- A. Asratian, A new local condition for a graph to be Hamiltonian
CIRCULANT GRAPHS (31/5, 14:30, Library). Chair: D. Rébiger.
- A. Uejima, H. Ito, Subdivision of the hierarchy of H-colorable graph classes by circulant
graphs
- V.E. Brimkov, Clique, chromatic, and Lovdsz numbers of certain circulant graphs



CLIQUES (1/6, Sala Marcolini, 14:30). Chair: F. Tardella.

- M. Cajkova, V. Fack, Clique algorithms for classifying substructures in generalized
quadrangles

- L.M. Torres, On cliques associated to 3-set packing problems

- V.M.F. Dias, C.M.H. de Figuereido, J.L. Szwarcfiter, On the generation of bicliques of
a graph

COLOURING PROBLEMS I-IT (31/5, 15:30, Library). Chairs: J. Zerovnik

. B. Zmazek, J. Zerovnik, Behzad-Vizing conjecture and Cartesian product graphs

- T. Faik, About the b-continuity of graphs

- C. Alvarez, M. Serna, The proper interval colored graph problem for caterpillar trees

- A. Vietri, The complexity of arc-colorings for directed hypergraphs
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- G. Nicosia, A. Pacifici, Exact algorithms for a discrete metric labelling problem

- T. Brueggemann, W. Kern, An improved local search algorithm for 3-SAT

- M. Joswig, ML.E. Pfetsch, Computing optimal discrete morse functions

- R. Aringhieri, R. Cordone, The multicommodity multilevel bottleneck assignment problem
(presented by G. Righini)

FLows AND NETWORKS I-II (1/6, 10, Sala Marcolini). Chair: M. Pinar.

- D. Gijswijt, On a packet scheduling problem for smart antennas and polyhedra defined
by circular-ones matrices

- A. Altin, E. Amaldi, P. Belotti, M. C. Par, Virtual private network design under
traffic uncertainty

- M.-C. Costa, A. Billionnet, Multiway cut and integer flow problems in trees
- S.G. Kolliopoulos, Minimum-cost single-source 2-splittable flow

GRAPH THEORY I-II (1/6, 10, Conference Hall). Chairs: B. Fuchs.
- J.-L. Fouquet, J.-M. Vanherpe, On (P, Ps)-sparse graphs and other families

- V. Giakoumakis, S. Olariu, The set of prime extensions of a graph: the finite and the
infinite case

- E. Prisner, k-Pseudosnakes in n-dimensional hypercubes

- M. Aider, Ertended distance-hereditary graphs

NUMBERS AND GRAPHS (1/6, 16:30, Sala Marcolini). Chair: L. Stougie.

- N. Hebbinghaus, Discrepancy of sums of arithmetic progressions

- A.N.M. Salman, H.J. Broersma, The Ramsey numbers of paths versus kipases

POLYNOMIAL CASES OF PROBLEMS IN NP (1/6, 14:30, Library). Chair: M. Queyranne.

- F. Carrabs, R. Cerulli, M. Gentili, G. Parlato, Minimum feedback vertex set on dia-
monds

- P. Detti, C. Meloni, M. Pranzo, Minimum dominating trail set for two-terminal series
parallel graphs

- W.Y.C. Chen, X. Li, C. Wang, X. Zhang, Linear time algorithms to the minimum
all-ones problem for unicyclic and bicyclic graphs



e POLYNOMIAL PROBLEMS (1/6, 16:30, Conference Hall). Chair: E. Amaldi.
- M. Wattenhofer, R. Wattenhofer, Fast and Simple Algorithms for Weighted Perfect
Matching
- S. Nikolopoulos, L. Palios, On the strongly connected and biconnected components of
the complement of graphs
e TSP AND ROUTING I (1/6, 14:30, Conference Hall) — II (2/6, 10:30, Conference Hall).
Chairs: H. Hamacher, R. Cordone.
- V. Deineko, New ezxponential neighbourhood for polynomially solvable TSPs
- G. Righini, M. Salani, Dynamic programming algorithms for the elementary shortest
path problem with resource constraints
- D. Rébiger, Semi-preemptive routing on a line
- R. Aringhieri, M. Bruglieri, F. Malucelli, M. Nonato, An asymmetric vehicle routing
problem arising in the collection and disposal of special waste
- D. Cantone, S. Faro, Two-Levels-Greedy: a generalization of Dijkstra’s shortest path
algorithm
- P. Belotti, F. Malucelli, Network design with grooming constraints



Workshop Program

There are six plenary sessions (a 15 minutes welcoming session, three 1-hour plenary lectures,
the 1-hour “open problems” session and the 30 minutes closing session). Contributed talks
are scheduled in groups of three parallel sessions held in different seminar rooms as specified
below. Wide-interest topics will be presented in the Conference Hall, whilst other topics will
be discussed in the smaller rooms (Sala Marcolini, the Library room).

31st May, AM 9-9:30 9:30-10 10-10:30 10:30-11 11-11:15 11:15-11:45 ‘ 11:45-12:15
Conference Hall Coffee WELCOME | PLENARY (M. Queyranne)
Sala Marcolini

Library

31st May, PM 14:30-15 | 15-15:30 ‘ 15:30-16 16-16:30 16:30-17 17-17:30 17:30-18
Conference Hall || Approximability and Complexity Coffee Advances in Optimization II
Sala Marcolini Advances in Optimization I Being Hamiltonian

Library Circulant Graphs ‘ Colouring Problems I Colouring Problems II

1st June, AM 9-9:30 ‘ 9:30-10 10-10:30 10:30-11 11-11:30 11:30-12 12-12:30
Conference Hall || PLENARY (L. Stougie) Graph Theory I Coffee Graph Theory II

Sala Marcolini Flows and Networks I Flows and Networks II
Library Exact Algorithms I Exact Algorithms II

1st June, PM 14:30-15 | 15-15:30 15:30-16 | 16-16:30 16:30-17 17-17:30 17:30-18:30
Conference Hall || TSP and Routing I Coffee Polynomial Problems OPEN PROBLEMS
Sala Marcolini Cliques Numbers and Graphs

Library Polynomial Cases of Problems in NP Applications of Local Search

2nd June, AM 9-9:30 ‘ 9:30-10 10-10:30 10:30-11 11-11:30 11:30-12 12-12:30
Conference Hall || PLenary (H. Hamacher) | Coffee TSP and Routing II CLosING

Sala Marcolini

Algebraic Structures

Library

Data Structures and Retrieval

Lunch will take place at 13:00.
Dinner will take place at 19:30.
On Tuesday, 1st June 2004, at 21:00, there will be a piano concert in the Conference Hall.

The pianist Massimo Bianchi will play the following program:

- F. Chopin, Andante spianato e Polacca brillante, op. 22

- F. Liszt, Scherzo e Marcia

- Beethoven /Liszt, Piano transcription of Symphony n. 7, op. 92:
Poco sostenuto-Vivace — Allegretto — Presto — Allegro con brio

Lunch will also be served at 13:00 on Wednesday 2nd June after the closing session.
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Decomposition of consecutive-1 matrices and
applications

Horst W. Hamacher !

University of Kaiserslautern, Germany

Any integer matrix A can be decomposed into a non-negative linear combination of (0, 1)
matrices with the consecutive-1 property (either in rows or in columns). In this talk we will
review results on how to do this decomposition with various objectives to be minimized such
as:

e sum of coefficients
e number of consecutive-1 matrices to be used

Moreover a sequencing problem of the consecutive-1 matrices is considered. As applications
we discuss the modulation of radiation in cancer therapy and the design of stops in public
transportation systems. The presentation will be based on joint work with Ahuja, Baatar,
Boland, Lenzen, Liebers, Schébel and Wagner.

1 E-mail: hamacher@mathematik.uni-k1.de.

CTWO04 Proceedings — Villa Vigoni (CO), Italy, 31st May to 2nd June 2004



Submodular function minimization in Z" and searching in
Monge arrays

Maurice Queyranne !

Sauder School of Business, University of British Columbia, Vancouver, B.C., Canada
Laboratoire Leibniz-IMAG, Grenoble, France

We establish and use connections among the problem of searching in a multidimensional
Monge array, minimizing a submodular function on a sublattice of the integer lattice Z", and
Boolean submodular function minimization. In particular, we obtain the first algorithm for
minimizing a submodular function on a sublattice S of Z" with time complexity polynomial
in the length of a maximal chain of S, and we use it to construct the first polynomial
algorithm (regarded as a "major improvement" by Aggarwal and Park) for the problem of
searching in a multidimensional Monge array.

We also present some results on the extension of submodular and modular functions, cor-
recting an extension proposed by Lovasz, and we show that every modular function on a
sublattice of Z™ is separable.

Finally, we describe a penalization approach to the problem of minimizing submodular func-
tions on a sublattice of Z" or of the Boolean hypercube.

The presentation is based on joint work with Fabio Tardella.

! E-mail: Maurice.Queyranne@sauder.ubc.ca.

CTWO04 Proceedings — Villa Vigoni (CO), Italy, 31st May to 2nd June 2004



Polynomial solvability of Mader’s edge-disjoint paths
problem

Leen Stougie !

Department of Mathematics and Computer Science, TU Findhoven, The Nederlands
CWI, Amsterdam, The Nederlands

In 1978 Mader proved a minmax relation between the number of vertex and edge disjoint
paths in a graph between prespecified terminal vertices of the graph and the size of a cut
induced by a partition of the graph. His theorem generalizes a fundamental theorem of
Menger from 1927. Menger’s theorem in itself generalized the famous Ko6nig’s theorem, which
is at the basis of matching theory, and it also implies the max flow-min cut theorem for
network flows.

Mader did not give an algorithm for finding the maximum number of edge or vertex dis-
joint terminal paths. It was Lovasz in 1980 who showed that this problem can be solved in
polynomial time using a technical proof based on matroid matching theory. Recently, Judith
Keijsper, Rudi Pendavingh and I gave an easy proof for the edge-disjoint version through an
integer linear programming formulation of the problem. We show that Mader’s result implies
strong duality between an integer solution of both the primal and the the dual of the linear
programming relaxation of this problem. The proof also shows that a weighted version of
the problem is polynomially solvable, which was not known before.

1 E-mail: leen@win.tue.nl.

CTWO04 Proceedings — Villa Vigoni (CO), Italy, 31st May to 2nd June 2004



CONTRIBUTED PAPERS



Coloring Graphs with Minimal Edge Load

Nitin Ahuja', Andreas Baltz?, Benjamin Doerr®, Anand Srivastav*

Mathematisches Seminar, Bereich II, Christian-Albrechts-Universitit zu Kiel,
Christian-Albrechts-Platz 4, 24118 Kiel, Germany

Abstract

The load of a coloring ¢ : V' — {red, blue} for a given graph G = (V, E) is a pair L, = (1, by),
where 7, is the number of edges with at least one red end-vertex and b, is the number of edges
with at least one blue end-vertex. Our aim is to find a coloring ¢ such that l, := max{r,,b,}
is minimized. We show that this problem is N P-complete. For trees, we give a polynomial time
algorithm computing an optimal solution. This has load at most m/2 + Alog, n, where m and n
denote the number of edges and vertices respectively. For arbitrary graphs, a coloring with load at
most 2m + O(v/Am) can be found in deterministic polynomial time using a derandomized version
of Azuma’s martingale inequality. This bound cannot be improved in general: almost all graphs
have to be colored with load at least %m — v 3Imn.

Key words: graph coloring, graph partitioning

1 Introduction

Let G = (V,E) be a graph. For a coloring ¢ : V — {red, blue} we define the load of
¢ by L, := (r,,b,), where r, counts the number of edges incident with at least one red
vertex, and b, is the number of edges incident with at least one blue vertex. The aim of the
Minimum Load Coloring Problem (MLCP) is to find a coloring ¢ such that [, := max{r,, b,}
is minimized. To our knowledge there exists no prior literature on this particular problem. A
generalization to hypergraphs was regarded by Ageev et al. [1]. They study scheduling aspects

of an optical communication network with n nodes V"= {vq,...,v,} and n hyperedges
E ={E,...,E,}. Node v; wants to send packets of data to a set E; C V of other nodes.
Given a set W = {wy,...,w,} of k available wavelength, the aim is to find an assignment

¢ : V. — W of wavelengths to nodes such that the maximum load (number of packets) on
any wavelength is minimized.

E-mail: nia@numerik.uni-kiel.de.
E-mail: aba@numerik.uni-kiel.de.
E-mail: bed@numerik.uni-kiel.de.
E-mail: asr@numerik.uni-kiel.de.

W N =
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Notation: Throughout the paper let n denote the number of vertices of the graph under
consideration, m the number of edges and A the maximum vertex degree. We put I(G) to
be the minimum (hence optimal) load among all vertex colorings of G.

2 NP—Completeness

A reduction to MINBISECTION shows that MLCP is N P-complete.

Theorem 1 MLCP € NPC.

Proof.[Sketch] Let G = (V, E) be an instance of MINBISECTION. We construct an instance

G' = (V', E') of MLCP by adding two cliques Cy = (V4, Ey), Cy = (Va, Ey), |Vi| = |Va| =

2m + 2, By = Po(V1), Ey := Pa(Va), a set of edges E == {{v,v'} | v € V, v € V; UV}

connecting each v € V to each clique vertex, and a matching M = (Vj, E3) of size m.

Moreover we define another instance G" of MLCP by adding one more free matching edge
= {vf, UQ} to G'.

We claim that optimal solutions to MLCP on G’ and G” determine a minimum bisection in
G and vice versa. Since MINBISECTION is N P-complete (cf. Karpinski [4]), and, obviously,
MLCP € NP, this implies MLCP € NPC. Let OPTpg be the size of a minimum bisection
‘E| + OPTB +n(m+1) if OPTp is even

\E;’ % +n(m+1)+1 otherwise,

of G. Tt is enough to show that I(G") = {

12| , OPT, 1 .
and [(G") ={ 2 OBT +n(m+1)+5 if OPTp is odd
% + ="+ n(m+1)+1 otherwise.

AG) — |E'| —2n(m+1) i IG) < (G")

This implies OPTp =
P B {21( G')— |E'| —=2n(m+1) —1 otherwise.

The first step of the proof is to show that each optimal coloring ¢ has to color G’ such that
C; and Cy are monochromatic with different colors, and V' contains as many red as blue

vertices. This yields [, > % + % +n(m+1).
On the other hand, we may use the edges in F5 to balance the number of monochromatic

edges in both colors (here the parity of |E3| is important). Thus only the number of bichro-
matic edges is important. This proves the claimed bounds for [(G") and I(G"). O

3 Bounds and Algorithms for Trees

For trees, we prove the bound (G) < ”T_l + Alogy n. The key to this is the following more
general lemma.

17



Coloring Graphs with Minimal Edge Load

Lemma 1 Given a tree G = (V, E) , |V| = n, and p1,p2 € N with p; +py = n — 1, there
is a red-blue coloring of V' such that at least p1 + 1 — Alog, n edges are monochromatic red
and at least po + 1 — Alog, n are monochromatic blue.

From the lemma, we easily deduce the following.

Theorem 2 Let G be a tree. Then I(G) < F + Alog,n.

The proof of Lemma 1 uses an inductive construction. Thus, there is an efficient algorithm for
computing colorings with load at most 3 + Alog, n. However, it is also possible to compute
optimal colorings for trees efficiently.

Theorem 3 On trees, MLCP can be solved in time O(n?).

Proof.|Sketch| Let G be a tree. We think of G as a directed tree with an arbitrary root a at
level 0, the successors N(a) := {v € V | (a,v) € E} of a at level 1, etc. For each v € V' we
denote by T, the induced subtree of G rooted in v. We define for each arbitrary subtree G’
of G with root a’,

Lg = {(r,b) | (r,b) = L, for some coloring ¢ of G’ with ¢(a’) = red},

the set of possible loads for G’. Suppose, we can efficiently compute Lg. Since [Lg| < (n+1)2,
we can also efficiently find the maximum load [(G) of an optimal coloring by inspecting all
(r,b) € L and selecting the one with smallest maximum component. It is easy to see that Lg
can be determined in polynomial time by iteratively computing L, for all v € V' in reverse
breadth first order. The iteration is based on two operations: consider a subtree G’ of G with
root a' # a, v € V with (v,d') € E, and the tree v + G’ := (V(G') U {v}, E(G") U {(v,d")})
obtained by appending the edge (v,a’) to G'. We define

v+ Lo ={(r+1,b) | (r,b) € L&} U{(b+1,r+1)]| (r,b) € L&} (1)

For two subtrees G', G, of G that intersect only in their joint root o', let G| + G% =
(V(G) UV(GY), E(G)) U E(GY)) be the composite tree. We define

»CG’I +£G'2 = {(7“1 -+ TQ,bl +b2) | (T‘l,bl) € ,CGII, (TQ,bz) € ;CGIQ} (2)

It is straightforward to prove that for all subtrees G' = (V', E’) of G with root a' and all
v € V with (v,d') € E, L. = v+ L. Moreover, for all subtrees G} = (V{, E}), G, =
(V3, EY) intersecting only in their joint root o, Lg e, = La + Lg,- We conclude that
Lr, = Xyenw) Loty = Zwenw) v + L1, for all v € V. Considering the complexity of the
operations (1) and (2) we see that Lg can be recursively computed in Y,y deg(v) - O(n* +
n?) = O(n®) steps.

We can reduce this time to O(n?) by considering only “relevant” loads, Rg := {(r,b) | (r,b) €
Le,b=min{d | (r,b') € L&}}. Re can be computed iteratively via operations similar to
(1) and (2) that are performed on R instead of Lg and thus require only O(n) and O(n?)
steps, respectively. This yields the desired O(n?®) bound.
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The iterative procedure to compute the optimal load can be easily modified to actually
compute an optimal coloring. O

4 Approximation Algorithms for Arbitrary Graphs

Let us first observe that the load of random colorings is less than 2m + O(v/Am) with high
probability. Since %m is a trivial lower bound for [,, we obtain a (1.5 4+ ¢)-approximation
algorithm if A = o(m). We will use the following Martingale inequality that can be found in
McDiarmid [5]. It is an application of the well known inequality of Azuma [2].

Lemma 2 Let Xq,..., X, be independent random variables taking values in some sets A, ..., A,.
Let f: [lign) Ai — R such that |f(z) — f(y)| < ¢; whenever x and y differ only in the i-th
coordinate. Let X = (X1,...,X,) and p = E(f(X)). Then for any A > 0,

PU(X) — > ) < exp(-2X%/ 362)

Theorem 4 There is a coloring ¢ such that |, < %m +4/(In2)Am.
A random coloring satisfies ]P’(lw > %m + ¢y/(In Q)Am) < 90+,

Proof. Let ¢ : V — {red, blue} such that P(¢(v) = red) = 3 = P(¢(v) = blue) independently
for all v € V. Clearly, if two colorings 1, o differ only in the color of some vertex v € V,
then |r,, — 7y,| < deg(v). We compute E(r,) = YecpP(3v € e : ¢(v) = red) = 3m. Since
Yoy deg(v)? < Yey deg(v)A = 2Am, for A = /(In2)Am we have P(r, > 3m + )) < 1.
Thus with positive probability, both r, and b, are at most %m + A. In particular, a coloring
with [, < %m + A exists. The second statement follows in a similar manner. O

Theorem 5 A coloring ¢ such that l, < 3m+,/(In4)Am can be constructed in O(n®) time.

For the proof we need a derandomized version (Theorem 6) of Azuma’s martingale inequality.

Theorem 6 ([6]) Let f(X) =3, 0;;X;X; be a quadratic form satisfying the assumptions
of Lemma 2. Let § € (0,1) with 2exp(—2X?/ 3 | ¢?) < 1-6. We can construct a X € {0,1}"

with |f(X) —E(f(X))| <X in O (ndlog(d 1)) time.

Proof. [Sketch of Theorem 5] Let (a;;) be the adjacency matrix of the graph G = (V, E)
under consideration. We identify a two-coloring ¢ : V' — {blue,red} with X € {0,1}". Let

T(X) = ?:1 ;L:l Qs );1 X _l_zz'(L:l Z?:l aZ]XZ(]-_X])a and b(X) — Z?ZI Z;;,Zl (7] (l—X;) (1—X]~)+
i1 21 ij Xi (1= Xj). Thus, r, = r(X), b, = b(X) and [, = f(X) := max{r(X), b(X)}.
Now, if we consider f, the maximum of two quadratic forms, then the result can be proved

by using Lemma 2 and Theorem 6. O

The dependence on A cannot be avoided. This is shown by star graphs. If A = o(m), then
the resulting bound of (2 + o(1))m cannot be improved in general, since, for the complete
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Coloring Graphs with Minimal Edge Load

graph Kn: ®p >

l, > 3n?—In = (2 +0(1))m for all colorings ¢. In a sense, almost all graphs have
aload of (3 — o1

)ym.

Theorem 7 Let m > 12n. For a random multi-graph G = (V, E), |V| = n obtained by
choosing m edges from (g) independently with repetition, we have [(G) > %m — v/ 3mn with
probability 1 — 27",
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Extended abstract

We shall only consider finite, simple loopless, undirected connected graphs G = (V, E), where
V' is the vertex set and E is the edge set. For vertices v and v in G, Pg(u, v) denotes a shortest
path in G from u to v. Its length will be denoted dg(u,v) (if no ambiguity can arise, it will
not be referred to the graph G in our notations).

Following the notations used in [3], a graph G = (V, E) is (k, +)-distance-hereditary if for
all connected induced subgraphs H = (Y, F') of G, we have :

Vu,v € Y,dg(u,v) < dg(u,v) + k.
Note that other notations are also used to designate thses graphs [1].

Obviously, we have the following :

Proposition 1 If G is a (k,+)-distance-hereditary graph, then G is a (k',+)-distance-
hereditary graph, for all k' > k.

It is easy to see that (0, +)-distance-hereditary graphs are just the distance-hereditary graphs
[2] and [5], and (1, +)-distance-hereditary graphs are the almost distance-hereditary graphs

[1]-
All these classes of graphs have been characterized in terms of forbidden induced subgraphs.

A C,-configuration is just an induced C,, with all its eventual chords are incident to a same
vertex.

Theorem 1 [2] A graph is a (0,+)-distance-hereditary graph if and only if it neither con-
tains Cs-configurations nor Cy-configurations, for n > 5, as induced subgraphs.

Theorem 2 [1] A graph G is (1,+)-distance-hereditary if and only if G neither contains a
2C5-configuration, nor a C,-configuration, for n > 6, as induced subgraphs.
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Extended Distance-Hereditary Graphs

(o L)

(a) (b) (c)

Figure 1. Cs-configurations

Figure 2. 2C5-configurations

If one looks carrefully to the 2C5-configuration of type (b), he can observe it consists of a
split composition of two Cs-configurations.

In this talk, we are interested in a characterization of (2, +)-distance-hereditary graphs in
terms of forbidden induced subgraphs.

For example, minimal forbidden induced subgraphs are :

- C,-configurations, with n > 7 ;

- configurations obtained by combining (in the same way that in the definition of 2Cs-
configurations of type (a)) three minimal forbidden subgraphs of (0, +)-distance-hereditary
(i.e. Cs-configurations) ;

- configurations obtained by combining a minimal forbidden subgraph of (0, +)-distance-
hereditary (i.e. a Cs-configuration) with a minimal forbidden subgraph of (1, +)-distance-
hereditary (i.e. a Cg-configuration or a 2Cj-configuration)

- configurations obtained by combining some pairs of minimal forbidden subgraphs of (1, +)-
distance-hereditary (i.e. Cs-configurations) ;

Our goal in this talk is to describe all these minimal forbidden induced subgraphs and to
obtain a minimal characterization of these graphs.
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Abstract

We propose different formulations as well as efficient solution approaches for the VPN design problem
under traffic uncertainty with symmetric bandwidths.

Key words: VPN design, traffic uncertainty.

1 Introduction

A Virtual Private Network (VPN) service is similar to a private network service since it
enables a group of nodes over a large underlying network to communicate with each other
using an already available physical network like the Internet.

In this paper we deal with the polyhedral model of Ben-Ameur and Kerivin [1], which allows
the traffic vector to belong to a polytope defined by some customer specific constraints. We
offer three different formulations for the VPN design problem where the solution is allowed to
be an arbitrary subgraph. We propose a Column Generation and a Cutting Plane Algorithm
to solve these formulations efficiently.

We assume that we are given an undirected network G = (V, F) and a set of VPN sites
W C V. Each edge {i,j} € FE is assigned a unit capacity reservation cost ¢;; > 0. The
aggregate traffic inflow and outflow bandwidths for each terminal s € W is symmetric,
ie. bt =b, = b, Vs € W. A traffic demand vector is d = (dst) e iem\(s)- Lhe set of

demand pairs is Q = {(s,t) : s,t € W, s # t} and we are given a matrix A € R"I? where A
is the number of constraints defining the traffic polytope D = {d Ad<d, de §Rh}. Each
terminal s € W is required to route its traffic to site £ € W\ {s} unsplittably on a single
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path Py and the final solution, i.e., P = U eq Pst, is allowed to be an arbitrary subgraph
of G = (V, E). The problem is to find a least cost capacity installation so as to satisfy all
possible traffic demands known to lie in the polytopic set D.

2 The Polyhedral Flow Formulation

In this section we present the following mixed IP formulation of the problem using the
binary flow variable 7, which is 1 if the directed arc (4, j) is contained in the path going
from terminal s to terminal ¢.

min Z Cijxij (].)

{ij}eE
li=s
st Y (uf—ul) =4 —1i=t VieV,(st)eq (2)
j{ijIeE
0 o.w.
Y dalyyj+un) <zy;  V{i,jleE (3)
(s,;)eQ
Ad<a (4)
yi; €{0,1} V{i,j} € E,(s,t) € Q

where the constraints (2) are the flow constraints. Constraint set (3) defines the amount of
capacity reserved on the edge {7, j} considering all feasible traffic scenarios defined by (4).
Note that the constraints (3) are nonlinear. Our contribution at this point is to linearize
these constraints so as to obtain the following compact mixed-integer formulation.

{ij}€E

li=s

st. > (uf-ul) =4 —1i=t VieV,(st)€Q (6)
Jj{iJIEE
0 o.w.
=T ..
wi a <z V{i,j} € E (7)
- T

wid AT > i+ g v{i,j} e & (8)
Tij 2 0, w¥ >0 V{i,j} €E (9)
yit € {0,1} V{i,j} € E,(s,t) € Q (10)

where w_%j is the vector of dual variables.
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Virtual Private Network Design Under Traffic Uncertainty

3 The Polyhedral Path Formulation

In this case we have the binary variable z,, which is 1 if traffic is routed through path p in
the optimal solution. Then our path formulation is

min Z CijLij (11)
{1.5}eE
s.t. Y oz >1 V(s,t) € Q (12)
pEPst

ooda >, zm<wzV{i,j}€E (13)

(s,;)€EQ  PEPstNPy; 5y

Ad<a (14)
zp € {0,1} V(s,t) € Q,p € Py (15)
zi; > 0 v{ijt€E (16)

where (12) ensures that the demand pair (s,t) € @ communicates and (13) defines the
capacity reservation on edge {i,j} considering all possible traffic scenarios defined as in (14).
Note that type (13) constraints are nonlinear and can be linearized judiciously to obtain

h ..
min Y ¢ Y apwy (17)
(ij}eE k=1
s.t. Y oz>1 V(s,t) €Q (18)
pEPst
h .
Yoaraw? > Y. zV(s,t)€Q,{i,jt€E (19)
k=1 pEPStﬂP{m-}
zp € {0,1} V(s,t) € Q,p € Py (20)
wi > 0 V{i,j} € E (21)

We propose to use a column generation algorithm to solve the path formulation,which can
be summarized as follows:

e Step 0 Let the inital set of paths include the pairwise shortest paths.

e Step 1 Solve the path formulation with the current set of paths.

e Step 2 For each (s,t) € @ if you find a path p such that os — > fijtep Wf} > 0, the add it
to te current set of paths.

e Step 3 Go to step 1 if new paths are added in Step 2. Otherwise stop!

4 The Polyhedral Cut Formulation

In this case we require connectivity over all cuts. Then the polyhedral cut formulation is as
given below.
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min Z cija_i’w?j (22)

{i,j}€E
st S wiAy > 1V (s,t) € Q (23)
{i.4}€0(W)
wi >0 V{i,j}€E (24)

where Ag; denotes the column of A corresponding to the demand pair (s,t) € Q. We propose
to use a cutting plane algorithm to solve the above problem, which can be summarized as
follows.

Step 0 Set the current cut to empty set.

Step 1 Solve the above problem with the current cut set.

Step 2 For each demand pair (s,t) € @ use the max flow-min cut theorem to determine
the violated cut inequalities of type (23). If you find such an edge, then add that edge to
the current cut.

Step3 If the cut set is updated, then go to Step 1, otherwise stop!
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Abstract

This paper studies the computational complexity of the Proper interval colored graph problem
(PICG), when the input graph is a colored caterpillar, parameterized by hair length. To prove our
result we also study a graph layout problem the Proper colored layout problem (PCLP). We show a
dichotomy result: the PICG and the PCLP are N'P-complete for colored caterpillars of hair length
> 2, while both problems are in P, for colored caterpillars of hair length < 2.

1 Introduction

A graph G = (V, E) is called an interval graph if one can assign to each vertex v € V an
interval on the real line I, in such a way that (u,v) € E <= [, NI, # (). When in addition
for any pair of vertices u,v € V it holds that I, € I,, the graph is called a proper interval
graph. Interval graphs have been studied intensively because of their wide applicability to
practical problems |7|. Many efforts have been devoted to the study of problems in which one
is asked to complete a graph or a colored graph into an interval or a proper interval graph
as this kind of problems are used to model ambiguity in Physical Mapping or consistency in
Temporal Reasoning [9]. In the colored versions of the above problems, the input is a graph
together with a proper vertex coloring that uses k-colors, and the solution is a super-graph
that, besides of being of the required type, is still properly colored by the given coloring.
Most of those problems are known to be N'P-complete, the Interval graph completion [5]
and the Interval colored graph completion (1ICG) |4, 8]. In the case that the graph has degree
bounded by a constant and it is further colored with k colors, there is a O(n*~!) algorithm
to solve the 1CG [10]. For a fixed number of colors &, the problem is N'P-complete for k£ > 4
and in P for k <4 [3]. In fact for 4 colors the problem is NP-complete even for caterpillar
trees [1]. Recall that a caterpillar with hairs of length at most A is formed by a chain, called
the backbone. Each node in the backbone can be connected to several non intersecting paths
of length at most h.
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Figure 1. Some graphs

The parameterized version of the Proper interval colored graph (PICG) problem, with param-
eter the number of colors, is W([1]-hard, this implies the N"P-completeness of PICG and a
polynomial time algorithm for constant number of colors [10, 11, 6]. We study the complexity
of the PICG when the input graph is a colored caterpillar tree. We show its NP-completeness
for colored caterpillars of hair length > 2, and provide a polynomial time algorithm for
caterpillars of hair length < 2. To prove our result we reinforce the relationship between
intervalizing problems and graph layout problems. Recall that given a graph G = (V, E)
with |V| = n a layout ¢ of G is a one to one mapping ¢ : V — [n]. For a given layout
p,and any 1 < i < m,let V; = {v | ¢(v) < iand Ju ¢(u) > i(u,v) € E}. For a given
k-colored graph (G = (V, E), k), where k is a proper k-coloring of G, a colored layout of
(G, k) is a layout ¢ of G such that for all u € V with p(u) > 1, k(u) € K(Vyw)-1) and
a proper colored layout of (G, k) is a colored layout ¢ of G such that for all u,v € V and
x € V with degree at least 2, if (u,v) € F and ¢(u) < ¢(z) < ¢(v) then it exists a vertex y
such that p(v) < ¢(y), (z,y) € E. The Colored layout problem (CLP) asks whether a given
k-colored graph has a proper colored layout. This problem is equivalent to the ICG problem
|2]. We introduce another graph layout problem the Proper colored layout problem (PCLP)
that asks whether a given a k-colored graph has a proper colored layout. The PCLP problem
is not identical to the PICG problem, the graph Gy, given in figure 1, has a proper colored
layout, but does not have any proper intervalization (a label inside a circle indicates a color,
while a label outside a circle, if any, indicates a node name). However, we will show that the
PICG problem can be formulated as an instance of the PCLP, for a particular graph class. Our
main result is that the PICG and PCLP problems are NP-complete for colored caterpillars of
hair length > 2 and in P for caterpillars of hair length 1 or 0. This contrasts with the fact
that the Interval graph completion problem for trees is in P [12]. For the hardness results we
provide a reduction from the Multiprocessor Scheduling problem, while the polynomial time
results follows from a characterization in terms of forbidden subgraphs.

2 The reduction for the PICG problem

We start by establishing the relationship between the PICG and the PCLP. Given a k-colored
graph (G = (V, E), k), a decoration of G is a new k + 1-colored graph (Gt = (V', E'), k')
with V' = VU V™ where V* = {ut |u € V}, E' = EUE" where Et* = {(u,u") | u € V},
and for any v in V, '(u) = k(u) and k'(u™) = ¢, where ¢ is a new color, therefore £’ is a
k + 1 coloring of G*. We refer to G* as a decorated graph.

Theorem 1 (G, k) € PICG iff (G, ') € PCLP

Inspired in the schema used in [13] to show hardness for the bandwidth problem, we give
a reduction from the Multiprocessor Scheduling problem. Recall that given a set of n tasks,
having duration ¢;, for 1 < ¢ < n, a deadline D and a set of m processors, determine whether
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Processors Rm Tasks

B({3,4},2)

. Turning Point
Zig-Zag chain Z, (A)

Figure 2. A sketch of the caterpillar G(I) and some types of graphs used in its construction

the tasks can be assigned to processors so that all processors finish their work before the
deadline D. Recall that the problem is NP-complete in the strong sense, so we can assume
that the duration of each task is polynomially bounded. We sketch the construction of a dec-
orated caterpillar. Given an instance I = (t1,...,t,, D,m) of the Multiprocessor Scheduling
problem we construct the colored decorated caterpillar G(I) (see figure 2) obtained by join-
ing three different gadgets, one for the processors, one for the tasks, and a turning point. A
processor is represented by an alternating chain, and the graph associated to the processors
is formed by a series of barriers, separating the graphs corresponding to processors ¢ and i+1,
with two additional big barriers, one at the beginning and the other at the end. Each task
is represented by an alternating chain. We join the graphs corresponding to two consecutive
tasks with a zig-zag chain of length equal to the length of the backbone of the processors
gadget. An additional zig-zag chain joins the first task with the node G of the turning point.
We select a set of new different colors for each zig-zag chain (sets A;). So, the set of colors
is, in addition of {1,2,3,4}, A = U, A;.

Theorem 2 The instance I = (ty,...,t,, D,m) of multiprocessor Scheduling has a solution
iff the colored decorated caterpillar G(I) has a proper colored layout. Therefore, PICG is
NP-complete for caterpillars with hair length > 2.

The previous reduction can be modified to show that the PCLP problem is NP-complete for
caterpillars with hair length at most 2. The changes affect the turning point and the task’s
gadget.

Theorem 3 PCLP is N'P-complete for caterpillars with hair length 2.
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Figure 3. Some decorated caterpillars

3 Short haired Caterpillars

We consider now the case of caterpillars with hair length < 1. The following technical lemma
follows from the definitions.

Lemma 1 If a k-colored graph (G = (V, E), k) has a proper colored super-graph that is a
proper interval graph, then any of its subgraphs verify the same property.

Based on the fact that the caterpillars D;, given in Figure 3 and the caterpillar G given in
Figure 1 have no proper colored layout we show the following characterization.

Lemma 2 A decorated colored caterpillar with hair length 1 has a proper colored layout iff
it does not contain any instance of the subgraphs D}, nor the subgraph Gs.

We find polynomial time algorithm for checking the above property, and for the case of
caterpillars with hair length 0.

Theorem 4 The PCLP and the PICG problems are in P for caterpillars with hair length < 1.
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Abstract

We describe new heuristics for solving the problem of finding the fundamental cycle bases of mini-
mum cost in a simple, undirected, biconnected graph G. Since each spanning tree of G is associated
to a fundamental cycle basis, edge swaps are iteratively performed on the current spanning tree
so as to improve the cost of the corresponding fundamental cycle basis. Furthermore, we establish
graph-theoretical structural results that allow an efficient implementation of our algorithms.

1 Introduction

Let G = (V, E) be a simple, undirected and biconnected graph with n nodes and m edges, weighted
by a non-negative cost function w : E — R, which is extended to sets of edges in the natural way
(if FCE, w(F) =) ,rw(e)). Aset of cycles in the graph is a cycle basis if it is a basis of the
cycle vector space. The cost of a set of cycles is the sum of the costs of all cycles in the set. Given
any spanning tree of G with edge set T' C FE, the edges in T are called branches of the tree, and
those in E\T are called the chords of G with respect to T. Any chord uniquely identifies a cycle
consisting of the chord itself and the unique path in T' connecting the two nodes incident on the
chord. These m — n + 1 cycles are called fundamental cycles and they form a Fundamental Cycle
Basis (FCB) of G with respect to T. It was shown that a cycle basis is fundamental if and only
if each cycle in the basis contains at least one edge which is not contained in any other cycle in
the basis [9]. Finding the Minimum Fundamental Cycle Basis (MIN FCB) of a graph is an NP-
hard problem [2]. Furthermore, it does not admit a polynomial-time approximation scheme unless

P = N'P; a (4+¢)-approximation algorithm was found for complete graphs, and a 20(y/lognloglogn)_
approximation algorithm for arbitrary graphs |7].
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Interest in minimum FCBs arises in a variety of application fields, such as electrical circuit testing
[1], periodic timetable planning [6] and generating minimal perfect hash functions [3].

2 Edge-swapping local search and metaheuristics

Our local search for the MIN FCB problem is based on an iterative improvement of a current
spanning tree, obtained by performing edge swaps. We start from an initial spanning tree grown by
adding nodes to the tree in such a way that short fundamental cycles are completed early in the
process (based on [8]). At each iteration, we identify the edge swap between branch and chord that
leads to the largest decrease in FCB cost. This edge-swapping operation is inserted in a local search
procedure.

Consider any given spanning tree T" of G. For each branch e € T', the fundamental cut of G induced
by e is the edge set 6% = {{u,v} € E | u € S%,v € S&}, where S%, 5% is the node partition induced
by the removal of e from T'. For any chord f € 65, let m = (e, f) be the edge swap which consists
in removing e while adding f to 7. Denote by 7T the resulting spanning tree. Now for each such
edge swap 7 we calculate the cost difference A, between the FCB of T and that of #T. Let Agps
be the largest such difference, and mop be the correspoding edge swap. The local search iteratively
identifies 7o,y and updates the current 7" with 7o, 7" while 7op; is not the identity.

Applying an edge swap to a spanning tree may change the fundamental cycles and cut structure
considerably. Hence, efficient procedures are needed to determine the cuts 0%, for all e € 7T, and to
compute A, from the data at the previous iteration, namely from 7', 7 and the cuts 6%, for e € T'.

Some of the following structural properties are straightforward, others can be proved by careful case
enumeration.

Efficient cut structure update:
e any edge swap m = (e, f) applied to a spanning tree T', where e € T' and f € 65, changes a cut
6k if and only if f € 0%

e ¢, can be determined by taking the symmetric difference 0»Ad% (see Figures 1-4 for a graphical
sketch of the proof).

Figure 1. Let g € 6" N §¢. Then g & 7(6").

Efficient cycle structure update (notation: 42 is the unique fundamental cycle of G w.r.t. the
chord h):

e if h & 6%, then 42 is unchanged by ;
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Figure 4. Let g ¢ 6" and g € 6°. Then g € «(6").
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Figure 5. All edge weights are equal to 1 and the numbers indicated on the chords correspond to the
costs of the corresponding fundamental cycles. The cut on the left has a difference between cheapest
and most expensive cycle of 10 — 4 = 6; after the edge swap the difference is 6 — 4 = 2.

e if h € 6%, then fyfﬁT can be determined by taking the symmetric difference 7%A'y%.

It can be verified that the complexity of identifying the best edge swap mop; and applying it to T
to obtain 7T is O(m?n?).

The implementation of the local search algorithm described above is computationally intensive. For
large-scale problems, we would like to test the edge swap only for a small subset of pairs e, f while
minimizing the chances of missing pairs which yield large cost decreases. A good strategy is to focus
on branches inducing fundamental cuts whose edges define fundamental cycles with “unbalanced”
costs, i.e., with a large difference between the cheapest and the most expensive of those fundamental
cycles. See Fig. 5 for a simple example.

To try to escape from local minima, we have included the above edge-swap move within two well-
known metaheuristics: variable neighbourhood search (VNS) [4] and tabu search (TS) [5]. We used
a basic implementation of VNS. Our implementation of the Tabu search, on the other hand, is a
blend of classic TS and VNS. If 7,y is the identity, an edge swap that worsens the FCB cost is
applied to the current solution and inserted in a tabu list. If all possible edge swaps are tabu or a
pre-determined number of successive non-improving moves is exceeded, ¢ random edge swaps are
applied to the current spanning tree. The number ¢ increases until a pre-determined limit is reached,
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and is then re-set to 1. The procedure runs until a given termination condition is met.

3

Some computational results

We ran extensive tests over three classes of graphs.

(1) Square mesh graphs with unit edge costs. These are n X n square meshes with nodes positioned

at (p,q) where p,q € Z and 0 < p,q < n (n? vertices and 2n(n — 1) edges). Because of the high
degree of symmetry of the graph topology and the uniform edge costs, these are considered
hard instances where previous constructive heuristics [2, 3] performed badly, with FCB costs
being on average three times as large as those of the solutions produced by our algorithms.

(2) Random simple Euclidean weighted graphs. The nodes are positioned randomly on a 20 x 20

square centered at the origin. Fach edge between pair of nodes is randomly generated with
probability p and cost equal to the Euclidean distance between its adjacent nodes. Our solutions
were on average 50% better than those obtained with previous constructive methods |2, 3|. For
small instances (10-15 nodes) our local search actually found the optimal solutions.

(3) Application to periodic timetabling. This application is described in [6]. Finding minimum FCBs

of appropriate graphs leads to a more compact MIP formulation of a certain type of Periodic
Event Scheduling Problem (PESP). We were able to find solutions between 5% to 20% better
than those found by C. Liebchen using a purpose-built modification of Deo’s methods.
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Abstract

The Multilevel Bottleneck Assignment Problem is defined on a weighted graph of L levels and
consists in finding L — 1 complete matchings between contiguous levels, such that the heaviest
path formed by the arcs in the matchings has a minimum weight. The problem, introduced by
Carraresi and Gallo [4] to model the rostering of bus drivers in order to achieve an even balance
of the workload among the workers, though frequently cited, seems to have never been applied
or extended to more general cases. In this paper, we discuss one possible extension, that is the
introduction of multicommodity aspects to model different classes of workers.

Key words: Crew Rostering, Bottleneck Assignment

1 Introduction

The Bottleneck Assignment Problem is the search for a complete matching on a weighted bipartite
graph, such that the weight of the heaviest edge in the matching is minimum. Its multi-level version
is defined on a weighted graph of L levels and consists in finding L — 1 complete matchings between
contiguous levels, such that the heaviest path formed by the arcs in the matchings has a minimum
weight. It was introduced by Carraresi and Gallo [4] to model the rostering of bus drivers in order to
achieve an even balance of the workload among the workers. Their algorithm determines a starting
feasible solution by solving a sequence of Bottleneck Assignment Problems on the single levels;
then, furtherly improves the solution through a “stabilization” process. The final result, though not
necessarily optimal, has a bounded gap with respect to the optimum, and is asymptotically optimal
for a large time horizon. Our interest in this problem derives from a similar application: the rostering
of workers’ shifts for the junk removal company of Crema, in Italy. This practical case, however,
requires a more complex model, because each driver is qualified to perform only a subset of the
possible shifts.

Crew Rostering has been a lively field of study over the last decades. Most of the approaches in the
literature, however, end up with a Set Partitioning model, whose variables correspond to the feasible

sequences of shifts assigned to each worker [3]. Some approaches take into account all variables or a
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heuristic subset, while the others start with a reduced set of promising variables and apply column
generation to introduce other variables only if necessary. Beasley and Cao [1] proposed a dynamic
programming approach. Cappanera and Gallo [2] give a multi-commodity flow formulation for
an airline crew rostering problem, which is strengthened by valid inequalities and solved with a
general-purpose MIP solver.

The bottleneck approach by Carraresi and Gallo [4], though frequently cited, seems to have never
been applied or extended to more general cases. Therefore, the main concern of this paper is to
suggest one of the possible extension, that is the introduction of multicommodity aspect to model
different classes of workers. After reporting a NP-completeness proof, we propose a Lagrangean
Decomposition [5]. Since the Lagrangean subproblem is not trivial, this paper introduces upper and
lower bounding procedures which integrate the ideas in Carraresi and Gallo [4] in a more general
framework.

2 Notation and NP-completeness

Given a time horizon of L days, a weighted level graph G (V, E) of L levels models the structure
of the service. Its vertices, partitioned into subsets V; associated to the single days (V = UleVg)
correspond to the shifts. Without loss of generality, one can assume the number of shifts per day
to be equal to the number of workers n (V; = {u‘{, eee ,ufb} for £ =1,...,L): dummy shifts can be
added to guarantee this result. Each shift u‘f implies a workload wf. The edges of graph G connect

only vertices in contiguous levels. They also model trade union agreements: edge (uf,uﬁ"'l) exists

if and only if a worker is allowed to perform shift ¢ in day £ and shift j the day after. Let Sf denote
the subset of vertices in Vp;; which are linked to vertex uf and Pf the subset of vertices in Vj
which are linked to vertex ufH . The workers form K classes: there are ny workers of class k (with

Z,le nk = n), and they are able to perform only a specific subset T} of the shifts in V.

Proposition 1 It is NP-complete to determine whether the MMBA problem admits any feasible
solution.

Proof. Given a SAT instance with n variables z; and m clauses C, build the following MMBA
instance. Graph G (V, E) is made up of L = m + 1 levels of 2n vertices each. The vertices u” and

ul,, of level L are associated to variable z; (i = 1,...,n). Vertex ) in each of the other m = L —1
levels is associated to the corresponding clause C; (j = 1,...,m). In each level from 1 to m, the first
n vertices (uf fori =1,...,n) are linked to all vertices in the following level, while the last n vertices

(ul +n) are only linked to the last n vertices. There are K = 2n classes of workers, which consist
of single workers: class ¢ corresponds to literal z;, class 2 + n to Z;. Subset T; includes all vertices
of the graph, apart from the 2n — 2 vertices of level L which are associated to variables different
from 4 and the clause vertices u] such that clause C; is not satisfied by literal z;; a corresponding
definition holds for subset T, and literal z;. By construction, the path of worker ¢ ends either in
ul or in uly,. In the latter case, this path only visits vertices uf with 7 > n. Therefore, n of the
2n paths are confined in this half of the graph, while the other n paths are confined in the other
half. More specifically, for each pair of complementary literals, one only concerns vertices ué with
r > n and the other only vertices with » < m. The clause vertices can only be visited by paths
corresponding to satisfying literals. Thus, a feasible solution to the MMBA identifies a satisfying
truth assignment. O
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3 A model

The problem admits the following mathematical formulation. Let yfj = 1 if a worker of any group is
assigned to shift ¢ in day £ and to shift j in day £+ 1, 0 otherwise. Let xkz = 1 if a worker of group
k is assigned to shift ¢ in day £ and to shift j in day £ 4+ 1, 0 otherwise. Note that :Bff is undefined
when the workers of class k£ are unable to perform either shift ¢ in day £ or shift j in day £+ 1. Let
sf be the total workload from day 1 to day £ of the worker performing shift ¢ in day ¢, and z the
maximum total workload over all workers.

P71 :min

s.t. Y =1 i=1,...,n,0=1,...,L—1 (1)
jest
Y uh=1 i=1,....n,0=1,...,L—1 (2)
ieP.‘
Z:c -j (uf,ufﬂ) €FE (3)
Z ac Z:v ufEVQ,...,VL_l,kzl,...,K (4)
]EP; ! Jesf
n
ZZCL‘%IZTL]C k=1,...,K (5)
i:ljesil
55 =w} i=1,...,n (6)
fxwi4 ) sihyhT i=1,...,m,£=2,...,L (7)

jepi?

z > sk i=1,...,n (8)
ke 10,1} (uf, f+1) €E k=1,....K (9)
y; € {0,1} (uf,uf“) €E (10)

3.1 A Lagrangean approach

If one relaxes in a Lagrangean fashion constraints (3), the problem decomposes in two classes of

subproblems. The former includes K min-cost flow problems, which only concern the a:m variables

LY : min Z /\fja:ff (11)
(ul Z‘H)EE

s.t. 4) (5) (9)

where the integrality constraints (9) are redundant. Also notice that the underlying graphs are
acyclic.
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The latter is an unusual assignment problem, concerning the yfj, sf and z variables:

L3 : min z+ Z )\ijfj (12)

(uf,uﬁ"_l)EE
-t (1) (2) (6) (7) (8) (10)

whose objective function is composed of two terms. The first term leads to the bottleneck assignment
problem introduced in Carraresi and Gallo [4], for which an asymptotically optimal approximation
algorithm exists. The second one leads to a classical assignment problem: constraints (6), (7) and
(8) are redundant since z is here a free variable.

To solve L2, we obtain a lower bound by optimizing separately the bottleneck and the min-cost
subproblems, and summing the resulting optimal values. Notice that the bottleneck subproblem,
which is the harder of the two, does not depend on the Lagrangean multipliers )\fj. Therefore, even
if the multipliers are iteratively updated, e. g. by a subgradient procedure, it is solved once for all
at the beginning of the computation. On the contrary, the min-cost subproblem needs to be solved
at each step.

We observe that the algorithms for both the bottleneck and the min-cost assignment problems are
based on the improvement of a given starting solution through the determination of augmenting
paths. Adapting these procedures, it is possible to obtain an upper bound for the problem Ls.

4 Conclusions

In this work, we have presented a new problem, derived from a real-world application, which extends
the classical paper by Carraresi and Gallo [4] on the Multilevel Bottleneck Assignment Problem.
We have also outlined a possible solution scheme, based on a Lagrangean approach, which provides
lower and upper bounds on the optimum.

Another possible solving approach could take into account the special “onion-like” structure in which
Ty C ... C Tk. This case is not furtherly discussed here, because it does not hold in our practical
application, though it could characterize other real-world cases.

A different approach can consider a two-phase model: the first one distributes the shifts among the
workers’ classes; then, a second phase models, for each class, the assignment of the shifts to the
workers. Following this approach, approximation algorithms can be derived.
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Abstract

In this paper we consider a particular pick-up and delivery vehicle routing problem, with unit
vehicle capacity and possible compatibility constraints between consecutive operations. The problem
arises in the collection and disposal of bulky recyclable waste, where containers of different types,
used to collect different waste materials, must be picked-up to be emptied at suitable disposal
plants and replaced by empty containers alike. Disposal plants depend on the material and are
located in different sites. Here we provide a graph model based on an Asymmetric Vehicle Routing
formulation and discuss heuristic algorithms. Preliminary computational results obtained on real
data are reported.

1 Introduction

We consider the collection of bulky recyclable waste as usually deployed in Italy, where several
collection points (so called “isole ecologiche”) are located in the city suburbs or at some other
strategic sites. Several containers are present at each collection point, one container for each type of
collected waste material: e.g., paper, metals, green and garden waste, wood, glass, etc. Users bring
their waste and dispose it into the appropriate container, according to the material. Containers
are of different type, depending on the access side (left, right or rear) or on the presence of a
compacting equipment, and this varies from collection point to collection point. Once a container
is full, a disposal request is issued, consisting of the following two actions, to be carried out not
necessarily in this order:
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i) the full container is brought to a qualified disposal plant to be emptied;

ii) an empty container of the same kind is brought to the collection point.

A fleet of homogeneous vehicles is available. Each vehicle can carry a single container at a time,
either empty or full. Traditionally, the two actions composing a service request are carried out as a
whole by a single vehicle, as described in [2]. On the other hand, splitting the two actions introduces
a substantial degree of freedom, as it emerges in [4], since any sequence of operation is allowed and
the loading and unloading of a container is not necessarily assigned to the same vehicle.

The problem addressed in this paper is the following. Consider a fleet of homogeneous vehicles
hosted at a single depot, and a set of additional empty containers of given types stored at the depot
or at some other sites. Assume that the location of disposal plants for each type of material is given
and all travel times along the road network are known. Given a set of service requests, the aim is to
determine the vehicle routes starting and ending at the depot involving pick-up of full containers at
collection points, dumping operations at appropriate disposal plants, delivery of empty containers
where required, while minimizing both the number of vehicles and the global travelled time.

The problem can be seen as a particular Asymmetric Vehicle Routing Problem (AVRP) on a suitable
graph (see section 2) whose peculiar structure allows us to devise efficient heuristic algorithms. In
a preliminary computational experience we compare the results of our algorithms both with those
currently implemented in some real life cases of a regional area in central Italy (section 4) and with
the exact optimal solutions (see section 3).

Closely related problems are addressed in [2], [4] and [6], but as far as we know the general case,
dealing with different types of containers and multiple disposal facilities has never been tackled.

2 The graph structure and the AVRP formulation

For reason of simplicity we consider the availability of a single depot.

Let {1,...,n} be the service requests. Each service request 7 is characterized by a material p;, a
container type f3;, and a collection point ;. If two requests refer to the same container type, they are
said to be compatible. The graph G supporting our Vehicle Routing model is not directly related to
the physical network. The nodes of graph G represent service requests, in particular for each request
i we have two nodes f; and e; representing the full container to be brought to a disposal plant for
material u; and the request of an empty container of type f; to replace the full one at +y;, respectively.
Moreover, we consider a node 0 representing the depot, K nodes d}, ..., d) representing the possible
pick-up of K available empty containers located at the depot and K nodes df,...,d}, representing
the delivery of the same containers to the depot.

Notice that we do not explicitly model nodes representing disposal plants. Indeed disposal operations
are embedded into the arcs. Two main classes of arcs are given.

Arcs connecting f; and ej, for any pair of compatible requests (¢,j) (not necessarily 7 # j). Arc
(fi,e;) corresponds to picking up the full container of request 4, taking it to and dumping it at
the closest disposal plant for material u; on the way to the collection point of request j, where the
empty container is delivered. Note that once the pair of requests is known, it is easy to determine
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the closest disposal plant and to evaluate the travel time which should include also the time needed
to carry out the loading-unloading operations as well as the dumping service. If 7+ = 7, then we
have arc (f;,e;) corresponding to the simplest case of picking up a full container, emptying it at
the closest disposal plant and bringing it back to its original site. Arcs in this class model vehicles
activities when loaded with a container, either full or empty, and are said loaded arcs.

A second class of arcs, so called unloaded arcs, concerns arcs connecting e; to f; for any pair of
service requests (4, 7). Arc (e;, f;) models a vehicle that has just delivered an empty container of
type B; at collection point +;, and travels unloaded up to collection point 7; in order to pick-up
the full container of request j. Note that request ¢ and j do not need to be compatible. The travel
time related to this arc is simply the travel time from +; to +;, including container loading and
unloading times. If 4 = j, arc (e;, f;) corresponds to bringing an empty container to satisfy request
1 and switch it with the full container.

Furthermore, since vehicles at the depot are supposed to be unloaded, we consider all arcs going
from 0 to each f; node and all arcs from 0 to all d}, ..., d% nodes and from the latter nodes to every
compatible node e;. The arcs (0, f;) model the loading of a full container on an unloaded vehicle
whereas the arcs (0,d),), k¥ = 1,..., K model the loading of an empty container available at the
depot on an unloaded vehicle both at the beginning of a vehicle route. Vice versa for the delivery of
containers to depot we consider all arcs going from each node f; to every compatible node d,. .., d%
and all arcs from the latter nodes to depot 0. Thus the arcs (f;,d}), k = 1,..., K correspond to
bring back to the depot the empty container obtained after having satisfied the emptying request
i, whereas arcs (d},0) represent the unloading of the same container at the depot. Finally, all arcs
from every node e; to the depot and from every node df,...,d% to any node d},...,d} are added:
the former ones represent the going back to the depot of an unloaded vehicle at the end of its route,
whereas the latter ones model the unloading of a container from a vehicle and the loading of another
container both at the depot during the vehicle route.

Observe that all arcs correspond to operations that can be executed by a single vehicle. A vehicle
route is a cycle on G starting and ending at 0, feasible routes have length less than or equal to a
maximum given duration T'. Therefore it is easy to see that a collection of feasible routes passing
exactly once by all nodes of the graph and at most once by d,...,d%, df,...,d} is a feasible
solution of the waste disposal problem. Therefore solving the corresponding AVRP on G would

solve our problem.

3 A mathematical model for the refuse collection problem

Later on we use the following notations:

n = cardinality of service requests;

K = cardinality of empty containers available at the depot;
F ={fi:i€1l,...,n} set of nodes for the emptying requests;
E ={e;:i€1,...,n} set of nodes for the requests of return of empty containers;

D' ={d|,...,d} set of empty containers available at the depot;
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D" ={d,...,d"} set of empty containers which must be returned to the depot;
P = set of disposal plant;
V. = FUEUD'UD"U{0};

A = arc set (see Table 1);

T = maximum duration for a vehicle route;
cyy = operational time to serve node v after node u, V (u,v) € A (see Table 1);
t;; = time employed by the vehicles to move from site 4 to site j;
op, = time for emptying a container in disposal plant h, Vh € P;
7! = time for loading a container;
7" = time for unloading a container;
L = lower bound on the number of vehicles employed;
U = upper bound on the number of vehicles employed;
Arcs (u,v Operational times c,, Nodes
) P
(0, fz) tOfyi + 7 sz e F
(0, ) T v, € D'
(d},, e;) toy, + 7" Vdj, € D', Ve; € E which are compatible
(6,’, 0) t%.o Ve, € £
(d},0) 0 vd; € D"
(fi, d%) t%.hi + Oh, + thiO + 7" () sz € F, lekl e D"
(e, f5) by + 7' Ve; € E,Vf; € F
(fi €)) tyih; + On; + thyy + 7" ) | Vf; € F , Ve; € E which are compatible
(dy,d),) T vd; € D", Vd, € D'

Table 1

This table contains the definition of the arc set A and the respective costs. *) Here h; represents
the nearest dump compatible with the garbage of f; along the path from site «y; to the depot.

(**) Here h; represents the nearest dump compatible with the garbage of f; along the path from site
i to site ;.

Mathematically, the waste collection problem can be formulated as the following Mixed Integer
Linear Program (MILP):
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This formulation employs binary variables x,,, for all (u,v) € A, indicating if some vehicle traverses
arc (u,v) or not and continuous variables ¢, for all u € V representing the time when the node
u is visited by some vehicle. The objective function is the weighted sum of the number of vehicle
actually used and the total running time (M represents a constant suitable big).

4 Preliminary computational results

The particular graph topology described in section 2 suggests several neighborhood structures that
can be exploited within a local search framework (see [3]). The starting solution of the local search
is computed by applying a modified Clarke and Wright algorithm [5].

A preliminary computational campaign has been carried out on real data provided by the waste
collection company operating in the regional area of Perugia. The company serves ten collection
points distributed in an area of about 450 km?, six different types of containers, three disposal
centers used to recycle ten different types of material. The problem instances, deriving from the
daily operations, involve three vehicles and up to 11 service requests, they require quite long hauls
and they have a time limit of 375 minutes. Even though these instances are quite small, the first
results provided by the proposed heuristics favorably compare with the exact solution values.

Moreover the resulting routes are extremely better than those operated by the company, saving
travel time and in certain cases saving also one vehicle out of the three devoted to this kind of
service. In the light of the obtained results, the company is thinking to extend the service also to
industrial waste collection, which would significantly increase the size of the instances. Here we
report some results on some real instances. We report the total travel time of the optimal solution
in minutes (Opt), the percentage gap between the optimal solution and the modified Clarke and
Wright (A CW), the percentage gap between the optimal solution and the local search (A LS), and
the percentage gap between the local search and the company solution (A G). As far as number of
vehicles is concerned, entries in boldface report the cases in which the local search is able to spare
a vehicle compared to the company solution. CPU times on a 2GHz PC are also reported.
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Instance | Req |Opt | ACW |ALS | ALS-G | CPU Opt | CPU LS
17.11.2003 8 668 7.04 5.54 11.91 3.52 0.03
18.11.2003 | 3 300 14.00 0.00 0.00 0.1 0.05
19.11.2003 | 7 615 0.00 0.00 0.00 3.44 0.04
20.11.2003 8 701 21.83 0.71 15.16 7.56 0.05
21.11.2003 6 626 2.56 0.15 3.00 0.1 0.01
22.11.2003 | 9 843 15.18 15.18 3.09 21.32 0.03
24.11.2003 | 8 684 24.12 0.88 3.19 3.05 0.06
25.11.2003 8 975 2.61 2.61 13.90 19.42 0.07
26.11.2003 6 599 1.17 1.17 12.05 6.71 0.03
27.11.2003 | 8 839 9.30 8.82 6.79 5.78 0.01
28.11.2003 6 606 2.97 2.97 12.02 0.1 0.01
29.11.2003 | 11 882 2.72 1.59 19.98 0.1 0.07
Table 2

Some results on real case instances
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A New Local Condition for a Graph to be Hamiltonian
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Abstract

Let G be a connected graph and for each vertex w in G My(w) denote the set of all vertices whose
distance from w does not exceed 2. The ball of radius 2 centered at w is a subgraph of G induced
by the set Ms(w).

We prove that a connected graph G is hamiltonian if every ball of radius 2 in G is 2-connected
and d(u) + d(v) > |Ma(w)| — 1 for every path uwv with uv ¢ E(G). This implies the following local
analogue of a theorem of Nash-Williams: a connected r-regular graph G is hamiltonian if every ball
of radius 2 in G is 2-connected and 7 > (|Ma(w)| — 1)/2 for each vertex w of G.

Key words: Hamilton cycle, local condition, ball

We use [9] for terminology and notation not defined here and consider finite simple graphs only.
Let V(G) and E(G) denote, respectively, the vertex set and edge set of a graph G, and let d(u,v)
denote the distance between vertices u and v in G. For each vertex u of G, we denote by N(u) and
M>(u) the sets of all v € V(G) with d(u,v) =1 and d(u,v) < 2, respectively. The number |N(u)|
is denoted by d(u). For a vertex u of a graph G the ball of radius 2 centered at u is a subgraph of
G induced by the set My(u). A classical result on hamiltonian graphs is the following theorem.

Theorem A (Ore [13]). Let G be a graph on at least 3 vertices such that d(u) + d(v) > |[V(G)|
for each pair of nonadjacent vertices u,v. Then G is hamiltonian.

Later, several authors have found (see, for example [10]) that Ore’s condition in Theorem A can be
relaxed by one if we allow a class of exceptions. Set

K={G:Kyn1 CGCK,V K i, n>3} whereV denotes join.

Theorem B. Let G be a 2-connected graph on at least 3 vertices such that d(u)+d(v) > |V(G)|—1
for each pair of nonadjacent vertices u,v. Then either GG is hamiltonian or G € K.

The next result shows that for regular graphs the condition of Theorem B is enough for hamiltonicity.

Theorem C (Nash-Williams [12]). A 2-connected regular graph G is hamiltonian if d(u) > +(|V(G)|—
1).

1 E-mail: asratian@sm.luth.se.

CTWO04 Proceedings — Villa Vigoni (CO), Italy, 31st May to 2nd June 2004



A New Local Condition for a Graph to be Hamiltonian

Clearly, every graph G satisfying one of the conditions in Theorems A, B and C has diameter 2.
In fact most of the existing generalizations of Theorem A only apply to graphs G with large edge
density (|E(G)| > constant - |V(G)|?) and small diameter (o(|V(G)])).

The present author and N.K.Khachatrian [1-4] developed some local criteria for the existence of
Hamilton cycles in a connected graph which are analogues of the global criteria due to Dirac, Ore
and others. The idea was to show that the global concept of hamiltonicity can, under rather general
conditions, be captured by local phenomena, using the structure of balls of small radii. This local
approach gives the possibility to find new classes of graphs with Hamilton cycles which, in particular,
also contain infinite subclasses of graphs with small edge density and large diameter.

Let L; be the set of all connected graphs G with |V(G)| > 3 where
d(u) +d(v) > |N(u) UN(v) UN(w)| — i, for each path uwv with uv ¢ E(G).

Clearly L; C L1, for each 7, and the set Ly contains all graphs satisfying the condition of Theorem
A.

Theorem D (Asratian and Khachatrian [3]). Every graph G € Lg is hamiltonian.

Some other properties of the graphs in the set Ly were found in [5-7].

Let Q1 ={G: K, , CGC K,V K:,n>3}and Q2 = {K,, : n > 3}. It was proved the following:
- A graph G € Ly is pancyclic if and only if G ¢ Q3 [5].

- A graph G € Ly is Hamilton-connected if and only if G is 3-connected and G ¢ Q1 [6].

- A graph G € Ly is vertex pancyclic if and only if G ¢ Q2 and each vertex of G lies on a triangle
[7]-

Theorem D was improved in the the following way:

Theorem E (Asratian et al.[8]). Let G be a graph G € Ly where |N(u) N N(v)| > 2 for each pair
of vertices u,v with d(u,v) = 2. Then either G is hamiltonian or G € K.

Some other results on hamiltonian properties of graphs from the set L; can be found in [8,11,14].

Clearly, if w € N(u) N N(v) then N(u)UN(w) UN(v) C My(w). Therefore Theorem D implies the
following

Corollary F. Let G be a connected graph on at least 3 vertices where d(u) +d(v) > |Ma(w)|—1 for
each path wwv with uwv ¢ E(G). If |[N(u) N N(v)| > 2 for each pair of vertices u,v with d(u,v) = 2,
then G is either hamiltonian or G € K.

It is not difficult to see that if |N(u) N N(v)| > 2 for each pair of vertices u,v with d(u,v) =2in G
then every ball of radius 2 in G is 2-connected.

Our main result is the following theorem which is a joint generalization of Theorems A, B, C and
Corollary F.
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Theorem 1. Let G be a connected graph with |V(G)| > 3 where d(u) + d(v) > |Ma(w)| — 1 for
every path wwv with wv ¢ E(G). If all balls of radius 2 in G are 2-connected, then either G is a
hamiltonian graph or G € K.

Since the set K contains no regular graphs, Theorem 1 implies the following corollary:

Corollary 2. Let G be a connected r-regular graph where every ball of radius 2 is 2-connected and

>

$(|Ma(w)| — 1), for each vertex w. Then @ is a hamiltonian graph.

Let us point out that there are infinite classes of graphs G with small edge density (A(G) <
constant ) and large diameter ( > constant - |V (G)|) which satisfy the conditions of Theorem 1 and
Corollary 2.
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Knowledge State Algorithms and the 2-Server Problem

Wolfgang W. Bein !
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We introduce the novel concept of knowledge states. A knowledge state simply states conditional
obligations of an adversary, by fixing a work function, and gives a distribution for the algorithm.
When a knowledge state algorithm receives a request, it then calculates one or more “subsequent”
knowledge states, together with a probability of transition to each. The algorithm then uses ran-
domization to select one of those subsequents to be the new knowledge state. Although the formal
definition of knowledge state algorithms appears, as yet, in no publication, many well-known algo-
rithms can be viewed as knowledge state algorithms.

We have used optimization techniques to construct a non-trivial knowledge state algorithm for
the 2-server problem on the line with competitive ratio % ~ 1.972. As much as one avenue of
investigation might be to further improve this result for the line, what we really envision is to
use this technique to finally settle the question of whether there exists an online algorithm with
competitive ratio better than 2 for general spaces — a notorious open problen in online algorithms.
For progress in that direction, we consider the class of metric spaces Mj 4, which consists of all
metric spaces where every distance is either 1 or 2, and where the perimeter of every triangle
is either 3 or 4. Using the knowledge state approach we are able to obtain the result that there
exists a C-competitive randomized online algorithm for the 2-server problem in the space Mj 4 with

C = 1BvI3T ~ 1649149106

1 E-mail: bein@cs.unlv.edu. Research supported by NSF grant CCR-0132093. Joint work with
Lawrence L. Larmore.
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Network design with grooming constraints
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Abstract

Networks are physically and logically decomposed into layers with different technological features.
Often, the routing of a demand through a non-multiplexing layer is made by grooming several
demands at another, multiplexing-capable layer, thus using less capacity on the former but more
on the latter. The problem of designing such a multi-layer network so as to route a set of traffic
demands can be solved by embedding multiplexing into a well-suited model. We restrict to a two-
layer problem as this is most common in today’s network world, then we represent grooming through
a model based on paths and semi-paths, and propose a row-column generation approach to solve a
set of problems on real-world large networks.

1 Introduction

Consider a network dimensioning problem: a graph G = (V, E), representing the network topology,
and a set @ of traffic demands expressed by triplets (sk,tg,vk), K € @, are given. The solution is
the equipment to install on the initial topology so as to route all traffic demands at a minimum
installation cost. This subject is well known in the recent literature; the reader may find a survey
of network design problems in [3].

Suppose now the network is structured in two layers, with different costs and characteristics. The
upper layer has greater capacity but cannot split demands, whereas at the lower layer, demands
can split but capacity is limited. We assume all demands originate and end at the low layer. This
design-routing problem can be modelled through a multi-layer structure as depicted in Figure 1: the
high capacity upper layer has no demultiplexing capability, hence two groomed demands must be
transferred to the multiplexing-capable low layer in order to be split. Industrial application regard
the upper layer and the inter-layer capacity within a node as the most expensive equipment.

We focus in this work on the design of a multi-layer network that minimises the weighted sum of
node and link capacity, provided the different capabilities each layer offers. In section 2 we outline a
general path-based model for multi-layer networks; in section 3 we describe a row-column generation
heuristic, and in section 4 we report some initial results on large real-world networks.

! E-mail: belotti@elet.polimi.it.
2 E-mail: malucell@elet .polimi.it.
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Network design with grooming constraints

High layer node

Groomed demands

at high layer

Low layer node Demultiplexing

at low layer

Figure 1. Grooming on multi-layer networks.
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Figure 2. Paths and semi-paths.

2 Optimisation model

We consider a graph G’ consisting of two super-imposed graphs equal to the original G: the upper
layer G, and the lower layer Gj; an edge is added between the upper and lower parts of a node
i € V. Hence, G' = (V, UV}, E, UE U Ey,), where V}, and V] are a copy of V, Ej, and Ej are a copy
of E, and FE,, is the set of intra-node channels for communication between the two layers.

Further notation is needed: we call P the set of all paths in G'; notice that this implies that two
paths may cross the same set of edges in G yet be different in G’ as each edge/node has an upper
and a lower layer part. Given a nodepair (s,t), the set of paths from s to ¢ is denoted by P*!, while
P, is the set of paths across a given edge e. We define integer variables z, for each path p € P from
s to t, standing for the amount of traffic of demand (s,t) carried on path p, and impose that all
traffic demands (sq,%4,dq), ¢ € Q be satisfied:

Y z>d,  VYgeQ 1)
p€EPsatq

Consider the dashed (s,t)-path in Figure 2, leaving s from the low layer, crossing nodes 1, 2 and
3, and low layer nodes at 1 and 3. The latter are visited so as to groom this (s,%)-path and the
dash-dotted (1, 3)-path and hence to allocate a single channel on the semi-path defined on edges
{1,3} and {3,4}.

Hence, network capacity is implicitly defined on path portions starting and ending in low-layer nodes.
We call these path portions semi-paths. We define, for all semi-path s € P, an integer variable y;
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standing for the capacity to be allocated to semi-path s. As in classical network design problems,
where the capacity on an edge e must suffice for the total traffic flowing through e, y, is an upper
bound to the traffic on paths containing s:

Z Zp < Ys Vs e P (2)
peP:sCp

Semi-paths originating/ending in node 4 also account for the inter-layer capacity needed at the node,
and therefore represent the capacity to be installed on the upper layer network and are associated
a cost ¢g equal to the sum of twice the inter-layer channel cost and the edge cost. If the lower layer
can also transport traffic, we can define another capacity variable z, associated to each low layer
edge and impose that it be sufficient to carry the low-layer traffic:

Z zp <z, Ve€k (3)
pEP:eCp

The objective function chys + Z Cee, given by the upper layer capacity and the inter-layer

seP eckE;
channel cost, included in ¢, plus the cost of the lower layer capacity, is to be minimised subject to

(1), (2), (3) and integrality constraints for z, y and z variables.

3 A row-column generation approach

Path formulations for network design problems are bound to be solved by methods considering a
small subset of columns, possibly adjoining cheaper columns as the algorithm exploits useful dual
information about the problems solved at each iteration. First, a set of paths is generated for each
demand nodepair (s,t). Then, we create variables ys using pairs of paths sharing at least a certain
number K of edges. Most likely, these do not form the optimal solution, and a column generation
algorithm (for an introduction, see e.g. [1, 2|), that repeatedly generates new paths and semi-paths
is needed to reach optimality. If integrality constraints are relaxed, the primal and dual formulations
are as follows:

(P) minz CsYs + Z Cele

sepP ecE;
(0q) Z zp2dg  VgeEQ
pEPsatq
(&) — ) %p+ys>0 VseP
pEP:sCp
(776) — Z Zp-I-CI?eZO Ve € F;
peP:eCp

z, >0 VpeP, ys;>0 VseP, z,>0 Veck
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(D) max Z dqoq

qeq
()  0g< >, &+ >, ne VpePulgeqQ
SEP:sCp ecEj:ecp
(ys) & < cs Vse P
(ze) Ne < Ce Ve € Ej

&> VseP, 0,20 VgeQ, n.>0 Veeck

From a solution of a formulation with a subset of columns, the dual information is used to prove
optimality through the dual constraint associated to variable z,. Those paths not yet considered by
the formulation but whose dual constraint is violated by the current solution are a proof that the
primal is not optimal, as this 2, variable has negative reduced cost.

Were it not for the semi-path variables y,, the pricing problem, i.e. finding a variable z, with (the
most) negative reduced cost, would boil down to solving a shortest path problem on graph G where
arc lengths are the current optimal value of 7 variables; if the shortest path has length lesser than
0g, then we have found a variable z, with negative reduced cost to include in the next iteration.
However, variables ys are also partially included, as they are also defined on P. Hence, we have to
generate these variables in order to improve the subproblem at each iteration. This complicates the
procedure a lot, as y, variables are defined in constraints (2), hence we also must generate rows. We
chose therefore to incorporate the creation of y and z variables into a single process, which creates
new paths and semi-paths based on the optimal primal (z*, y*, z*) and dual (¢*, £*, n*) solution.

Consider a graph equivalent to G where all edges e € F have length n}. We add an edge {3, j} for
each s € P from 4 to j, with length £}. Solving a shortest path problem for each nodepair (s,t)
on this auxiliary graph gives a new path which may follow some low-layer edges, some semi-path
already defined or, if two or more low-layer edges are crossed consecutively, suggest the definition
of a new semi-path. If its total lengths is lesser than oj we have found a variable with negative
reduced cost and, possibly, a set of semi-paths to be added to the formulation. Notice that each
new semi-path implies adding a new column and a new row in the formulation.

4 Preliminary results and future work

We have tested the algorithm outlined above on seven network topologies from real-world design
problems and report the results in Table 3. For each instance, we report the number of demands
|@|, the number of nodes |V| and of edges |E| in the network, the number of paths/columns at the
beginning (|P|;—¢)) and at the end (|P|gna) of the algorithm, the optimal LP value 2, and the
value zrounded Of a feasible solution obtained by rounding up the LP solution, the time to create the
initial paths #path, and the total solution time Ziota1.

We observe that, given the size of all instances, even solving the LP relaxation may prove difficult if
one uses a classical modelling approach. We have managed to keep solution times low by adopting
an ad hoc model. The algorithm, although efficient in some cases, needs to be improved in order to

obtain better integer solution.

The general framework we have presented can be applied to several problems in network design,
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Table 3

Preliminary performance results of our row and column generation algorithm.

Ql [E[ V]| I[Plu=o) |Plfinar Zip Zrounded Tpath Liotal
13 124 84 150 278  10095.65 32454.31 00:00.30 00:08.40
50 47 42 250 335 470805.43  539393.23 00:00.60 00:06.00
64 39 29 320 391 177805.69  206475.34 00:00.10 00:04.10
83 124 &4 1745 1991 292271.12  312630.02 00:01.80 00:56.52

202 259 114 1765 2378 191915.40 197166.25 00:02.50 01:36.10

395 90 80 1975 2096 140508.41  194390.88 00:01.20 00:47.70

495 563 358 4075 5656 440483.19 1519728.44 00:10.90 20:13.40

such as routing and wavelength assignment in Wavelength Division Multiplexing, and in the design
of mixed packet-circuit networks to take advantage of statistical multiplexing. Also, in order to
improve the efficiency of our method, a more suited path generation procedure is needed. A branch

and price algorithm is currently under development.
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Abstract

We propose an effective heuristic to save memory in dynamic programming on tree decompositions
when solving graph optimization problems. The introduced “anchor technique” is closely related to
a tree-like set covering problem.

1 Introduction

Recently, tree decompositions of graphs have received considerable interest in practical applications.
Intuitively, a graph with small treewidth allows for efficient solutions of otherwise hard graph prob-
lems. The core tool in this solution process—besides constructing a tree decomposition of (hopefully)
small width—is dynamic programming on tree decompositions [3]. As a rule, both the running time
of this dynamic programming and the memory space consumption are exponential with respect to
the treewidth. Indeed, also by our own practical experiences, the main bottleneck often is memory
consumption rather than running time.

Attacking the “memory consumption problem” is subject of recent research. For instance, Aspvall et
al. [2] deal with the problem by trying to find an optimal traversal of the decomposition tree in order
to minimize the number of dynamic programming tables stored simultaneously. Bodlaender and
Fomin [4] theoretically investigate a new cost measure for tree decompositions and try to construct
better tree decompositions in this way. By way of contrast, in this experimentally oriented paper we
sketch a new approach that tries to decrease the memory consumption by employing a (tree-like)
set covering technique with some heuristic extensions. The point here is that our so-called “anchor
technique” applies whenever, in principle, one needs to store all dynamic programming tables of
a given tree decomposition. This is usually the case when one wants to solve the optimization
version of problems, i.e., to actually construct an optimal solution (or all of them). Here, the anchor
technique tries to minimize the redundancy of information stored by avoiding to keep all dynamic
programming tables in memory.® So far, according to our experiments the anchor technique seems

! E-mail: betzler@informatik.uni-tuebingen.de.

2 E-mail: niedermr@informatik.uni-tuebingen.de.

3 E-mail: johannes@informatik.uni-tuebingen.de.

* Supported by the Deutsche Forschungsgemeinschaft (DFG), research project “PEAL,” NI 369/1,
and junior research group “PIAF,” NI 369/4.

5 Aspvall et al.’s [2] technique only seems to apply with respect to the decision version of a prob-
lem where one only needs to do a bottom-up traversal of the decomposition tree. Bodlaender and
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to give the best results when dealing with path decompositions (with memory savings of around
95%) and nice tree decompositions (with memory savings of around 80%).

2 Basic Ideas and the Anchor Technique

To describe our new technique, we first need to introduce some notation [3]. Let G = (V, E) be a
graph. A tree decomposition of G is a pair ({X; | i € I}, T), where each X; is a subset of V, called
a bag, and T is a tree with the elements of I as nodes. The following three properties must hold:
Uicr Xi = V; for every edge {u,v} € E, thereis ani € I such that {u,v} C X;; and for all 4, 5,k € I,
if j lies on the path between 7 and k in T', then X; N X}, C X;. The width of ({X; |1 € I},T) equals
max{|X;| | i € I} — 1. The treewidth of G is the minimum k such that G has a tree decomposition
of width k.

If the above tree is only a path, then we speak of a path decomposition. A tree decomposition with
a particularly simple (and useful with respect to dynamic programming, cf. [1, 3]) structure is given
by the following. A tree decomposition is called a nice tree decomposition if the following conditions
are satisfied: Every node of the tree T has at most two children; if a node ¢ has two children 7 and &,
then X; = X; = Xj; and if a node ¢ has one child j, then either |X;| = |X;| + 1 and X; C X; or
|X;i| = |X;| —1and X; C X;. It is not hard to transform a given tree decomposition into a nice tree
decomposition.

Tree decomposition based algorithms usually proceed in two phases. First, given some input graph,
a tree decomposition of bounded width is constructed. Second, one solves the given problem (such
as DOMINATING SET) using dynamic programming. Here, we are only concerned with the second
step. Dynamic programming to solve the optimization version of a problem again works in two
phases—first bottom-up from the leaves to the root (which can be chosen arbitrarily) and then
top-down from the root to the leaves in order to actually construct the solution. To do this two-
phase dynamic programming, however, one has to store all dynamic programming tables, each of
them corresponding to a bag of the tree decomposition. Each bag B usually leads to a table that is
exponential in its size. For instance, the table size in case of DOMINATING SET is 38/ [1]. Clearly,
even for modest bag sizes this leads to enormous memory consumption. This is the point where the
anchor technique comes into play.

Trying to minimize space consumption, we have to obey that for each graph vertex we need to
store important information. Hence, on the one hand, we want to minimize the memory space
consumed by the tables and, on the other hand, we have to make sure that no information is lost. In
a natural way, this leads to a special WEIGHTED SET COVER problem: Each bag B translates into
a set containing its vertices and an associated weight exponentially depending on its table size (for
DOMINATING SET, this is 3|8 |). Loosing no information then simply means that we have to cover the
base set consisting of all graph vertices V' by a selection of the “bag sets.” To use as little memory as
possible then means to do the selection of the bag sets such that their total weight is minimized while
keeping each vertex from V covered. This is nothing but a TREE-LIKE WEIGHTED SET COVER
(TWSC) problem with exponential weight distribution. This formalization inspired theoretical work
on TWSC with applications also in computational biology [5]. In our setting already simple data
reduction rules suffice to obtain optimal solutions of TWSC in a fast way. We call the bags in the set
cover anchors. After finding a set of anchors, we can simplify the decomposition tree with respect
to the memory requirements by setting our pointers directly from anchor to anchor. That means,

Fomin’s [4] measure tries to minimize the cost when assuming that all tables need to be stored
whereas we try to avoid storing all tables.
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grid graphs path decomposition || nice path decomposition
name V| |E| pw || nob noa mem nob  noa mem
grid_10_10 100 180 10 89 9 89.88% 179 17 93.26%
grid_10_30 300 560 10 || 289 27 90.66% 578 44 94.81%
grid_10_50 500 940 10 || 489 45 90.80% 978 58 95.98%

Table 4

We compare the memory savings for three different grid graphs, assuming a table size of 2!l for each bag B, as we also
do in the subsequent tables. (Assuming size 3Bl would even improve the saving effect.) Herein, pw denotes the width of the
underlying path decomposition, nob denotes the number of bags, noa denotes the number of anchors, and mem denotes the

percentage of memory saved.

Vi |E| nob noa | maxb maxa | nomb avl0b al noh maxh avh mem
100 197 | 578.8 55.5 12.3 4.5 24.1 11.5 52.1 13.8 12.1 9.9 74.9 %
150 297 | 1023.9 85.1 16.8 4.9 25.9 15.2 80.3 21.5 16.7 12.0 | 73.5 %
200 397 | 1573.7 114 21.1 4.5 24.6 18.7 108.1 | 28.1 20.9 13.8 77.8%

Table 5

‘We compare graphs generated with the BRITE tool. Each row represents the average numbers taken over 15 graphs each time.
We only consider nice tree decompositions here. Besides the figures used in Table 4, we additionally measured maxb (maximum
bag size), maxa (maximum anchor size), nomb (number of maximum size bags), avl0b (average size of the 10 percent biggest
bags), al (number of anchors which are leaves), noh (number of help anchors, i.e., additional anchors found by the heuristic),

maxh (size of maximum help anchor), and avh (average size of help anchors).

apart from the table involved in the current update process, we do not have to store any bag tables
that are not anchors.

Note that with respect to path decompositions the goal of minimizing the overall memory consump-
tion has a one-to-one correspondence to the optimization goal of the PATH-LIKE WEIGHTED SET
COVER problem as described above. Going to trees, however, the formalization as TWSC does not
take into account the additional costs that are due to the modified pointer structure caused by the
anchor technique (cf. Section 3).

3 Computational Analysis and Results

We performed some first empirical tests of the anchor technique on path and nice tree decomposi-
tions. To do so, we implemented some simple and efficient polynomial-time data reduction rules to
find anchors. Having the anchors at hand, it then is rather simple to adapt the pointer structure
between the dynamic programming tables. Without going into details, let us only mention that
the algorithmic and implementation overhead for adding the pointer technique turned out to be
negligible in terms of the overall running time of dynamic programming.® Thus, to start with a
summary of our empirical findings, we may say that the anchor technique is easy to implement, it
costs very little additional running time, and it leads to significant savings concerning memory use.
We begin with first results on path decompositions of grid graphs.” In this case, we obtained the
strongest memory saving of around 90-95% and more. Table 4 shows our results in more detail.

The problem with TWSC in case of trees instead of paths lies in the memory costs for
the pointers (reflecting the (modified) tree structure) which are neglected in the TWSC

6 We found this when doing tests with DOMINATING SET.
7 Here an optimal path decomposition is an optimal tree decomposition as well.
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V]  |E| | nob mnoa | maxv maxa | nomv avlOv | al | noh maxh avh mem

200 415 | 1595 84 44 6 6 36.2 74 13 42 28 87.2%
200 371 | 1459 88 38 6 8 32.1 73 16 38 28.5 | 63.4 %
200 425 | 1662 93 44 7 7 36.9 83 23 44 22.1 | 66.4%
200 372 | 1484 95 37 6 4 31.1 79 22 36 19.6 | 74.9%
200 410 | 1636 82 49 6 6 40.3 73 13 47 33.8 | 87.4%
200 415 | 1735 83 43 6 14 38.4 76 21 43 26.5 | 75.1%

Table 6

We compare random graphs generated with LEDA (single graphs, no average numbers). Again only nice tree decompositions

are considered. Same figures as in Table 5.

formalization. In fact, formulating the problem in terms of the DOMINATING SET problem,
to get the best savings concerning memory one should minimize the sum ¥z, 37! -|C],
where A denotes the set of anchors and C' denotes the set of “anchor children” of B in
the tree decomposition. The second multiplicative factor is ignored in the formalization as
TWSC and it turned out to be a crucial source of memory demands. To mitigate this
effect, we designed a heuristic that extends an anchor set solution found by the TWSC
optimization. In few words, the central objective of our heuristic is that we do not have
to store a table (including its pointers) which has a memory consumption greater than the
maximum memory consumption of a bag of the tree decomposition without anchors. We
defer the details to the full paper. As to (nice) tree decompositions, we performed tests with
so-called “Internet graphs” as produced by the BRITE topology generator and random graphs
generated by the LEDA library. We achieved memory savings of around 80%, see Tables 5
and 6. The worst cases for the anchor technique seem to be tree decompositions with some
big bags close to the root and lots of small anchor leaves. These difficulties also seem to be the
reason that the technique so far not always achieves satisfactory improvements on memory
consumption when dealing with “normal” (i.e., non-nice) tree decompositions. On the positive
side, however, with anchors one can “always” afford to use nice tree decompositions instead
of normal ones without loss of (memory) efficiency. Nice tree decompositions significantly
simplify the dynamic programming as exhibited in the case of DOMINATING SET [1].

To summarize, the anchor technique significantly reduces the space consumption of dynamic
programming on tree decompositions of graphs for solving (hard) optimization problems.
Our technique not only applies to path/tree decomposition based dynamic programming
but also appears to be useful for dynamic programming on branch decompositions. The time
overhead caused by our method was negligible in all our experiments. In ongoing and future
work, we try to extend our experiments to further classes of graphs. We will also try to
further mitigate the gap between the formalization of the anchor idea in terms of TREE-
LIKE WEIGHTED SET COVER and the practically relevant point of keeping the tree/table
pointer structure reasonably simple.
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Abstract

In this paper we first study some properties of circulant graphs of degree four. In particular, we
determine their clique and chromatic numbers and address issues related to their Lovasz theta
function. We also consider generalizations of circulant graphs, called generalized circulants, that
possess certain interesting properties, such as high connectivity and comparatively small clique
number. Classes of generalized circulants may have an arbitrarily large gap between the clique and
the chromatic number.

Key words: circulant graph, clique number, chromatic number, Lovasz theta-function

1 Introduction

In this work we study properties of circulant graphs and their generalizations. Various ap-
plications of circulant graphs are known in counting and combinatorics, telecommunication
networks, VLSI design, and distributed computing. Low-degree circulants provided a basis
for some classical parallel and distributed systems [4, 13] as well as for certain data alignment
networks for complex memory systems [14]. Specifically, circulant graphs of degree four have
been used in the design of local networks and interconnection subsystems [3]. Recent work
[2] presents a class of circulants of degree four with minimal topological distances. They have
been used as a basis for constructing an optimal interconnection network for parallel com-
puters with a very high degree of fault-tolerance [2] and for designing networks for massively
parallel computers [15] and optimal VLSI [9]. Circulant graphs of degree two and four have
also been involved (by the name of “spirographs") in studies on the structure of a digital
line, which is the most fundamental primitive used in computer graphics and image analysis

[6].

In this note we first determine the clique and the chromatic numbers of circulant graphs
of degree four. We also address issues related to their Lovasz theta function, known also

! E-mail: brimkov@cs.fredonia.edu. Part of this work has been done while the author was visiting
Dipartimento di Elettronica ed Informatica, Universita di Padova, Italy, and the International Centre
for Theoretical Physics, Trieste, Italy.
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as the Lovasz number. The latter has been devised by Lovasz [11] in order to estimate the
Shannon capacity of a graph [12]. We also consider generalizations of circulant graphs, called
generalized circulants, that possess certain interesting properties, such as high connectivity
and comparatively small clique number. Classes of generalized circulants may have a large
gap between the clique and the chromatic number. Most of the proofs are too lengthy to be
reported here and will be included in the full paper.

2 Preliminaries

Here we recall some well-known graph-theoretic notions and introduce certain denotations
used in the sequel. Let G(V, F) be a simple graph. The complement graph of G is the graph
G(V, E), where E is the complement of E to the set of edges of the complete graph on V.
By w(G) and x(G) we denote the clique and the chromatic numbers of G, respectively. For
any graph G we have w(G) < x(G).

An n x n matrix A = (ai,j)?,;:lo is called circulant if its entries satisfy a; ; = ag 4, where the
subscripts belong to the set {0,1,...,n — 1} and are calculated modulo n. In other words,
any row of a circulant matrix can be obtained from the first one by a number of consecutive
cyclic shifts. A circulant graph is a graph with a circulant adjacency matrix. By C, ; we
will denote a circulant graph of degree four, with vertex set {0,1,...,n — 1} and edge set
{(#,7+1 mod n),(i,i+jmodn),i=0,1,...,n—1}, where 1 < j < ”T_l is the chord length.
See Fig. 1 for illustration.

Several equivalent definitions of the Lovasz number of a graph are available [10]. One of
them is the following. Given a graph G, let A be the family of matrices A such that a;; =0
if v; and v; are adjacent in G. Let A\j(A) > Ay(A) > --- > A,(A) be the eigenvalues

of A. Then #(A) = maxgea{l — i\;((fl%} The function #(G) is computable in polynomial

time with arbitrary precision, although being “sandwiched” between w(G) and x(G), whose

computation is NP-hard in the general case. More precisely, we have w(G) < §(G) < x(G).
For various results, applications, and related references see the surveys by Knuth [10].

3 Basic contributions
3.1 Clique and chromatic numbers of Cy, ;

We assume that n > 6, the cases for n < 5 being trivial. Then the clique and chromatic
numbers of a circulant graph C), ; are determined as follows.

3, ifj=2,orifnisoddand j=[%],
w(Chry;) = or if n is divisible by 3 and j = 2;

2, otherwise
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a)

Figure 1. Two circulant graphs of degree 4. a) Cs 2, that is the well-known complete graph Ks; b)
Cy.3.

2, if nis even and j is odd;
4, if n is divisible by 3 and j = 2, or if n = F} is an

odd Fibonacci number and j = Fj,_1 or j = Fy_o;

3, otherwise

3.2 Lovdsz number of C,

It has been noticed by several authors that the value of the Lovasz number 0(G) is usually
closer to w(G) rather than to x(G) (see, e.g., [7, 5]). Here we provide one more peculier
example of a class of graphs with this property. More precisely, for any odd integer n > 7 we
have that 3 < G(UR,L%J) < 3.3177...,2 and as n increases, G(UM%J) strictly decreases and
approaches the clique number w(C’n,L% 1) = 3. To our knowledge, no convergence of this type
has been exhibited so far.

The full journal version of the paper will also include an efficient O(max(j,n/j)) algorithm
for §(C,,;) computation. The algorithm, whose description is too involved to be dicussed
here, is based on sophisticated geometric arguments. It strongly outperforms the known
algorithms for theta function computation whose complexity is of the order of O(n?) [1].

3.8 Generalized circulant graphs

We define a generalized circulant G(k x C, s, E) to be a graph which consists of k£ copies

,"l’ 5 t=1,2,...,k, of certain circulant graph C), s, and a set E of edges which interconnect
vertices from different replicas of C, ;. J = {j1,J2,.--,Js}, 1 < s < n, is a multi-index
that describes the adjacencies in C, ;. To define E, for every vertex x of C, ; one specifies
all existing edges (if any) between z and vertices from C ;,,C3 ;,...,CF ;. The same pat-
tern of edges cyclically propagates between the corresponding vertices of C,%, ; and ones of
C21,Cp gs---,Ck 1, Cy 5, ete. See Fig. 2 for illustration.

2 The upper bound 3.3177... is reached for n = 7,5 = 3.
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Varying the parameters defining a generalized circulant, one can obtain diverse classes of
graphs with interesting properties. Some of them can be used in the design of communication
networks with a high degree of fault-tolerance.

Generalized circulants are also interesting from theoretical perspective. For instance, for
some their subclasses the gap between the clique and chromatic numbers can be arbitrarily
large. As a simple example, consider a generalized circulant G(k x Cs, F), where Cj5 is the
pentagon and E contains all possible edges connecting vertices of different pentagons. It is
not hard to see that G(k x Cs, E) has 5k vertices, 2561 edges, and w(G(k x Cs, E)) = 2k,
X(G(k x Cs, E)) = 3k.

2

0
Cn,J
1
Cn,J
6
Cn,J
2
Cn,J
5
Cn,J
3
c 4 Cn,J
n,J
0) b)

Figure 2. a) Exemplary structure of a generalized circulant G(7x Cy, s, E). The double lines represent
multiple edges between vertices from different copies of Cy, ;. b) A generalized circulant G(3xCs, E).
E contains 6 edges.
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Abstract

We slightly improve the pruning technique presented in Dantsin et. al. (2002) to obtain an
O* (1.473™) algorithm for 3-SAT.
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1 Introduction

An instance of 3-SAT is a boolean formula ¢ in n variables z1, ..., z,, defined as the con-
junction of a set C of disjunctive clauses of length at most 3. Satisfiability of ¢ can be tested
in a straightforward manner in time

O (2" n*) = 0" (2").
Here, as usual, we use the O*-notation to indicate that polynomial factors are suppressed.

During the last years so-called ezact algorithms have been designed solving 3-SAT in time
O* (a™) with a < 2, see Schoening [3| for an overview. The currently fastest randomized algo-
rithms run in time O* (1.3302") (see Hofmeister, Schoening, Schuler and Watanabe [2]) and
the fastest deterministic algorithm (see Dantsin et. al. [1]) takes O* (1.481"). We slightly im-
prove the pruning technique used in Dantsin et. al. [1] to obtain a running time of O* (1.473").

2 Local search

Let ¢ be an instance of 3-SAT given by a set C of clauses in variables z,...,z,. For a €
{0,1}" let B, (a) C {0,1}" denote the set of 0-1 vectors with Hamming distance at most r

! E-mail: t.brueggemann@math.utwente.nl. Supported by the Netherlands Organization for
Scientific Research (NWO) grant 613.000.225 (Local Search with Exponential Neighborhoods).
2 E-mail: kern@math.utwente.nl. Corresponding author.
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from a. The currently fastest algorithms for 3-SAT are based on local search: First, a covering
code of suitable radius < n is constructed, i.e. a set A C {0,1}" such that

{0,1}* = U B, (a)

a€A

holds. Next we search for a truth assignment for ¢ in each B, (a), a € A, separately. To
make our paper self-contained, we briefly describe the basic idea for constructing a covering

code and (to some extent) the local search within a given B, (a) as presented in Dantsin et.
al. [1].

Covering codes. As B, := B, (0) contains exactly
" (n
Vin,r)=> ( )
i=1 \!
elements, a covering code A C {0,1}" of radius » < n must necessarily satisfy
2n
V(n,r)

Al >

Covering codes of approximately this size indeed exist and can be constructed randomly:

Choose
n2™

V(n,r)
elements from {0,1}" uniformly at random, resulting in a set A C {0,1}" of size |A| < t.
The probability that a particular a* € {0,1}" is not covered by any B, (a), a € A is at most

t =

¢
P [a* not covered] = (1 Y (272’ T)> <e™,

using 14+ 2z < e” for x € R. So the probability that A is not a covering code is at most 2"e™",
which tends to 0 as n — oo.

This procedure can be de-randomized by taking in each step a new code word a € {0,1}"
that is best possible in the sense that it covers as many as possible of the yet uncovered
elements in {0, 1}". Note, however, that this greedy construction takes O* (2") per step and
thus almost O (22*) = O* (4") in total (which is far too slow). Dantsin et. al. [1] therefore
propose the following. Let K € N be a constant and assume w.l.o.g. that n = Kny and
r = Kr. Then construct a covering code 4y C {0,1}™ in time O (4™) = O* ( I\(/Zn) and
take

A= AO X ... X AO

T Kome

as a covering code for {0,1}". Proceeding this way, the time needed for constructing the
covering code becomes negligible.
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Local search. Assume we want to search for a truth assignment for ¢ in B, (a) C {0,1}".
We may assume w.l.o.g. that a = 0, i.e., we search in B, = B, (0). (Interchange x; with T;
if necessary.) If @ = 0 is not a truth assignment for ¢, there must exist a false clause, i.e. a
clause C' € C that is false under a = 0, say C' = (x; V 2y V x). It then suffices to search for
a truth assignment in B,_; C {0,1}""! w.r.t. each of the formulae

(plz(p[xizl]i (PZZQD[.TZI:” and @3:()0[,/Ezw:1]’

obtained by fixing a variable as indicated in brackets. If necessary, we may even fix in
addition some variables to zero, e.g., define ¢y = ¢ [z; =1],¢9 := @[zy = 1,2; = 0] and
Q3 == QO[.’IZ'Z’H = 1,331' = 0,.’I3il = 0]

Continuing this way, our search can be described by a search tree 1), constructed by branching
on false clauses (one false clause per node), as indicated in figure 1.

A

®1 Y2 ©3

Figure 1. The search tree 7,

Needless to say that we never branch to formulas ¢’ = ¢ [z; = 1,...] that are obviously non-
satisfiable because they contain an empty (non-satisfiable) clause. (For example, if (Z;) € C,
we would only branch to @9 and 3 in figure 1.) We denote the number of leaves of 7, by
|T,| and refer to it as the size of T,. Clearly,

T <3 (1)

holds, an immediate consequence of the recursion |T,| < 3|7, 1| (see figure 1). In case ¢
contains a false 2-clause C' € C, then branching on C would yield |7;| < 2|T,_4].

As pointed out in Dantsin et. al. [1], this simple argument already gives an O* ({‘73”)
O* (1.7321") algorithm: Take r = % and search B, (0) and B, (1) separately in time O* (3") =
o (\2/3") each.

Q

Smaller search trees. The trivial bound (1) on the size of the search tree can be improved
by a clever branching technique, as shown in Dantsin et. al. [1]: Assume that ¢ contains
three pairwise disjoint false clauses C' = (z; Vay Vi) ,Cy = (z; Vxy Vay) and C] =
(z V z V xir) and a (true) clause (T; V T; V Ty). We may then branch along (T; V T; V Ty),
i.e. first branch on C at the root node ¢, then branch on C; at ¢ = ¢ [z; = 1] and finally
branch on C] at ¢| = ¢ [z; = 1] = ¢[z; = 1,z; = 1]. The resulting search tree is indicated
in figure 2.

Note that the node corresponding to ¢} has only two descendants because
¢lz; =1,2; = 1,24 = 1] is ruled out by the clause (T; VT; V Ty).
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Figure 2. Branching along (Z; VZ; V Ty)

If a similar branching was possible also at 9 and 3, we would get a search tree satisfying

a recursion
T| < 6|T: 2| +6|T;_3]. (2)

Indeed, this is what Dantsin et. al. [1] show. Assuming inductively that |T}| < ca* holds for
some constant ¢ > 0, (2) implies that

T| <O (), (3)
where o = /4 + /2 ~ 2.848 is the largest root of a® — 6a — 6 = 0.
The main result of our paper slightly improves this bound as follows.
Theorem 1 By branching on false clauses we can ensure that
T < B,

where = H’;/ﬁ ~ 2.792 is the largest root of 2 — 68 — 5 = 0.

Running time. Let p < % and r = gn. By Stirling’s formula, the size of a covering code
we construct is (up to a polynomial factor) bounded by

Al=0" (2 (1-0)'").

According to (3), the number of nodes in 7, is bounded by n|T,| = O* (|T;|) and hence the
total running time is thus bounded by

O (lA|IT]) = 0 ([2(c0)? (1 - 0] ") -

This expression is minimal for p & 0.26, yielding the bound of O* (1.481") in Dantsin et. al.

1.

Similarly, replacing o by 8 from Theorem 1, we obtain for o ~ 0.264 an exact algorithm that
runs in O* (1.473").
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1 Introduction

We denote an undirected graph by G = (V, E), where V is the set of vertices and E is
the set of edges. Two vertices are said to be adjacent if they are connected by an edge. A
clique of a graph is a set of vertices, all of which are pairwise adjacent. The mazimum clique
problem asks for cliques of maximum cardinality in a graph; this problem is well-known to
be NP-complete [2].

A (finite) generalized quadrangle (GQ) is an incidence structure S = (P, B,I) in which P
and B are disjoint (nonempty) sets of objects called points and lines (respectively), and for
which I is a symmetric point-line incidence relation satisfying the following axioms:

(i) each point is incident with 1+ ¢ lines (¢ > 1) and two distinct points are incident with at
most one line;
(ii) each line is incident with 1 + s points (s > 1) and two distinct lines are incident with at
most one point;
(iii) if z is a point and L is a line not incident with x, then there is a unique pair (y, M) € PxB
for whichz I M T yI L.

The integers s and ¢ are the parameters of the GQ and S is said to have order (s,t);if s =1,
S is said to have order s. Generalized quadrangles with s > 1 and ¢ > 1 are called thick .
Interchanging points and lines in S yields a GQ of order (¢, s), which is called the dual S”
of S. Two points p and g of S are called collinear if there is a line L in B incident with both.
Dually, two lines L. and M are called concurrent if there is a point p in P incident with
both. For the theory of generalized quadrangles we refer to [3].

With a generalized quadrangle S a so-called collinearity graph Gs can be associated as
follows: the points of S correspond to the vertices of G g, and two vertices are adjacent if and
only if the corresponding points are collinear.
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An ovoid of a generalized quadrangle S is a set O of points of S such that each line of S is
incident with a unique point of O. Dually, a spread of S is a set R of lines of S such that
each point of S is incident with a unique line of R.

An ovoid of S corresponds to a maximum coclique of size st + 1 in G (or equivalently, a
maximum clique in its complement Gg). A spread of S corresponds to a maximum coclique
of size st + 1 in the collinearity graph of SP. If no coclique of the required size exists, then
the maximum coclique is said to be a maximal partial ovoid or spread in S.

Here we will consider the classical thick generalized quadrangles:

e The generalized quadrangle Q(4,q) and Q (5, q):
Let @ resp. @~ be a non-singular quadric of projective index 1 in the projective
space PG(4,q) resp. PG(5,q). Then the points of quadric together with the lines of the
quadric form form a GQ with parameters (s,t) = (g, q) resp. (g, ¢?).

e The symplectic generalized quadrangle W (q):
The points of the projective space PG(3, q), together with the totally isotropic lines with
respect to a symplectic polarity, form a GQ with parameters (s,t) = (g,¢q). Note that
W (q) is isomorphic to the dual of Q(4, q). Moreover, Q(4,q) (or W(q)) is selfdual iff ¢ is
even.

e The generalized quadrangle H(3,q?) and H (4, ¢):
Let H be a nonsingular hermitian variety of the projective space PG(3, ¢*) resp. PG (4, ¢?).
Then the points of H together with the lines on H form a GQ with parameters (s,t) =
(¢2, q) resp. (¢%,¢%). Note that H(3,¢?) is isomorphic to the dual of Q@ (5, q).

In this paper we use standard maximum clique algorithms and add pruning strategies based
on specific properties of the collinearity graphs in order to determine (partial) ovoids or
spreads of classical generalized quadrangles.

2 Algorithms

The basic form of most published algorithms (e.g. [1]) for the maximum clique problem is a
backtracking search which tries to extend a partial clique by adding the vertices of a set A
of allowed remaining vertices in a systematic way. Pruning strategies are used to avoid going
through every single clique of the graph. Typical pruning strategies involve vertex colorings.
In a vertex coloring, adjacent vertices must be assigned different colors, so if a graph or an
induced subgraph can be colored with c colors, then the graph or subgraph cannot contain a
clique of size ¢ + 1. Recently Ostergard [5] presented a new maximum clique algorithm that
allows to introduce a new pruning strategy.

Taking into account the special structure of the graphs considered here allows to add some
specific pruning strategies to the standard algorithms.

A straightforward and effective way of reducing the search space consists in fixing two points
of the ovoid, as follows. We call two ovoids equivalent if there is an automorphism of S that
transforms one ovoid into the other. It can be proven that a classical generalized quadrangle
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is transitive on the pairs of noncollinear points. Hence, for every ovoid not containing a
certain noncollinear pair, there is an equivalent ovoid that does contain that pair. It follows
that we can restrict the search to ovoids that contain a certain fixed pair of noncollinear
points without missing any of the essentially different ovoids. In terms of the clique finding
algorithm in G, this means that we can restrict the search to cliques containing a certain
fixed edge. This reduces the search space with a factor of O(vk), where v = (s+1)(st +1) is
the number of points of S and k = s?t is the number of points not collinear with an arbitrary
point.

For some types of generalized quadrangles optimal vertex colorings of the collinearity graph
can be constructed from theoretical arguments. For instance, classical constructions for ovoids
in (4, ¢q) are known [3]. Since Q(4, ¢) is isomorphic to the dual of W (g), the points of an
ovoid in Q(4,q) correspond to lines in W (g), hence to a partition of the vertices of Gy (q)
into classes of mutually non-adjacent vertices. In other words, this is a partition of Gy (q)
into color classes that can be used for pruning and/or vertex ordering in a maximum clique
algorithm. It can be proven that the obtained vertex coloring is optimal, i.e., uses a minimum
number of colors.

The following strategy is useful when checking whether a quadrangle has an ovoid or when
classifying all ovoids in a quadrangle known to contain ovoids. Next to the clique finding
algorithm that works in the collinearity graph of the quadrangle, we also maintain the inci-
dence structure of points and lines of the quadrangle and use this information as follows. In
the process of adding a vertex to the current clique, it can happen that there is a line with
only a single point corresponding to a vertex that is still allowed. In that case this point
must belong to the ovoid, which means that the corresponding vertex must be added to the
current clique.

3 Results

It is known (see [3]) that Q(4, ¢) always has ovoids of size ¢> + 1. Using the above mentioned
strategies we obtained a full classification for Q(4, q) for ¢ < 9. This confirms earlier theoret-
ical results, including an unpublished result of a computer search by T. Penttila classifying
the two non-equivalent ovoids for Q)(4,9). The result for ¢ = 9 is shown in Table 1.

Table 7
Quadrangles with ovoids

GQ #points | ovoid size | #cliques | |Aut|

Q(4,9) | 820 82 2 2125440, 5184

For W(q) (q odd), Q(5,q) and H(4,¢?), it is known that no ovoids exist. Some theoretical
upper bounds for the maximal partial ovoid or spread size are known. Table 2 gives some
results on partial ovoids obtained by our programs. We have obtained the exact size of the
partial ovoids (for some of them also complete classification), which improve on the best
known theoretical bounds.
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We also confirmed Brouwer’s unpublished result that H(4,4) has no spread (i.e., H(4,4)"
has no ovoid).

Table 8
Quadrangles without ovoids

GQ #points | bound | exact size | # maximum cliques | |Aut]|
W(5) 156 21 18 2 12, 72
Q(5,3) 112 21 16 1 11520
Q(5,4) 325 37 25
H(4,4) | 165 25 21 1 648
H(4,4)P | 297 32 29 6
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Two-Levels-Greedy: a generalization of Dijkstra’s
shortest path algorithm

Domenico Cantone! Simone Faro 2
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95125, Catania, Italy

The shortest path problem on weighted directed graphs is one of the basic network opti-
mization problems. Its importance is mainly due to its applications in various areas, such as
communication and transportation. Here we are interested in the single-source case. When
the graph is not required to satisfy any particular restriction and negative weight edges can
occur, the problem is solved by the Bellman-Ford-Moore algorithm |Bel58, For56, Moo59],
whose complexity is O(|V'||E|), with V and E denoting the sets of nodes and of edges, respec-
tively. A more efficient solution due to Dijkstra [Dij59] is available when weights are restricted
to non-negative values. Depending on the implementation used for maintaining a service
priority queue, Dijkstra’s algorithm has complexity O(|V|?) (simple list), or O(|E|log|V|)
(standard binary heap), or O(|V|log|V|+|E|) (Fibonacci heap [FT87]). Another case which
can be solved very efficiently occurs when the underlying graph is acyclic. In such a case, by
scanning the nodes in topological ordering, one can achieve a O(|V| + |E|) complexity.

In this note we present a natural generalization of Dijkstra’s algorithm to the case in which
negative weight edges are allowed, but only outside of any cycle. The resulting algorithm
turns out to have the same asymptotic complexity of Dijkstra’s algorithm and shows a linear
behavior in the case of acyclic graphs. In fact, we will also see that our proposed algorithm
compares very well in practice with the most efficient shortest path algorithms available, such
as the ones due to Dial [Dia69|, Pape [Pap74|, Pallottino [Pal84|, Glover et. al. [GGK84],
and to Goldberg and Radzik [GR93|.

1 Preliminaries

We begin by reviewing the relevant notations and terminology. A directed graph is represented
as a pair G = (V, E), where V is a finite set of nodes and F C V x V is a set of edges such
that E' does not contain any self-loop of the form (v,v). A weight function | on G = (V, E)
is any real function [ : E — R. A path in G = (V, E) is any finite sequence (v1,vs,. .., vx)
of nodes such that (v;,v;41) is an edge of G, for i = 1,...,k — 1. The weight function can
be naturally extended over paths by putting I(vy, vy, ..., vx) = S8 (vi, vig1). A minimum

! E-mail: cantone@dmi.unict.it, http://www.dmi.unict.it/~cantone.
2 E-mail: faro@dmi.unict.it, http://www.dmi.unict.it/~faro.

CTWO04 Proceedings — Villa Vigoni (CO), Italy, 31st May to 2nd June 2004



Two-Levels-Greedy: a generalization of Dijkstra’s shortest path algorithm

weight path (or shortest path) from u to v is a path in G = (V, E') whose weight is minimum
among all paths from u to v. Provided that v is reachable from u and that no path from u to
v goes through a negative weight cycle, a minimum weight path from u to v exists; in such
a case we denote by d(u,v) the minimum weight of a path from u to v. If v is not reachable
from u, we put §(u,v) = +oo. Finally, if there is a path from u to v through a negative
weight cycle, we put §(u,v) = —oo. The function 6 : V x V — RU {400, —o0} is called the
distance function on (G,[). Given a source node s in a graph G, the single-source shortest
path problem from s is the problem of finding the minimum weight paths from s to all other
nodes of GG or to ascertain the existence of a negative weight cycle in GG reachable from s.

Most single-source shortest path algorithms are based on the labeling method, which maintain
a potential function d : V' — R U {+o0}, a predecessor function 7 : V' — V U {NIL}, and a
status function S : V — {UNREACHED, LABELED, SCANNED}. Initially, one puts d(s) := 0,
7(s) := NIL, S(s) := LABELED, where s is the source node, and also puts d(v) := +o0,
7(v) = NIL, and S(v) := UNREACHED, for v € V'\ {s} (procedure INITIALIZE). Subsequently,
the potential function d is updated only by assignments of the form d(v) := d(u) + I(u,v),
provided that d(v) > d(u) + {(u,v), in which case one also puts 7(v) := u and S(v) :=
LABELED. It turns out that d(v) > d(s,v) always holds, for v € V. Additionally, if d(v) =
d(s,v), then the predecessor function 7 can be used to reconstruct a shortest path from s to
v backwards. The values d(v) are updated within SCAN operations (see below).

PROCEDURE INITIALIZE(G, s) | PROCEDURE SCAN(G,u)
for all v € V do for all v € V such that (u,v) € E do
d(v) := 40 if d(v) > d(u) + l(u,v) then
m(v) := NIL d(v) == d(u) + l(u,v)
S(v) := UNREACHED S(v) := LABELED
d(s) :==0 w(v) :=u
S(s) == LABELED S(u) := SCANNED

Procedure SCAN is called on LABELED nodes until all nodes are marked either UNREACHED
or SCANNED. Notice that after a SCAN operation is called on a LABELED node u, some UN-
REACHED or SCANNED node may become LABELED, whereas the node u becomes SCANNED.

Shortest path algorithms based on the labeling method are mainly characterized by the
strategy they adopt to select the next node to be scanned from the set ) of all LABELED
nodes. For instance, the Bellman-Ford-Moore algorithm maintains the set of LABELED nodes
into a FIFO queue. Thus, the next node to be scanned is removed from the head of the queue,
whereas a node that becomes LABELED is added to the tail. As another example, Dijkstra’s
algorithm applies a greedy strategy, which consists in selecting at each iteration a LABELED
node v € ) with the minimum potential value d(v). It turns out that Dijkstra’s algorithm is
very efficient for graphs containing no negative weight edges, but it may run in exponential
time if they are present.
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Two-LEVELS-GREEDY (G, s)

compute the component graph GS¢¢ = (V5CC pSCC)

compute a topological ordering < of G¥¢¢

INITIALIZE(G,s)

while G contains some node marked LABELED do
let C € ESCC be the <-smallest s.c.c. containing a LABELED node
let v be a d-smallest LABELED node in C

ScAN(G,v)

Figure 1. The TWO-LEVELS-GREEDY algorithm

2 The TwWo-LEVELS-GREEDY algorithm

The algorithm which we propose is a natural generalization of Dijkstra’s algorithm to the
case in which negative weight edges are allowed, but only outside of any cycle (negative
weight edge restriction). It consists in a preliminary phase and a scanning phase.

Given a directed graph G = (V, E), with weight function [ and satisfying the above neg-
ative weight edge restriction, as a first preliminary step we compute the graph G5¢¢ =
(VSCC ESCC) of the strongly connected components (s.c.c.) of G. We recall that V5¢C is
the partition of V' with respect to the relation ~ over V', where u ~ v holds if and only if u
and v lie on a same cycle, and ES¢C is the collection of pairs (C1, Cy) such that there exists
an edge (vi,v2) € E, with v; € C; and vy € Cs. It turns out that the graph G5 can be
computed in O(|V| + |E|)-time (cf. [CLR90]); moreover, G5¢C is acyclic and, because of the
negative weight edge restriction, negative weight edges can connect only nodes belonging to
different components. Next, again in O(|V|+ |E|)-time (cf. [CLR90|), we compute a topolog-
ical ordering of GS°C. This is any linear ordering < of V5¢C such that if (C,Cy) € ESCC
then C; < C,. Finally, we complete the preliminary phase by executing the procedure INI-
TIALIZE on the graph G with a given source s. In the scanning phase, nodes are selected
to be processed by procedure SCAN according to the following “two-levels” greedy strategy,
until there is no node which is marked LABELED (for convenience, a s.c.c. C containing a
LABELED node is said to be LABELED as well):

e firstly, the LABELED s.c.c. C € ESYC which is smallest with respect to the topological
ordering < is selected;
e secondly, a LABELED node v in C with minimal potential d(v) is selected to be scanned.

We name the resulting algorithm Two-LEVELS-GREEDY (TLG, for short). Its pseudo-code
is shown in Fig. 2. It may be shown that under the above restriction on negative weight
edges the TLG algorithm computes correctly all shortest-paths from a given source s in G.
Moreover, it turns out that the TLG algorithm retains the same asymptotic time complexity
as Dijkstra’s algorithm. In addition, when the input graph is acyclic, its complexity is linear
in the size of the graph.
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3 Experimental results

A significant amount of experimental testing on shortest path algorithms has been carried
out over the years, see for instance [Ber93|, [CG99]|, [CGR96], and [MCN91]. To this purpose,
several classes of graphs have been introduced. We present below experimental results relative
to two extreme classes of graphs for the TLG algorithm: RAND-LEN, a class of strongly
connected and dense random graphs, and ACYC-P2N, a class of acyclic random graphs with
a variable fraction of negative edges (see [CGR96| for more details). All algorithms have
been implemented in the C programming language and have been tested on a PC with
AMD Athlon processor of 1.19 GHz. For each test, we computed the running time in CPU
milliseconds (in bold) and the average number of scan operations per node. Maintaining the
same style of [CGR96|, each entry is the average of five runs of the code on problem instances
produced with the same generator parameters, except for the pseudo-random generator seed.
For each problem, the two best results have been underlined.

The TLG algorithm has been tested against the following algorithms: the Bellman-Ford-
Moore algorithm (BFM) and one of its variants (BFP), which implements the parent-
checking heuristic introduced in |[CGR96|; Dijkstra’s algorithm implemented with bucket
heaps (DIKB), as proposed by Dial |[Dia69|; two incremental algorithms due to Pape
(PAPE) [Pap74] and Pallottino TWOQ) [Pal84]; the threshold algorithm (THRESH) due
to Glover et. al. [GGK84]; two topological sorting algorithms (GOR and GOR1) due to
Goldberg and Radzik [GR93|. The priority queue of the TLG algorithm has been imple-
mented with bucket heaps.

The first table presents experimental results on the RAND-LEN class of graphs, where each
graph is constructed by first creating a Hamiltonian cycle and then adding edges with distinct
end points. In our experiments we set to 1 the weight of the edges on the Hamiltonian cycle
whereas the weights of the remaining edges have been randomly selected in the interval
[L, U], using a uniform distribution.

[ [L,U] [ BFM | BFP | DIKB [ PAPE | TWOQ | THRESH | GOR | GORIL | TLG ]

[1,1] 215 | 216 218 214 224 346 347 917 330
1.00 1.00 1.00 1.00 1.00 1.00 1.61 4.48 1.00
[0, 10] 671 | 601 265 506 509 367 779 1124 | 360
3.17 | 2.67 | 1.00 2.85 2.84 1.01 4.36 5.94 1.00
[0,102] || 1534 | 1354 | 293 1171 1229 705 1376 | 1400 | 390
7.40 | 6.14 | 1.00 8.07 8.05 1.78 8.93 8.21 1.00
[0,10%] || 3867 | 3463 | 339 3360 3693 2738 2573 | 2101 | 468
19.04 | 16.74 | 1.00 27.31 26.07 9.16 19.48 | 14.15 | 1.00
[0,108] || 5564 | 5219 | 352 5500 5584 4096 3527 | 1520 | 478
29.21 | 26.76 | 1.00 47.60 41.89 16.03 27.96 | 12.26 | 1.00

The second table shows experimental results obtained on the class ACYC-P2N of acyclic
random graphs. In a graph of this class all edge weights are selected uniformly from the
interval [L,U], where the values of L < 0 and U > 0 determine the expected fraction
f=—-L/(U — L) of negative weight edges.
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[f(%) ]| BFM | BFP | DIKB | PAPE | TWOQ | THRESH | GOR | GORI | TLG ]

0 52 52 44 42 44 38 76 40 80
1.76 1.66 1.00 1.83 1.83 1.01 2.61 2.00 1.00

10 72 64 44 56 62 42 84 40 240
2.43 2.21 1.14 2.64 2.64 1.29 3.01 2.00 1.00

20 || 167 146 134 134 140 123 125 40 250
8.41 6.78 7.28 10.92 10.53 7.06 6.29 2.00 | 1.00

30 || 731 542 771 516 488 619 195 40 270
40.9 28.75 41.31 69.27 59.69 40.28 12.49 | 2.00 | 1.00

40 || 4702 | 3402 5666 5161 3304 4707 351 40 285
288.7 | 179.65 | 325.83 | 940.89 641.19 339.58 2281 | 2.00 | 1.00

50 || 32692 | 19496 | 43372 | 67320 29774 37842 485 40 300
2171.6 | 1056.25 | 2405.31 | 12088.96 | 9510.17 2862.66 | 30.81 | 2.00 | 1.00

60 - 39761 - - 53357 83537 587 38 320
- 2149.88 - - 20124.87 | 5918.05 | 33.52 | 2.00 | 1.00

100 - 44185 - - 25967 - 40 35 386
2349.75 - - 10819.75 - 2.00 2.00 | 1.00

Concerning the running time, it turns out that the TLG algorithm achieves in both cases
very good results and often it is very close to the best performances. Concerning the number
of scan operations performed by the algorithms, it turns out that the TLG algorithm always
obtains the best results.
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Abstract

Given a vertex weighted graph G, a minimum Weighted Feedback Vertex Set (MWFVS) is a subset
F CV of vertices of minimum weight such that each cycle in G contains at least one vertex in F.
The MWEFVS on general graph is known to be NP-hard. In this paper we introduce a new class
of graphs, namely the diamond graphs, and give a linear time algorithm to solve MWFVS on it.
We will discuss, moreover, how this result could be used to effectively improve the approximated
solution of any known heuristic to solve MWFVS on a general graph.

Key words: Feedback Vertex Set, Dynamic Programming, Diamond Graphs

1 Introduction

Given a vertex weighted graph G, a minimum Weighted Feedback Vertex Set (MWFVS)
is a subset F' C V of vertices of minimum weight such that each cycle in G contains at
least one vertex in F. The MWFVS on general graph is known to be NP-hard. However,
a large literature shows that it becomes polynomial when addressed on specific classes of
graph: interval graph [1|, cocomparability graph [2], AT-free graph, among others. In this
paper we introduce a new class of graphs, namely the diamond graphs, and give a linear time
algorithm to solve MWFEVS on it. We will discuss, moreover, how this result could be used
to effectively improve an approximated solution on a general graph, that is the object of our
further research. Section 2 introduces the needed notation and the diamond graph class.
Section 3 contains the description of our linear algorithm based on dynamic programming
to optimally solve MWFEVS on diamonds. Further research is discussed in Section 4.
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2 The class of diamond graphs

In this section we give some basic concepts used in this paper. Let G = (V, E, w) be a weighted
graph, where V is the set of vertices, E C V xV is the set of edges and w : V' — R is a weight
function which associates a positive real number to each vertex of G. Given a weighted graph
G = (V, E,w) and a subset X of V, we define G— X = (V\ X, (V\X) x (V\X))NE,w'),
where w’ is the restriction of w on the domain V'\ X.

A tree is an acyclic, connected and undirected graph. Let T be a tree rooted in r. Given a
vertex u in T, we denote as C, the set of children of u in 7. The height of a vertex u in
T, denoted by h(u), is recursively defined as follows. If u is a leaf then hA(u) = 0, otherwise
h(u) = max,ec, {h(v)} + 1. We define the height of a tree T as the height of its root (i.e
h(T) = h(r)). Given a vertex u € T, the subtree of T rooted in u is the subgraph of T
induced by the set of vertices constituted by u and its descendents in 7. In the following we
denote by T, the subtree of T rooted in wu.

Now we introduce a new class of graphs, namely the Diamond graphs.

Definition 1 A diamond D = (V, E,w) with apices r and z (with r,z € V), is a weighted
graph where (i) each v € V is included in at least a simple path between r and z and (i)
D — {z} is a tree.

We call the two vertices r and z of D the upper and lower apex of D, respectively. Given a
diamond D with apices r and z, we refer to the tree D — {z} rooted in r as T. Let us denote
as D, the subdiamond of D, with apices v and z, induced by vertices of T}, and z. The height
of diamond D,, is given by the height of T, (see Figure 1(a)).

Given a diamond D with apices r and z, we can see that it is formed by the subdiamonds
D,., with r; € C,, having the common lower apex z and upper apex 7;.

3 Our resolution algorithm

In this section, we propose a linear algorithm, based on dynamic programming, to solve the
MWEFEVS problem on diamonds. In the rest of this section we consider a diamond D having
r and z as its upper and lower apices. Note that by definition the set F' = {z} is an FVS of
D. Hence, an optimum solution F* of MWFVS on D is such that either F* = {z} or, z ¢ F*
and W (F*) < w(z). Hence, the MWFVS problem on a diamond can be solved first finding
a minimum FVS F' that does not contain vertex z and then comparing W (F) with w(z).

Let us notice that in D — F either there exists a simple path between r and z or it does not
exist (see Figure 1(b)). We prove the above observation by the following proposition.

Proposition 1 Given a diamond D with apices r and z, if F CV is a (minimum) FVS of
D, then there exists at most one path between r and z in D — F.
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Figure 1. (a) A diamond with apices r = 1 and z = 10. The height of this diamond is 3 and the
associated tree T is D—{z}. Note that, the subgraph Dy (with Vo = {2,4,7,8,9,10}) is a subdiamond
of height 2 with r = 2 and z = 10.(b) A diamond with apices = 1 and z = 9. A minimum FVS
(that does not contain vertez z) is F' = {3,5,6} and since W (F) = 4 < w(z) = 40 we have that
F* = F. Note that in D — F' there is a simple path between T and z. Setting w(2) = 2, the set
F = {2,3} with W(F) = 3 is the optimum FVS. In this case D — F' does not contain a path between
r and z

Let us define now two new problems on a diamond D, related to MWFVS that will be useful
to solve MWFVS on D.

Path Problem: find a subset F* C V \ {z} of minimum weight such that (i) D — F does
not contain cycles, and, (ii) there exist exactly a path in D — F between r and z.

NoPath Problem: find a subset F~ C V' \ {z} of minimum weight such that (i) D — F
does not contain cycles, and, (ii) there does not exist a path in D — F between r and z.

A

From the above observations the minimum F' on D is either F'* or F~. Therefore, the
optimum solution F* on D is such that:

W(F*) = min{w(z), W(F"),W(F )}

and, then we have either F* = {2} or F* = F" or F* = F~.

3.1 Optimal Substructure and Recursion Rules

In this section, we conjunctly characterize the structure of an optimal solution for both Path
and NoPath problems. We recall that a problem has an optimal substructure if an optimal
solution to the problem contains within it optimal solutions to subproblems. Both Path
and NoPath problems have an optimal substructure property. We pick as our subproblems
the problems of determining the value of solution to Path and NoPath problems on the
subdiamonds D, with u € V' \ {z}. We will denote by F,f and F, the optimal solutions of
the Path and NoPath problem, respectively, on D,. Now, we prove that the optimal solution
F} (F, ) contains, for each u; € Cy, either Ff or F. .
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Proposition 2 Given the optimum solution F,S on D,, then each set F,,, = F,F NV, is an
optimal solution to either Path problem or NoPath problem on D,,.

Proposition 3 Given the optimum solution F,, on D, then each set F,,, = F, NV, is an
optimal solution to either Path problem or NoPath problem on D,,.

Now, we describe the recursion rules to obtain the values of the optimum sets F, and F), .
We define the W (F,F) and W (F, ) recursively as follows.

Optimum Solution to Path Problem: W (F")

We distinguish two cases according to the height h(u):

e h(u)=0
Trivially W (F;[) = 0.

e h(u) >0
If (u,z) € E,, then since u ¢ F,}, G, — F; has surely a path between u and z composed
by the edge (u, z). Thus, to avoid cycles in G, — F,f, the set F, is obtained by the union
of F, for each x € C, and W (F,[) = X ,cc, W(F; ). Instead, when (u, z) ¢ E,, in order
to have a path from u to z in G, — F}, the optimal set is obtained by the minimum weight
union of exactly one set F", for some z € C,, and by Uyec.—{a} Fy - Therefore, we have
the following:
WE) = min{W(EH) + ¥ W(F)}

2€Cu yeCu—{z}

By applying a similar reasoning we can derive the following recursion rules for the NoPath
problem.

Optimum Solution to NoPath Problem: W (F))

Uu

0
F = {g} and W(F,) = w(u).

W(F;) = min {w(u) + 3 min {W(F,),W(F,)}, W(F;)}

T€Cy, z€eCy,

4 Conclusion and Further Research

We studied the Weighted Feedback Vertex Set on a special class of graph: the diamonds
graph. We showed a linear time algorithm to solve the problem on this graph class. Further
research is focused on the study of the larger class of multidiamond graphs (diamonds with
multi-upper and lower apices). In addition, our purpose is to use the linearity of the MWFVS
on this class of graph to try to improve an approximated solution of MWFVS on general
graph.
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Abstract

In this paper 2, we give graph-theoretic algorithms of linear time to the Minimum All-Ones Problem
for unicyclic and bicyclic graphs. These algorithms are based on a graph-theoretic algorithm of linear
time to the Minimum All-Ones Problem with Restrictions for trees.
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1 Introduction

The term All-Ones Problem was introduced by Sutner, see [10]. It has applications in linear
cellular automata, see [11] and the references therein. The problem is cited as follows: suppose
each of the square of an n x n chessboard is equipped with an indicator light and a button.
If the button of a square is pressed, the light of that square will change from off to on and
vice versa; the same happens to the lights of all the edge-adjacent squares. Initially all lights
are off. Now, consider the following questions: is it possible to press a sequence of buttons
in such a way that in the end all lights are on 7 This is referred as the All-Ones Problem.
If there is such a solution, how to find a such way ? And finally, how to find such a way
that presses as few buttons as possible ? This is referred as the Minimum All-Ones Problem.
All the above questions can be asked for arbitrary graphs. Here and in what follows, we
consider connected simple undirected graphs only. One can deal with disconnected graphs
component by component. For all terminology and notations on graphs, we refer to [7]. An
equivalent version of the All-Ones Problem was proposed by Peled in 8|, where it was called
the Lamp Lighting Problem. The rule of the All-Ones Problem is called o"-rule on graphs,
which means that a button lights not only its neighbors but also its own light. If a button
lights only its neighbors but not its own light, this rule on graphs is called o-rule.

In graph-theoretic terminology, a solution to the All-Ones Problem with o*-rule can be
stated as follows: given a graph G = (V, E), where V and F denotes the vertex-set and the
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edge-set of GG, respectively. A subset X of V is a solution if and only if for every vertex v of
G the number of vertices in X adjacent to or equal to v is odd. Such a subset X is called
an odd parity cover in [11]. So, the All-Ones Problem can be formulated as follows: given a
graph G = (V, E), does a subset X of V exist such that for all vertex v € V' — X, the number
of vertices in X adjacent to v is odd, while for all vertex v € X, the number of vertices in X

adjacent to v is even ? If there exists a solution, how to find a one with minimum cardinality
7

There have been many publications on the All-Ones Problem, see Sutner [12,13], Barua and
Ramakrishnan [1] and Dodis and Winkler [3]. Using linear algebra, Sutner [11] proved that
it is always possible to light every lamp in any graphs by o*-rule. Lossers [6] gave another
beautiful proof also by using linear algebra. A graph-theoretic proof was given by Erikisson
et al [4]. So, the existence of solutions of the All-Ones Problem for general graphs was solved
already. Sutner [10] proposed the question whether there is a graph-theoretic method to find
a solution to the All-Ones Problem for trees. Galvin [5| solved this question by giving a
graph-theoretic algorithm of linear time. In [9], Sutner proved that the Minimum All-Ones
Problem is NP-complete for arbitrary graphs. So, it becomes an interesting problem to find
graph-theoretic algorithms of polynomial time to the Minimum All-Ones Problem for some
special classes of graphs. In [2] we gave a linear time algorithm for trees, which is based on
the idea of Galvin algorithm [5] to the All-Ones Problem for trees. In his algorithm, the
nodes of a rooted tree, drawn like a family tree with the root at the top, will be divided into
three classes: outcasts, oddballs and rebels. The classification is defined inductively, from the
bottom up, as follows:

e All of the childless nodes or leaves are rebels.

e A node, other than a leaf, is called an rebel if it has no oddball children and an even number
of its children are rebels.

e A node is called an oddball if it has no oddball children and an odd number of its children
are rebels.

e A node is called an outcast if at least one of its children is an oddball.

We sometimes simply call a node r-type, b-type or o-type if it belongs to the rebel class, the
oddball class or the outcast class.

These notations and terminology will be used in the sequel.

2 Algorithm to the Minimum All-Ones Problem with Restrictions for Trees

In order to solve the Minimum All-Ones Problems for unicyclic and bicyclic graphs, we need
to introduce and solve the Minimum All-Ones Problem with Restrictions for trees, which is
an interesting problem on its own. First we need to solve the following problem.

For a matrix Moy, = (Myj)axn, @ € {0,1}, 7 € {1,2,--- ,n}, my; € ZT U {oo}, the Minimum
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Odd Sum Problem with Restrictions is defined as

n
min Z Moy;Toj + my;T1j
=1

>iz1r; =1 mod 2

Zoj +x1]:1a]:1a2a ,

zij € {0,1},7 € {0,1}

Here we suppose that “cc" is bigger than any &k € Z*, and Vk € Z7, k + oo = co.

We omit the description and the proof of the algorithm for the Minimum Odd Sum Problem
with Restrictions. The time complexity of the algorithm is linear.

Replacing >°%_; z1; = 1 mod 2 in the Minimum Odd Sum Problem with Restrictions by
>i—121; =0 mod 2, we then get a new problem, called the Minimum Even Sum Problem
with Restrictions. It can be solved in the same way as above. The details are omitted.

For convenience, we say that the truth value of a node u in G, denoted by tv(u), is 1, if it
belongs to the solution to the All-Ones Problem for G; and 0, otherwise.

The so-called “the Minimum All-Ones Problem with Restrictions for trees" is to find a
solution to the Minimum All-Ones Problem for trees under the condition that the truth
values of some nodes have been assigned. For this problem, our algorithm uses induction on
the number of layers of a tree and the algorithms for the Minimum Odd or Even Sum with
Restrictions as subprocess. The details are omitted.

3 Algorithm for Unicyclic Graphs

First, we recall that a unicyclic graph is a connected graph with a unique cycle. So, we can
regard a unicyclic graph as a cycle attached with each node a rooted tree, called a suspended
tree. Note that the depth of a suspended tree can be 0. For simplicity, we say that a node
t in the cycle has the same type as the type of the root ¢ of the suspended tree. Based on
the algorithm with restrictions for trees in Section 2, we give a graph-theoretic algorithm of
linear time to the Minimum All-Ones Problem for unicyclic graphs.

Algorithm for Unicyclic Graphs

Case 1. If none of the nodes on the cycle with length ¢ is an outcast then we use the
following way to get all the possible truth values of all nodes on the cycle.

(1) Fix an order on the cycle. Assume that the truth value of the 1st node is z, the truth
value of the 2nd node is y. z and y will be completely determined in the end.

(2) Suppose that the truth value of the i-th node is a;, a function of = and y. Next, determine
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the truth value of the (i + 1)-th node in two cases: If the i-th node is a rebel, then the truth
value of the (i+1)-th node is a;41 = (1 —a; —a;_1)mod 2; else, the truth value is a; 11 = a;_;.
Repeat this step until 2 = gq.

(3) After we get the truth value of a, for the ¢g-th node, the following equalities hold.

Qg1 =T if the g-th node is an oddball
ag—1 + ag+2 =1 mod 2 if the ¢g-th node is a rebel

g =Yy if the 1-st node is an oddball
aq+2x+y=1mod 2 if the 1-st node is a rebel

By solving these equalities, we get at most 4 possible values of x and y, which determine all
possible truth values of each node on the cycle. Suppose that all the possible k(1 < k < 4)
group of truth values of the nodes on the cycle are z;1, zj2, .. ., 2jq, (1 < j < k). According to
each group of z;1, zj2, . .., 2j4, the unicyclic graph G has a solution to the All-Ones Problem.
Conversely, any solution to the All-Ones Problem for the unicyclic graph G has a restriction
on the nodes on the cycle, which must coincide with one of the ¢ groups z;1, 2j2, ..., Zjq,
(1<j<k).

Subcase 1.1 v; is a rebel. If z;; = 1. Let C;(7;) be the minimum solution to the All-Ones
Problem for T;. If z;; = 0. Let C;;(7;) be the minimum solution to the Quasi-All-Ones Problem
for T;.

Subcase 1.2 v; is an oddball. If z;; = 1, then let C;(7;) be the minimum solution to the
All-Ones Problem for T; with the restriction that the truth value of the root is 1. If z;; = 0,
then let C;(T;) be the minimum solution to the All-Ones Problem for 7; with the restriction
that the truth value of the root is 0.

After getting all the C;(T;), 1 <i < g, we can see that

Ci(G)= U Ci(T), 1<j<k

1<i<q

are all the possible minimum solutions to the All-Ones Problem for the unicyclic graph G.
So the minimum one in the & solutions is the minimum solution to the All-Ones Problem
for G.

Case 2. There is at least one of the nodes on the cycle is an outcast. Suppose this outcast
node is u. We fix an order to the nodes on the cycle. Suppose the node before u on the cycle
is v, the node after u on the cycle is w. Then we cut the edges between v and v and v and
w. The unicyclic graph G will be changed into two trees. One has the root u, denoted by 7,
the other is the remaining part of G excluding 7T,,, denoted by 7). We can easily verify that
the minimum solution to the All-Ones Problem for G, denoted by C(G), must be one of the
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following four possible solutions:

C(Té\tv(v) =i, tv(w) = j) UC[(i+j+1)mod 2}(Tu), i,7 €{0,1},

where Cpy1(7,) means the minimum solution to the All-Ones Problem for the suspended tree
T, with the root u, Cig (T,) means the minimum solution to the Quasi-All-Ones Problem for
T,.

Then the minimum one of the four possible solutions will be the minimum solution to the
All-Ones Problem for unicyclic graphs.

Summing up the above, we get that the algorithm outputs a solution to the Minimum All-
Ones Problem for unicyclic graphs, and the time complexity is linear.

For bicyclic graphs, the analysis of the Minimum All-Ones Problem would be similar but
more detailed and complicated. As an abstract, we have to omit its details. We can use the
same technique for tricyclic graphs, quadrucyclic graphs, etc. But, unfortunately, we cannot
employ it efficiently for graphs with more and more cycles. We have point out that in [9],
Sutner proved that the Minimum All-Ones Problem is NP-complete for general graphs.
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Abstract

Regular timetables, in which the trains arrive and depart at constant intervals, have been adopted
in various European countries, because of the simpler and fairer service they allow. The design of
such a timetable has recently received a certain attention in the literature. This paper extends the
commonly adopted model to take into account the reciprocal influence between the quality of a
timetable and the transport demand captured by the railway with respect to alternative means of
transport. The resulting mixed-integer non linear model remains non convex even after relaxing the
integrality constraints. We solve it by a branch-and-bound algorithm based on Outer Approzimation
and a heuristic algorithm exploiting the decomposition and reciprocal update of two submodels.
Preliminary computational results concern a regional network in North-western Italy.

Key words: Regular timetabling, Global optimization, Outer approximation

1 Introduction

In a regular timetable, such as the ones adopted by the Dutch and Swiss companies [1], the
trains servicing a line follow each other at fixed time intervals. The passengers enjoy an easily
memorizable timetable and a good level of service over the whole day and for every origin-
destination (O/D) pair. The railway company enjoys a simpler way to manage its resources.
To tune the balance between transport demand and offer along the day, some special trains
can be superposed to the regular schedule during the peak hours and some regular ones can
be dropped during low-traffic hours.
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author.
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The demand-dependent optimization of regular train timetables

The design of regular timetables has been modelled as a Periodic Event Scheduling Problem
(PESP) |2]. Nachtigall proposed to minimize the passenger waiting time and to admit lines
with different periods [3], Odijk proposed a branch-and-cut algorithm [4]. Recent develop-
ments take into account a formulation stated in terms of cycles in an auxiliary graph [5].
This model has a large number of constraints and integer variables, but only a linear subset
are relevant. Moreover, strong inequalities derive from suitable cycle classes.

While all previous studies assume a given transport demand, this paper accounts for the
strong feed-back influence exerted by the timetable on the demand itself. The actual demand
attracted by the train is estimated by a discrete-choice models [6], whose integration into
the regular timetable model provides an interesting mixed-integer non linear problem. Its
objective is to maximize the total demand captured by the train. Since in Italy several local
networks exhibit a critical relation between timetable and demand, including such a feed-back
mechanism in a model is of paramount practical interest. Since the model is non-convex, even
if the integrality constraints are relaxed, we solve it through a branch-and-bound algorithm,
which allows to evaluate upper and lower bounds on the optimum. We also introduce a
heuristic based on the decomposition and reciprocal update of the timetable design and
demand estimate submodels. Experience proves that the method quickly converges to a
fairly good solution. The preliminary computational results refer to a regional network in
Northwestern Italy.

2 The model

A line is a sequence of trains following the same track and stopping at the same stations every
P minutes. The trains moving in the opposite direction form a different line. The constraint
graph G (N, A) is a directed graph whose nodes model the entrance and the exit of each line
in each stop. The arcs correspond to time constraints between the events modelled by the
end nodes and are associated to time variables x,. The travel arcs go from the exit of a line
from a station to its entrance in the following one and are associated to travel times. The
backward arcs go from the entrance of a line into a station to the exit of the opposite line;
they are associated to the waiting time before getting back. The stopping arcs go from the
entrance to the exit of a line in a station, the transfer arcs from the entrance of a line to
the exit of another one; they are associated, respectively, to stopping times and line transfer
times.

The z, variables identify a timetable, except for an irrelevant additive uniform shift. To
define a regular timetable, they must satisfy

Y xa— > xa=Pqc C cycle of G (1)
acC+t aceC—

lo <z <u, ac A (2)

he < qgc<kc a€ A ()

z, €ER ac A (4)

gc €Z C cycle of G (5)
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where the integer variables g¢ are associated to the cycles of the undirected graph underlying
G. If C*" and C~ denote the arcs consistent and opposed to an arbitrary orientation of cycle
C, Equations (1) express regularity: any passenger following a close circuit should return
to his origin after an integer number of periods. Equations (2) bound the time variables,
modelling technical limitations on the travel times and quality guarantees on the length of the
stops and of the transfers from train to train. They also imply Equations (3), which limit the
integer variables ¢¢ to 2 or 3 feasible values. Equations (1) and variables g¢ are exponentially
many, but the formulation is practical, as only a linear number of them are necessary [5].
Further constraints model practical limitations, such as the safety delay between two trains
travelling on the same track in the same direction or in opposite ones (for single-track lines).

We integrate the previous constraints with a modal choice model, which relates the features
of a transport mode (such as the length of the trips, deriving from the timetable) to the
fraction of potential travellers captured. The Logit model |6] assumes the travellers to be
rational decisors, maximizing their own utility, which is not completely known. We consider
three alternative modes: the bus, the car, and the train (j = b, ¢,t) and characterize them
for each O/D pair by such attributes as travel time, monetary cost, walking time, average
waiting time and comfort. The utility associated to each mode is a random variable. Its
sistematic component V) linearly combines the attributes with coefficients estimated by a
revealed preference (RP) analysis [7]. Its random residual € is assumed to be independently
and identically distributed according to the Weibull-Gumble distribution. The Logit model
estimates the probability with which a traveller prefers each mode: if A,y denotes the daily
number of individuals travelling from o to d, the number of train passengers is

exp [V (Toa (2))]

Aot = Aod exp [Vo(,f)] + exp [Vo(dc)] + exp [V;(;) (Toa ( ))]

(6)

where V® depends on the total travel time 7,4 from station o to station d, which is the sum
of all travel and waiting times along the path P,,

Tod = Z Tg (7)

a€P,q

Path P,; is assigned a priori, since most of the time the shortest path is the same for all
feasible timetables. Our model combines Equations (1-5), (6) and (7) with the objective
function

max z = Z Aod (8)

od

The resulting formulation is a Mized Integer Non Linear Problem (MINLP) and it is non
convex, both because of the integrality constraints and because of the non linear equality
constraints (6).
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3 The algorithm

The proposed algorithm is a simple branch-and-bound approach based on the formulation
previously introduced. We replace Equations (6) by

exp [V33) (Toa (2))]
exp [V.)'] + exp [V] + exp [V (Toa ()]

)\od S Aod

9)

which are equivalent, as each variable \,4 appears in a single constraint and in the objective
function. Both T,,; and Vo(;) vary in given intervals; \,; is a decreasing, first convex then
concave, function of T,4. To obtain an upper bound, we replace Equations (9) by their linear
envelope between the extreme values of T;,4. The resulting MIP is solved by a general-purpose
solver (presently CPLEX, through the AMPL interface): the sum of the resulting Xoa bounds
from above the number of individuals which could prefer to move by train.

Moreover, the (z, q) variables yield a heuristic timetable. Equations (6) provide heuristic val-
ues A yielding a lower bound on the optimum. When T4 hits the upper or lower bound for
all O/D pairs, the relaxed solution is feasible and optimal. When )\, is convex for all values
of T,q4 and for all O/D pairs, the relaxed feasible region is convex: the Quter Approzimation
or the Generalized Benders’ Decomposition allow to update the linear envelope, gradually
converging towards a global optimum. However, in most O/D pairs A, is concave, at least
for large values of T,4. Therefore, the gap between the linear envelope and the actual feasible
region is unremovable. Given one O/D pair in which T,y falls between its lower and upper
bounds, the feasible interval can be split in two subproblems with linear envelopes stricter
than the original one. The most promising O/D pair is the one with the largest gap between
A and Ny

An iterative approach provides another heuristic solution. Assumed a given number \2; of
passengers for each O/D, an auxiliary MIP determines the schedule which maximizes their
total utility. Conversely, the optimal schedule updates the demand, reinitializing the problem.
Though it is not formally guarantee, the heuristic experimentally converges.

4 Computational results

The experimental campaign employs a regional rail network in North-western Italy, around
the station of Mortara (11 regional lines, 2 direct lines and 3 intercity lines). The network
includes 72 stations and several cycles. The travel times derive from the official 2002-2003
timetable, the O/D matrix from the ISTAT 1991 census, updated by more recent studies |7].
Preliminary computational results show that the method provides useful information on a
regional railway network and is not far from an exact solution. A 2.2 GHz Pentium III
computer proves, in approximately one hour, that at most 4.03% of the individuals could
choose the train. The corresponding heuristic timetable captures only 2.98% of the travellers,
but the iterated heuristic finds in a few hours a solution with z = 3.94%. Thus, the optimality
gap is only ¢ = 2.21%.
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Abstract

Let T' = (V, E) be a n-vertices undirected tree and X C V a set of terminal vertices. We consider the
well-known multway cut problem to which we associate the problem of finding an integral multiway
flow maximizing the flow routed between all pairs of terminals. These problems are special cases of
multicut and integral multiflow problems which are known to be NP-hard in trees. We propose a
generic procedure to explore and reduce a tree, which allows to devise an O(n) procedure for the
multiway cut and an O(n?) procedure for the integral multiway flow in trees. Efficient procedures
are also proposed to solve the problems in directed trees.

Key words: multiway cut, multiway flow, multiterminal cut, tree.

1 Introduction

Consider a connected (simple) graph G = (V, E) with a positive integral weight (or capacity)
pe on each edge e of F and a set X C V of terminal vertices. The multiway (or multiterminal)
cut problem is to find a minimum weight set of edges E; C E whose removal separates each
pair of terminals in X. The graph G; = (V, E — E;) contains |X| components with no two
vertices from X in the same component. Associate a commodity with each pair of terminals;
there are £ |X| (| X| — 1) different commodities. The integer multiway flow problem consists in
maximizing the sum over all commodities of the integral flow corresponding to a commodity,
subject to capacity and flow conservation requirements. Each commodity has an integral
flow through each edge.

Generalizations of these problems are the minimum multicut and maximum integral multi-
commodity flow problems where instead of a given set X of terminals we are given a list of
K pairs of terminals. Both problems, can be formulated as integer linear programs whose
the continuous relaxations are two dual linear programs ([4],[8]).

The multiway cut problem is known to be NP-hard and MAX SNP-hard, in directed graphs
and in undirected graphs, [7], [6]. It is NP-hard in undirected planar graphs, too. These results
holds for the multicut even in stars, and integral multiflow problems even in undirected trees
[8]. However, both problems are solvable in polynomial time in directed trees [3].
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The minimum multiway cut problem has been extensively studied [1, 2, 5, 6, 7, 9|, contrary
to the maximum integral multiway flow problem. One of many applications of the multiway
cut problem is relative to parallel query optimization in databases: Hasan and Motwani [10]
gave an algorithm for the problem of choosing the partitioning attribute in a query tree so
as to minimize the total cost. In fact, they solved efficiently the multiway cut problem in
trees.

In this paper, we prove that their algorithm can be implemented in O(n) (that improves the
algorithms in O(n?) proposed in [2| and [9]) and we devise an O(n?) algorithm solving the
integer multiway flow problem in trees.

In Section 2, we give a generic algorithm to explore and treat a tree with a complexity
time bounded by O(n) or O(n?). In Section 3 we show that Hasan and Motwani’s algorithm
follows the generic algorithm and is in O(n). In Section 4 we solve the integer multiway
flow problem. In Section 5 we solve efficiently the problems in directed and rooted trees. In
Section 6 we compare multiway cut and integral multiway flow optimal values in trees before
concluding.

We set that p(4) = >_ p., for all A C E.

e€cA

For the rest of the paper we will consider trees in which there is a bijection between leaves
and terminals, there is no path without junction and all the edge weights are positive. We
will show that these restrictions are made without loss of generality.

2 A generic procedure in trees

In this section, we describe a general scheme for exploring and treating a tree. Let T' = (V, E)
be a tree with n = [V|. Our algorithm starts by rooting 7" at an arbitrary vertex, denoted
by xy. We then number the other vertices and all the edges from 1 to n — 1 following a
breadth-first ordering; doing so, x; is the lowest endpoint of the edge u;.

If T is not a star, let a 1-star S C E be a maximum sub-set of edges adjacent to a leaf
and admitting a common endpoint, noted zg; let ug be the edge connecting S to the rest of
the tree. We say that we contract an edge u = (z;,z;), j > 1, if the lowest endpoint of u,
z;, is collapsed into its father, z;. Let uy = (x;, z); after contracting (x;, x;), the new edge
(x;, zy) represents the edge (x;, ;) and takes its name, uj. The sketch is to treat the tree
from the leaves up to the root. First we select a 1-star, S, from the lowest level of the rooted
tree. Second, we treat this 1-star. Third, we reduce it either by contracting all its edges (s
becomes a leaf) or by contracting some of its edges plus us (s disappears). We denote by
mg the number of contracted edges: mg depends on the type of problem to solve. We get a
new tree and we reiterate the process. Let S; be the 1-star selected at step 7 and mg, be its
cardinality. We prove that the procedure, called generic — trees, is in O(n) if mg, = |S;| for
all 4, or in O (n?) if mg, < |S; for all 4.
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3 Multiway cuts in trees

Consider a star with n edges, n terminals and a midpoint x: a minimum cut contains all
the edges but one, the maximum weighted edge. Therefore, whereas the general minimum
multicut problem is NP-hard in a star [8|, the multiway cut problem is trivially solved in

O(n).

Then, we can show that the algorithm DLC proposed in [10] to solve the problem in trees
follows the scheme given by procedure generic — trees, with mg, = |S;| for all 4: it can be
implemented in O(n) (without sorting the edges).

4 Integer multiway flows in trees

First we solve the problem in stars. In stars, the general maximum integral multiflow problem,
and so, the multiway flow problem too, can be solved by an algorithm in O(ng) [8]. Here, we
propose an algorithm in O(n) to solve the multiway flow problem in stars; that is the best
possible complexity time.

Lemma 1 Let T = (V,S) be a star and let w be the mazimum capacited edge of S. The
value of a mazrimum integer multiway flow ¢* in T is

v(@)= > pe if Pu> Y, Pe

e€S,efw e€S,eAw

(i.i) v(¢*) = {@J otherwise

Proof. We explain how routing a flow ¢ whose the value is v(¢*) and we prove that it is the
best possible value.

Now we solve the integer multiway flow problem in trees. The algorithm is based on the
previous result in stars and uses the scheme of procedure generic — trees. Nevertheless the
reductions must be adapted and are much more complicated than the reductions used for
the multiway cut. At each step, we route a sub-flow inside a 1-star S;: this sub-flow must be
bounded in order to keep a residual capacity inside S;. This residual capacity is equal to Dus,
OI Pug, — 1. Then, we contract mg, edges with mg, < |S;|. To prove that the obtained flow is
optimal, we need to study several cases, corresponding to different relationships between p(S;)
and Pus, - Finally, we prove that the complexity time of procedure multiway— flow—in—trees

is O(n?).
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5 Multiway problems in directed trees

In a directed tree, we show that the multiway cut and integral flow problems can be reduced
to a simple max flow-min cut problem and can be solved in O(n3). In a rooted tree multicut
and integer multiflow problems can be solved in O(Kn) by using the algorithm proposed in
|3]. We show that the multiway cut problem can be solved in O(n) and the integral multiway
flow problem can be solved in O(Kh) in a rooted tree of height h.

6 Conclusion

The minimum multiway cut, minimum multicut and maximum integer multiflow problems
are generally NP-hard. But, while both last problems are NP-hard in trees, the multiway cut
and integer multiway flow problems are polynomially solvable. In this paper, we proposed a
general scheme which allows to solve the minimum multiway cut problem in O(n), and the
maximum integer multiway flow problem in O(n?), when the graph is a tree. Note that there
is often a gap between the multiway cut and integer flow optimal values. We have also shown
that the two problems can be reduced to a simple max flow-min cut problem when the graph
is a directed tree: to our knowledge, no algorithm have been proposed to solve the multicut
and integral multiflow problems in directed trees although they are known to be polynomial
[3]. We have also seen how to solve efficiently the integer multiway flow problem in a rooted
tree. Finally, in a rooted tree, we used our generic algorithm to solve the multiway cut in
O(n), and one can imagine that the generic algorithm could be used for solving some other
optimization problems on trees.
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Abstract

Many of the well known solvable cases of the symmetric travelling salesman problem (STSP) have
been characterized by describing special conditions for the underlying distance matrices. For all
these special cases an optimal tour can either be given in advance and without regarding the precise
numerical values of the data, or can efficiently be found in the set of so-called pyramidal tours. We
introduce a new polynomially solvable case of the STSP where an optimal tour can be found in an
exponential neighbourhood which is different from the set of pyramidal tours. Our new case is the
first example of "multi-peak" optimization for polynomially solvable STSPs.

Key words: Traveling salesman problem, specially structured matrices, exponential
neighbourhood, recognition algorithm

1 Introduction

The travelling salesman problem (TSP) is a well known problem of combinatorial optimiza-
tion. In the symmetric TSP (STSP), given a symmetric n x n distance matrix C' = (¢;;),
one looks for a cyclic permutation 7 of the set {1,2,...,n} that minimizes the function
c(t) = XiiCir()- Items in the permutation is usually referred as points or cities. A pair
[i, 7] with j = 7(3) is referred as an arc of the tour 7.

Although the STSP is NP-hard, there are quite a few special cases when the problem can be
solved in polynomial time [4, 2, 6]. Many of the well known solvable cases of the STSP have
been characterized by describing special conditions for the underlying distance matrix. For
all such special cases an optimal tour can either be identified in advance, or can be found
in the set of so-called pyramidal tours. We introduce a new polynomially solvable case of
the STSP where an optimal tour can be found in an exponential neighbourhood which is
different from the set of pyramidal tours. Our new case is the first example of "multi-peak"
optimization for polynomially solvable STSPs.
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Figure 1. Illustration to N-permutations: (a) — definition of A -structure; (b) — example of an
N-permutation.

2 TSP on Relaxed Kalmanson Matrices

New exponential neighbourhood. A symmetric n x n matrix C' = (¢;;) will be called a
relazed Kalmanson |7 matrix (RK-matrix), if it satisfies the condition ¢;; + ¢j; > ¢y + ¢y, for
all indices 7 < j < k < [. It can be shown that these conditions can be checked in O(n?) time.
Cyclic permutation 7 will be called A-permutation if it does not contain pairs of arcs [, 7(i)],
[7,7(7)] such that ¢ < (i) and j > 7w(i) > w(j) >4, or i < mw(z) and 7(i) > j > i > 7w(j).
Properties of A/-permutations are characterized in the next lemmas.

Lemma 1 An optimal tour for the STSP with an RK-matriz can be found among N -
permutations.

Lemma 2 Every N -permutation contains arc [1,n].

Lemma 3 A structure of the path from 1 to n in an N -permutation, to which we will refer
as the N -structure, can recursively be defined as follows: If there is no valley on the path
from 1 to n, then this is the path (1,2,...,n — 1,n). Otherwise let j be the minimal valley
in the path from 1 to n. In this case the path has the structure

1,2,..., i =1k {j+1,j+2,....k—=1},j{k+1,k+2,...,n—2,n—1},n)

where k is a peak and the two paths — from j to k through the set {j+1,7+2,...,k—2,k—1},
and from j to n through the set {k + 1,k +2,...,n—2,n — 1} have the N -structure.

In the Lemma above the sets are meant to be empty if the first index in the set is bigger
than the last one. Figure 1(a) illustrates the definition of the N-structure. Figure 1(b) shows
a permutation that satisfies the definition: path (1,...,15) has 2 as the minimal valley, so
j =2 and k = 14; for the path (2,...,14) the corresponding pair (j, k) is (3,9), and so on.

It can be seen from the definition of the N -structure, that N -permutations belong to the set
of so-called twisted permutations ([1]). It means that the optimal TSP tour can be found in
O(n') time using the algorithm for finding an optimal twisted permutation (|3]). The special
structure of N -permutations allows us to find an optimal solution much faster, as shown in
the theorem below.
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Theorem 1 The STSP with an RK-matriz as a distance matriz can be solved in O(n?)
time.

Proof. Let L[p, g| be the length of the shortest path with the N-structure from index p to
index ¢ through the set of indices {p + 1,p+ 2,....,.¢ — 2, — 1}, p < ¢, and V[j, p,q] be
the length of the shortest path with N-structure from index j to index ¢ through the set of
indices {p,p+1,...,q — 2,9 — 1}, j < p < q. It follows from the definition of the N-structure
that the values L and V satisfy the following recursions:

q

-1
Z Ct,t+1
=p

Llp,q] = min { '

j—2

mmj<k{ Z Ct,t+1 + Cj—l,k + L[_], k‘] + V[], ]C + 1, q]}
t=p
Cip> if p > g,
V[j’pa (I] = ﬁ Cip +L[p, q]
min . k—1 otherwise.
mmk{cjk + > i+ Vipk+1, Q]}
\ t=p

If in the formulae above the upper limit in a sum is smaller than the lower limit, then the
sum is zero. The length of the optimal tour can be calculated as L[1,n] 4+ ¢,;. Each of the
values L can be calculated in O(n?) time, each of the values V' can be calculated in liner
time. It gives O(n*) overall complexity. The lemma is proved.

Recognizing permuted RK-matrices. Unfortunately the problem of recognizing per-
muted RK-matrices remains open. For the STSP with the Euclidean distance matrices,
however, the problem can be solved in polynomial time.

Theorem 2 It can be decided in O(n'log n) time whether an n x n matriz C = (c;;) is a
permuted Euclidean RK-matriz. If it is, a permutation o such that (c,() ;) s an RK-matriz
18 explicitly determined within this time bounds.

Examples of FEuclidean sets of points, for which the corresponding distance matrices are
RK-matrices, are shown on Figure 2.

References

[1] F. Aurenhammer, On-line sorting of twisted sequences in linear time. BIT, 28, 1988,
194-204.

102



1 2 3 4 | 5| 6 7 8 9 10
(a) |(96,81)|(67,37)(67,34)(79,17)/(89,4) (3,51)|(12,54)|(12,79)|(7,100)| (3,121)
(b) (28,114)/(21,13)| (1,18) | (2,41) [(0,51)|(21,83)|(25,83)|(70,88)((94,95)|(107,99)
10
9 ol
* J10
8 J 67 8 RY
06'7 .5
5 3
.4 .3
.5 .2
(a) (b)

Figure 2. Euclidean RK-sequences of points with coordinates: (a) optimal tour is
(1,5,4,3,2,7,6,8,9,10,1); (b) optimal tour is (1,7,6,5,4,3,2,8,9,10, 1).
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Abstract

Given a graph G, the Minimum Dominating Trail Set (M DTS) problem consists in finding a
minimum cardinality collection of pairwise edge-disjoint trails such that each edge of G has at least
one endvertex on some trail. The M DTS problem is N P-hard for general graphs. In this paper an
algorithmic approach for the M DTS problem on (two-terminal) series parallel graphs is presented.

Key words: graph algorithms, edge domination, series parallel graphs.

1 Introduction

Given a graph G = (V,E), a trail is a sequence 7 := (vg,eg,V1,€1,.-.,€x_1,Vx), Where
(vo, V1, V2, - .., vk) are nodes of G, (eq, €1, €9, . .., ex_1) are distinct edges of G, and v; and v; 41
are the endpoints of e; for 0 < 7 < k —1. The trail is a path if its nodes (vg, v1, Vs, - .., vx) are
distinct. In other words, a trail is a path that can pass more times through the same node.
A path or a trail may consist of a single node.

A domunating trail D, in G is a trail such that each edge of G' has at least one endpoint
belonging to it (i.e., a dominating trail covers all the edges of GG). Note that a dominating
trail may not exist on G. A dominating trail set ¥ is a collection of edge-disjoint trails that
altogether cover all the edges of G. A minimum dominating trail set (M DTS) is a dominat-
ing trail set of minimum cardinality.

The problem of finding a M DTS is closely related to the Hamiltonicity of a graph. A graph
G is called Hamiltonian if it has a Hamiltonian path. The problem of finding the minimum
number of edges which need to be added to G' to make it Hamiltonian is known in literature
as the problem of finding the Hamiltonian completion number of a graph and it is usually
denoted as HCN(G). In particular, M DTS is related to HC N (G) restricted to a particular
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class of graphs, called line graphs. The line graph L(G) of G = (V, E) is a graph having | F|
nodes, each node of L(G) being associated to an edge of G. There is an edge between two
nodes of L(G) if the corresponding edges of G are adjacent. Harary and Nash-Williams [5]
link the problem of finding HCN(L(G)) and M DTS showing that the line graph L(G) of a
graph G has a Hamiltonian path if and only if G has a dominating trail. As a consequence,
it HCN(L(G)) = k then the cardinality of M DTS of G is k + 1.

The problem of finding HCN(L(G)) is well known to be NP-hard [2]|, even when G is bi-
partite [1]. The motivation for studying the M DTS problem originates from applications
in scheduling [1] and in other domains [4], such as data structures updating, genetics and
combinatorial chemistry.

In this paper we study the M DTS problem on the well known class of series parallel graphs.
Series parallel graphs appear in several applications, e.g., electrical and electronics circuit
analisys and design, scheduling problems, dynamic programming algorithm design. A well-
studied problem is the recognition of series parallel graphs and there are linear time algo-
rithms for this problem [6]. Since a binary decomposition tree (BDT') for a series parallel
graph can be obtained in linear time [6], then many problems can be polynomially solved,
including many problems that are NP-hard for general graphs. These facts motivate the
study of the M DTS problem on that particular graph class.

The paper is organized as follows. In Section 2, some special subgraphs are first introduced,
then their series parallel composition properties are discussed. On the basis of some subgraphs
composition rules, Section 3 addresses an algorithmic approach for the M DTS problem on
series parallel graphs.

2 Subgraphs definitions and composition rules

In this section, two terminal series parallel (T7'SP) graph families with special dominating
properties are introduced.

The following, notation is used. Given a TTSP graph G = (V, E, s,t), we say that a node i
is an internal node of G if i € V' \ {s,t}. Two trails on G are distinct if they have no edges
in common.

Let H = (Vy,Ey,sy,ty) be a TTSP subgraph of G connected with G only by the two
terminal nodes sy and tg, and let 7 be a trail in G. We say that 7 crosses H if (i) dominates all
edges of H, (it) contains a trail (vg, s, Su, - - -, tu, €y, vy), Where (sg,...,ty) is all contained
in H and vy, e,,vy,e, € G\ H. In other words, 7 crosses H if enters in sy, dominates all
edges of H and exits from ¢p.

We say that 7 loops in H from sg if 7 (i) dominates all edges of H, (ii) contains a trail
(U, €z, SHy - - -5 SH, €y, Vy), Where (sg,...,sg) is a trail in H and v, e, v,,6, € G\ H. In
other words, 7 loops in H from sy if enters and exits from sy dominating all edges of
H. Similarly, 7 loops in H from tg if 7 (i) dominates all edges of H, (ii) contains a trail

(’U;E, €, tH, e ,tH, ey, Uy).
We say that 7 cycles H if: 7 (i) dominates all edges of H, (i¢) contains a trail (v, €z, sg, - - .,
th, ..., SH, €y, Vy), Where (sg,...,tg,...,sg) is a trail in H and v,,e,,vy,¢, € G\ H. In

other words, 7 cycles in H if enters in sy passes in tg and exits from sy dominating all
edges of H. Note that if 7 cycles H then it loops in H both from sy and from tg.
Finally, we say that H can be externally dominated if a trail that loops in H (both from sy
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Figure 1. The smallest graphs belonging to families A — G

and ty) does not exist in G, and if H can be dominated by one or two trails in G that pass
both in sy and in ty. Note that such trails must not necessarily contain internal nodes of
H.

In Definition 1, six graph families are introduced.

Definition 1 Let H = (Vig, Ey, sy, ty) be a TTSP subgraph of G connected with G only by
the two terminal nodes sy and ty. Let A, B, C, D, £, F and G be disjoint graph families
containing graphs with at least one edge, and such that H belongs to famaly:

A, if trails that cycle H do not exist;

B, if trails that loop in H or cycle H do not exist;

C, if trails that loop in H or cycle H do not exist and if H cannot be externally domi-
nated;

D, if trails that cross H and cycle in H exist in G and if H can be externally dominated;
&, if trails that cycle H or loop in H from sy do not exist in G;

F, if trails that cycle H or loop in H from ty do not exist in G;

G, if trails that cross H do not exist in G.

Note that, graphs in family G are the only graphs in which trails crossing H do not exist.
Moreover, note that two distinct trails from sy to tg exist in H only if trails cycling in H
exist. In Figure 1, the smallest graphs belonging to families A — G are reported. It is easy
to see that each of them can be dominated by a single dominating trail. In the following,
two lemmas are reported, without proofs, in which some domination properties of the graph
families are given.

Lemma 1 Let H = (Vy, Ey, sp,ty) be a TTSP subgraph of G connected with G only by the
two terminal nodes sy and ty. If H belongs to: i) families A or D then there exists a M DTS
on G containing a trail passing in sg or in ty; ii) family B then there exists a MDTS on
G containing a trail(s) passing in sy and in tg; iii) family C then there exists a M DTS on
G containing a trail crossing H.

Lemma 2 Let H = (Vg, Eg, sg,ty) be a TTSP subgraph of G connected with G only by
the two terminal nodes sy and ty. If H belongs to family £ (family F) then there exists a
MDTS on G containing either a trail crossing H or one looping from ty (from sy ).

In Table 9 (10) the series (parallel) composition of graph families (Definition 1) is introduced,
respectively. By Definition 1, it is easy to prove all the series and parallel compositions of
the different graph families. Consider, for example, the series composition between a graph
Gp = (Vp, Ep, sp,tp) of family D and a graph Gg = (Vg, Eg, sg,tg) of family £ obtained
by setting tp = sg. By definition, Gp admits both a crossing, a looping and a cycling trail,
whereas G’ has a crossing trail and a looping trail from ¢z. Therefore, the resulting graph
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[~ lals[c[p]e]r]d]
A B|C|C| & |B | B
Blclc|lc|B|c|c
¢ c|c|c|jcj|c|c
D|F|B|C|D|B|B|G
& c|c|c|B|C|C
F B|C|C|B|B|C
g g g
Table 9
Series composition rules.
L [alslc[n]e[r]q]
AllD|D|D|D|D|D|D
Bl|p|D|D|D|D|D|D
c|p|DP|Gg|D|DP|D|C
Dp|lD|DP|D|D|D|D|D
E|lp|D|D|D|D|D|D
Flp|D|DP|D|DP|D|D
gl|lp|D|c|D|D|D|G

Table 10
Parallel composition rules.

admits a crossing trail (the crossing trail in Gp plus the crossing trail in Gg), but does not
admit looping or cycling trails. Moreover, it can be externally dominated, for example, by
two trails that respectively loop in Gp from sp and loop in G from sg. As a consequence
the resulting graph of the series composition belongs to family B.

Regarding Table 9 we point out that graph family C always generates C whatever the other
series graph family is considered. We note that Table 10 is symmetrical and a graph of family
D is generated in all the parallel compositions but four. Moreover A is never generated in
any composition rule. We note that there are some open cases in Table 9 corresponding to
the empty entries. In these particular open cases the composed subgraph does not fall in
any previously introduced graph family. As it will be pointed out in the next section, the
analysis of such open cases is important for finding a M DTS on TTSP graphs.

3 Algorithmic results

The connection properties of the graph may play an important role in the solution of the
M DTS problem on TTSP graphs. Colbourn and Stewart [3] proposed an algorithm to find
the dominating trail in biconnected TT'S P graphs. Note that, if a TT'S P graph is not bicon-
nected, then its blocks form a path, i.e., every cut vertex of the graph is in exactly two blocks,
all blocks have at most two cut vertices, and there are exactly two blocks that contain only
one cut vertex. The subgraph analysis presented in the previous sections allows to construct
an algorithm for the M DTS problem starting from the BDT (binary decomposition tree)
representation. Given a TT'SP graph G, applying the series-parallel compositions described
by the BDT, two situations may occur: i) no open cases are formed; ii) some open case is
obtained.
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The first situation is the most favorable, indicating that the graph G can be dominated by
a single trail or cycle. The characteristics of subgraphs families and the composition rules
presented in the previous sections give a way to easily find the (unique) dominating trail.
Note that the case addressed in [3] falls in this situation.

In the second situation the solution of M DTS may contain more than one trail. In fact, it
can be shown that when an open case subgraph is involved in series parallel compositions
a single dominating trail may not exist on the resulting graph. An optimal solution for the
whole graph can be constructed introducing a procedure able to determine the best way to
dominate the open case subgraphs.
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1 Introduction

Generating all configurations that satisfy a given specification is a well-studied problem in
Combinatorics and in Graph theory suggesting many interesting problems. Among them,
generating all maximal independent sets of a given graph is one that has attracted consider-
able attention [3, 4, 7]. A mazimal independent set of a graph G = (V, E) is a subset V! C V
such that no two vertices in V' are adjacent by an edge in E, and such that each vertex in
V — V' is adjacent to some vertex in V.

Let s1,...,55 and t1,...,%7 be two distinct sequences S and T', respectively and with
|S| < |T|, of elements of an ordered set. Say that S is lexicographically smaller than T, if
the first position ¢ with respect to which S and 7" disagree satisfies: s; is smaller than ¢; or
i > |S|. Johnson, Yannakakis and Papadimitriou [3] showed that there is no polynomial-
delay algorithm for generating all maximal independent sets of a given graph in reverse
lexicographic order, unless P = NP.

We examine the generation of bicliques in a graph. A biclique of a graph G = (V, E) is
an inclusion maximal induced complete bipartite subgraph of a graph, i.e. a pair (U, W)
of subsets of V, such that both U and W are independent sets of G, every vertex in U is
adjacent to every vertex in W, and such that for each vertex v in V. — (UU W), if {v} UU
is an independent set, then v is nonadjacent to some vertex in W, and if {v} U W is an
independent set, then v is nonadjacent to some vertex in U. When the requirement that U
and W are independent sets of G is dropped, we have a non-induced biclique.

! E-mail: vaniad@cos.ufrj.br.
2 E-mail: celina@cos.ufrj.br.
3 E-mail: jayme@nce.ufrj.br.

CTWO04 Proceedings — Villa Vigoni (CO), Italy, 31st May to 2nd June 2004
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Prisner [6] gives upper bounds on the number of bicliques in bipartite graphs and general
graphs, exhibits examples of classes of graphs where the number of bicliques is exponential,
and characterizes classes of graphs where the number of bicliques is polynomial in the number
of vertices of the graph. The NP-completenes of the weighted maximum edge biclique problem
for bipartite graphs is established by Dawanke et al. 2|, and more recently for the non-
weighted version by Peeters |5]. Alexe et al. |[1] describe an algorithm for generating all
non-induced bicliques with polynomial delay. The generation of all bicliques of a general
graph with polynomial delay is an open problem.

We show it is N P-complete to test whether a subset of the vertices of a graph is part of a
biclique. In light of this result, it might not be obvious how to obtain a polynomial-delay
algorithm for generating all the (induced) bicliques. We show there is no polynomial-delay
algorithm for generating all bicliques in reverse lexicographic order, unless P = N P. Never-
theless, we describe a greedy algorithm that generates the lexicographically first biclique of a
graph G = (V, E) in time O(|V|?). In a more complete version of this paper, we describe an
algorithm for generating both all the (induced) bicliques and maximal independent sets with
polynomial delay. In addition, we also propose specialized efficient algorithms for generating
the bicliques of special classes of graphs.

2 NP-completeness results

Given a graph G = (V, E), we say that a subset S C V is part of a biclique (U, W) of G, if
S =U or S =W. In this section we establish the N P-completeness of two biclique decision
problems defined next, by reducing the /N P-complete problem SATISFIABILITY to each of
them.

SATISFIABILITY

Instance: Set X = {xi,..., 2} of £ Boolean variables, collection C = {¢y,...,¢,} of
n > 1 clauses over literals of X.

Question: Is there a truth assignment satisfying C'?

PART OF BICLIQUE
Instance: Graph G = (V, E), subset S C V.
Question: Is S part of a biclique?

LEXICOGRAPHICALLY LAST BICLIQUE
Instance: Graph G = (V, E), biclique B, order on V.
Question: Is there a biclique B’ of G such that B’ is lexicographically larger than B?

Theorem 1 Given a graph G = (V, E) and a subset S C V, it is NP-complete to decide
whether S is part of a biclique.

Proof. Problem PART OF BICLIQUE is in NP since a short certificate is a biclique (U, S)
having subset S as a part. We can verify in polynomial time that (U, S) induces a complete
bipartite subgraph, and in order to verify its maximality, we can verify in polynomial time
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for each vertex v in V — (U US) such that {v}UU is an independent set that v is nonadjacent
to some vertex in S, and for each vertex v in V — (U U.S) such that {v}US is an independent
set that v is nonadjacent to some vertex in U.

To show completeness, we sketch a polynomial reduction from SATISFIABILITY. Given an
instance (X, C) of SATISFIABILITY we construct in polynomial time a graph G = (V, E) and
a subset S C V, such that there is a truth assignment satisfying C' if and only if S is part of
a biclique of G.

Let ¢;; be the j-th literal of clause ¢;. Vertex set V' is the union V' =W U SU Z, where there
is a w;; € W corresponding to each ¢;;; S = {vi,...,vn}; Z ={z1,...,2,}. Edge set E is the
union £ =W'U S U Z', where W' = {(wij, wpe) : bij = —pe}; S" = {(vi, wpe) : v; € S, wpe €
Wi Z' = {(zi, wpe) : 2 € Z,wpy € Wi # p}.

Let T be a truth assignment satisfying C. We define an independent set U C W such that
(U, S) is a biclique of G. Define first U; as the set of vertices of W that correspond to literals
with value true in 7. By definition, U; is an independent set of GG, containing at least one
vertex w;;, for each i =1,...,n. Now let U be a maximal independent set of G containing U;.
Note U C W. Clearly (U, S) induces a complete bipartite subgraph. In order to verify that
(U, S) is a biclique, we recall that |C| > 1 and note that every vertex z; € Z in nonadjacent
to a vertex w;; € Uy C U.

Conversely, let (U, S) be a biclique of G. Since Z U S is an independent set of G, we have
U C W. The maximality of (U, S) says that for each z; € Z there exists w;; € U. Since U
is a stable set, each w;; € U corresponds to a literal whose complementary literal does not
belong to U. So, for each clause ¢;, there exists at least one corresponding vertex w;; € U,
which gives the desired truth assignment satisfying C'. I O

Corollary 1 Given a graph G = (V, E) and a vertex v € V, it is NP-complete to decide
whether {v} is part of a biclique.

Theorem 2 Given a graph G = (V, E), a biclique B, and an order on V, it is coN P-
complete to decide whether B is the lexicographically last biclique.

Proof. Problem LEXICOGRAPHICALLY LAST BICLIQUE is in colN P since a short certificate
is a biclique B’ that is lexicographically larger than B.

To show completeness, we sketch a polynomial transformation from SATISFIABILITY. Given
an instance (X, C) of SATISFIABILITY we construct in polynomial time a graph G = (V, E),
a biclique B, and an order on V, such that there is a truth assignment satisfying C if and
only if B is the lexicographically last biclique.

Let ¢;; be the j-th literal of clause c¢;. Vertex set V' is the union V' =Y U Z U W, where
Y ={v1,- -, Yn, ¥, .-, Y, }, set Y contains a pair of vertices y;,y; corresponding to each
clause ¢;; Z = {z,2'}; set W contains a pair of vertices wj;, w;j corresponding to each /;;.
Edge set E is the union F = Y*U Z* U W*, where Y* = {(y;,9}) :i=1,...,nand j =
L...,n}U{(ys,wy) i =1,...,nand p # i} U{(yj,wpe) : i = 1,...,nand p # i}; Z* =
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(2,2 UL(Z90) 0= 1,0 mps W = {(wig, wig) = wij, wiz € WU {(wi, wye), (wijs wpe) -
i # p and £;; # Ly}

Each clause ¢; corresponds to an edge (y;, ;). The graph G is bipartite, since V = RU Q,
where R = {2} U {y1,...,yn} U{w;;} and @ = V' \ R are both independent sets. Note that
B=(Z,2zU{(y1,...,yn}) is a biclique, as N(z) = {2'}, and N(2') = {2z} U{(y1,.--,¥n}- In
addition, B is the only biclique containing vertex z. Every biclique B’ # B such that 2z’ € B’
is such that y; € B, for some i = 1,...,n. In addition, B is the only biclique containing y;
but not y;, for some i =1,...,n.

The structure of the graph G gives the following equivalence: there is a biclique of G contained
in W if and only if there is a truth assignment satisfying C'. Clearly, a complete bipartite
contained in W that cannot be enlarged by addition of y € Y is a complete bipartite that
meets all clauses and that consequently gives a truth assignment satisfying C.

Now, the order on V is defined as follows. Each vertex y, has label i, i = 1, ..., n, each vertex
y; has label n+1, 1 = 1,...,n; vertices z and 2z’ have labels 2n + 1 and 2n + 2, respectively;
each vertex w € W has a label 7 > 2n + 3.

Clearly, a biclique of G contained in W is lexicographically larger than B. Conversely, let
B' = (U,U’) be a biclique lexicographically larger than B. Hence y; ¢ B, i =1,...,n. We
conclude that UUU' C W. I O

Corollary 2 Given a graph G = (V, E), a biclique B, and an order on V, it is coN P-
complete to test if B s the lexicographically last non-induced biclique.

3 Greedy generation of lexicographically first biclique

Let G = (V, E) be a connected graph, with an order on V' = {1,...,n}. We describe an
O(n?) greedy algorithm to generate the lexicographically first biclique.

Let B = (U, W) be the lexicographically first biclique. Clearly, 1 € B, assume 1 € U. Hence,
W C N(1). Let j be the smallest element of N(1). Either j € B, which means that j is the
smallest element of W; or j ¢ B, which means that there exists a vertex ¢, with 1 <17 < j

such that 7 € N(j) and N(7) N N(1) # 0.

The proposed algorithm consists of two phases. Phase 1 finds j/ > j the smallest element
of W,and U = UnN{1,...,(j' —1)}. Phase 2 enlarges subset U’ to U and subset {j'} to
W, by scanning vertices j' < k < m in the specified order, and by accepting every vertex k
that satisfies precisely one of the situations: vertex k is nonadjacent to every vertex already
accepted to be in U and vertex k is adjacent to every vertex already accepted to be in W; or
vertex k is nonadjacent to every vertex already accepted to be in W and vertex k is adjacent
to every vertex already accepted to be in U.
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1 Introduction

The last decade saw dramatic improvements in computer processing speed and storage capac-
ities. Nowadays, the bottleneck in data-intensive applications is disk I/O, the time needed
to retrieve typically large amount of data from storage devices. One idea to overcome this
obstacle is to spread the data on disks of multi-disk systems so that they can be retrieved in
parallel. The data allocation is determined by declustering schemes. Their aim is to allocate
the data in such a manner that typical requests find their data evenly distributed on the
disks.

The declustering problem is to assign data blocks from a multi-dimensional grid system to
one of M storage devices in a balanced manner. More precisely, our grid is V' = [nq] X - - x[ng4]
for some positive integers ni,...,nq.2 A query Q requests the data assigned to a sub-grid
[1..y1] X - - - X [24..yq] for some integers 1 < z; < y; < n;. We assume that the time to process
such a query is proportional to the maximum number of requested data blocks that are stored
in a single device. If we represent the assignment of the data blocks to the devices through
a mapping x : V. — [M], then the query time of the query above is max;epa |x~*(2) N Q),
where we identify the query () with its associated sub-grid. Clearly, no declustering scheme
can do better than |@|/M. Hence a natural performance measure is the additive deviation
from this lower bound.

This makes the problem a combinatorial discrepancy problem in M colors. Denote by £ the
set of all sub-grids in V. Then H = (V, &) is a hypergraph. For a coloring x : V' — [M], the
positive discrepancy of H with respect to x and the positive discrepancy of H in M colors
are

disc™ (M, )= max_(Ix7 () N E| - 3|E]).

i€[M],E€€

disc™ (#, M):=min disc™ (H, x)

x:V—[M]

1 E-mail: {bed,nhe,swe}@numerik.uni-kiel.de. The authors thank the DFG-Graduiertenkolleg
357 “Effiziente Algorithmen und Mehrskalenmethoden” for supporting this research.
2 We use the notations [n] := {1,2,...,n} and [n..m] := {n,n +1,...,m} forn,m € N, n < m.
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Apart from the fact that we only regard positive deviations, these notions were introduced
by Srivastav and the first author in [DS03]. Independently, Anstee, Demetrovics, Katona
and Sali [ADKSO00| and Sinha, Bhatia and Chen [SBC03| proved a lower bound of Q(log M)
for the additive error of any declustering scheme in dimension two. Sinha et al. [SBC03] also

give the bound Q(log% M) for arbitrary d > 3, but their proof contains a crucial error.

The current best upper bounds in arbitrary dimension for the declustering schemes are
proposed by C.-M. Chen and C. Cheng [CC02]. They present two schemes for d—dimensional
problems with an additive error O(log®~* M). The first one works if M = p* for some k € N
and p a prime such that p > d, whereas the second works for arbitrary M, but the error
increases with NV

Our Results: For the upper bounds, we present an improved scheme that yields an additive
error of O(log’™' M) for a broader range of values of M and independent of the data size.
Our requirement on M is that if M = ¢q;...qx, ¢ < ... < g, is the canonical factorization
of M into prime powers, d < ¢; + 1 is needed. Thus, in particular, our schemes work for M
being a power of two (such that M > d — 1), which is very useful from the view-point of
application. We also show that the latin hypercube construction used by Chen et al. [CC02]
is much better than claimed. Where they show that the latin hypercube coloring extended
to the whole grid has an error of at most 2¢ times the one of the latin hypercube, we show
that both errors are the same.

For the lower bound, we present the first correct proof of the Q(log% M) bound. Again, a
more careful analysis shows that that the positive discrepancy is at least % times the normal
discrepancy instead of 37¢ as used in [SBC03]. Note that in typical applications with M
between 16 and 1024, these 2¢ and 3¢ factors are at least as important as finding the right
exponent of the log M term.

Since a central result of this paper are discrepancy bounds that are independent of the size
of the grid, we usually work with the hypergraph H% = ([N]%,£%), £ = {1 [zi--yi] |1 <
z; < y; < N} for some sufficiently large integer N. We prove the following result.

Theorem 1 Let M, d > 2 be positive integers and g, the smallest prime power in the
canonical factorization of M into prime powers. We have

The combinatorial discrepancy results are shown via strong results from geometric discrep-
ancy theory. The problem of geometric discrepancy in the unit cube [0, 1[¢ is to distribute
n € N points evenly with respect to axis-parallel boxes: In every box R should be approxi-
mately n vol(R) points, where vol(R) denotes the volume of R. Again, discrepancy quantifies
the distance to a perfect distribution. The discrepancy of a point set P with respect to a
box R C [0,1]? and the set of all axis-parallel boxes R4 are defined by
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D(P,R)=||PNR| —nvol(R)|,
D(P,Ra)= sup [D(P, R).

RER,y

2 The lower bound

The general idea in the proofs of the lower bound in Sinha et al. [SBC03| and Anstee et
al. [ADKSO00] is the same, here described in two dimensions:

Starting with an arbitrary M-coloring of [M]?, there is a monochromatic set P with M
vertices. Based on this set, an M-point set P in [0, 1[? is constructed. By discrepancy
theory [Sch72], there is a rectangle R such that D(P, R) = Q(log M). Rounding R to the
[M]? grid, they construct a hyperedge R that has almost the volume as R. Additionally R
contains as many vertices of P as R points of P. With the help of R and a short calculation
the lower bound of the additive error Q(log M) is shown.

The small, but crucial mistake in the proof of Sinha et al. [SBC03]| is in the transfer from
the geometric discrepancy setting back to the combinatorial one. Recall that the authors
started with a color class of exactly M?! points. They down-scaled it by a factor of M to
a set in the unit cube (that, note this fact, is a subset of {0, L T 1\2/[’ ey % 4). Then their
geometric discrepancy argument yields a rectangle of polylogarithmic discrepancy. However,
the rectangle [0, %]d has a much larger discrepancy: It contains all M9~! points, but has

a volume of (£=1)? only.

This yields a discrepancy of M4 1(1 — (221)9) = Q(M9?). For dimension d > 3 this is
larger than the upper bound, what also indicates an error in the proof of Sinha et al. [SBC03].
The last argument also shows that rounding an arbitrary box to a box in the grid can cause
a roundoff error, which is of magnitude larger than the discrepancy. For this reason, a
direct generalization using the lower bound of Roth [Rot64] is not possible. A more careful
analysis is needed. In particular, we have to ensure the existence of a small box having large
discrepancy. Using ideas of Beck [BC87|, we show

Theorem 2 For any n-point set P in the unit cube [0,1[%, there is an azis-parallel cube Q
(2d—3)d

with side at most n~ @ 2ea+0 fully contained in [0, 1[% with

d—1

D(P,Q) =Qlog = n).

Now Theorem 1 (ii) follows from Theorem 2 using the roundoff reduction of Anstee et
al. [ADKS00] and Sinha et al. [SBCO03].
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3 The upper bound

We use geometric discrepancies to construct a declustering scheme for the proof of our upper
bound. The notation of Niederreiter [Nie87] is used in the following. For an integer b > 2,
an elementary interval in base b is an interval of the form E = %, [aib_di, (a; + 1)b_di[,
with integers d; > 0 and 0 < a; < b% for 1 < i < d. For integers ¢, m such that 0 <t <m, a
(t,m,d)-net in base b is a point set of b™ points in [0, 1[¢ such that all elementary intervals
with volume b*~™ contain exactly b' points. Note that any elementary interval with volume
b"=™ has discrepancy zero in a (¢, m,d)-net. Since any subset of an elementary interval of
volume b*~™ has discrepancy at most b* and any box can be packed with elementary intervals
in a way that the uncovered part can be covered by O(log? ! n) elementary intervals of volume
b'=™  the following is immediate:

Theorem 3 A (t,m,d) net P has discrepancy D(P,R4) = O(log® ' n).

The central argument in our proof of the upper bound is the following result of Nieder-
reiter [Nie87| on the existence of (0,m,d)-nets. From the view-point of application it is
important that his proof is constructive.

Theorem 4 Let b > 2 be an arbitrary base and b = q1qs . . . q, be the canonical factorization
of b into prime powers such that ¢ < --- < q,. Then for any m > 0 and d < ¢; + 1 there
exists a (0,m,d)—net in base b.

We construct colorings of H% from (0, m,d)-nets with small discrepancy. We start with
colorings for #%, in Lemma 1.

Lemma 1 Let Py be a (0,d — 1,d)-net in base M in [0,1[%. Then there is a M —coloring
xm of Hi = ([M]%,EY) such that all rows of [M]* contain every color exactly once and
diSC(H?M, XM) S ZD(Pnet, Rd)

In Lemma 2, we show that it is sufficient to consider the discrepancy of H¢, with respect to
these colorings for determining the upper bound of the discrepancy of H4%. The Lemma 2 is
a remarkable improvement of Theorem 4.2 in [CC02] , where disc(H%, x) < 2¢disc(HY,, X 1)
is shown. Note that this reduces the implicit constant in the upper bound by factor of 2.

Lemma 2 Let x5 be a M—coloring of H%, such that all rows of [M]* contain every color
ezactly once and x a coloring of HY defined by x(z1,...,74) = Xasr(y1,...,vq) such that
z; =vy; mod M fori€|[d], z; € [N], y; € [M]. Then

disc(H%, x) = disc(H%,, Xar)-

The upper bound in Theorem 1 follows from the above.
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A Primal-Dual Method for Approximating Tree Cover
with Two Weights

Takashi Doi, Toshihiro Fujito!
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Japan

1 Introduction

In an undirected graph G = (V, E) a vertex is said to cover all the edges incident to it, and
similarly, an edge dominates all the edges adjacent to it. A wertex cover is such a vertex
sett C C V that collectively covers all the edges in GG, whereas an edge dominating set is
an edge set D C E collectively dominating all the other edges in G. A tree cover (tc) for
connected G is defined to be an edge set 7" C E forming a “connected” edge dominating
set. Or equivalently, it is a connected edge set s.t. its vertex set forms a vertex cover
for G. The vertex cover (VC), edge dominating set (EDS), and tree cover (TC) problems
are to compute a vertex cover, an edge dominating set, and a tree cover, respectively, of
minimum weight in a graph, where either vertices or edges are associated with nonnegative
weights. The problems VC and EDS are classic N'P-hard graph problems, and the TC
problem is also NP-hard even in the unweighted case (i.e., all the edge weights are equal)
since it then becomes equivalent to the connected vertex cover problem, which in fact is
known to be as hard (to approximate) as VC is [5]. Given the apparent intractability in
exact computation, efficient approximation algorithms for these problems have been studied
extensively in the literature. A factor 2 approximation of VC was found early; it suffices
to compute any maximal matching M and output the set V(M) of vertices matched by M.
The best approximation algorithm known today for VC, weighted or unweighted, achieves
a ratio of 2 — l%gkl)—zgf [2]. Likewise, weighted EDS was recently found 2-approximable as in
the unweighted case [4]. The unweighted version of TC is also known to be approximable
within a factor of 2 by simple algorithms |7, 1]. On the other hand, TC with general weights
was first shown to be approximable within a factor of 3.55 [1], and currently the best bound
known is 3 + € [6, 3]. Thus, general TC is not yet known to be approximable as good as
the unweighted version is. Even worse, the algorithm of [6] or [3] is far from practical in
its efficiency; it requires to solve optimally an LP of huge size (ref. (1)), and to do so, it
inevitably resorts to calling the ellipsoid method as its subroutine. In this paper we consider
a restricted version of the weighted TC problem, as a first step towards better approximation

! E-mail: fujito@nuee.nagoya-u.ac.jp. Corresponding author; Partially supported by a Grant
in Aid of MESSC of Japan.
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of general TC, where edge weights are limited to either w; or wy satisfying wy > 2w;. It
will be shown that a factor 2 approximation can be attained efficiently (in the complexity of
max flow) in this case by the primal-dual method.

2 Preliminaries

For a designated vertex r called root, an r-tc is a tree cover touching r, and r-7C is the
problem of computing a minimum weight r-tc. As it suffices to approximate r-TC well
for our purpose, we focus on this variant instead of approximating TC directly. Given
an undirected graph G = (V, E) with edge weights ¢ : E — Q,, let G = vV, E) denote
its directed version obtained by replacing each edge {u,v} of G by two anti-parallel arcs,
(u,v) and (v, u), each having a weight ¢({u,v}). A non-empty set S C V — {r} is called
dependent if S induces an edge in G. Let D be the family of such dependent sets (i.e.,
D={SCV—{r}|Sis dependent in G}). Suppose T C E is an r-tc, and let T' denote the
directed tree obtained from T by directing each edge of T" away from r to a leaf. Clearly,
e(T) = ¢(T). Moreover, 2T € {0, 1}E the characteristic vector of T satisfies the linear
inequality z(d~(S)) > 1 for all dependent sets S C V — {T’} where 67(S) = { (u,v) € E |
ug SveS}, and z(F) = Ygeit Ta for T € QF and F C E, because at least one arc of T
must enter S when an edge exists inside it. Thus, the followmg LP is a relaxation of r-TC,
and its integral solutions are the ones we will be actually seeking for:

min )" _;c(a)z,
(LP) subject to: z(6(S))>1, VSeD (1)

e > 0, Va € E

Unlike the algorithms in [3, 6], our algorithm also requires the dual of (LP):

max ) gep Ys

(D) subject to: Y ys<cla), Va€E
SeD:acs(S)
ys >0, VS €D

3 Basic Approximation Techniques

In what follows it is assumed that the arcs in a rooted tree are always directed away from the
root to a leaf, and for a = (u,v) € E, y, is an abbreviation for Y{u,p}- In our algorithm we
use the following primal-dual techniques; two for approximating unweighted tree cover, and
one for exactly computing minimum weight vertex cover in bipartite graphs. For the first
two, let G = (V, E) and 7 € V be an instance of unweighted 7-TC (thus c(a) = 1,Va € E),

and T be a spanning tree of G rooted at 7.
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T1. Let T be a dfs tree. Remove all the leaves from ff, and the resulting tree T' is an r-tc
for G since no edge exists in G between any two leaves of T. This algorithm of Savage was
shown to be a factor 2 approximation using the counting argument [7]. It is also possible
to assert the 2-approximability by the primal-dual argument as follows. For each non-leaf
u of T with u # r, choose one child v of u, and mark the arc (u,v) “chosen”. Let P be the
set of these chosen arcs. Then, P consists of disjoint dipaths F;’s, each starting in some
non-leaf and ending at some leaf of T Assign 1/2 to each of y, for a € P. Then, while
y € QF is dual feasible in (D), it can be seen that || = 23 ,cii Ya since |T"| = |P|, and
the 2-approximability thus follows.

T2. For a not necessarily dfs tree f, construct a set P of disjoint dipaths as above, and
label all the arcs in each dipath P; with “1” and “0” alternatively, starting with “ 1” at the
first arc, continuing with “0” at the second, and so on. Let My be the set of all the arcs
labeled “1”; My is then a matching in T. For the set L' of leaves of T left unmatched by
M, consider the subgraph G[L'] of G induced by L'. Then, G[L'] may contain some edges
of G since T may not be a dfs tree. For any “maximal” matching My, in G[L'], remove
all such leaves of T that are unmatched by both My and M, and let T' be the resulting
tree. Then, T" is an r-tc for G since any edge joining leaves of T is covered by some leaf
of T matched by either My or M.

Setting y, = 1 for each a € My U My, y can be seen dual feasible since My U My, is
a matching in G. It is also easy to observe that |T"\ = 23 ,cii Ya; for each arc a in My

associate two arcs, a itself and the one preceding a in f, and for each a in M, associate
the two arcs of T adjacent to a.

Suppose that it is actually the case in the above that every arc not in T has a weight > 1
while ¢(a) =1 for a € T. It will be useful to notice that y given above remains dual feasible
under either type of the dual assignments.

T3. Suppose that G = (AU B, F) is a bipartite graph and each vertex is associated with
a nonnegative weight b : AUB — Q.. A b-matching for G is a function z : £ — Q.
such that z(d(u)) < b(u) for each vertex u in G, where 6(u) is the set of edges incident
with w. Call the sum of the entries in a b-matching z (i.e., Y .cp 2(€)) as its size. Then
it is a well-known fact (cf. Egervary’s theorem) that the maximum size of a b-matching is
equal to the minimum weight of a vertex cover in any bipartite graph. Moreover, such an
optimal vertex cover and an optimal b-matching can be found by a max flow computation.

4 Algorithm

Assume in what follows w.l.0.g. that edge weights are either 1 or w with w > 2, and call an
arc of weight 1 (an arc of weight w, resp.) as 1-arc (w-are, resp.). Our algorithm works in
two stages. First it computes a (minimum) spanning tree 7' of given G. Then, it prunes
certain leaves of f, and to determine which leaves are to be pruned, it computes a vertex
cover in a graph induced by the leaves of T. By removing all the leaves of T excluded from
this vertex cover, the resulting tree T' is output as an r-tc for G. The first stage starts with:

(1) Construct a maximal forest F; in G = (V, E) consisting of 1-arcs only.
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(2) Shrink each tree in F; into a vertex (naming anew the vertex as r if original r was
shrunken into it), and compute a dfs spanning tree ’.fw rooted at r in the resulting
graph.

(3) For each tree fl(z-) shrunken in Step (2) (but not into 7), let u be the (unique) vertex in
Tl(i) having an incoming arc of T;,,, and redirect all the arcs of ﬁ(i) so that it becomes
a directed tree rooted at u.

(4) Construct T spanning in G by gluing together T}, and all fl(i)’s in Fi.

Each leaf u of T is adjacent to either l-arc or w-arc of T, and we call u either 1-leaf or
w-leaf accordingly. Let L; and L, denote the sets of 1-leaves and w-leaves, respectively.
The second stage resumes with:

(5) By applying T2 of the previous section to each tree ﬁ(i) in 71, obtain a matching My, ,,

within ’fl(i). Let L) be the set of all such 1-leaves of T that are unmatched by all of
MTl(i) ’s.

(6) Construct a maximal matching My, in G[L}], the subgraph of G induced by L}, and
let LY be the set of leaves in L) left unmatched by My, .

(7) Consider G[LYUL,]. Then, G[L]U L,] is bipartite as 1) no edge of G can exist between
any two leaves of L} which are both left unmatched by a maximal matching My ,
and 2) L, consists of leaves of a dfs spanning tree. Apply T3 to G[L} U L,] with
b(u) =1,Vu € LY and b(u) = w,Vu € L,,, and compute a minimum weight vertex cover
Ly and a maximum b-matching z € QP Ylw],

(8) Prune all such leaves of T that are excluded from Ly, in Step (7) (i.e., those in (L U
L,) — Ly.), and output the resulting tree T

5 Analysis

By applications of T2 to T, (7)’s and T3 to G[L] U L,], the dual variables y, are set as
follows; 1) within each Tj(i), y, = 1 if a € Mr,,, 2) within G[L}], y, = 1if a € My, and
3) within G[L} U L], y = z/2 for a maximum b-matching z with b(u) = 1,Vu € LY and
b(u) = w,Yu € L,. Distinguish the arcs a of a tree as either leaf or non-leaf according
to whether a is incident with a leaf or not. It remains to account for the weights of the
non-leaf arcs of T;U as well as the leaf arcs of fl(,-)’s glued directly with fw (thus not leaf arcs
in T) We apply T1 to T, with certain modifications: For each arc a = (u,v) in P of T,
set y, = w/2 (as in T1) if neither u nor v is a shrunken node, and in case either u or v is
shrunken, set y, = 0 if u is matched by Mr,,,, but otherwise, set y, = 1. In addition, we
need to set Yy () = W 1 for any fl(i) e Fiifr¢ V(fl(i)). By careful examination, it can
be verified that

Theorem 1 The vector y of dual variables determined as above is feasible in (D). Moreover,
it satisfies that 3, . c(a) < 2 Y gep Ys for the tree cover T' output by the algorithm.

Therefore, by virtue of the (weak) duality theorem of LP, our algorithm approximates 7-TC
(and hence, TC) within a factor of 2.
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The cut number S(n) of the n-cube is the minimum number of the hyperplanes in R" that
slice, i.e. avoiding vertices, all the edges of the n-cube. The cut number problem for the
hypercube of dimensions n = 4 was posed by P. O’ Neil more than thirty years ago. The
identity S(3) = 3 is easy and that of S(4) = 4 is a well-known result obtained by the author
in 1988. Recently, Sohler-Ziegler [13] have obtained a computational solution to the 5-cube
problem. To find a short and computer-free proof for the 5-cube will remain a challenging
open problem. In the first part of the paper, we present the latest improvements on this
theoretical approach, applying terminologies of Boolean methods in threshold logic.

On the other hand, the connection to threshold logic provides a geometric interaction between
convex polytopes and threshold logic. The description of the latter, requires a few notations
and definitions. By the n-cube we mean the Boolean n-cube i.e. the n-th power of the {0,1},
unless otherwise stated. A cubical complex, or simply a complex, C' is a nonempty collection
of faces, i.e., subcubes, of the n-cube such that for any face F'1 of F'2 € C, then F'1 is also
in C. A cut-complex is a cubical complex whose vertices are strictly separable from the rest
of the vertices of the n-cube by a hyperplane in the n-dimensional Euclidean space.

Geometric characterization of non-isomorphic cut-complexes over the n-cube for arbitrary
n > 4 is a hard problem that has a root in the paper of Grunbaum [9] and has been studied
by the author et. al. in [2, 3, 4, 5, 6, 7]. They were actually introduced in [2] as the main
tool in a solution to the cut number problem over the 4-cube. A comprehensive exposition
of the latter problem and its relatives can be found in Saks [12]. For recent developments see
Klee [11] and Sohler-Ziegler [13]. For more on the algorithmic characterizations, generation
and enumeration of cut-complexes for n < 7, see [4, 5]. In the second part of this exposition,
we consider only the class of cut-complexes with 2 or 3 maximal faces for n > 3. Our main
result provides simple necessary and sufficient conditions to recognize these cut-complexes.

Cut-complexes are geometric presentations of threshold Boolean functions that has been ex-
tensively studied in threshold logic. An analogous characterization for the positive threshold
Boolean functions and purely by Boolean algebraic methods is given by Elgot [1|. See Hu
[10], Winder [16], Muroga [15] and their references for this and more on threshold logic.
Here, our proofs are independent of the polynomial expression of Boolean functions; instead,
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we have employed the geometric tools from convex polytopes. In fact, there is no trace of
convex polytopes in the literature of threshold logic and thus our method of proofs extends
the application domain of convex polytopes to threshold logic.

Considering first the easy case of only two maximal faces, we shall prove the following result
in Theorem 1: To form a cut-complex by pasting two distinct proper faces of the n-cube,
it is necessary and sufficient that they intersect in a facet of one of them. Then later, we
extend the result to 3 maximal faces.
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Covering Graphs by Colored Stable Sets
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Zentrum fiir Angewandte Informatik (ZAIK), Universitit zu Koln, Weyertal 80, D-50931 Kiln,
Germany.

Abstract

Let G = (V,R U B) be a multigraph with red and blue edges. G is an R/B-split graph if V is
the union of a red and a blue stable set. R/B-split graphs yield a common generalization of split
graphs and Konig graphs. It is shown, for example, that R/B-split graphs can be recognized in
polynomial time. On the other hand, finding a maximal R/B-subgraph is N'P-hard already for the
class of comparability graphs of series-parallel orders. Moreover, there can be no approximation
ratio better than 31/32 unless P=N"P.

1 Introduction

In the present article, we consider multigraphs G = (V, E) whose sets of edges consist of
“red” and "blue” edges, say £ = RU B. We are interested in covering the node set V' of such
a graph G by a red and a blue stable set to the best possible, i.e. we want to maximize the
cardinality of the union of a red and a blue stable set, where a red stable set denotes a stable
set in the red graph Gr = (V, R) and a blue stable set refers to a stable set in the blue graph
Gg = (V, B).

If a graph G = (V, RU B) has the property that the whole vertex set V' can be covered by a
red and a blue stable set we will call G an R/B-split graph as V can be split into a red and
a blue stable set.

Section 2 shows that one can decide in polynomial time whether or not a given graph is
an R/B-split graph. It turns out that the model of R/B-split graphs provides a natural
common generalization of classical split graphs (see Foldes and Hammer [2]) and graphs
with the Konig Property (see Lovasz and Plummer [3|, p. 222). In our terminology, a
(classical) split graph is a one-colored graph whose node set can be split into a stable set and
a clique, while a graph with the Konig Property is a graph in which the size of a maximal
matching equals the size of a minimal node cover.

! E-mail: faigle@zpr.uni-koeln.de.
2 E-mail: bfuchs@zpr.uni-koeln.de.
3 E-mail: bwienand@zpr.uni-koeln.de.
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If G is not an R/B-split graph one might want to determine a maximal subgraph of G that
is an R/B-split graph, i.e. one wishes to cover as many nodes as possible by the union of
a red and a blue stable set. This optimization problem is easily seen to be ANP-hard in
general as it already reduces to the original MAX STABLE SET PROBLEM if R = () or B = (.
Section 3 discusses some polynomially solvable instances of the problem. If, for example,
Gr = G is the comparability graph of a partial order, the problem amounts to determining
a maximal subset that can be expressed as the union of two antichains in the partial order.
This maximization problem is well-known to be solvable in polynomial time even for the
union of £ antichains (see, e.g., Frank [1]).

Interestingly, the problem of determining a maximal union of a red and a blue antichain
turns out to be NP-hard already for the class of series-parallel orders.

2 Red/Blue-Split Graphs

Given a graph G = (V, RU B) with sets R and B of red, resp. blue, edges, we want to
decide whether there exists a partition V' = Sg U Sp of V into a stable set Sg in the red
graph Gr = (V, R) and a stable set Sp in the blue graph Gg = (V, B). Note that G is a
multigraph as two nodes may be linked by a red and by a blue edge. We call this decision
problem the R/B-SPLIT PROBLEM and show that it is efficiently solvable as it is in some
sense equivalent to the 2—SATISFIABILITY PROBLEM:

Theorem 1 The R/B-SPLIT PROBLEM can be efficiently reduced to a 2—SATISFIABILITY
PROBLEM and vice versa.

One may wonder if the generalized R/B/G-SPLIT PROBLEM of splitting a graph with red,
blue and green edges into stable sets is also polynomial. We note that the generalized
R/B/G-SPLIT PROBLEM is N'P-complete, as it reduces to the well-known NP-complete
3-COLORING PROBLEM for the special case where Gr = G = Gg.

We now turn to the discussion of some special instances of the R/B-SPLIT PROBLEM:

2.1 Split graphs and Kénig graphs

If the red graph Gg of G = (V, RU B) is the complement of the blue graph G, we find that
G is an R/B-split graph if and only if the blue graph Gp itself can be split into a clique
and a stable set (as each clique is a stable set in the complement graph and vice versa).
Therefore G is an R/B-split graph if and only G is a split graph.

A graph G is said to have the Kdnig Property [3] if the size of a maximum matching equals
the size of a minimum node cover in G. If we determine a maximum matching M of G and
the Gallai-Edmonds decomposition of V into the set D(G) of all nodes not covered by at
least one maximum matching, the set A(G) of all neighbors of D(G) in V' \ D(G) and the
set C (@) of the remaining nodes (which can be done efficiently, for example, with Edmonds’
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cardinality matching algorithm [3]) we prove that we can decide whether G has the Konig
Property by solving an R/B-split problem:

Theorem 2 Let M be any mazimum matching in G = (V,E). Then G has the Konig
Property if and only if D(G) is stable in G and the 2-colored graph G' = (V, RU B), where
'» =G and G'y = (V, M), is an R/B-split graph.

2.2 Stable Matroid Bases

Let B C 2V denote the nonempty family of bases of a matroid M = (V,B) on the set V of
nodes of a graph G = (V, E). We are interested in the question whether M admits a stable
matroid basis, i.e. a basis of M = (V,B) that is a stable set in G as well. This STABLE
BAsis PROBLEM is easily seen to be N'P-hard in general, but polynomially solvable for
special instances.

For example for the case where G = (V, E) is any graph but M the dual of a partition
matroid M* (A partition matroid is a matroid whose ground set V' is partitioned into sets
V=AUAyU...UA, and the bases are the subsets of V' that contain exactly one element
of each of the sets A;) we prove:

Theorem 3 If the matroid M is the dual of a partition matroid the STABLE BASIS PROB-
LEM can be efficiently reduced to an R/B-SPLIT PROBLEM.

The example of Theorem 3 shows that the STABLE BASIS PROBLEM becomes polynomial
even for general graphs if we restrict the problem to a special class of matroids. The following
example exhibits the problem to become polynomial for general matroids M when we restrict
ourselves to the special class of graphs G where G is the cocomparability graph of a tree-order
P, i.e. a partial order P whose Hasse diagram forms a rooted tree. (Note that a stable set
in the cocomparability graph of a partial order is simply a chain in that order.)

Theorem 4 If P is a tree-order, then a maximal independent chain can be calculated in
polynomial time.

The general problem of a maximal independent chain (or antichain) turns out to be NP-
complete even for a partition matroid and series-parallel orders as we prove

Theorem 5 The STABLE BASIS PROBLEM is N'P-complete for a partition matroid and the
comparability graph of a series-parallel order.

3 Maximal Covers by Stable Sets

If G = (V,RU B) is not an R/B-split graph one might ask for the largest subset of V'
such that the induced subgraph is an R/B-split graph. We refer to this problem as the
MAX R/B-SPLIT PROBLEM. The general MAX R/B-SPLIT PROBLEM is N'P-hard as it
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includes the MAX STABLE SET PROBLEM. Therefore, it would be interesting to identify
polynomially solvable cases of the MAX R/B-SPLIT PROBLEM.

Example 1 If Gy is the complement of a chordal graph Gg (i.e. every cycle in Gr of
length at least 4 possesses a chord) and Gp is a comparability graph the MAX R/B-SPLIT
PROBLEM is polynomial.

If the red graph and the blue graph are identical, the MAX R/B-SPLIT PROBLEM becomes
the problem to determine a maximal union of two stable sets. This problem is still NP-hard
for general graphs as it is a special instance of the known N“P-hard MAXIMUM INDUCED
SUBGRAPH WITH PROPERTY Il PROBLEM But again, there are graphs for which this prob-
lem is solvable:

Example 2 If G and Gg are comparability graphs and Gg = G the MAX R/B-SPLIT
PROBLEM is polynomial since there exist efficient algorithms for the maximal union of two
antichains relative to the same partial order (see e.g. [1]).

The last example raises the question whether the MAX R/B-SPLIT PROBLEM is generally
polynomial in case Gg and G are comparability graphs. We show that this problem is
already NP-hard for comparability graphs of series-parallel orders:

Theorem 6 Given two partial orders Pr = (V,<g) and Pg = (V,<g) on the same ground
set' V, it is N'P-hard to decide whether there exist mazimal antichains Ag in Pr and Ag in
PB with ARﬂAB = .

The same construction also produces a reduction from MAX 3-SAT, which cannot be ap-
proximated better that I (or P= AN'P) [4]. This directly gives some insight into the approx-
imability of the MAX R/B-SPLIT PROBLEM.

Corollary 1 For € > 0, there cannot ezist a (3 + €)-approzimative algorithm for MAX
R/B-SPLIT, unless P= NP.

We finally remark that taking a maximal red and a maximal blue antichain yields a simple
2-approximation algorithm, which altogether places MAX R/B-SPLIT into the class of so-
called APX-complete problems.

The proof of Theorem 5 implies

Corollary 2 For e > 0, there cannot exist a (% + &)-approzimative algorithm for finding a
longest independent (anti-)chain, unless P= NP.
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About the b-continuity of graphs
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1 Introduction

In this paper we use the graph theory definitions and notations from [1]. A b-coloring of a
graph G is a proper coloring 7 of the vertices of G such that for each color c, there exists
a vertex v with 7(v) = ¢ such that for any color ¢ # ¢, there exists a neighbor v' of v
with m(v') = ¢/. Such a vertex v is called a b-chromatic vertez for color c. We denote
|7| = |7m(V(Q))| the cardinalities of the coloring. If |w| = k, then 7 is called a (k)b-coloring.
Given a graph G, the b-chromatic number b(G) is the greatest integer k£ such that there
exists a (k)b-coloring of G. Given an integer k, to know whether b(G) > k is a NP-complete
problem [2], even if G is bipartite [3]. This problem has been shown to be in P for trees, and
some lower bounds of the b-chromatic number were given for the cartesian product of two
graphs [2, 4].

It is easy to see that any proper coloring with x(G) colors (the chromatic number) is a
b-coloring. One peculiar characteristic of b-colorings is that for some graphs G, there exist
some integers k, x(G) < k < b(@), for which there is no (k)b-coloring of G (see for example
the hypercube H(3) with £ = 3 [2]). Thus, we will say that a graph G is b-continuous if and
only if for any k, x(G) < k < b(G), there exists a (k)b-coloring of G. Using the terminology
of Harary [5], we say that b(G) is an interpolating invariant, when G is b-continuous. We
focus here on the b-continuity of graphs. In [6] they proved that trees are b-continuous and
showed that apart from two exceptions 3-regular graphs are b-continuous. In [7] they showed
the b-continuity of interval graphs. Note that the b-chromatic number problem is still open
for interval graphs. The b-continuity problem consisting in deciding if a given graph G is b-
continuous was shown to be NP-complete |7], even if a (x(G)b-coloring and (b(G)b-coloring
are easy to compute. This shows that knowing a minimal (resp. maximal) b-coloring of G
would not help to decide if a graph G is b-continuous. Recently, we have shown that this
problem remains NP-complete even for bipartite graphs.

Our paper is organized as follows. In the next section we prove the b-continuity of a particular
class of graphs called chordal graphs, this generalizes the b-continuity of trees and interval
graphs, indeed trees and interval graphs are subclasses of chordal graphs. Then we give an
upper bound of the b-chromatic number and a family of graphs for which the chromatic and
the b-chromatic number are equals.

1 E-mail: Taoufik.Faik@lri.fr.
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2 The b-continuity of chordal graphs

An undirected graph G(V, E) is chordal if every cycle of length at least four has a chord, i.e.
an edge between two nonconsecutive vertices of the cycle. A vertex v of a graph G is called
simplicial if its closed neighborhood TI'[v] induces a clique. An elimination ordering o of a
graph G of order n is a bijection ¢ : {1,2,...,n} — V. Accordingly, o(i) = v; is the ith
vertex in the elimination ordering and o~!(v), v € V gives the position of v in 0. A perfect
elimination ordering (peo) is an elimination ordering o = (vy, ve, ..., v,) such that for any
i, (1 <14 < n), v; is a simplicial vertex in the subgraph induced by {v;, vi11,...,v,}. It is
well known that an undirected graph is chordal if and only if it has a perfect elimination
ordering (Fulkerson and Gross 1965, Golumbic 1980).

Given a peo o of a chordal graph G, I'*'[v, o] denotes the set of vertices in I'[v] with position
not smaller than o~'(v). That is, I'"[v,0] = {u € T[v] : o7 (u) > o7 '(v)}. A path
C = (viy, Viy, - - -, v, ) s called an increasing path with respect to o if iy < iy < ... < i) and
for every j, 1 < j < k —1, v, is adjacent to v;,_,.

Lemma 1 Let C = (vi,, vy, ..., v;,) an increasing path. Let v, be a vertex not in C but
adjacent to a vertex vy, of C.

(1) If r > iy, then v, is adjacent to v;, for each h, j < h <k.

(2) If r < iy, then there ezists an increasing path from v, to v;,.

Proof : (1). For each h, j < h < k, the set ['"[v;,, 0] is a clique. By hypothesis v, €
['*[v;;, 0], Since C is an increasing path v;;,, € I'"[v;;, 0]. Then v;,, is adjacent to v,. By
the same argument we can prove that, for every h, 7 +1 < h < k, v, is adjacent to v,.

(2). If 7 < iy, then C" = (v,,vy,...,v;) is an increasing path from v, to v;,. Otherwise,
(4; <7 <ig),let h, j < h <k be the greatest integer such that r > 4,. As C' = (vy;, ..., v;,)
is an increasing path, by (1), v, is adjacent to v;,. Since I'*[v;,, 0] is a clique and v,,ip11 €
[*v;,, 0], ve is adjacent to vj,,,. Thus (v, .., ;) is an increasing path from v, to
V; |

Vipgas -
.

Theorem 1 Chordal graphs are b-continuous.

Proof : Let G be a chordal graph and 7 a b-coloring of G using p colors, p > x(G). We
give an algorithm which reduces m to a b-coloring 7’ using only p — 1 colors. Let o be an
arbitrary peo of G. Let p(m) be the smallest integer such that v, is b-chromatic. Set
pu(m) = k. Note that u(m) > 1 since the set I'"[vy, o] is a clique, |I'[vg, 0] < x(G) < p.
Therefore, the set P = {1,...,p} \ 7(I'"[vk, 0]) is nonempty. Let j € P, and let J = {v; :
1 <i<k-—1,7m(v;) = j and there exists an increasing path from v; to vy}. Consider
S=Av;: 1 <i<k-—1,7(v;) =j and v; is adjacent to vy}. As vy is b-chromatic and
j & (T [vg, 0]), S # 0. Tt is clear that S C J, so J # 0.

Claim 1 If a vertexv,, 1 <r < k —1, has a neighbor in J, then all its neighbors of color
j are in J.
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Let v; be a neighbor of v, in J. As v; € J, there exists an increasing path from v; to
vg. Moreover, v, is adjacent to v; and r < k. By Property (2) of Lemma 1 there exists an
increasing path from v, to vy. Assume that there exists another neighbor v, of v, such that
m(vp) = j. We show that v, € J.

First, we prove that h < k. Assume that h > k. There exists an increasing path from v, to
v and v, is adjacent to v,. By Property (1) of Lemma 1 vy, is adjacent to v, a contradiction
with the fact that 7(v,) = 7 and j ¢ 7(T' [, o]).

Hence, as h < k, v, is adjacent to v, and there exists an increasing path from v, to v, by
Property (1) of Lemma 1, there exists an increasing path from vy, to vg. This concludes the
proof of the claim.

Recolor each vertex in J by a color taken in the set w(V) \ {j}, in such a way that the
recoloring remains a proper one. This recoloring is possible since there is no b-chromatic
vertex in J. Denote 7’ the resulting coloring. Consider any vertex in the set {vy, v, ..., vk_1}
having a neighbor in J before the recoloring. By Claim 1, all its neighbors of color j were in
J, so it has no more neighbor of color j after the recoloring and so cannot be b-chromatic.
Furthermore at least the vertex vy is no more b-chromatic, hence u(n') > p(7). Since the
value of u cannot increase indefinitely, it turns out that after a finite number of iterations of
this recoloring process, at least one color loses all its b-chromatic vertices. Denote by H the
set, of vertices which were the last b-chromatic ones of their colors before the last iteration of
the recoloring process, and & the last value of (7). The vertices of the set H are no longer
b-chromatic because their neighbors of color ;7 were all in the set J. Applying Property
(1) of Lemma 1, we obtain H C I'"[vg, 0]. So H is a clique. Hence, we lose at most one
b-chromatic vertex of each color. Let [ be a color which lost all its b-chromatic vertices after
the last iteration of the recoloring process and v,., » > k be the last b-chromatic vertex of
the color [ before this last iteration. Note that v, may happen to be distinct from wvy.

Now recoloring v, with color j makes all the vertices of H, apart from v,, candidates for
b-chromaticity in a coloring of G without color /. Since v, was the last b-chromatic vertex
of the color [, we may recolor each remaining vertex of color [ with another color, obtaining
by this way a (p — 1)b-coloring 7' of G .l

3 Modified degree sequence and k — partite graphs

In this section we give an upper bound of the b-chromatic number and a family of graphs for
which the chromatic number and the b-chromatic number are equals. A graph G = (V, E)
is k — partite if there is a partition of V' in k& nonempty stable sets X;,1 < i < k. Given
such a partition, the sets X, are called classes of the partition. In the case £ = 2 we talk
about of bipartite-graphs. Let G be a graph with n vertices, and (1, zo, ..., 2,) an ordering
of V giving a nonincreasing sequence of degrees (i.e. if d; is the degree of x;, we have
dy > dy > ... > d,). If we delete in this ordering every vertex x; such that there exists j < i
with I'(z;) C I'(z;), the nonincreasing sequence of remaining degrees is called the modified
degree sequence of G.
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Note that the set (z,...,z;, ) obtained after deletion of subordinate vertices may depend
on the initial ordering, but the sequence of degrees d; > --- > dj in which d} is the degree
of z;;, is the same for any choice of the initial ordering. We derive from this modified degree
sequence, a parameter giving a bound for b(G) improving the known bound m(G) (see [2].
Let d} > --- > dj, be the modified degree sequence of a graph G. Then the parameter m/(Q)
is defined as follows : m'(G) = max{j|d; > j — 1}.

Lemma 2 Let G = (V,E) be a graph, x,y be two vertices with I'(y) C I'(z), and set
G' = G\ {y}. Then we have : (a) If G' has a b-coloration with k colors, so has G.
(b) b(G') < b(G).

(¢) In any b-coloration m of G for which y is b-chromatic, x also is, and 7(z) = 7 (y).

Proof : : For any b-coloration of G’ we may assign to y in G the same color as x, and
obtain in such a way a b-coloration of G with the same set of colors, so part (a) is true. Part
(b) is an obvious consequence of part (a). Moreover, if y is b-chromatic for a b-coloration
m:G — C, then 7(T'(y)) = C \ {n(y)}. Since I'(x) D I'(y), the color of x must be equal to
7(y) and z is obviously b-chromatic. [J

Proposition 1 5(G) < m/(G).

Proof : : Suppose that G has a b-coloration with p colors. Then, from Lemma 1, any set
of vertices {z;,,...,; } giving, as explained above, the modified degree sequence, contains
a b-chromatic vertex for each color. Since a b-chromatic vertex has degree at least p—1, and
the modified sequence of degrees is nonincreasing, we must have dy > p—1,...,d, > p—1
implying by definition p < m/(G). O A vertex in a class X of a k-partite graph G = (V, E)
is called charismatic if its neighborhood is V' \ X.

Theorem 2 (a) If each class of a k-partite graph G contains at least one charismatic verter,
then x(G) = b(G) = k. (b) If G is a bipartite graph, (k =2), then x(G) = b(G) = 2 iff each
class of the bipartion contains at least one charismatic vertex

Proof : : (a) It is easy to see that x(G) = m/(G) = k and the coloration which assigns
to class X; the color ¢; is b-chromatic. (b) If £ = 2, the existence of a charismatic vertex
in each class of the bipartion is an equivalent characterization to that given in [3]. O
The part (b) of the previous theorem is an equivalent characterization to that given in
[3]. This characterization has no obvious generalization for graphs with x(G) > 3. For
instance, the graph G with set of vertices {z, v, z,t} and edges {(zy), (vz), (zz), (2t)} has
both chromatic and b-chromatic numbers equal to 3, but one class of any 3-partition of G
lacks of charismatic vertex.

Acknowledgment. I wish to express my thanks to Professor Jean-Francois Saclé whose
kind help made this paper possible.
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Abstract

We prove that the pathwidth of Halin graphs can be approximated within a factor of 3.

All graphs in this paper are finite without loops or multiple edges. For a graph G we denote
by A(G) the set of degree one vertices of G. A plane graph is a particular drawing of a
planar graph in the plane without crossings. A plane graph G is a Halin graph if it can be
constructed by taking a plane tree 7" and connecting its leaves with edges so that all of them
obtain degree 3 and are incident to the external face of the resulting plane graph. In other
words, the edge set E(G) can be partitioned as E(T) U E(C), E(T) N E(C) = (, where T
is a tree and C' is a cycle on only and all of the pendant vertices of 1. The tree T is called
skeleton of G. Halin graphs were introduced by Halin in [6]. As proved in [1| any Halin
graph has treewidth < 3. Finding a polynomial algorithm for computing (or approximating)
the pathwidth of graphs of treewidth bounded by some fixed constant k& is an old problem
mentioned first by Dean in [4]. A general answer to this problem was given by Bodlaender
and Kloks in [3]. However, while the algorithm in [3] is polynomial, its exponent is heavily
depending on & and this makes it impractical even for small values of &k (already one step in
this algorithm requires to work with sets of size O(n'!)). Therefore, it is interesting to find
a low-degree polynomial time algorithm for graphs of treewidth bounded by small values of
k. In this direction, the only case where there exists an exact algorithm for pathwidth is
the case k = 1, i.e. when the input graph is a forest. For this, O(nlogn)-time algorithms
where given in [7, 5] and this time was recently improved by the linear time algorithm of
Skodinis in [9]. Unfortunately, so far, no fast explicit algorithm is known for £ = 2. The
best progress in this direction is the 2-approximation algorithm of |2| for outerplanar graphs,
a class of graphs with treewidth < 2. So far, no fast exact or approximation algorithm is
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2 E-mail: sedthilk@lsi.upc.es. The second author was supported by the EU within the 6th
Framework Programme under contract 001907 (DELIS) and by the Spanish CICYT project TIC-
2002-04498-C05-03 (TRACER).
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A 3-approximation for the pathwidth of Halin graphs

known for any class of graphs with treewidth 3 or more. In this paper we give a linear time
algorithm that approximates the pathwidth of Halin graphs within a factor of 3.

The notion of pathwidth was introduced by Robertson and Seymour [8]. A path decomposi-
tion of a graph G is a sequence (X1, Xs,...,X,) of subsets of V(@) (these subsets are called
bags), such that (1) Ui<;<, X; = V(G), (2) for all {v,w} € E(G), thereis ani, 1 <i <r,
with v, w € X;, and (5)_for all 1 <ig < iy <iy <7, X;, N X;, C X;,. The width of
path decomposition (X1, X, ..., X;) is maxi<,<, |X;| — 1. The pathwidth of a graph is the
minimum width over its path decompositions.

For S C V(G) we define 0S = {u € S and there exists w € V(G) \ S such that {u,w} €
E(G)}. Let 0 = (v1,v2,...,v,) be an ordering of V(G). For j € {1,...,n} we put V; =
UL ;. Setting vs(G, 0) = maxeq1,.ny |0Vi|, we define the verter separation of G as vs(
min{vs(G, o): o is an ordering of V(G)}. It is well known [5] that for any graph G, vs(

pw(G).

G) =
G) =

The linear width was introduced by Thomas [11]. For X C E(G) let 6(X) be the set of all
vertices incident to edges in X and E(G) \ X. Let 0 = (e, ey,...,€,) be an ordering of
E(G). For i € {1,...,m} we put E; = Ui_ e;. We define Iw(G,0) = maxiep,...my [0(Ei)l,
and the linear width of G as lw(G) = min{lw(G,0): o is an ordering of E(G)}. We can
prove that, for any graph G, pw(G) < lw(G) < pw(G) + 1 (proof omitted).

Let T be a tree and let P be a path of 7. We define 7 (7, P) as the collection of trees defined
by the connected components of the graph taken after subdividing in 7" all edges not in P
but with endpoints in P and then removing all the vertices in P. For reasons of simplicity,
we will use the same notation as in T for all the vertices of the trees in 7 (T, P). We omit the
proof of the following lemma due to space restrictions (the proofs based on results from [10].

Lemma 1 Any tree T with ms(G) < k contains a path (spine path) P where all the trees
in T(T, P) have linear width at most k — 1.

Let G be a graph embedded in the plane. For any vertex v of G, we define as C, =
(é1,...,€q,e1) the clockwise cyclic order of the edges incident to v according to the way they
are embedded around v in the plane. We say that two edges are friends if they share an
endpoint and belong in the border of the same face of the embedding. If L = (ey, ..., ¢,) is
an ordering of E(G) and v € V(G) we define L, = LN {{v,u} | u € Ng(v)} (i.e. L, is the
restriction of L to the edges incident to v in G). We say that L, ~ C, ifforany j,1 < j <o
the j first edges in L, form an interval of C, (or, in other words, when any two consecutive
edges in L, are friends). We also say that L respects the plane embedding of G if for any
v € V(G), L, ~ C,. When the plane embedding is clear from the context we will simply
call L respectful.

Lemma 2 For any plane tree T with linear-width at most k, there exists a respectful edge
ordering L of T that has linear-width at most k.

Proof : We will apply induction on k. We assume that the result holds for any i < k
and we will prove that it also holds for k. Let P = (v1,...v,) be the spine path of T" given
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by Lemma 1 . For any 7,1 < 7 < r, we denote as L; = (e;,...,ef") the edges incident

to v; ordered in a way that L; ~ C,., e/ = {vi_1,v;} and e/ = {v;,v;11}. We also define
L, = (el,...,ef") and L, = (el,...,e’") such that L; ~ C,,, L, ~ C,, ef* = {v1,v,} and
el ={v,_1,v,}. Let 4,1 <7 <rand j,1<j<p;. Wedenote Tz-j the connected component
of T(T,v;) that contains e as an edge.

Let I = {(i,5) | 1<i<r1<j<p; and e is not an edge of P} and notice that for each
(i,5) € I, €l belongs to a different tree of T/ € T(T, P). From Lemma 1, any such a 77
has linear-width< k¥ — 1 and from the induction hypothesis it has a respectful edge ordering
L] of linear-width< k — 1. We now define L = L! @ --- @ L' '@ {v, 1} @ L2 ® --- &
Ly @ {vy, v} ® - @ {v, 1,0} ® L2 @ --- @ LP and we observe that L is a continuous
respectful edge ordering of G with linear-width< k (notice that the L?’s that are omitted in
this concatenation are exactly those that correspond to pairs (7, j) missing from I).

Lemma 3 Any plane tree T is the minor of a plane tree T' of mazimum degree 3, where
Iw(T) =1w(T") and A(T) = A(T").

Proof : Let L be an edge ordering of 7" with minimum linear-width. From Lemma 2
there exists a respectful ordering L of 1" with the same linear-width. We apply the following
algorithm on 7" and observe that it stops only when 7" becomes a tree of maximum degree
3, as required.

(1) If T contains a vertex v of degree > 4 then goto the next step, otherwise output 7" and stop. (2)
Let e; and e; be the two first edges in E, that appear in L. We construct a new tree 7" as follows:
first construct the tree U; by taking by the union of the two trees of T (7, v) connecting the edges
e; and ey, then construct the tree U, by taking the union of the rest of the trees of 7(T,v), then
rename to v! the vertex v in Uj,i = 1,2 and finally define 7" as the disjoint union of U; and Us
with epew = {v',v?} as an additional edge. Notice that L' = (e1,...,€i, ..., €}, new, €jt1s- - €q) IS
a respectful edge ordering for 7" with linear-width< k. Therefore lw(7") < 1w(T). As T is a minor
of T', we have that lw(T') < lw(7") and thus 7" has the same linear-width as T. Moreover, as the
vertex splitting operation of this step is not applied to a leave, we get hat A(T) = A(T') (3) Set
T :=T' L:= L' and goto Step 1.

Lemma 4 Let H be a Halin graph with skeleton T. Then lw(T) < lw(H) < 3 -1w(T).

Proof : The first inequality is obvious as 7" is a subgraph of H. In what remains we will
prove that lw(H) < 3-1w(7’). From Lemma 3, T is the minor of some simple tree 7" where
Iw(T") = 1w(T) and A(T) = A(T'). Let H' be the Halin graph having 7" as a skeleton.
Because A(T) = A(T'), we have that H is a minor of H' and therefore lw(H) < lw(H').
Clearly, the lemma follows if we prove that lw(H') < 3 - lw(7T").

We construct a new graph J by modifying the graph H'. For every internal face F' of H'
(i.e. a face that is not the external face of H') we do the following. Let (v1,...,v,,v1) be
the cycle bordering F', where r > 3 and {vy, v, } is the edge of E(H') — E(T"). We replace
the edge {vi,v,} by a path (v; = a1,a9,...,a, = v,) of length »r — 1. There is a natural
one-to-one correspondence between edges of paths (vy,...,v,) and (a1, as,...,a,). For every
ie{l,...,r—1}, we call the edge {a;, a;1+1} by the shadow of the edge {v;, v;11} and vertex
a; by shadow of v;. Since every edge e € E(T") is adjacent to two faces, it has two shadows in
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J. Because every vertex of 7" is of degree < 3, it has at most 3 shadows. For e € E(T") and
v e V(T"), let S(e) and S(v) be the sets of shadows of e and v. Notice that J is Halin graph
with skeleton 7". Also J contains H' as a minor and therefore lw(H') < lw(J). Therefore,
it is enough to prove that lw(J) < 3-1w(7").

Let E C E(T"). For every vertex v € U,cp 07(S(e) U{e}) either v € d7/(F), or v is a shadow
(v € S(u)) of some u € §r(E). Moreover, since vertex degree of 7" is at most 3, for every
vertex v € o/ (E), at most 2 of its shadows are in U,z 07(S(e) U {e}). Therefore, |S(v) N
Ueer 97(S(e))| < 2. Thus for any edge subset, E C E(T") |07/ (E)| < 3|Ueer 05(S(e) U {e})]
(*). Let now L = (ey,...,e,) be an edge ordering of 7" of linear-width < k. This ordering
induces an 'ordering of shadows’ L in J, i.e. for ¢ < j edge e; and its shadows are in L; before
e; and its shadows. By (*), for any £ € {1,...,q}, |UL, 85(S(es) Ue;)| < 3| UL, 0z (es)|.

To finish the proof we need to show how to order shadows. Each edge e of T' has two
shadows in E(J) — E(T"). We call these two shadows e! and e? always choosing indices 1
or 2 arbitrarily except the following case: For i = 1,2, each endpoint of e = {v, v'} belongs
to exactly one edge e; appearing before e in L and each such edge has a shadow sharing an
endpoint with a shadow e* of e. In this case we set el = e¢* and let €? be the other shadow
of e It is now easy to observe that L* = (ef, e1,€i,..., e, €4, €7) is an edge layout of J with
linear-width < 3k as required.

Theorem 1 There exists an linear time algorithm that for any Halin graph H returns an
integer 0 such that 6 —1 < pw(H) <lw(H) <3-4.

Proof : There exists an algorithm that in O(n) steps checks if it is a halin graph G
and, in case of a positive answer, returns its skeleton 7" (we omit the proof because of
space restrictions). After computing 7', we use the linear algorithm of Skodinis in of [9] to
compute the pathwidth of 7" in O(n) time and output 6 = pw(7) + 1. From Lemma 4,
Iw(H) < 3-1w(T). Recall that Iw(T") < § and therefore lw(H) < 3-6. Also recall that
pw(H) < lw(H) and as T is a subgraph of H we also have § — 1 = pw(T) < pw(H).
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Abstract

We extend the notion of Ps-sparse graphs previously introduced by HOANG in [12] by considering
F-sparse graphs were F denotes a finite set of graphs on p vertices. Thus we obtain some results on
(Ps, Ps)-sparse graphs already known on (Ps, Ps)-free graphs. Finally we completely describe the
structure of (Ps, Ps, bull)-sparse graphs, it follows that those graphs have bounded clique-width.

1 Introduction

P,-free graphs, also called Cographs, were designed to be completely decomposable by com-
plementation and motivated researchers for studying graph classes characterized with for-
bidden configurations. In addition, a number of optimization problems on a graph can be
reduced to their weighted version on the set of subgraphs which are indecomposable with
respect to modular decomposition (see [14]). Thus sub-classes of Ps- free graphs were inten-
sively studied (see e.g. |3, 4, 5]), in particular FOUQUET in |8] consider (Ps, Ps)-free graphs
and the subclass of (Ps, Ps, Bull)-free graphs (see Figure 1). Later GIAKOUMAKIS and RUSU
[11] provide efficient solutions for some optimization problems on (Ps, Ps)-free graphs.

By the way, Hoang introduced in [12] the Pj-sparse graphs. In a Pj-sparse graph, every
induced subgraph on 5 vertices contains at most one P,. Several extensions of P,-sparse
graphs have arisen, let’s cite P;-tidy [10],(¢,t) graphs [2, 1] (in a (g, t)-graph every induced
subgraph on ¢ vertices contains at most ¢ induced P;), or PL— graphs [15] where the number
of partners of a given P, is at most 2 (a vertex x is said to be a partner of a Py abcd when
x together with 3 vertices of {a,b,c,d} induces a P;). Moreover, subclasses of bipartite
P;-sparse graphs were defined and studied in [9].

In this paper, we extend the notion of P-sparse in the following way : A graph G is said to
be F-sparse, where F denotes a set of graphs of order p, whenever any induced subgraph of
G on p+1 vertices contains at most one graph of F as induced subgraph. We first propose a
theorem which recursively reduces the recognition problem of F-sparse graphs (when F is a
set of prime graphs) to those of the set of representative graphs (recall that the representative
graph of graph G is obtained from G by contracting every maximal proper module of G into
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Figure 1. The forbidden configurations in a (Ps, Ps, Bull)-free graph

a single vertex). Then we study (Ps, P5)-sparse and (Pj, Ps, Bull)-sparse, graphs classes
defined with configurations which are prime with respect to modular decomposition (see
Figure 1) and which properly intersect graphs classes such that PL-graphs or some (q,t)-
graphs classes.

A recognition theorem

Definition 1 A vertex z of a graph G is F-special whenever x belongs to an induced subgraph
of G which is wsomorphic to a graph of F.

When F is a set of prime graphs we have the following recognition theorem.

Theorem 1 Let F be a set of prime graphs.
A graph G is F-sparse if and only if the following holds :

(1) The representative graph of G is F-sparse.

(2) For every F-special vertex x, the module represented by = is a singleton.

(8) For every vertex x which is not F-special, the module represented by x induces a F-
sparse graph.

2 On (Ps, P5)-sparse graphs.

In this section we consider F-sparse graphs when F = {Ps, Ps} and we call those graphs
(Ps, Ps)-sparse. Recall that in a such graph every induced subgraph on 6 vertices contains
at most one P; or Ps.

Theorem 2 A prime (Ps, Ps)-sparse graph is either Cs-free or isomorphic to a Cs.

Welsh-Powell perfect graphs are perfectly orderable and are characterized with 17 forbidden
configurations (see [6]). It is a straightforward exercise to see that (Ps, Ps)-sparse graphs
which are also Cs-free are Welsh-Powell perfect. In [13], Hoang gives algorithms to solve the
Mazimum Weighted Clique problem as well as the Minimum Weighted Coloring problem on
perfectly orderable graphs within O(nm) time complexity.
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Figure 2. The 2 types of prime (Ps, Ps, Bull)-sparse graphs which are Cs-free and contain a Ps.

Thus, as well as for (Ps, P5)-free graphs (see [11]), there exists algorithms running in
O(nm) time, for computing a Mazimum Weigted Clique and a Minimum Weighted Col-
oring in a weighted (Ps, Ps)-sparse graph. Since the class of (Ps, Ps)-sparse graphs is auto-
complementary the parameters Mazimum Weighted Stable Set and Minimum Weighted Clique
Cover can be computed within the same time complexity.

3 (P, Ps, Bull)-sparse graphs.

In this section we will study F-sparse graphs where F = {P, Ps, Bull}, namely the
(Ps, Ps, Bull)-sparse graphs. We will characterize the prime graphs of this family and give
some consequences.

Let’s first recall a main result on (Ps, Ps, Bull)-free graphs.

Theorem 3 (/8]) A prime graph G is (Ps, Ps,bull)-free if and only if one of the following
holds :

(1) G is isomorphic to a Cs
(2) G or its complement is a bipartite Ps-free graph.

Since Theorem 2 also holds for (Ps, Ps, Bull)-sparse graphs we consider henceforth only
Cs-free graphs.

Theorem 4 Let G be a prime Cs-free which contains an induced Ps (resp. Ps).
G is (Ps, Ps, Bull)-sparse if and only if G (resp. G) is isomorphic to one of the graphs
depicted in Figure 2.

Observe on one hand that the number of partner for a P, in a bundle of Ps is not limited
(see Figure 2) and on the other hand that a Ps is not a (Ps, P5, Bull)-sparse graph. Thus the
class of (Ps, Ps, Bull)-sparse graphs properly intersects the class of PL-graphs. Moreover,
since a bundle of P; on 2k + 1 vertices contains at least k(k — 1) distinct Py’s, there exist
(Ps, Ps, Bull)-sparse graphs which do not belong to the (g,t)-graphs family studied in [1].

144



a
2 3 2 3 2 3
Co
1 4 147 4 1 4
10 A
a, ¢ and d a, cand {cg,%} ¢, dand {cp,dp}

optional vertices optional vertices — optional vertices

Figure 3. The 4 types of prime (Ps, Ps, Bull)-sparse graphs which are (Ps, Ps, Cs)-free and contain
a Bull.

Theorem 5 Let G be a prime (Ps, Ps, Cs)-free graph which contains an induced bull.
G is (Ps, Ps, Bull)-sparse if and only if G is isomorphic to one of the graphs depicted in
Figure 3.

It follows from Theorem 3, 2, 3 and 5 that a prime (Ps, Ps, Bull)-sparse graph or its com-
plement is either a Cy or a Ps-free bipartite graph or a bundle of Pss (see Figure 2) or is a
graph on less than 10 vertices. Consequently Theorem 1 leads to a linear time recognition
algorithm for (Ps, Ps, Bull)-sparse graphs, moreover those graphs have bounded clique-width
(see [7]).
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Abstract

Every convex polyhedron in the Euclidean space R? admits both H- and V-representations. In both
types, a representation is canonical if it is minimal and unique up to some elementary operations. In
this paper, we show the duality of canonical representations and that the canonical V-representations
coincide with certain canonical H-representations. Also, we show how the lexico-smallest represen-
tation, a computationally convenient alternative to the usual orthogonal representation, can be
computed efficiently. Finally, we illustrate our results by considering H-representations of the per-
fect matching polytope. In particular, we show that using the properties of the underlying graph
results in sensible improvements in the running time of the computation of canonical representation.

1 Introduction

A (convez) polyhedron in R? is the solution set to a finite system of inequalities with real
coefficients in d real variables. For a matrix A € R™*?, a vector b € R™ and a partition
(I, L) of [m] :=={1,2,...,m}, a quadruple (b, A, I, L) is said to be an H-representation of a
convex polyhedron P if P = {z € R¢ | b; + Az > 0, by, + A, = 0}. For matrices V € RPX¢,
R € R4 and M € R™*¢  atriple (V, R, M) is said to be a V-representation of a polyhedron P
if P = conv(V)+ cone(R)+ lin(M), where conv(A), cone(A) and lin(A), denote respectively
the convex hull, the nonnegative hull and the linear hull of the row vectors of the matrix A.
Motzkin’s decomposition theorem (see, e.g. [2, 3|) states that every polyhedron has both H-
and V-representations.

Clearly, neither H- nor V-representation is unique. In [1]|, we described a family of polynomi-
aly computable H- and V-representations that were unique up to some elementary operations.
In particular we defined the lexico-smallest representation which guarantees certain sparsity
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properties. In the present paper, we propose a slightly different definition which makes the
computations easier. Also, we show the duality of canonical representations and that the
canonical V-representations coincide with certain canonical H-representations. Finally, we
illustrate our results by considering the case of the perfect matching polytope. In particular,
we determine its lexico-smallest H-representation in terms of the underlying graph, which
results in sensible improvements in the running times of the computation. Also, we show that
in the case of complete bipartite graphs, the lexico-smallest representation is simpler than
the orthogonal representation, its usual alternative described in |2, 3]. Finally, it is worth
mentionning that a C-package computing the canonical representations of a polyhedron P
from any other representation of P will be released in the future.

2 Representations of convex polyhedra

We define a quadruple (b, A,I,L) to be an H-representation of the polyhedron Py =
{zr € R | by + A;z > 0,b; + Azx = 0} and a V-representation of the polyhedron
Py={zeR|z=A"y,yr >0, b"y =1}. We will also refer to H- and V-representations
as *-representation, intended that * refers to one of H or V. A V-representation is called
standard if b; € {0,1} and by, = 0. Note that (b, A,I,L) is a standard V-representation
of Py = conv(Ar+) + cone(Ap) + lin(Agr), where I® :== {i € I | b; = 0} and I" := {i €
I|b; =1}. As any V-representation can be transformed to a standard V-representation of
the same polyhedron in quadratic time, we assume for the sequel of the paper that every
V-representation is standard.

2.1 Canonical representations

We say two representations (b, A, I, L) and (¥, A', I’ L') of the same type equivalent if the
represented polyhedra are equal. They are said to be equal if by, + Az =0 < by +Apx =0
and if there is a permutation 7 of I such that 7(/) = I' and each (b}, A}) is a positive multiple
of (br(i), Ari)) for any i € I. Note that for V-representations, by = 0 and then the first
equivalence coincides with the statement {x € R? | z = (A)Ty} = {z e R | z = (Ap) Ty}

For an index set J we let J + 4 := J U {3} and (provided that i € J) J —i:= J\ {i} . A
row index i € [m] is called redundant in a representation (b, A,I,L) of P if (b,A,I — i, L)
is a representation of P. We say that ¢ € I is in the implicit linearity of (b, A,I,L) if
(b, A,I —i,L + 1) is a representation of P. It is minimal if it has no redundant row index
and has empty implicit linearity. For every polyhedron P, we let Ly (P) := lin.space(P)
and Ly (P) := aff (P)*, where lin.space(P) = {z € R? | z + Az € P,Vz € P, A € R} and
aff (P)* is the orthogonal complement of the affine hull aff (P) of P. Finally, we say two
linear subspaces S; and S, of R? are complementary if every basis of S; and every basis of
S, form, together, a basis of R9.

Theorem 1 A minimal x-representation (b, A, I, L) of a nonempty polyhedron P such that
all row vectors A;, i € I, belong to a fized linear subspace S complementary with L,(P) exists
and s unique.
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Selecting S as the orthogonal complement L,(P)* of L,(P) results in the orthogonal repre-
sentation. Another choice is to let S be a coordinate subspace, which is any vector subspace of
R? generated by some unit vectors e/, j = 1,2,...,d. It is easy to show that S := lin({e’});¢s
and L,(P) are complementary if and only if the columns of A;; form a basis of the space
spanned by the columns of A;. Requiring that J is lexicographically largest results in the
lexico-smallest representation. Clearly, the matrix A; of this representation has at least
|L| = rank(Apr) zero columns. This definition of the lexico-smallest representation, which
differs from the one proposed in [1], has the advantage that the computation of S amounts
to apply a single gaussian elimination on the matrix Ay, instead of the O(d) eliminations
required with the previous definition.

2.2 Canonical V-representations via H-representations

Here, we show the duality of canonical representations and that the canonical V-
representations coincide with certain canonical H-representations. Firstly,

Theorem 2 A representation (0, A, I, L) is a canonical H-representation of a cone C if and
only if it is a canonical V-representation of the polar C* of C.

Now, for each V-representation (H-representation, respectively) (b, A, I, L) of a nonempty
polyhedron P, we define [b° A% := [b A] ([° A°] := [b A] if P is bounded and [p° A%] :=

107
b A

otherwise. )

Theorem 3 Let (b, A,I,L) be a x-representation of a nonempty polyhedron P. Then,
(b, A, I,L) 1s a canonical *-representation < [b°A%) is a canonical x-representation.

Corollary 3.1 Let (b, A,I,L) be a V-representation of Py > 0. Then, (b,A,I,L) is a
canonical V-representation if and only if it is a canonical H-representation.

2.8  From minimal to canonical representations

Let (b, A, I, L) be any minimal *-representation of a nonempty polyhedron P.

Lemma 1 Let S := lin({e’};cs) be complementary L.(P), and let Ay, the matriz arising
from Ay by setting to zero its columns j & J. Then,

(1) the rows A} of the matriz A} of the orthogonal x-representation are the rows
Al:=A; — My, i € I, where N(ALAT) = A;AT;

(2) the rows of the matriz A} of the lexico-smallest x-representation are the rows
Al = A; — XA, i € I, where \(ALAT) = A AT,
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3 Perfect matching polyhedra

We apply the results of the last section to the perfect matching polytope. Given a bipartite
graph G = (V, E) the perfect matching polytope P4 (G) is

> . =1V eV
Pua(G) =<z € REI | e€b(w) (1)
ZTe >0 Ve € E,

where 0(V') denotes the set of edges which have exactly one endnode in V. In the following,
GG denotes a bipartite graph which contains a perfect matching.

Lemma 2 A subspace S;= lin({€’};cr) is complementary with aff (Papra(G))* if and only
if (V,F) is a spanning forest in G = (V, E). In turn, if G has ¢ connected components, the
affine hull of Pya(G) has dimension |E| — |V| + c.

From now on, we assume that G is connected. We let T := (V, E7) be any fixed spanning tree
in G, and for every W C V we let T[W] be the subtree of T induced by W. For each € € Er,
we denote by FCq(T, €) the fundamental cycle of T with €, by FC&(T, €) the fundamental
cut of T with €, and by V, any of the nodesets such that FC}(T,e) = 6(Vz). We define
01 (Vz) (0~ (Vz), repsectively) as the set of edges e # € € 6(Vz)) such that FCE(T,e) NT[V]
has an odd (even) number of vertices. Finally, E*(Vz) (E*(Vz), respectively) denotes the
set of edges e # € in T[V] such that the smallest path in 7" containing both e and € has
an odd (even) number of edges. If T is the lexicographically largest spanning tree in G and
Angy o= |E*(V2)| — |E-(V2)] we have,

Theorem 4 The affine hull of Pya(G) is the solution set to the following minimal system
of equations: For alle € T,

Te + Z Te — Z -/Ee:]-—i_AE(Vg)-

ecdt(Ve) ecd— (Ve)

Theorem 5 Let x; > 0 be any nonredundant inequality in (1), and assume that it is not an
implicit equation. Then, the corresponding inequality in the lexico-smallest representation is
zz>0ifee E\ Er and

>z < 1+ Apy,) otherwise.
ecdt(Ve)

As a consequence, Ay is a ({—1,0,1})-matrix, and its 2n — 1 columns corresponding to edge
in T = (V, Er), |V| = 2n, are completely zero. Furthermore |b;| < n for all ¢ € [m]. In the
case when G' = K, ,,, we have

Property 1 Let z; > 0, € = (u,v), be any inequality in (1). Then, the corresponding
inequality in the orthogonal representation is

(n—1%z:—(n—-1) > ze+ Y. x>-n,

ecd({u,v}) ed({u,v})
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Note that Aj is completely dense. Also, the numbers in the lexico-smallest representation
are smaller than the one in the orthogonal representation.

To conclude, note that using properties of the graph results in sensible improvements of the
running time of the computation: removing linearly independent rows of A; amounts to
computing a spanning tree, while transforming the inequalities amounts to computing the
length of certain paths in a tree. In the full paper, we will discuss how similar improvements
can be obtained for the computation of minimal representations.
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Abstract

Let H be a graph then a graph H' is a prime extension of H if H' is prime (in the sense of modular
decomposition), it contains an induced subgraph isomorphic to H and is minimal with respect to
set inclusion and primality. An open problem concerning the set of prime extensions Ext(H) of H
is the following: find the necessary and sufficient conditions establishing the finiteness of Ezt(H).
We solve the above problem by characterizing all classes of graphs whose set of prime exensions is
finite. We give also a simple way for generating an infinite number of extensions for each graph
belonging to any other class of graphs.

Key words: module, modular decomposition, prime extension

1 Notations and previous results

All considered graphs are finite, without loops nor multiple edges. For termes not defined
here the reader is refered to [1]. Let G = (V, E) be a graph with vertex set V' (or V(G)) and
edge set E. The subgraph induced by X C V will be denoted [X] and the set of vertices
outside X that are adjacent to at least one vertex of X will be denoted N(X). A chordless
chain of k vertices will be denoted P,. A set M C V is a module of G if every vertex
outside M is adjacent to all vertices of M or to none of them. The empty set, V and the
singletons are trivial modules and whenever G has only trivial modules is called prime. M
will be a strong module if for any other module M’ of G we have either M N M’ = @ or one
module is included to the other. A graph whose every module is a subset of a P, will be
called P,-homogeneous graph. The modular decomposition of G associates to G' a unique
decomposition tree T'(G) whose set of leafs is V' and each set of leafs of the subtree rooted
on an internal node of T(G), forms a strong module of G. An internal node is labeled P, S
or N if its corresponding set of leafs induces respectivily an edgeless, complete or a prime
graph. The substitution graph G of two disjoint graphs G; and G2 is obtained by first
removing a vertex x from G5 and then making every vertex in GGy adjacent to all neighbours
of x in G5. Let F' a family of graphs defined by a set Z of forbidden configurations. We
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know (|3]) that the closure F* under substitution of F' can be characterized by a set Z* of
forbidden configurations, these configurations being all the prime extensions of Z. We know
also ([3] ) that Z* is not necessarily a finite set. Since substitution preserves many of the
properties of the composed graphs (as for exemple perfection), an important open problem
is the following: find the necessary and sufficient conditions establishing the finiteness of Z*.
Different researchers investigated the solution of this problem and many sufficient conditions
were presented for it (see for example [2], [3] and [6] ). In this paper we solve this problem by
characterizing all classes of graphs having a finite number of prime extensions. We give also
a simple way for generating an infinite number of prime extensions for each graph belonging
to any other class of graphs. A complete version of this extended abstract can be found in

[4]-
Theorem 1.1 ([6]) Let G be a P,-homogeneous graph, then Ext(G) is a finite set.

Definition 1.2 ([5]) Let G be an induced subgraph of a graph H, and let W be a homoge-
neous set of G. We define a reducing W-pseudopath in H as a sequence R = (uq, ug, ..., Uy),
t > 1, of pairwise distinct vertices of V(H) \ V(G) satisfying the following conditions:

(1) wy is partial for W.

(2) Vi=2,...,t either u; est adjacent to u;_; and indifferent to W U {uy, ..., u;_2} or u; est
adjacent to WU{uy, ..., u;_o} and not adjacent to u;_; (when i = 2, {uy, ug, ..., us} = @).

(3) Vi=2,...,t — 1, u; is total to N(W) and indifferent to V(G) — N(W) and either u; is
not adjacent to a vertex of N(W) or u; is adjacent to a vertex of V(G) — N(W).

Theorem 1.3 ([5]) Let H be an extension of its induced subgraph G and let W be a
homogeneous set of G. Then there exists a reducing W -pseudopath with respect to any
induced copy of G in H.

In the two following sections we shall give two constructions for obtaining a prime
extension of a decomposable graph which will be the framework for our main result given
in the the last section.

2 The basic extension of a decomposable graph

Let G = (V, E) be a connected graph and let T(G) be the corresponding modular decompo-
sition tree. Let 7(G) = {Hj, ..., H;} be a partition of V obtained by the following equivalence
relation R in V: for two vertices z,y € V we have that xRy if and only if x and y have the
same father in 7'(G). Assume in the following of this section that G is not prime. Conse-
quently there exists H; € m(G) which is a non trivial module of G.Let p(G) = {M, ..., My}
be the subset of 7(G) such that every M;,i =1,...,k, is a non trivial module in G . Let us
associate with every module M; of p(G) a set V; of new vertices (i.e. VNV =0,V/NV; =0,
i,j=1,...,k,i# j ) and a set E] of edges relying the vertices of M; with the vertices of V
in the following manner:

(1) if M; is a stable set or a complete set {z1,...,x, } then V' = {y1,...,y,—1} and E] is the
set of edges z;y;, j =1,...,7 — L.

(2) if M; induces in G a prime graph then V} is a singleton {y} and E! is the edge yx where
z is a vertex of M;.
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The set of prime extensions of a graph: the finite and the infinite case

Let basic(G) be the graph whose vertex set is V UV’, where V! = V/ U ... U V] and whose
edge set is E U E’, where E' = E| U ... U E}. Clearly V' is a stable set in basic(G) and
each vertex of this set has exactly one neighbour in basic(G), this neighbour being its own
“private” neighbour.

Theorem 2.1 Basic(G) is an extension of G.

Outline of the proof. The primality of basic(G) follows from the fact that in every non
trivial module M of G there exists a vertex of M having a private neighbour in V'. Basic(G)
is a prime extension of G since every proper subgraph of basic(G) containing a copy of G is
not a prime graph. O

3 The path extension of a decomposable graph

The proof of the following theorem suggests a way of constructing an infinite number of
extensions of a graph G.

Theorem 3.1 Let G be a connected graph containing a mazximal non trivial module M
inducing a connected graph not isomorphic to a Py, then Ext(G) is an infinite set.

Outline of the proof. We may assume w.l.o.g. that M is maximal with respect to set
inclusion, connectivity and the fact that [M] is not isomorphic to a chordless chain. Let A
be the neighbourhood of M in G and B its non neighbourhood. Since G is supposed to be
connected we have that A # @. Consider the graphe basic(G) and denote by @ the set of
vertices of V (basic(G)) — V(G) such that N(Q) C M and by D the vertices of V(G') — V(G)
such that N(D) C {AU B}. In other words @ is the set of new vertices that “break” the
module M in G and any non trivial module of [M] and D is the set of new vertices that
“break” any non trivial module of [A U B] in the graph G. Clearly, @ U D is a stable set
and every vertex r € QU D, has exactly one neighbour in G and this neighbour is “private”.
Finaly let D4 = N(D)NA and D = N(D)NB. Let G* be the graph obtained from basic(G)
in the following way: V(G*) = V (basic(G)) and E(G") = E(G) U {{z,y} |z € Q,y € A}
In other words, every vertex of () is adjacent in G to every vertex of A which implies that
M U @ is a non trivial module of G*. Let G ® P, be the graph obtained from G in the
following way: V(G ® Py) — V((G)*) induces a chordless chain Py = z1, ...,y such that z;
is adjacent to exactly one vertex of @) , every vertex of {x1,...,2x_1} is total for A and not
adjacent to any vertex of M U B U D, every vertex of {zo, ..., zx_1} is not adjacent to any
vertex of () and finaly z; is not adjacent to any vertex of G*. The structure of G ® P is
illustrated in Figure 1 below:
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Figure 1: the path extension of a graph G

We first prove that G ® Py is a prime graph. Then we show that any prime subgraph of
G ® Py containing a copy of G must contain the whole chain P; which is of arbirtrary length.
O

4 The main result

We know that any Pj-homogeneous graph has a finite number of extensions (|6]). Let us
define a second class of graphs, the class of 2P;-homogeneous graphs having a finite number
of extensions too.

Definition 4.1 Let G be a connected which is not R;—homggeneous such that G contains
exactly two connected components C; and C5. Then G and G are called 2P, - homogeneous
if [C4] is a P,-homogeneous graph and [Cy] is a subgraph of a P,.

Theorem 4.2 Let G be a graph, then Ext(G) is a finite set if and only if G is a Py-
homogeneous graph or a 2P;-homogeneous graph.

Outline of the proof. The structure of this proof is depicted in Figure 2 below. The
reader can be find the whole proof in [4]. We only point out here that whenever G is a 2P;-
homogeneous graph the finiteness of Ext(G) is obtained using Theorem 1.1 and Theorem
1.3. Indeed, in any extension G* of GG, any W-pseudopath whose length is greater than the
cardinality of the module W creates a copy of G in G* which implies that | V/(G*) |=| V(G) |
+c, where c is a constant. O
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The set of prime extensions of a graph: the finite and the infinite case

G connected

3[M] connected %P,k > 3 V[M] connected, [M] ~ Py, k > 1
- / \
G is P4- homogeneous G # P4-homogeneous
(Finite) / \
G is connected G is disconnected
(Infinite) (2 connected components C1,C2)
G is 2P;-homogeneous G # 2Ps;-homogeneous
(Finite) (Infinite)

Figure 2: the different cases that may occur for Fzt(G)

References

[1]
2]

3]
4]
[5]
[6]

A. Brandstadt, V.B. Le and J. Spinrad, Graph classes: a survey, STAM Monographs on
Disc. Math. and Applications, (1999).

A. Brandstidt, C. Hoang and J.M. Vanherpe, On minimal prime extensions
of a four-vertex graph in a prime graph, submitted, http://www.informatik.uni-
rostock.de/(en)/~ab

V. Giakoumakis, On the closure of graphs under substitution,Disc. Math., 177, (1-3),
(1997), 83-97.

V. Giakoumakis, S. Olariu, All prime extensions of hereditary classes of graphs, Rutcors
research report RRR 40-2003, http://rutcor.rutgers.edu/ rrr/2003.html

I. Zverovich, Extension of hereditary classes with substitutions, Disc. Appl. Math. 128,
(2-3), (2003) 487-509

I. Zverovich, A generalization of Giakoumakis’s theorem, Rutcor research report , RRR
20-2003, http://rutcor.rutgers.edu/ " rrr

156



On a packet scheduling problem for smart antennas and
polyhedra defined by circular-ones matrices
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Abstract

In [1, 2] E. Amaldi et al. posed a combinatorial optimization problem that arises when scheduling
packets in a smart antenna. The objective is to partition the set of users so as to minimize the
number of time slots needed to transmit all the given packets. Here we will present a polynomial
time algorithm for solving this packet scheduling problem. More generally, the algorithm solves
an integer decomposition problem for polyhedra determined by a circular-ones constraint matrix,
which might make it interesting also for other cyclic scheduling problems.

Key words: packet scheduling, cyclic scheduling, polytime algorithm, integer programming

1 Introduction

In recent years, there has been a growing interest in adaptive antenna arrays known as “smart
antennas”. The combination of an antenna array and digital signal processing capabilities,
enables a smart antenna to transmit and receive signals in a spatially sensitive manner. The
spatial radiation pattern can be adjusted in real time in response to the signal environment.
Exploiting this, signals to different users can be transmitted simultaneously over the same
radio channel.

This allows us to view a smart antenna as a collection of co-located directive antennas that
each transmit to (or receive from) a narrow beam (approximately 12 degrees). Each of these
directive antennas can be independently oriented and can serve one user at a time. However,
in order to avoid unwanted interference, there is a restriction on the sets of users that can
be served simultaneously: a user that is being served, cannot be in the beam corresponding
to a directive antenna that serves another user. This restriction limits the number of users
that can be served during the same time slot.

As an example, suppose that the angle of the beams from the directive antennas is 12 degrees
and that three users are in a common sector of 12 degrees. If the middle of the three users

! E-mail: gijswijt@science.uva.nl.

CTWO04 Proceedings — Villa Vigoni (CO), Italy, 31st May to 2nd June 2004



Packet scheduling problem for smart antennas

is served, then the beam corresponding to the antenna that serves it must either contain the
clockwise or the anticlockwise neighbour which therefore cannot be served at the same time.
This implies that for a set of users that are served simultaneously, the angle between any of
these users and it’s second clockwise neighbour is more than 12 degrees. Hence the number
of users that can be served in a single time slot is less than 60. In fact we will assume that
the number of available directive antennas is unlimited and the sets of users that can be
served simultaneously are determined exactly by this interference constraint.

2 Modelling the packet scheduling problem

In [2], Amaldi et al. considered the following scheduling problem: given a set of users, we
want to serve all of them, minimizing the total number of time slots needed. That is, we
want to partition the users into a minimal number of classes, where the members of each
class can be served simultaneously by the smart antenna.

Following Amaldi et al., we model the problem in the following manner. Since the exact
position of the users is not needed, only their direction as seen from the smart antenna, we
model the users by points on the unit circle and let the beams from the directive antennas
correspond to arcs of a fixed length « of the unit circle. We will always assume that 0 <
o < 2.

For two points a,b on the unit circle the closed segment running clockwise from a to b is
called an arc and is denoted by [a,b]. Let a > 0 be fixed. A finite set S of points on the
unit circle will be called independent ? if there exist |S| arcs on the unit circle, each of length
«, such that each point in S is in exactly one of these arcs and each of these arcs contains
exactly one element of S. Note that any two of the |S| arcs may intersect as long as the
intersection does not contain a point in S. The independent sets correspond to the sets
of users that can be served simultaneously. The scheduling problem can now be stated as
follows.

Problem 1 Given a finite subset V' of the unit circle, find a partition of V into a minimal
number of independent sets.

3 Results
A basic observation, which led us to a polynomial time algorithm for the scheduling problem
is the following

Observation 1 A finite set S of points on the unit circle is independent if and only if
SN s,s]| <2 for each arc [s, s'] of length o starting at a point s € S.

2 In [2] arcs are half-open segments, but for the definition, this is equivalent to using closed segments
of the same length.
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To see necessity, suppose that some arc of length « contains u,v,w € S in this order, then
any arc of length « containing v also contains u or w and hence S is not independent. For
sufficiency, suppose that [SN[s, s']| < 2 for each arc [s, s'] of length @ with s € S. Let v € S
and let v and w be the anticlockwise and clockwise neighbour in S of v respectively. The
length of [u,w] must be larger than « since |[u, w] N S| > 2, and hence there exists an arc
of length « intersecting S only in v. Note that the last argument also shows that given an
independent set S, |S| arcs of length « as in the definition of independent set, are easily
constructed from S.

This observation allows us to identify the independent sets with the zero-one solutions to a
system of linear inequalities Az < 2. Here the zero-one constraint matrix A is a circular-ones
matriz: in each row of A, the ones or the zeros form a contiguous block. The scheduling
problem is then to partition the all-one vector into a minimal number of zero-one solutions
to this system. By extending the algorithm in [3| for colouring proper circular arc graphs,
we obtain an algorithm that given an m x n circular-ones matrix A, a vector b € Z7', and
a vector z € Z7, decomposes z into a minimal number of integral solutions to Az < b.
The running time of the algorithm is O(nmlog(z¥1)). The packet scheduling problem is a
special case where b is the all-two vector and x is the all-one vector. Applied to the packet
scheduling problem, the algorithm finds in time O(n?logn) an optimal schedule, where 7 is
the number of users.
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More on orbital matrices
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Abstract

In this paper a nonexistence theorem of Schiitzenberger of 1949 for symmetric designs is dis-
cussed.This result together with the theorems of Bruck-Ryser and Chowla-Ryser yield many nonex-
istence results for orbital matrices as well. In the second part, relations of orbital matrices to other
combinatorial structures, e.g. weighing matrices, are discussed.

Key words: Symmetric designs, Orbital matrices, Weighing designs, Configurations.

1 Introduction

In one of his early papers Schiitzenberger 7] proved that the order of a symmetric 2-design
with an even number of points must be a square. This result is contained in the socalled
theorem of Bruck-Ryser-Chowla of 1950, and hence the earlier contribution of Schiitzenberger
is often forgotten.

The results of Schiitzenberger, Bruck, Ryser, and Chowla do not only apply to symmetric
2-designs but also to the bigger class of orbital matrices defined as follows.

Definition 1 An orbital matric OM (v, k,z; \) is a square matriz A of size v with non-
negative integer entries such that

(1) the sum of the entries in each row and in each column is equal to k,
(2) the sum of the square of the entries in each row and in each column is equal to k + x,
(8) the inner product of two different rows or two different columns is equal to A where

A= (k(k—1) —2)/(v—1).

Orbital matrices were introduced in |6]. The reader is referred to this paper for all details and
results which are not explained here. Orbital matrices with z = 0 are exactly the incidence
matrices of symmetric 2-designs.
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While the earlier paper [6] mainly discusses orbital matrices with small values of A (i.e.
A < 3) and exhibits some nonexistence proofs for certain orbital matrices which pass the
Bruck-Ryser- Chowla test the current paper will discuss some relations of orbital matrices
to other combinatorial structures, mainly to weighing matrices.

2 The theorem of Schiitzenberger-Bruck-Ryser-Chowla

The following theorem is usually called the theorem of Bruck, Ryser, and Chowla or the
BRC Theorem. In fact, it consists of three different theorems published in the papers of
Schiitzenberger [7], Bruck and Ryser [1|, and Chowla and Ryser [2].

Theorem 1 The existence of a symmetric 2-design with parameters (v, k,\) implies the
following:

If v is even, k — X\ is a square.
If v is odd, the diophantine equation
w? = (k — A\)y? + (—=1)071/2) 2

has a non-trivial solution (i.e. (w,y,z) # (0,0,0)) in integers.

As already mentioned the incidence matrix of a symmetric 2-design is an orbital matrix with
x = 0. Anyhow, the definition of a symmetric 2-design can be given as follows.

Definition 2 A symmetric 2-(v, k, \)-design consists of v points and v blocks (subsets of
points) such that each block contains k points, each point occurs k times on a block, and each
pair of different points occurs together in a block exactly A times.

In [7] the case of even values of v is proved. In [1] the theorem is proved for projective planes,
i.e. symmetric designs with A = 1. Here only odd values of A can occur since v = 1+k(k—1).
Finally, by using the result of [1] the general theorem is proved for all values of A in [2].

This theorem was the first general nonexistence theorem in the field at all, and the whole
theorem of Schiitzenberger-Bruck-Ryser-Chowla still is the only one. For even v no nonex-
istence case is known which is not a consequence of this theorem of Schiitzenberger. For
odd v the only singular result is the nonexistence of the projective plane of order 10, i.e. a
(111,11,1)-design.

A general nonexistence theorem for orbital matrices holds which exactly corresponds to
the theorem of Schiitzenberger-Bruck-Ryser-Chowla in the case of symmetric designs. The
reason is just that the proofs of the papers [7], [1], and [2] are valid for integer matrices and
not only for 0-1-matrices.

Theorem 2 ( see [6] )
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More on orbital matrices

The ezistence of an orbital matriz OM (v, k, z; X) implies the following:
If v is even, k +x — X is a square.
If v s odd, the diophantine equation

w? = (k42— Ny + (—1)© D/2)\2

has a non-trivial solution (i.e. (w,y,z) # (0,0,0)) in integers.

It is quite interesting that there are already many nonexistence results for orbital matrices
which cannot be deduced from this general theorem. For details see [6].

3 Weighing matrices and orbital matrices

Orbital matrices with z = 0 or with only 2 different entries correspond to incidence matrices
of symmetric 2-designs. The easiest and maybe most natural case of three different entries
is the one of entries 0,1, and 2. These matrices are related to weighing matrices defined as
follows.

Definition 3 A weighing matriz W(n,w) of weight w # 0 and order n is a square matric
of size n with entries from {—1,0,+1} satisfying WW*' = wl.

A W (n,n) is called an Hadamard matriz of order n, a W(n,n — 1) is called a conference
matrixz of order n.

For further details and references concerning weighing matrices, Hadamard matrices, and
conference matrices see 3] and [4].

The characteristic property of a weighing matrix is that it is orthogonal, i.e. the inner
product of two different rows or columns is 0. In that sense the property of orbital matrices
to have a constant inner product is just a generalization of being orthogonal. If the 3 entries
0, 1, and 2 of an orbital matrix are replaced by -1, 0, and +1 resp., the value of the inner
product remains constant but is shifted. Sometimes it occurs that it is 0 which means that
it is a weighing matrix.

However, not all weighing matrices are orbital matrices since the number of -1, 0, and +1 in

a row or column need not be constant.

3.1 A series of examples

As an example the series of orbital matrices OM (a, a—3, 6; a—6) will be discussed. It follows
that there are two different row-column types:
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The 3-type (do, d1,ds,ds) = (5,a — 6,0,1),a > 6 and
the 2-type (do, dy,ds) = (6,0 —9,3),a > 9.

For details concerning type equations and row-column types see [6]. The value d; denotes
the number of entries ¢ in a row or column. For example, in a 2-type there are 6 entries 0,
a — 9 entries 1, and 3 entries 2.

Weighing designs are used in order to obtain the following results on orbital matrices. A
more systematical study is the task for the future.

Lemma 1 (i) There exists an OM(10,7,6;4) of 2-type.

(ii) There is no OM(11,8,6;5) of 2-type.

(iii) There ezists an OM(13,10,6;7) of 2-type.

Remark 1 (i) There is no OM(10,7,6;4) of 3-type. This was proved in [6].

(i) There are exactly 2 OM(12,9,6;6) of 3-type and exactly 2 OM(12,9,6;6) of 2-type.
There is at least one mized-type OM (12,9, 6;6) ( see [6] ).

(11i) There is the following hierarchy: Each circulant matriz is reqular; each regular matriz

W(n,9) is an OM(n,n — 3,6;n — 6) of 2-type; each OM(n,n — 3,6;n — 6) of 2-type is a
W(n,9).

3.2 OM(12,9,6;6) —some construction methods

OM(12,9,6;6) as an example of the series of the previous section will be discussed in detail
to show some typical construction methods of orbital matrices.

At first the matrices of 3-type (i.e. the type(5,6,0,1)) are constructed. It turns out that there
are exactly 2 OM(12,9,6;6) of 3-type.

In the following the matrices of 2-type (i.e. the type(6,3,3)) are constructed. A detailed
analysis shows that there are exactly 2 OM(12,9,6;6) of 2-type.

4 Configurations and semibiplanes

Symmetric configurations are defined as follows (For further definitions and references see
[5] and other papers of the author.)

Definition 4 A configuration vy consists of v points and v lines such that (1) each line
contains k points, (2) each point lies on k lines, and

(8) two different points are connected by at most one line.
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More on orbital matrices

Like orbital matrices, configurations are generalizations of symmetric 2-designs. Moreover,
they can occur as substructures of orbital matrices by identifying certain entries in the orbital
matrix ( compare [6], page 121 ).
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1 Introduction

Let V be a finite set and £ a subset of 2V. Then H := (V,€) is called a hypergraph. The
elements of V' are called vertices and those of £ hyperedges. The discrepancy problem is
to color the vertices with two colors, such that all hyperedges are colored as balanced as
possible. The discrepancy of H is a measure for the deviation from an optimal distribution

and is defined by

fiselH) = ity B | 2, X))
For further information on discrepancies, we refer to Beck and Sés [BS95] and Matousek

[Mat99].

Let N be a positive integer, [N] := {0,1,2,...,N — 1} and Hy = ([N],En) the hyper-
graph of all arithmetic progressions in [/N]. That means £y contains all sets of the form
{{a+ké | k € [L]} | a,6,L € N} in [N]. Determing the discrepancy of the hypergraph
of arithmetic progressions was a long standing open problem. Although he did not use
the discrepancy notion explicitly, Roth proved disc(Hy) = Q(N'/*) [R64]. Roth himself
thought that this lower bound should be improvable to Q(N'/27¢). But in 1974, Sarkézy
disproved this hypothesis by giving an upper bound of O(N 1/3 logl/ SN ). A sketch of his
beautiful proof can be found in [ES74]. It was Beck, who showed in 1981 that Roth’s
lower bound is nearly optimal. His upper bound of O(N'/4 log5/ 2N ) was improved in
1996 by Matousek and Spencer [MS96| removing the logarithmic factor. Thus disc(Hy)
is of order ©(N'/*). Therefore this classical discrepancy problem was solved. But it is
an interesting question whether the methods used for the hypergraph of arithmetic pro-
gressions can be used for the discrepancy problem of related hypergraphs, or new methods
are needed. For example Doerr, Srivastav and Wehr [DSW] investigated the hypergraph
of the d-dimensional arithmetic progressions Hyqa = ([N]% Eng) (d > 1), where the set
of hyperedges is €y 4 1= {A; X ... x Ay | A; arithmetic progression in [N]}. They proved
disc(H,q4) = O(NY*). Valko [V2002] determined the discrepancy of the hypergraph H/y ; of
one-dimensional arithmetic progressions in [N]¢. He showed disc(HYy ,) = Q(N¥@42)) and

! E-mail: nhe@numerik.uni-kiel.de. The author thanks the DFG-Graduiertenkolleg 357
“Effiziente Algorithmen und Mehrskalenmethoden” for supporting this research.
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Discrepancy of Sums of Arithmetic Progressions

disc(Hly 4) = O(N¥/@42 106 N).

In this paper we are interested in the discrepancy of the hypergraph Hyy = ([N],Enk),
where €y, consists of all sums of £ arithmetic progressions for a positive integer k. Let A
be the set of all arithmetic progressions in Z. Then the set of hyperedges is

gN,k = {(A1+A2+Ak) N [N] | Az < .A}

Our main result is the following

k
Theorem 1 For all positive integers k we have disc(Hy ) = Q(N2k+2),

H 1 is the hypergraph of arithmetic progressions and we get Roth’s lower bound. Note that
the probabilistic method [AS00] gives an upper bound of O(N'/?log!/? N) for disc(Hn x)-

2 Discrepancy of Hy

The structure of the hyperedges of Hyy is not that regular as that of arithmetic progres-
sions. For instance in the sum of two or more arithmetic progressions some elements can
have several ways to be expressed as sum of elements of the arithmetic progressions. Thus
we cannot apply Fourier analysis in a direct way, but have to look for hyperedges of Hy 4,
which do not have those ambiguities. We are calculating a lower bound for the discrepancy
of the subhypergraph containing only this special hyperedges, which is of course also a lower
bound for disc(Hy ).

For convenience we assume that 2¢~'|N'/(**1)  The Bertrand postulate (or Chebyshev’s
theorem) states the existence of prime numbers p; for all @ € {1,2,...k — 1} with
ik NT/(k+1) <y < 2i7k+2N1/(k+1]) - Eyery sum of k arithmetic progressions is char-
acterised by a starting point, a k-tuple 6 = (01,02,...,d;) of differences and a k-tuple
L = (L4, Ls,..., L) which fixes the length of the k arithmetic progressions. At first we
define the length of the i-th arithmetic progression (i € {1,2,...k}) by

1
L; = 2k IN&+T,

N k .
With A := [[{1,2,...,2°"*NY/*+D} we define a set A of k-tuples of differences by
i=1

% k—1 ~ .
A = {(61,52,...,5k) | 5, = H6] Hpj’l S 1 S k, (61,(52,...,519) € A}
j=1  j=i

For all j € Z and all 6 = (61,92, -..,0r) € A we set

k
Ajs =7+ > b | a; € [Li),1 <i <k}

=1
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The hyperedges A;; with j € {—N,—-N +1,...,N —1} and § € A are bilding the subhy-
pergraph mentioned above.

2.1 Fourier analysis

For the proof of Theorem 1 we need some well known facts about Fourier analysis. Here we
restrict ourselves to the Fourier analysis on Z. Let f : Z — C be a function in L*(Z). The
Fourier transform f of f is

f: 0,1] = C, a~ Z f(z)e 2=,

2€7

For two functions f,g € L'(Z) the convolution of f and g is defined by (f * g)(y) =
Ywez [(2)g(y — z) for all y € Z. For the Fourier transform of f % g it holds

frg=1d
In this special situation the Plancherel Theorem gives for all f € (L' N L?)(Z)
1115 = 117115

2.2 The proof

Let us fix a 2-coloring x : V' — {—1, 1} and define the natural extension yx, of x to Z

x(g), ifjev,

0, otherwise.

Xe(j) =

For alli € {1,2,...k} let ns, : Z — {0,1} be defined by

. 1, if —j €L,
n5:(J) = _
0, otherwise.

The function 75 := ns, *ns, *. . . ¥7s, is an indicator function for —A 5 as the following lemma
states.

Lemma 1l Letd € A and x € Z. Then

1 , Zf — I € AO’(S,
ns(x) =

0, else.
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Discrepancy of Sums of Arithmetic Progressions

The proof of Lemma 1 can be done by induction over k£ using the structur of the set A of
differences. With 7n; and the extended coloring . of the hypergraph Hy; we are able to
express the coloring of a given hyperedge X(4;;5) := Ysea, ; Xe(7) in the following way.

Lemma 2 For all j € Z and all § € A it holds x(Ajs) = (Xe * 15)(j)-

This equality, which is easy to calculate, is the connection between the Fourier analysis and
our discrepancy problem. The next lemma gives an estimation for exponential sums that we
will use later on for the proof of Theorem 1.

Lemma 3 Let « € R\ Q, L € N. There exists a § € {1,2,...,2L} with

2

(1)

The next step in the proof of Theorem 1 is to show that for a constant ¢; > 0 and all
a € (0,1)\ Q it holds

L—1 o
Z e?md]a
j=0

Z |ﬁ5|2 2 01N2k/(k+1).
dEA
Using this estimation, Lemma 2 and the Plancherel Theorem one can calculate

3k+1

> i: (x (4j4))° > 1N k1.

SEA j=—N

Hence there exist a d € A and a j € {—N,..., N — 1} and a constant ¢, > 0 with

3k+1 2 _k
Ix(46)] > (ﬁ]\f k+1> > coN 2k+2

and our assertion follows.

3 Conclusion

We have studied the discrepancy of the hypergraph of sums of £ arithmetic progressions.
Our main result is the lower bound of Q(N*/(#%2)) for this hypergraph. Here k = 1 gives
back Roth’s lower bound for the hypergraph of arithmetic progressions. For the proof of
this lower bound we used Fourier analysis on Z and a special set of hyperedges. There is
a large gap between this lower bound and the upper bound of O(N'/2log'/?(N)), which is
easily derived by the probabilistic method [AS00]. Our believe is that - as in the situation of
the arithmetic progressions - the probabalistic method tells not the whole truth and a better
upper bound can be found.
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Computing Optimal Discrete Morse Functions
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Abstract

The essential structural information of discrete Morse functions is captured by so-called Morse
matchings. We show that computing optimal Morse matchings is N’P-hard and give an integer
programming formulation for the problem. Then we present first polyhedral results for the corre-
sponding polytope and report on some preliminary computational results.

1 Introduction

Discrete Morse functions where introduced by Forman [3] as a combinatorial analogy of
classical smooth Morse theory and have many applications in combinatorial topology, e.g.,
they can be used to compute a compact representation of a simplicial complex as an CW-
complex; for details and other applications see [3], Chari [1], and Joswig [6]. It turns out
that the essential information of discrete Morse functions can be stored in a Morse matching.
To be concise, we will therefore not give the definition of discrete Morse functions but state
everything in terms of Morse matchings. In the applications one is interested in optimal
Morse matchings, a problem which leads to a combinatorial optimization problem that we
will describe in the following.

We first need some notation. Let A be a (finite abstract) simplicial complez, i.e., a set of
subsets of a finite set V' with the following property: if FF € A and G C F, then G € A;
hence A is an independence system with ground set V. In the following we will ignore & as
a member of A. The elements in V are called vertices and the elements of A are called faces.
The dimension of a face F'is dim F' := |F|—1. In the following let d = max{dim F' : F € F}
be the dimension of A. Let F be the set of faces of A and let f; = f;(A) be the number

! E-mail: joswig@math.tu-berlin.de.
2 E-mail: pfetsch@zib.de.
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of faces of dimension 7 > 0. The maximal faces with respect to inclusion are called facets
and A is pure, if all facets have the same dimension.

Consider the Hasse diagram H = (F,A) of A, that is, a directed graph on the faces of A
with an arc (F,G) € Aif G C F and dimG = dim F — 1. It will be convenient not to
distinguish between H and its underlying undirected graph, i.e., when we speak of matchings
and (undirected) cycles we mean the corresponding structures in the underlying undirected
graph.

Let M C A be a matching in H and let H(M) be the directed graph obtained from H by
reversing the direction of the arcs in M. Then M is a Morse matching of A if H(M) does
not contain directed cycles, i.e., is acyclic (in the directed sense). Chari [1] showed that the
essential structure of discrete Morse functions are contained in Morse matchings. As stated
above, one is interested in maximum Morse matchings, i.e., the size of M is maximized. The
complementary measure to |M| is the number of critical faces of M, i.e., faces not matched
by M. Hence, by maximizing |M|, we minimize the number of critical faces.

It seems helpful to briefly describe the case of Morse matchings for a one-dimensional sim-
plicial complex A. Then A represents the incidences of a graph G. A Morse matching M
of A matches edges with nodes of G. Let G be the following oriented subgraph of G: take
all edges which are matched in M and orient them towards its matched node. Since M is a
matching this construction is well defined and the in-degree of each node is one. The acyclic-
ity property shows that G contains no directed cycles and hence is a branching. Therefore,
the Morse matchings on a graph G are in one-to-one correspondence with orientations of sub-
graphs of G which are branchings. Generalizing this idea, Lewiner, Lopes, and Tavares |7]
developed a heuristic for computing optimal Morse matchings, which works well for the data
set, which we also use in Section 4.

In the following we will show that computing optimal Morse matchings is NP-hard. Then we
will give an integer programming formulation for the problem and sketch polyhedral results
for the corresponding polytope. We end with some preliminary computational results.

2 Hardness of Computing an Optimal Morse Matching

Egecioglu and Gonzalez [2] proved a hardness result which in terms of Morse matchings reads
as follows: Given a pure 2-dimensional simplicial complex A and an integer K, it is N'P-
complete to decide whether there exist a Morse matching with at most K critical 2-faces,
i.e., faces of dimension 2. In fact we can remove the “restriction” to 2-faces and prove:

Theorem 1 Given a simplicial compler A and an integer K, it is N'P-complete to decide
whether there exists a Morse matching with at most K critical simplices.
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Computing Optimal Discrete Morse Functions

This result holds even when A is connected (i.e., H is connected), pure, 2-dimensional, and
it can be embedded in R3. A crucial part in the proof of this theorem is the following lemma:

Lemma 1 Given any Morse matching M on A, we can compute a Morse matching M’
which has ezxactly one critical verter and at most as many critical 2-faces as M.

This lemma and the Euler equation make it possible to reduce the general case to the problem
discussed by Egecioglu and Gonzalez. In fact, they proved strong inapproximability results
for their problem. Lewiner, Lopes, and Tavares [7] claimed the same inapproximability
results for computing Morse matchings with a minimum number of critical faces, but did
not supply a reasoning as in the lemma. The reduction in our proof is not approximation
preserving. Therefore, the approximability status seems to be open; the same holds for
computing maximum Morse matchings.

3 An IP-formulation

In this section we will discuss an integer programming formulation of the problem to compute
a maximum Morse matching. We introduce a binary variable x, for every arc in H, where
z, = 1 if and only if a should be reversed in a Morse matching. The matching conditions
are modeled by:
z(0(F) = > z,<1 VFecF. (1)
a€d(F)
To handle the acyclicity requirement, let M be a Morse matching and assume C' to be a
directed cycle in H(M). Because of the matching property, the nodes in C' can only belong to
two levels in the Hasse diagram, i.e., {dim F' : F € C} = {i,i+1} forsome i € {0,...,d—1}.
Therefore define H; to be the subgraph of H induced by the faces of dimension 7 and ¢ + 1,
for i € {0,...,d — 1}. Again by the matching property, the values z, for the arcs in C
alternate. A little thought reveals that the following constraints suffice to eliminate directed
cycles:
w(C)::Zxagg—l VC cyclein H;, 1=0,...,d— 1. (2)
acC
Hence, the convex hull of all incidence vectors of Morse matchings is the following polytope:

Py = {:B € {0,1}* : z satisfies (1) and (2)}

A Morse matching with incidence vector @ € Py, has |F|—2x(A) critical faces. The problem
to compute an optimal Morse matching is then to solve max{x(A) : © € Pa}.

It is easy to see that P, is a monotone, full dimensional polytope and that z, > 0 defines
a facet for every a € A. Let us remark that the incidence vectors of Morse matchings do
not have to be monotone if H is an arbitrary acyclic digraph. We can prove the following
results:
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Proposition 1 The matching constraints x(6(F)) < 1 define facets of Py for F € F,
except if |6(F)| < 1.

It follows that the inequalities z, < 1, a € A, never define facets.

Proposition 2 The cycle constraints (2) define facets of Py and can be separated in poly-
nomaial time.

Some of the features of our problem resemble the acyclic subgraph problem (ASP), studied
by Grotschel, Jiinger, and Reinelt [4]. The separation algorithm referred to in Proposition 2,
however, is more complicated than the one for ASP, since the usual affine transformation
trick (&' = 1 — x) to turn the separation problem into a shortest cycle problem does not
work in our case.

One can strengthen the LP relaxation considerably by adding so called Morse inequalities,
which say that the number of critical faces of dimension 7 is at least the Betti number f;,
see Forman [3|. This translates to the inequality Y pcr ®(6(F)) < f; — S

4 Computational Results

We performed preliminary computational experiments with a branch-and-cut code for the
above integer programming formulation. The algorithm was implemented using the branch-
and-cut-and-price framework SCIP, developed by Tobias Achterberg at the Zuse Institute
Berlin. We computed Morse matchings for the smaller problems in a collection of simplicial
complexes maintained by Hachimori [5]. As a primal heuristic we used a simple greedy
algorithm. Whenever possible we branched as follows: for a face F' € F, we branch on the
following three constraints: (6~ (F)) = 1, (67 (F)) = 1, =(6(F)) = 0; this seems to work
very well. Additionally, we added Gomory cuts.

Computing optimal Morse matchings in practice appears to be hard for relatively small
problems. The reason seems to be the high symmetry of the problems and the weakness of
the LP relaxation. One has a good chance, however, if the absolute difference between the
optimal value and the bounds implied by the Morse inequalities is small. In fact, for many
of the problems in Hachimori’s collection this difference is 0 and the algorithm “only” has
to find the optimal primal solution, which it usually finds fast. Summarizing, our code can
solve all 10 problems in the collection with up to 160 arcs in the Hasse diagram (and two
larger ones) in about an hour; about 50% of these problems are solved in a few seconds.

It is clear, that there are still many things to investigate. Our plan for the future is to
find other (facet defining) inequalities for P4 that can help to improve the dual bound.
Furthermore, it seems interesting to check whether local search methods can help to improve
primal solutions.
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Minimum-Cost Single-Source 2-Splittable Flow

Stavros G. Kolliopoulos*

Abstract

In the single-source unsplittable flow problem, commodities must be routed simultaneously from
a common source vertex to certain sinks in a given graph with edge capacities and costs. The
demand of each commodity must be routed along a single path so that the total flow through any
edge is at most its capacity. Moreover the cost of the solution should not exceed a given budget.
An important open question is whether a simultaneous (2,1)-approximation can be achieved for
minimizing congestion and cost, i.e., the budget constraint should not be violated. In this note we
show that this is possible for the case of 2-splittable flows, i.e., flows where the demand of each
commodity is routed along at most two paths.

Key words: Approximation Algorithms; Unsplittable Flow; Maximum Flow.

1 Introduction

In the single-source b-splittable flow problem we are given a positive integer b, a directed
graph G = (V, E) with edge capacities u : E — R* and edge costs ¢ : E — R", a budget
B > 0, a designated source vertex s € V, and k commodities each with a sink vertex ¢; € V'
and associated demand d; > 0,7 =1,..., k. A feasible b-splittable flow routes for each 7, d;
units of commodity ¢ along at most b paths from s to ¢; so that the total flow through an
edge e is at most its capacity u.. As is standard in the relevant literature we assume that no
edge can be a bottleneck, i.e., the minimum edge capacity is assumed to have value at least
max; d;. The cost ¢(f) of flow f is given by ¢(f) = Y .ci cefe- The cost ¢(F;) of a path P,
is defined as c(P;) = X.cp, c.. We seek a feasible b-splittable flow whose total cost does not
exceed the budget. When b = 1 we obtain the well-studied single-source unsplittable flow
problem (UFP). The cost of an unsplittable flow f given by paths P;,---, P, can also be
written as ¢(f) = YF_, d;-c¢(P;). The feasibility question for UFP is strongly N P-complete [4]
even without a budget constraint. An optimization version which has attracted considerable
attention is to minimize congestion: Find the smallest a > 1 such that there exists a feasible
unsplittable flow if all capacities are multiplied by «.

I Department of Computing and Software, McMaster University, Hamilton, Ontario, L8S 4K,
Canada (stavros@mcmaster.ca). Research partially supported by NSERC Grant 227809-00.
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A relaxation of b-splittable flow, b > 1, is obtained by allowing the demands of commodities to
be split along an arbitrary number of paths; this yields a standard maximum flow problem.
We will call a solution to this relaxation, a fractional flow. In this note we study the
simultaneous approximation of congestion and cost for the single-source 2-splittable flow
problem. This corresponds to the strictest possible relaxation of UFP as far as the usage
of paths is concerned. We slightly abuse terminology and view such flows as 2-splittable
solutions to UFP .

UFP was introduced by Kleinberg [4] and contains several well-known NP-complete prob-
lems as special cases: Partition, Bin Packing, scheduling on parallel machines to minimize
makespan [4]. In addition UFP generalizes single-source edge-disjoint paths and models as-
pects of virtual circuit routing. The first constant-factor approximations were given in [5].
Kolliopoulos and Stein |6] gave a 3-approximation algorithm for congestion with a simultane-
ous performance guarantee of 2 for cost, which we denote as a (3, 2)-approximation. Dinitz,
Garg, and Goemans [2] improved the congestion bound to 2 although their algorithm cannot
handle the budget constraint. To be more precise, their basic result is that any splittable
flow satisfying all demands can be turned into an unsplittable flow while increasing the total
flow through any edge by less than the maximum demand. This result is tight if the con-
gestion achieved by the fractional flow is used as a lower bound |[2]|. Skutella [8] obtained
a (3,1)-approximation algorithm and this is currently the best bicriteria bound. Various
results on b-splittable flows were obtained by Baier, Kohler and Skutella in [1]. The main
focus of their paper is that of finding a maximum value b-splittable s-¢t flow. Finding a
feasible solution to UFP reduces to solving optimally the latter problem but there does not
seem to be a further connection with the formulation we examine. As Baier et al. observe
[1] the analysis of any algorithm that uses as lower bounds the optima of a fractional flow
applies for the single-source b-splittable flow problem. Therefore the result of [8] extends to
a (3,1)-approximation for the 2-splittable case.

In terms of negative results, Erlebach and Hall |3] prove that for UFp and arbitrary ¢ > 0
there is no (2 — ¢,1)-approximation algorithm for congestion and cost unless P = NP.
Matching this bicriteria lower bound is an important open question that has attracted a
lot of attention. Such a (2,1)-approximation is known only for the scheduling problem
R|pij = pj or 00|Cpmax with assignment costs |7]. This scheduling problem reduces to a UFp
instance on a 2-level graph where minimizing congestion is equivalent to minimizing the
makespan.

In this note we show that the simultaneous (2, 1)-approximation for congestion and cost can
be obtained for the single-source 2-splittable flow problem. The precise bound we achieve is
given in Theorem 2. Better bounds can be achieved for b-splittable solutions with b > 2; we
omit the details.
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2 The algorithm for 2-splittable flow

We set dmax = maXi<i<k di, dmin = Minj<;<k d; for the instance of interest. We assume
without loss of generality that there is a feasible fractional solution fy for the given UFp
instance I and that dna.x < 1. The cost of the final splittable solution will not exceed the cost

of the initial fractional solution f;. If the latter solution is a minimum-cost flow we obtain a
best possible budget. The following result of Kolliopoulos and Stein [6] will be of use.

Theorem 1 [6] Given a UFP instance where all demands are powers of 1/2 and an initial
fractional flow solution, there is an algorithm, called POWER-ALG which finds an unsplittable
flow f that violates the capacity of any edge by at most dyee — dpmin and whose cost is bounded
by the cost of the wnitial fractional flow.

To solve the 2-splittable flow problem one can naively break a commodity into two equal
demands and run a UFP algorithm. The Skutella algorithm would thus provide a (2.5,1)-
approximation. We will break every demand d; 7+ = 1,...,k into two commodities with
demands a; and b; s.t. a;+b; < d;, and both a; and b; are powers of 1/2. In a repairing stage
at the end we will ensure that all of d; is routed.

Let floory(z) denote the largest number which is a power of 1/2 and does not exceed x. We
define the following operator |- |,

floory(z) ifz <1
lz]2 =
1/2 ifz =1

Set a; = |d;]» and b; = |d; —a;]2. Create a new UFP instance I? with 2k commodities where
commodity 7 of I is mapped to two commodities with demands a;, b;. Run the POWER-ALG
of Theorem 1 on I? to obtain a flow f. Observe that z <y = |z]s < |y]o.

Lemma 1 Given the UFP instance I? with initial fractional solution fE one can find an
unsplittable flow f (i) violates the capacity of any edge by at most |dmaes|o — | dminl2 and (ii)
whose cost is bounded by the cost of the initial fractional flow f&. Flow f corresponds to a
2-splittable flow for instance I which routes a;+b; units of flow for commodity 1,1 =1,... k.

The task that remains is to transform the flow f of Lemma 1 so that d; units of flow are routed
for commodity 7. By the definition of a; and b; we have that a; > % and ifb; >0=0b; > %.
Moreover b; = 0 only when a; = d;. Therefore we always have that

3d;

az+b2277 ’L:1,,]€
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We obtain a flow f’ from f by scaling the flow on each of the at most two s-f; paths used in
f by the same amount \; € (1,4/3) so that

This transformation yields a 2-splittable flow f’ which (i) satisfies all demands d; and (ii)
satisfies f! < (4/3)ue + (4/3) (| dmax)2 — |@min]2) for all edges e € E. We distinguish two
cases.

Case 1. dpax > 1/2. Then |dpax |2 = 1/2. Therefore f! < (4/3)ue + (2/3) — | dmin]2-
Case 2. dmax < 1/2. Then |dmax |2 < 1/4. Therefore f! < (4/3)ue + (1/3) — | dmin]2-

We have shown the following lemma.

Lemma 2 Given a UFP instance with initial fractional solution fo one can find a 2-splittable
flow f' such that (i) f' satisfies all demands d;, i = 1,...,k (i) f. < (4/3)ue+(2/3) — | dmin)2
for all e € E and (iii) the cost of f' is bounded by at most 4/3 times the cost of the initial
fractional flow fy.

To obtain the bound on the cost we define carefully the fractional solution for the instance
I? using a method proposed by Skutella [8]. The fractional solution f¢ is obtained from f,
as follows: for the commodities for which d; = a; + b; f& sends flow as f;. For the remaining
commodities we decrease the flow by d; = d; — (a; + b;) along the most expensive, i.e., higher
cost, s —t; paths [8]. To be precise, let P’ be the set of paths from s to ¢; that carry nonzero
flow in fy. Order them in order of nonincreasing cost P{, Pi ... and let f fi ... be the
corresponding flow amounts. Remove ; = min{fi,d;} units of flow from P{ and decrease
d; by ;. Repeat on the next path in P? with nonzero flow until d; = 0. The ordering of
the paths based on nonincreasing cost can be implemented in polynomial time because we
can assume without loss of generality that fy does not send flow along cycles [8]. After this
preprocessing step ¢(f2) < ¢(fo). By Lemma 1, ¢(f) < ¢(f2). Inspection of the POWER-ALG
yields that the paths used in the unsplittable solution must be paths with nonzero flow in
the initial fractional solution. Therefore all the paths from s to ¢; that carry nonzero flow
in f have cost less than or equal to the cost of the paths on which flow was decreased while
obtaining fo2 from fy. Routing d; — (a; + b;) additional units from s to t; along the at most
two paths used in f results in a solution f’ for which ¢(f’) < ¢(fo). The main result has been
proved.

Theorem 2 Given a UFP instance I with initial fractional solution fy, one can find in
polynomial time a 2-splittable flow f' such that (i) f' satisfies all demands d;, i = 1,....k
(it) fI < (4/3)ue + (2/3) — |dminl2 for all e € E and (ii1) the cost of f' is bounded by the
cost of the initial fractional flow fy.

Corollary 2.1 Given a UFP instance I one can find in polynomial time a 2-splittable flow
solution that achieves a simultaneous (2, 1)-approzimation for congestion and cost.
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Abstract

Determining the maximum number of D-dimensional spheres of radius r that can be adjacent to a
central sphere of radius 7 is known as the Kissing Number Problem (KNP). The problem has been
solved for 2 and 3 dimensions. The smallest open case is 4 dimensions: a solution with 24 spheres
is known, and an upper bound of 25 has been found. We present a new nonlinear mathematical
programming model for the solution of the KNP. This problem is solved using a quasi Monte Carlo
variant of a multi level single linkage algorithm for global optimization. The numerical results
indicate that the solution of the KNP is 24 spheres, and not 25.

1 Introduction

When rigid balls touch each other, in technical terms, they “kiss”. This is the etimology
of the term “kissing number”. In mathematical terms, the kissing number in D dimensions
is the number of D-spheres of radius R that can be arranged around a central D-sphere of
radius R so that each of the surrounding spheres touches the central one without overlapping.
Determining the maximum kissing number in various dimensions has become a well-known
problem in Combinatorial Geometry.
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Figure 1.1. The problem in R? (a) and R® (b)

In R? the result is trivial: the maximum kissing number is 6 (Fig. 1, a). The situation is far
from trivial in R®. The problem earned its fame because, according to Newton, the maximum
kissing number in 3D is 12, whereas according to his contemporary fellow mathematician
David Gregory, the maximum kissing number in 3D is 13 (this conjecture was stated without
proof). This question was settled, at long last, more than 250 years after having been
stated, when J. Leech finally proved that the solution in 3D is 12 [1|. The question for the 4-
dimensional case is still open. A best known solution is 24, and the tightest upper bound is 25
[2]. In this paper, we propose a mathematical programming approach to settle the question.
The continuous nonconvex optimization models we shall propose are not dissimilar, in nature,
from those found in [3|. However, whereas that paper carried the infamous sentence “the
solution of the above programs remains an open question” in its conclusion, in this paper
we report the numerical solution of this problem. Our results seem to indicate the solution
should be 24. We derived this result by using a general-purpose global optimization software
[4] that includes both a stochastic method [5] and a deterministic one [6]. Methodologically
speaking, neither method produces an output that is equivalent to a mathematical proof.
We are offering strong numerical evidence that seems to point out that the solution of the
maximum kissing problem in 4 dimensions is 24.

2 The model

The formulation we propose is a special case of a more general formulation found in [3].
As has been said above, we know a feasible solution with 24 spheres around a central one,
and we know that 25 spheres is a tight upper bound. We maximize a decision variable «,
bounded by the interval [0, 1], which represents the degree of separation of the 25-sphere
configuration being tested, subject to the necessary geometric constraints. Since the con-
straints are nonconvex, there may be multiple local minima. If the global optimization of
the model determines that the global maximum is at a = 1, then there is enough space for
25 balls, otherwise the kissing number is 24. The geometric variables z° = (z%, 2%, 2%, 77),
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1 <4 < 25, determine the position of the center of the i-th sphere around the central one.
The following formulation was used:

max (6 (1)
st. ||2'|]P =4 Vi < 25 (2)
|zt — 2/ >4 Vi< j<25 (3)

3 A quasi Monte Carlo variant of a multi level single linkage algorithm based
on Sobol’ sequences

A stochastic approach for global optimization, in its simplest form, consists only of random
search and it is called Pure Random Search (PRS). In PRS an objective function f(z) is
evaluated at N randomly chosen points and the smallest value of f(z) is taken as the global
minimum. Advanced stochastic techniques use stochastic methods to search for local minima,
and then utilize deterministic methods to solve a local minimisation problem. Two phases
are considered: global and local. In the global phase, the function is evaluated in a number
of randomly sampled points from a uniform distribution over a unit hypercube H,. In the
local phase the sample points are used as starting points for a local minimization search.
The efficiency of the multistage methods depends both on the performance of the global
stochastic and the local minimization phases.

In the most basic form of the multistage approach a local search is applied to every sample
point. Inevitably, some local minima would be found many times. Since the local search
is the most CPU-time consuming stage, ideally it should start just once in every region
of attraction. This is the idea behind various versions of the so-called clustering methods.
Extensive reviews on this subject can be found in |7, 8, 9] and [10]. One of the most efficient
clustering methods is a multi level single linkage (MLSL) algorithm developed by Rinnooy-
Kan and Timmer in |8, 9].

The efficiency of stochastic methods depends on the quality of sampled points. It has been
recognized through theory and practice that uniformly distributed deterministic sequences
provide more accurate results than purely random sequences. Low-discrepancy sequences
(LDS) are designed specifically to place sample points as uniformly as possible. Unlike
random numbers, successive low discrepancy points “know” about the position of their pre-
decessors and fill the gaps left previously. Methods based on LDS are known as quasi Monte
Carlo (QMC) methods. In the majority of applications, QMC methods have superior per-
formance compared to that of MC methods. Improvement in time-to-accuracy using QMC
methods can be as large as several orders of magnitude. It was shown in [5] that application
of LDS can significantly increase the efficiency of MLSL methods.

Central to the QMC approach is the choice of LDS. Different principles were used for con-
structing LDS by Holton, Faure, Sobol’, Niederreiter and others. Many practical studies
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have proven that Sobol’ LDS in many aspects are superior to other LDS [11], [12]. For this
reason they were used in the present study. A C+-+ program called SobolOpt which employs
a QMC variant of MLSL based on Sobol’ sequences was developed and used in the present
study.

4 Computational results

We solved the KNP by using the stochastic solver SobolOpt within the framework of a
general-purpose global optimization software 00oOPS [4]. The solution yielded a result of
a = 0.924126 in 7Tm36s of CPU time on a 2.66 GHz Pentium IV CPU with 1GB RAM. This
indicates that the solution of the KNP is 24 spheres, and not 25 (we would need o = 1 for
25 spheres).
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Abstract

In this paper we extend the dynamic programming technique for the multiobjective version of a
special class of problems representing a graph-theoretic structure on a certain network. We assume
that the dynamics of the system is controlled by p actors (players) and each of them intend to
minimize his own integral-time cost which is described by a certain trajectory. Applying Nash and
Pareto optimality principles we study the multiobjective control problems on dynamic networks
where the dynamics is described by a directed graph. Polynomial-time algorithms for determining
the optimal strategies of the players in the considered multiobjective control problems are proposed
exploiting the special structure of the underlying graph.

Key words: Polynomial Time-Algorithm, Network, c-games

1 Introduction

We study the multiobjective control of time-discrete systems with a finite set of states [1,2].
The main results are based on a game theoretical approach to the following control problem
[1-3]: Let L be a time-discrete system with a finite set of states X. At every time step
t =0,1,2,... the state of L is z(t) € X. Two states xzy and z,; are given in X where
zo = x(0) represents the starting point of L and z, is the state in which the system must be
brought, i.e. z; is the final state of L. We assume that the system L should reach the final
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state x, at the time moment 7'(z,) such that
Tl S T(xf) S TQ,
where T} and T, are given.

2 Problem Formulation on Dynamic Networks

The dynamics of system L is described by a directed graph G = (X, E), where the vertices
x € X correspond to the states of L and an arbitrary edge e = (z,y) € E identify the
possibility of the system’s passage from the state z = z(t) to the state y = z(t + 1) at
every moment of time ¢ = 0,1,2,.... So, the set of edges E(z) = {e = (z,y) | (z,y) € E}
originated in x corresponds to an admissible set of control parameters which determine the
next possible states y = z(t + 1) of L, if the state x = z(¢) at the moment of time ¢ is given.
Therefore we consider E(z) # 0, Vo € X \{z,} and E(z;) = @. In addition we assume that
to each edge e = (z,y) € E a cost function c.(t) is associated which depends on time and
which expresses the cost of system L to pass from the state z = x(t) to the state y = z(t+1)
at the stage [t,t + 1] (like a transition). The graph of these state transitions contains edges
which represents the time depending cost functions. Furthermore, two vertices correspond
to the starting and the final states of the system. We call such a special graph a dynamic
network [2,4|. For a given dynamic network we regard the problem of finding a sequence of
system’s transitions (z(0), z(1)), (z(1),2(2)), ..., (@(T(z;) —1),z(T(z,)) which transfer the
system from the starting state o = z(0) to the final state x, = z(t(z,)), such that T'(z,)
satisfy the condition
TW<T(x;) <Ty

and the integral time cost
T(xs)—1
Fooz; = D Ca®ar)(t)
t=0
of system’s transitions by a trajectory

zo = x(0),z(1),2(2),...,2(T(z;)) = z;

is minimal. This problem generalize the well-known shortest path problem in a weighted
directed graph and arose as an auxiliary one solving the minimum-cost flow problem on
dynamic networks. Algorithms based on dynamic programming methods for finding the op-
timal trajectory in dynamic networks have been elaborated in [4]. In this paper we extend
the dynamic programming technique for the multiobjective version of the mentioned above
problem. We assume that the dynamics of the system is controlled by p actors (players) and
each of them intend to minimize his own integral-time cost which is described by a certain
trajectory. Applying Nash and Pareto optimality principles we study the multiobjective
control problems on dynamic networks where the dynamics is described by a directed graph.
Polynomial-time algorithms for determining the optimal strategies of the players in con-
sidered multiobjective control problems are proposed exploiting the special graph-theoretic
structure.
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3 Multiobjective control and noncooperative games on dynamic networks

Our main results are related to the following two multiobjective control
models concerning stationary and nonstationary strategies.

3.1 The problem of determining the optimal stationary strategies in a dynamic c-game

Let G = (X, E) be the graph introduced in the last section with given starting and
final states zg,z; € X. Assume that the vertex set X is divided into p disjoint subsets

p
X1, Xo,..., X, (X = U Xi, XiNX; =@, i # j) and regard the vertices z € X; as states of

=1

player 7, i = 1, p. Moreover we assume that to each edge e = (x,y) of the graph p functions
cl(t),2(t),...,cP(t) are assigned, where c(t) expresses the cost of system’s passage from
the state x = z(t) to the state y = x(¢t + 1) at the stage [t,t + 1] for player i. We define the
stationary strategies of players 1,2,...,p as maps:

s x>y € X(x), for z € X;\{z;}, i=1,p,

where X (z) is a set of edges e = (z,y) starting in z, i.e.
X(@)={y€ X |e=(z,y) € E}.

Let s1, S, ..., S, be an arbitrary set of strategies of the players. We denote by G, = (X, Ej)
the subgraph generated by the edges e = (z, s;(z)) for z € X;\ {z,} and i = 1, p. Obviously,
for fixed si,ss,...,5, either a unique directed path P;(zg,z;) from zy to z, exists in Gj
or such a path does not exist in G5. The set of edges of path Ps(z¢,z,) is denoted by
E(Ps(xo,z;)). For fixed strategies si,ss,...,s, and fixed states zo and =, we define the
quantities

H) (51,82, 8p)s H o (81,82, 8p)s -+, HE o (81, 82,---,58p)

TOTf I ZoTf ° ZoZf

in the following way:
Let us assume that the path Ps(zg, ;) exists in G5. Then it is unique and we can assign to
its edges numbers 0,1,2, 3,.. ., k, starting with the edge that begins in zy. These numbers

characterize the time steps t.(s1, So, . . ., Sp) when the system passes from one state to another,
if the strategies sy, s9, ..., s, are applied. We put
H;wa(sl,sg,...,sp) = > (te(s1,80, -+, 5p)),

e€E(Ps(zo,zy))

if Ty <|E(Ps(xo,x;))| <To;
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otherwise we put H;wa(sl,sg,...,sp) = o0o. We regard the problem of finding maps

81, 83, - -, S, for which the following conditions are satisfied
) * % * x % %
onwf(sla 895381585 Sig1s 00 s Sp) <
* * * * * * -
S Hmomf(sli 327 .. 7$i—17 Si, Si-f—l? ey Sp), VSZ', 1= ]_,p

So we consider the problem of finding the optimal solutions in the sense of Nash. Nash
equilibria conditions for this problem have been found and algorithms for determining the
optimal stationary strategies of the players have been elaborated [6] and can be derived.

3.2  The problem of determining the optimal nonstationary strategies in a dynamic c-game

We define the nonstationary strategies of the players as maps:

up: (z,t) = (y,t+1) € X(x) x {t +1} for X3 \ {z,},t=0,1,2,...;
ug: (z,t) = (y,t+1) € X(x) x {t +1} for Xo \ {z,},t=0,1,2,...;

up: (x,t) = (y,t+1) € X(x) x {t+1} for X, \ {z,},t=0,1,2,....

Here (z,t) has the same meaning as the notation z(t), i.e. (x,t) = z(t). For any set of

nonstationary strategies uy, us, ..., u, we define the quantities
1 2 D
Fwowf(ul, Ugy oy Up), Fwozf(ul, Uy ey Up)y - -y Fwowf(ul, Usg,y -« -5 Up)

in the following way:

Let uy,ug, ..., u, be an arbitrary set of strategies. Then either uy, us, ..., u, generate in G
a finite trajectory

Lo = .’13(0),37(1),37(2), SR ,Ji(T(LL'f)) =Ty
from zy to x; and T'(x,) represents the time moment when z; is reached, or wuy,us, ..., u,
generate in GG an infinite trajectory

zo = z(0),z(1),z(2),...,z(t),z(t + 1),...

which does not pass through z,, i.e. T(z;) = co. In such trajectories the next states z(t+1)
is determined uniquely by z(¢) and a map uy, k € {1,2,...,p} as follows

z(t+1) = ug(z(t),t), z(t) € Xi.

If the state x, is reached at a finite moment of time 7T'(x,) and
T <T(z;) <T
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then we set
T(zs)—1
F;Oz.f (U1, U,y . - - ,up) = Z c(w(t),w(t+1))(t), 1=1,p;
t=0
otherwise we put
Fl . (u1,ug,. .., uy) =00, i =1,p.
Thus we regard the problem of f‘{ndlng the nonstationary strategies uj, u3, ..., u; for which
the following condition is satisfied
lez:owf(ui(’ U’;’ e ,fu’;‘—la UZ 9 U”H—l’ ey U,;) S
< F;:oa:f(uia U;, sy u;(—la U;, u:—i—la cee ,U;), VU,’, 7 = m

So, we consider again the problem of finding the optimal solution in the sense of Nash [5].

Conclusion

Regarding the special class of c-games we proved that there exist Nash equilibria if there
exists in G a directed path Pg(zg,z,) from z4 to z;, such that T3 < |E(Pg(zg,z;))| < Ts.
Algorithms for determining the optimal strategies for the players are elaborated and will be
presented.
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This paper deals with mean-risk extensions of the following two-stage mixed-integer linear
stochastic program:

min{Qg(z,p) : z € X} (1)
where
Qula.p) = [ (¢ + (=~ Tw) u(d2) @
and
O(t) :=min{qg 'y + ¢y : Wy+W'y' =t, yc Z", y € R™}. (3)

All ingredients above are assumed to have conformable dimensions. Moreover, W, W' are
rational matrices, and X C IR™ is a nonempty polyhedron, possibly involving integer re-
quirements to components of z. The probability measure u belongs to P(IR®), the set of all
Borel probability measures on IR°. Dependence of Qi on both x and p is marked explicitly
since, later on, Qi and related objects will be studied both as functions in z and jointly in
(x, ). For the moment, let u € P(IR®) be fixed.

The following assumptions ensure that the above model is well-defined in the sense that
QE(z, ) € R for all z € IR™. For details see Schultz [11].

e (complete recourse) W (ZT)+ W'(R™) = IR®,
o (sufficiently expensive recourse) {u e R® : WTu < ¢, WTu < ¢} #0,
e (finite first moment) [ ||2||u(dz) < +oo.

The model (1)-(3) arises from two-stage mixed-integer linear programs under uncertainty.
Decision variables subdivide into two categories. The first-stage decision = has to be taken
in a here-and-now manner, before knowing the outcome of the random data z = z(w). The
second-stage decision (y,y') is taken after z has been fixed and z(w) has been observed.
Assuming that (y,y’) is selected best possible, this two-stage decision process leads to a
random cost value that can be expressed as f(z, z2(w)) := ¢'z + ®(2(w) — T'z). For further
basic details of two-stage stochastic programming we refer to the books Birge and Louveaux
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[1], Kall and Wallace [3|, Prékopa [9], Ruszczynski and Shapiro [10].

The problem of finding a best here-and-now decision = in the above setting can be seen as
finding a best random variable in the family {f(z,z(w)) : = € X}. In (1) the traditional
approach in two-stage stochastic programming is reflected, namely, the random variables
f(z, z) are ranked by their expectations with respect to u, and = € X is declared optimal if
the expectation of f(z, z) is the least possible. The present paper goes beyond this setting by
ranking the above random variables according to weighted sums of their means and suitable
terms expressing risk. This leads to mean-risk extensions

min{Qmp(z,p) + a-Qr(z,p) = v € X} (4)

of the model (1) with fixed weight factor @ > 0 and risk term Qg.
We will study three versions of (4) which are given by the following specifications:

the central deviation, where

Qr(w, ) = Qoap) = [ |1(@,2) = Qula, ) u(d2) (5)
1
and 0<a< 2

the semideviation, where

Qr(e, 1) = Qo+ (a.p) 1= [ max{f(z.2) ~ Qi (e, 1),0} pu(d2) ©)
and 0<a<l,

and the expected excess of a given target n € IR, where

Qr(z,p) := Qpn(x, ) := /Rs max {f(x, z) —n, 0} wu(dz) (7)
and o > 0.

We call the above quantities deviation measures since they are based on expected deviations
of the random variable from its mean or from some preselected target. Our emphasis on
deviation measures determined by piecewise linear operations (here, taking the absolute
value or the maximum) is mainly motivated algorithmically. We will see that, thanks to the
piecewise linearity, problem (4) can be tackled successfully by extensions of mixed-integer
linear programming techniques provided the underlying measure p is discrete.

Another motivation for considering the above deviation measures rests in the consistency
with stochastic dominance they induce. Stochastic dominance is an established notion of
partial order for random variables, see Fishburn [2], Levy [4], Miiller and Stoyan [6],
Ogryczak and Ruszczynski |7, 8] where different aspects of stochastic dominance as such or
in relation with stochastic programming are covered. As an example let us consider second
degree stochastic dominance. When preferring small outcomes to big ones, as we do in
view of our minimization setting, a (real-valued) random variable X is said to dominate a
random variable Y to second degree (X >5 Y) if IEh(X) < IEh(Y) for all nondecreasing
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convex functions h for which both expectations exist. The mean-risk model (4) is said to be
consistent with (second degree) stochastic dominance if the ranking its objective incurs on the
random variables f(z, z) inherits a ranking possibly already existing wit h respect to (second
degree) stochastic dominance, more precisely, if f(z1,2) »2 f(22,2) implies Qg(z1, 1) +
aQr(z1, 1) < QE(r2, 1) + aQr(z2, 1). The catch is that the specifications (5)-(7), with
« restricted to the given intervals, all make (4) consistent with second degree stochastic
dominance. For details see Fishburn [2]|, Mérkert [5], Ogryczak and Ruszczynski [7].

The purpose of this paper is to study mathematical structures of (4) with the specifications
(5)-(7), and to discuss algorithmic approaches to the stochastic integer programs arising. In
particular we will study analytical properties of the functionals in (5)-(7) with respect to
the decision variable z and the underlying probability measure p. For problems involving
discrete u we will propose solution procedures relying on decomposition.
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Abstract. Let M = (E,F) be a matroid on a set E and B one of its bases. A closed set
0 C E is saturated with respect to B when | 8 N B |= r(0), where r(0) is the rank of 6.

The collection of subsets I of E such that | I N 6O |< r(@) for every closed saturated set 6
turns out to be the family of independent sets of a new matroid on E, called base-matroid and
denoted by Mpg. In this paper we determine a characterization of a matroid M isomorphic
to Mg, for a given base B of M. We also characterize graphic matroids M which are never
isomorphic to Mp, for every base B of M.

AMS Classification: 056B35, 90C27

Keywords: matroid, graphic matroid, uniform matroid, spanning tree, chord.

Let M = (E,F) be a matroid on a set F, having F as its family of independent sets. Given a
set S C FE let us denote by r(S) the rank of S, i.e. the cardinality of the largest independent set
contained in S; moreover the closure of S, denoted by ¢l(C), is the set obtained by adding to S all
elements e € F such that

r(SUe) =r(S).

A set @ C E is closed if § = cl(0), i.e.
r(@Ue) =r(0) +1
for all e € E'\ . In the following we denote by = the set of all closed sets of M.

Recall also that

F={SCE:Sn0|<r),0cc}
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Definition 1 A set 8 C FE is said saturated with respect to a base B of M if

10N B |=r(6).

If 0 also belongs to E, we have a saturated closed set ( see [3]). The set of all the saturated closed
sets of M, with respect to a base B, is denoted by Zp. Note that given any saturated closed set 8,
we have

cd(@NB)=0;

in other words @ coincides with the closure of its intersection with B.

A circuit of M is a minimal dependent set, i.e. a set S ¢ F such that for each i € S, S\ {i} € F.
Given a base B and an element i € E'\ B, the fundamental circuit of 4 is the minimal subset of BU3
which is not in F. A circuit is fundamental with respect to B when it is the fundamental circuit of
an element ¢ € F'\ B. We use the notation

Fp={SCE:Sn0|<r©),0cEp)

and
Mp = (E, FpB).

M. Dell’Amico, F. Maffioli, F. Malucelli [3] showed that Mp is a matroid, in particular a transversal
matroid.

An application of these matroids, named base-matroids, is in the field of inverse combinatorial
optimization problems; indeed many different inverse problems have been addressed in the recent
literature [1],[3].

In this paper we determine a characterization of a matroid M isomorphic to Mp, for a given base

B of M. We also characterize graphic matroids M = M (G) which are never isomorphic to Mp, for
every base B, i.e. every spanning tree of G.

First we recall [2] the following definition.

Definition 2 - Let C be a circuit of a matroid M. An element e € E\ C is a chord of C if CU{e}
1s the union of two distinct circuits containing e.

Lemma 1 - Let B be a base of M. A fundamental circuit of M with respect to B does not contain
chords which belong to B.

Theorem 1 Let M be a matroid on E and B a base of M. Then M = Mp if and only if every
circuit not fundamental with respect to B contains at least one chord which belongs to B.
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Now let us consider the following notion concerning a simple graph G and one of its cycles.

Definition 3 Let B be a spanning tree and C a cycle of G; C 1is said independent with respect to
B or B-independent if
| cd(C)NB|<|C | -1.

Thus C is dependent with respect to B or B-dependent if
| cd(C)NB|=|C | —1.

If C is B - dependent, then cl(C) is saturated with respect to B; in other words a circuit C is B -
dependent if it is a circuit also in Mp.

Definition 4 Two cycles C' and H of G are said to be path-intersecting if their intersection is
reduced to a path P of length > 2, while C'\ P and H \ P are vertez- disjoint.

Proposition 1 If G contains two path-intersecting cycles, then, for every spanning tree B, G con-
tains at least one cycle independent with respect to B.

Definition 5 A cycle C of G is said covered when every edge of C belongs to another cycle, distinct
from C. For every edge e of C, we denote by C(e) a cycle, distinct from C, which contains e.

Proposition 2 If G contains a covered cycle it contains also a cycle independent with respect to
B, for every spanning tree B of G.

Proof : Let B be a fixed spanning tree of G and C a covered cycle. We may assume that C' is
without chords. Indeed if vw is a chord of C' then we may replace a path of C which connects v
to w by the edge vw. By a similar motivation we may assume that C(e), for every edge e of C' is
without chords.

Because C is a cycle, B can not contain all its edges; let ¢ be an edge of C which does not belong
to B. If all the edges of C(g), but g, belong to B, then it follows that another edge of C, say f,
does not belong to B. If also the edges of C(f) belong to B, we may continue until we found an
edge h of C which does not belong to B and such that C(h) contains an edge h, distinct from h,
which does not belong to B. Because C'(h) is without chords, it implies

| cl(C(h)) N B |<| C(h) | —1.
In other words C(h) is independent with respect to B.

Theorem 2 Let G be a graph which contains either two path-intersecting cycles or a covered cycle.
Then, for every spanning tree B, the graphic matroid M = M(G) is not isomorphic to Mp.

Proof : It follows from Propositions 1, 2 and [6].

Theorem 3 Let M = M(G) be a graphic matroid not isomorphic to Mg, for every spanning tree
B of G. Then G contains either a pair of path-intersecting cycles or a covered cycle.

From the above theorems we obtain
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Theorem 4 A graphic matroid M = M(G) is never isomorphic to Mg for every base B of M if
and only if G contains either a pair of path-intersecting cycles or a covered cycle.
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Abstract

In this work we deal with a vertex coloring problem where we are given an undirected graph
G = (V,E) and a set of colors C = {1,2,...k}. With each edge e € E is associated a weight and
with each vertex v € V a subset ) # C,, C C. A coloring of the vertices is feasible if each vertex v
is colored with a color of C,. A coloring uniquely defines a subset E' C F of edges having different
colored endpoints. The problem of finding a feasible coloring which defines a minimum weight E' is,
in general, NP-complete. In this work an implicit enumeration scheme for finding such an optimal
coloring is presented. Upper and lower bounds evaluations are based on a O(|V|k) combinatorial
algorithm for the special case of trees and cacti.

Key words: Branch and Bound, Dynamic Programming, Multiway Cut.

1 Introduction

The problem we address in this work was inspired by the following application in Flexible Manu-
facturing Systems. A set of assembly operations, with precedence constraints among them, must
be processed by a set of multi-purpose machines with different capabilities, i.e., every operation
may be processed only on a subset of the machines. A part transfer occurs every time a part (sub-
assembly) completes its processing on one machine and must be transferred to another machine for
the next processing operation [6]. Obviously, it is desirable to assign each operation to a feasible
machine minimizing the number of part transfers, in order to reduce possible machines setup and
transportation costs.
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The above problem can be modeled as follows: a graph G = (V, E) (representing n operations and
their pairwise-relationships: e.g., precedences, connections, etc.) and a set of colors C' = {1,2,...k}
(representing the flexible machines) are given together with nonnegative weights w : F — Z, on
the edges. Each vertex (operation) v € V is associated to a set C, C C of feasible colors (machines)
for that vertex. A coloring ¢ : V' — C of the vertices is feasible if ¢(v) € C,. This problem is a
special case of the Metric Labeling Problem first introduced in [5], where the metric d is a discrete
metric (i.e. d(i,j) = 1if i # j and equal to 0, otherwise), thus we will refer to our problem as
Discrete Metric Labeling Problem or DMLP .

Any coloring uniquely defines a subset E' C FE of edges having different colored endpoints. E’
is a multiway cut, in the sense that its removal disconnects vertices with different colors. Our
problem consists of finding a coloring which defines a minimum cost multiway cut. When a color
i € [yey Cv exists, DMLP is trivial: simply color all the vertices with 4 thus obtaining an empty set
of edges with different colored endpoints. When k& = 2 (C = {1,2}), DMLP reduces to a standard
maximum {s, ¢t}-flow/minimum {s,%}-cut computation on the graph obtained by merging all the
vertices having C,, = {1} (resp. C, = {2}), in one vertex s (resp. one vertex t), and setting the
edge capacities for the new graph. Unfortunately, the problem is in general NP-hard since it is
a generalization of Multiway Cut, whose complexity was investigated by Dahlhaus et al. in [1].
Regarding the approximation complexity of DMLP , it is possible to show that it belongs to APX,
since it admits a 2-approximation algorithm [5].

Other problems related to DMLP are the Colored Multiway Cut problem studied in [2, 3] and the
Query Tree Coloring problem, arising in parallel query optimization [4].

2 DMLP on trees

We now describe a dynamic programming algorithm for finding an optimal solution of DMLP ,
when G is a tree, in time O(|V|k). Let the root of the tree T = (V, E) be any fixed vertex r € V.
We denote by S,(r), or simply by S,,the sub-tree rooted in u with respect to the root r, i.e, the
connected component that contains u, in the graph obtained by removing the edges of the path
between u and the root. A vertex v adjacent to u on this path is called the parent of 4 and u is a
child of v. A leaf, with respect to the root r, is any vertex u # r whose degree is 1.

The validity of a dynamic programming algorithm is guaranteed by the following lemma.

Lemma 1 Let f : V — C be an optimal coloring of the tree T = (V, E) such that f(v) =i, then
any optimal coloring of S, obtained by setting C,, = {i}, is also optimal in the the whole tree.

Proof. Trivial by contradiction. In fact, if a better solution f exists for the sub-tree S,, a better
solution for the whole tree can be obtained by simply exchanging the coloring f relative to this
sub-tree, with f. O 0O Lemma 1, suggest the following procedure: for each vertex v € V and
i € C we compute the quantity F, (i) as the minimum weight of the coloring relative to the sub-tree
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Sy, when verter v is colored 1. Labels are initialized as follows. For each leaf v of T', let

] 0 ifieCy
Fv (7’) = (1)
+o00 otherwise.

The following recursion relation holds:

)= Y (i (Ruh) + ww)dn) ) @)

u child of v

The minimum cost for DMLP is therefore: z* = minpec, {F;(h)} . Starting from the optimal coloring
of the root f(r) := argminpec, {Fr(h)} an optimal coloring of all the vertices may be obtained by
simple backtracking: f(u) = argminsec, {Fu(h) +w(uv)dy s, }. Based on the Recursion 2 we
may derive an optimal solution in O(|V|k). In fact, it is easy to see that in O(|V'|k?) iterations we
are able to find F, (i) for all v € V', i € C. Computation of the minima in the above equations may
be devised in time O(1) by keeping track of two additional data for each vertex v of T', during the
computation of F(3).

The procedure for trees can be easily extended to cycles. On the ground of the last considerations
it is not a hard task to devise a procedure for a more general class of graphs, namely cacti, which
are simple connected graphs with the property that every edge belongs to at most one cycle ([7]).

3 An enumeration scheme for DMLP

In this section we present a branch-and-bound scheme for solving DMLP on arbitrary graphs that
uses the above algorithm for trees for determining lower and upper bounds. In the branch-and-bound
enumeration tree, which illustrates successive decompositions of the original problem, every node
of the enumeration tree represents a particular instance of DMLP in which the set Cy of feasible
colors for each vertex u has been changed with respect to the original instance. In particular, any
node ¢ of the enumeration tree represents a feasible partial coloring of the vertices of S; C V. The
root node is associated to the original problem where the coloring of no vertex has been decided
yet (i.e., Sroot = 0.) The children of any node i of the enumeration tree, that represent successive
decomposition of the subproblem associated to 7, are obtained as follows. Pick a vertex u € V'\ S;
and generate |C,| children of 4, one for every feasible color for u. Then, any child of 7 represents a
feasible partial coloring of S; U {u}.

We next show how to obtain a lower bound for DMLP so that it can be used for each node in the
enumeration scheme.

3.1 A lower bound

Given two vectors w,w’ € R", we write w' < w if w’ is component-wise not greater than w.
Moreover, denote an instance of DMLP with the triple (G, w,C), where G is an undirected graph
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with its edge-weights w € R", and C = {Cy| C,, C {1,...,k}, u € V(G)} is a family of feasible sets
of colors for the vertices. It is trivial to show that the following holds.

Lemma 2 Let z* and 2’ be the optimal solution values for two instances of DMLP where (G, w,C)
and (G,w',C) of DMLP with w' < w, then 2’ < z*.

Based on the preceding Lemma 2, we may easily derive a lower bound for the optimal solution value
of DMLP as follows. Consider any spanning tree T' of G and let w], = w, for all e € T, else let
wl, = 0. Then, any optimal solution for DMLP on T with weights w and feasible labels C is feasible
for (G,w,C) and its value zr is equal to the optimal solution value of (G,w’,C). Then by Lemma
2 zr is not greater than the optimum of (G, w,C).

Clearly, it would be desirable to know the spanning tree T producing the largest lower bound, i.e.
z* = max,, sp. tree of G 2T Observe that T™ is not, in general, a maximum weight spanning tree.

3.2  Implementation strategies

Several local improvements have been designed to improve the performance of our branch-and-
bound. Here we only cite a Pre-processing operation aiming at reducing the size of the instances,
and enhancing the quality of the bounds. Furthermore, different branching strategies are tested and
simple dominance rules have been devised to reduce the number of children generated at each step.

Finally, since any feasible coloring for a spanning tree is feasible for the original graph, the same
approach used for computing a lower bound may be exploited for obtaining an upper bound. This
value is computed at each node of the enumeration tree for possible updating of the incumbent
solution. Encouraging preliminary computational results are available.

4 Results and conclusions

In this work we proposed exact polynomial time algorithms for DMLP when the given graph is
a tree or a cactus. Future research will deal with the problem of extending the class of graphs
admitting a polynomial time solution algorithm . More importantly, enhancing the quality of lower
bounds is one of the main task for future research. We used the dynamic programming algorithm
for trees to obtain such a lower bound. It is open the problem of determining the spanning tree that
returns the best (largest) bound. In addition, comparisons between “combinatorial” bounds and
bounds obtained via integer programming relaxations will be the object of further investigations.

References

[1] Dahlaus E., Johnson D. S., Papadimitriou C. H., Seymour P. D., Yannakakis M., (1994), The
Complezity of Multiterminal Cuts, STAM J. of Comp., 23, 864-894.

199



Exact algorithms for a discrete metric labeling problem

[2] Erdds, P. L. and Székeli (1992), Evolutionary trees: An integer multicommodity maz-flow min-
cut, Adv. in Appl. Math., 13, 375-3809.

[3] Erdds, P. L. and Székeli (1994), On weighted multiway cuts in trees, Mathematical Program-
ming: Series A, v.65 n.1, 93-105.

[4] Hasan, W., and Motwani R., (1995), Coloring Away Communication in Parallel Query Opti-
mization Proc. of 21st VLDB Conference.

[5] Kleinberg J., E. Tardos, (1999) Approximation Algorithms for Classification Problems with
Pairwise Relationships: Metric Labeling and Markov Random Fields, Proc. FOCS 99, 14-15.

[6] Lucertini M., Pacciarelli D., Pacifici A., (1996), Optimal flow Management in Assembly Pro-
cesses: The Minimal Part Transfer Problem, Syst. Sc., 22, 69-80.

[7] Nicosia G., Pacifici A. (2004), Ezact algorithms for a discrete metric labeling problem, Tech.
rep. RT-DIA-90-2004, Dip. Inf. e Autom., Univ. “Roma Tre”.

200



On the Strongly Connected and Biconnected
Components of the Complement of Graphs

Stavros D. Nikolopoulos!, Leonidas Palios 2

Department of Computer Science, University of Ioannina, P.O.Bozx 1186, GR-45110 Ioannina,
Greece

Abstract

In this paper, we consider the problems of computing the strongly connected components and the
biconnected components of the complement of a given graph. In particular, for a directed graph G
on n vertices and m edges, we present a simple algorithm for computing the strongly connected
components of G which runs in optimal O(n + m) time. The algorithm can be parallelized to yield
an O(log? n)-time and O(m!' 188/ log n)-processor solution. As a byproduct, we obtain a very simple
optimal parallel co-connectivity algorithm.

Additionally, we establish properties which, for an undirected graph on n vertices and m edges,
enable us to describe an O(n + m)-time algorithm for computing the biconnected components of G,
which can be parallelized resulting in an algorithm that runs in O(logn) time using O((n+m)/logn)
Processors.

1 Theoretical Framework

We consider finite (directed) undirected graphs with no (directed) loops or (directed) multiple edges.
Let G be an undirected graph; then, V(G) and E(G) denote the set of vertices and of edges of G
respectively.

Lemma 1.1.

(i) Let G be an undirected graph on n vertices and m edges. If v is a vertex of G of minimum degree,
then the degree of v does not exceed /2m.

(i) Let G be a directed graph on m vertices and m edges. If v is a vertex of G of minimum sum of
indegree and outdegree, then the sum of indegree and outdegree of v does not exceed 2+/m.
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On the Strongly Connected and Biconnected Components of the Complement of Graphs

Let G be a graph. We say that a set E C E(G) of cardinality > 2 has the biconnectivity property
in G if, for every pair of edges e, e’ € F, the subgraph of G spanned by the edges in F contains a
simple cycle that passes through both e and €' [7].

Lemma 1.2. Let G be an undirected graph, let set E C E(G) having the biconnectivity property
in G and let V(E) be the set of vertices incident to at least one edge in E. Then,

(i) the edge set of the subgraph of G induced by V(E) also has the biconnectivity property;

(i) for every edge e € E and any two vertices z,y € V(E), the subgraph of G spanned by the edges
in E contains a simple path from x to y that passes along e.

Due to the transitivity of the relation “to have the biconnectivity property” [7], it follows that if
two edge sets E1 and Es have the biconnectivity property and are not disjoint then the set F1 U E»
also has the biconnectivity property.

Lemma 1.3. Let G be an undirected graph, let E1, Eo C E(G) be disjoint sets of edges having the
biconnectivity property in G, and let V(E1),V (E2) be the sets of vertices incident to at least one
edge in Fy and Esy respectively.

(i) If V(E1) NV (Ey) = 0 and there exist distinct vertices u,v € V(E1) and z,y € V(E3) such that
ux € E(G) and vy € E(QG), then the edge set of the subgraph of G induced by V(E1) UV (Es) has
the biconnectivity property.

(i) Suppose that V(E1) NV (Ey) = {v}.

a) If there exist vertices x € V(Ey) —{v} and y € V(Ey) — {v} such that zy € E(G), then the edge
set of the subgraph of G induced by V(E1) UV (Es) has the biconnectivity property;

b) If there exist vertices © € V(Ey)—{v}, y € V(E3)—{v}, and vertez z € V(G)— (V(E1)UV (Ey))
such that xz,yz € E(G), then the edge set of the subgraph of G induced by V(E1) UV (Eq)U{z}
has the biconnectivity property;

c) If there exist vertices ¢ € V(E1) — {v} and y € V(E3) — {v}, and edge set E5 C E(G) for
which E3 has the biconnectivity property and V(Es) N (V(E1) NV (E2)) = 0 such that za,yb €
E(QG) for two distinct vertices a,b € V(E3), then the edge set of the subgraph of G induced by
V(E1) UV (Ey) UV (E3) has the biconnectivity property.

(i15) If |V (E1) NV (E2)| > 2, then the edge set of the subgraph of G induced by V(E1) UV (E2) has the

biconnectivity property.

2 Strongly Connected Components of the Complement of a Graph

Next, we present a simple optimal algorithm for computing the strongly connected components
(s.c.c, for short) of the complement G of a directed graph G.

Lemma 2.1. Let G be a directed graph, and let v be a vertex of G.
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(i) Vertex v and the vertices x such that neither vx nor zv belongs to E(G) belong to the same s.c.c

of G.

(1) Let Gl be the directed graph where
V(G)) ={v} U {z | vz € E(G) or zv € E(GQ) };
E(G,) ={=zy | z,y € V(G,) — {v} and zy € E(G) }
U {vz|z e V(G,)) — {v} andVz € V(G) — (V(G,) — {v}), zz € E(G)}
U {yoly € V(G - {v} and ¥z € V(G) — (V(G)) — {v}), vz € B(G) }.
Then, two vertices z,y € V(G") belong to the same s.c.c of G iff they belong to the same s.c.c of
Gl.

The algorithm takes advantage of Lemma 1.1(ii) and Lemma 2.1. It uses an array sccc[] of size
equal to the number of vertices of the input graph G in which it records the s.c.c of G in particular,
sccclal = scccl[b] iff a,b belong to the same s.c.c of G. In more detail, the algorithm works as
follows:

Algorithm Strong Co-components

1. v« a vertex of G of minimum degree (sum of indegree and outdegree);

2. if the indegree and outdegree of v are both equal to 0
then {G is trivial or a disconnected graph; G is strongly connected}
for each vertex w of G do
sccc[w] < v;  {v: representative of the s.c.c of G }; stop;

3. construct the auxiliary graph G defined in Lemma 2.1 and, from that, its complement;

4. compute the strongly connected components of the graph G! and store them in the standard
representative-based representation in an array c[];

5. for each vertex w in V(G)) do sccclw] « c[wl;
for each vertex w in V(G) — V(G)) do sccclw] + c[v];

The above algorithm gives us a very simple s.c.co-components algorithm, which is also optimal.
Indeed, because of Lemma 1.1(ii) (which implies that G’ has O(y/m) vertices, where m is the
number of edges of G) and the fact that the strongly connected components of a graph can be
computed in time linear in the size of the graph, it is not difficult to see that:

Theorem 2.1. Let G be a directed graph on n wvertices and m edges. Then, the algorithm
Strong  Co-components computes the strongly connected components of G in O(n + m) time.

Using standard parallel algorithmic techniques and the CREW algorithm for computing the strongly
connected components of a graph on N vertices in O(log? N) time using O(N%376 / log N') processors
[1, 13, 15], we have:

Theorem 2.2. Let G be a directed graph on n vertices and m edges. Then, the strongly connected
components of G can be computed in O(log? n) time using O(m'188 /logn) processors on the CREW
PRAM.
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Moreover, in light of the fact that the connected components of a graph G are identical to the
strongly connected components of the directed graph that results by replacing each undirected edge
by two oppositely directed edges, a result similar to Lemma 2.1(ii) holds for an appropriate auxiliary
graph on O(y/m) vertices. Then, an algorithm similar to Strong_Co-components, along with the
algorithm of Chong et al. [4] for computing the connected components of a graph on N vertices
in O(log N) time using O(N?/log N) processors on the EREW PRAM, yield an optimal parallel
co-connectivity algorithm simpler than the one in [6].

Corollary 2.1. Let G be an undirected graph on n vertices and m edges. Then, the connected
components of G can be computed in O(logn) time using O((n+m)/logn) processors on the EREW
PRAM.

3 Biconnected Components of the Complement of a Graph

We next present an O(n+m)-time algorithm for computing the biconnected components of G, which
can be parallelized resulting in an algorithm that runs in O(logn) time using O((n + m)/logn)
Processors.

Lemma 3.1. Let G be an undirected graph on m edges and x be any of its vertices. IfC1,Co,...,Cg
are the connected components of the subgraph G[M (z)] induced by the set M (x) of non-neighbors of
z in G, then

(i) the vertex sets C1,Co,...,Cy are disjoint;
(1) their number k does not exceed 2+/m;
(iii) for each C;, the edge set of the subgraph G[C; U {x}] has the biconnectivity property in G.

Lemma 3.2. Let G be an undirected graph, v a verter of G, E1, Fo, ..., Ey the biconnected com-
ponents of G[N (v)] with vertex sets V(E1),...,V(Ey) respectively, and C1,Co,...,Cy the connected
components of G[M (v)].

(i) If [ E(G)N{zy |z € V(E;),y € M(v) }| =|V(E;)|-|M(v)| — 1, then the two vertices u € V(E;)
and w € M (v) which are not adjacent in G define a potential bridge in G.

(i) If there exists a vertex w € M(v) such that {zy | z € V(E;),y € M(v) — {w}} C E(G) and
{zw | z € V(E;) and zw ¢ E(G)}| > 2, then the edge set E; U{zw | x € V(E;) and zw ¢
E(G)} has the biconnectivity property in G and verter w is a potential articulation point in G.

(111) If there exists a verter uw € V(E;) such that {zy | © € V(E;) — {u},y € M(v)} C E(G) and
Huy | vy € M(v) anduy ¢ E(G)}| > 2, then the edge set of the subgraph of G induced by
{v,u}y U{C; | Iy € C; : uy ¢ E(G)} has the biconnectivity property in G and vertez u is a
potential articulation point in G.

(iv) If there exzist vertices u,u’ € V(E;) and w,w' € M(v) such that uw, v'w' ¢ E(G), then the edge
set of the subgraph of G induced by {v} UV (E;) U{C; | 3z € V(E;) andy € C; : zy ¢ E(G) }
has the biconnectivity property in G.
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In general terms, the algorithm works as follows: It finds a minimum-index vertex of G; let it be
v. Next, it computes the biconnected components of G[N(v)] and the connected components of
G[M (v)]; recall that the edge set of the subgraph of G induced by each of the latter components
and v has the biconnectivity property in G (Lemma 3.1). Next, the algorithm takes advantage of
Lemma 3.2 in order to do a first round of merging of the collected edge sets; to do that, it constructs
a graph G in which the connected components indicate the sets to be merged. Additionally, it has
collected potential articulation points and bridge endpoints of G, from which it constructs another
auxiliary graph @; the biconnected components of G determine which edge sets will be merged in
the second and final round of merging, which yields the biconnected components of G.

The above algorithm gives us an optimal biconnected co-components algorithm, in light of Lem-
mas 1.1(i), 3.1, and 3.2 (which imply that the graphs G[N(v)], G, and G have O(y/m) vertices) and
the fact that the connected and the biconnected components of a graph can be computed in time
linear in the size of the graph. Thus, we have:

Theorem 3.1. Let G be an undirected graph on m vertices and m edges. Then, the algorithm
Biconnected_ Co-components computes the biconnected components of G in O(n + m) time.

Using standard parallel algorithmic techniques, the CREW algorithm for computing the biconnected
components of a graph on N vertices in O(log N) time using O(N?/log N) processors |1, 13, 15],
and the optimal co-connectivity algorithm of [6] (see also Corollary 2.1), we have the following
theorem.

Theorem 3.2. Let G be an undirected graph on n vertices and m edges. Then, the biconnected
components of G can be computed in O(logn) time using O((n+m)/logn) processors on the CREW
PRAM.
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k-Pseudosnakes in n-dimensional Hypercubes
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Abstract

A k-pseudosnake in a graph is an induced subgraph of maximum degree at most k. In this paper
we show that k-pseudosnakes with more than 2"~ ! vertices exist in the hypercubes Q,,, provided
n < 2k. We also give upper bounds, and show that the generated k-pseudosnakes are maximum
provided k is even and n = 3k/2. The results also yield better constructions of k-pseudosnakes in
large n-dimensional grids in certain cases.

Key words: hypercubes, independent sets, pseudosnakes
PACS:

Let G = (V, E) be any graph. A k-pseudosnake is any subset S of V' such that the induced subgraph
G[S] has maximum degree at most & [1] (also called k-independent sets in [2| and [5]). ax(G) denotes
the maximum cardinality of a k-pseudosnake in G. Obviously 0-pseudosnakes are just independent

sets, and ap(G) = a(QG) is the usual independence number. We define the densities of the maximum
k-pseudosnakes, A\, (G) := ag(G)/|V]|.

In this paper we consider hypercubes. The leading question is: For which combinations of k£ and n is
there a k-pseudosnake in @Q,, of density larger than 1/2, i.e. for which combinations is A\,(Q) > 0.5.
Using the results, we can slightly improve the lower bounds for Ay for large n-dimensional grids
given in [6]

1 Known Results

For 2-pseudosnakes in hypercubes, everything is known:

Theorem 1 DANZER, KLEE 1967: [4] A2(Q2) = 1, A2(Q3) = 3/4,X2(Q4) = 9/16, but Ma(Qp) =
1/2 for every n > 5.

The highest index k for which ax(G) is nontrivial is £ = A(G) — 1. For r-regular graphs and

k =r — 1, the parameter « is closely related to the domination number ~:

1 E-mail: eprisner@fc.edu.
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k-Pseudosnakes in n-dimensional Hypercubes
Proposition 1 For every r-regular graph G, a,_1(G) = |V(G)| — v(G).

The paper [3]| deals with the domination number in hypercubes. The authors showed that v(Qs) =
7,7(Qs) = 12,7(Q7) = 16, and that y(Qqx ;) = 2" *. Moreover they showed v(Q,) < 2”2 for
n> 1.

Corollary 1.1 X3(Q4) = 3/4, M(Q5) = 25/32, A5(Qs) = 13/16, As(Q7) = 7/8, An—1(Qn) > 7/8
forn >17.

2 Constructions—Lower bounds

We start with a very simple construction: We glue two copies of @), both containing maximum
k-pseudosnakes S; and So together to obtain a k + 1-pseudosnake S; U S9 in @41 of the same
density.

Proposition 2 Agy1(Qnt1) > Ak(@n)-

Theorem 2 If k > 1, then Agy1(Qny2) > W.

Proof. We are replacing each vertex of a Cy by the hypercube @, to obtain a hypercube Qp 42 =
Q4 X Qn. Let A, B,C, D be the four copies of @, in Qn+2, consisting of all vertices of the form
(0,0,2),(0,1,z),(1,1,z), and (1,0,z), where z are all vertices in @,. Let A’ and C’ denote k-
pseudosnakes in A and C, respectively. Let B’ respectively D’ denote the set of all vertices of B
respectively D with even respectively odd coordinate sum. Of course, B'UD’ is an independent set.
Moreover, every vertex in AUC is adjacent to exactly one element of B'UD’. Since no element of A
is adjacent to any element of C, this implies that all vertices of A’'UC" have at most k+1 neighbors in
A'UC'UB'UD'. Each element of B'UD’ has at most two neighbors in A'UC"UB’U D’—one possibly
in A and one possibly in C. If k > 1, this implies that A’UC'UB'UD' is a k+1-pseudosnake in Qp12.
If we choose A’ and C' as maximum k-pseudosnakes, we get |4’ UC' U B' U D'| = 2a11(Qn) + 2™.
1

In a similar way it is possible to extend k-pseudosnakes in @), into n + m-pseudosnakes in Qpyom
with density the average between the densities of the original pseudosnake and %, provided m < k.

e 22 (Qn)+1
Theorem 3 For every positive integer m < k, Agrm(Qniom) > M.

Moreover, it can be shown that the k-pseudosnakes generated with these constructions have the
property that the complement is also a k-pseudosnake provided the original pseudosnakes used in
the construction have also this property. This property is needed in Section 4.

3 Upper Bounds

Since the projection of every k-pseudosnake in @),,+1 is also a k-pseudosnake in Q,,, we get
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Proposition 3 Mg (Qn) > A (Qni1) for every n, k.

A useful simple counting argument of [6], applied to hypercubes, yields the following upper bound:

Theorem 4 [6] M\ (Qrn) > 5

Therefore there are infinitely many cases where the solution is known:
Corollary 4.2 For every t > 2 Aot(Q3¢) = %.

Theorem 5 A3(Q5) = g.

4 k-pseudosnakes in large grids

Define A}(o0,...,00) to be the limes superior of all Ags of n-dimensional grids, where the side
lengths go to infinity. In [6] a construction was shown how to put together k-pseudosnakes (whose
complements are also k-pseudosnakes) in @, to obtain k-pseudosnakes in the cartesian product of
n copies of Cg. These pseudosnakes then were used to tile large n-dimensional grids. Using the
results above, we obtain (slightly) better lower bounds for the A}(oo,...,00), for which we just give
a few examples:

Corollary 5.3 A§(co,...,00) > 0.50004287 (before the bound was 0.5),
(o0, ...,00) > 0.50034294 (before the bound was 0.50017),

A (o0,...,00) > 0.50005716 (before the bound was 0.5),

A (00,...,00) > 0.50000476 (before the bound was 0.5),

A (o0,...,00) > 0.50011431 (before the bound was 0.500057),
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Abstract

The problem of routing a robot (or vehicle) between n stations in the plane in order to transport
objects is well studied, even if the stations are specially arranged, e.g. on a linear track or circle.
The robot may use either all or none of the stations for reloading. We will generalize these concepts
of preemptiveness/non—preemptiveness and emancipate the robot by letting it choose k < n reload—
stations.

Key words: pickup and delivery, dial-a-ride

1 Introduction

A robot is given the task of transporting m objects between n stations in the plane. Each (heteroge-
neous) object is initially located at one of the stations and has to be moved to its destination. The
robot is only strong enough to hold one object at a time. A station can be source and destination for
several objects. We focus on the special case when the n stations, given as the set S, are arranged
on a line. There are exactly two stations at both ends of the line that have only one neighbor,
any other (inner) station has exactly two neighbors. The distance between neighboring stations i, j
is given by [(i,j) € Ry. If two stations are not neighbors their distance will be the sum of the
distances over the unique path using only neighboring stations. Every object has a source s; € S
and destination s; € S assigned, and we will call this a request (s;,s;). We will often use object as a
synonym for request. The set of m requests is given as R. Every station is source or destination of
a request, otherwise any unused station will be removed. The robot starts at one terminal station
sg € S of the line and moves back and forth along the line to pick up objects, transport them,
and drop them. We want to find the minimal motion to transport every object from the source to
its destination. Typically, one distinguishes between a non—preemptive and a preemptive version of
the problem. In the first case any object must only be dropped at its destination station once it is
picked up. The latter case allows the robot to drop the object at any intermediate node and pick it
up later. We will call this action a reload. Both cases were studied by ATALLAH,KOSARAJU in [1].
A nice overview of closely related problems is given in [3].
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We want to generalize the concepts of preemptiveness/non—preemptiveness and let the robot know
a number k € N,k < n that defines the maximum quantity of reload—stations the transport is
allowed to use. The reload—stations may be exogenously given as a subset B C S and the robot is
allowed to use every node s € B for reloads. In a different model the k reload—stations have to be
endogenously determined and the robot has to find out itself which stations are best for reloading in
order to minimize the total travel length. We will only deal with the more interesting endogenous
case in this Extended Abstract. The exogenous case can be easily deducted from it. Moreover, we
introduce a cost value A € R for every reload station installed.

2 The model and its properties

The goal is to construct a directed multigraph Gp = (S, E) that the robot can take as routing
advice, in the sense that it will move according to the edge set E. If E contains an edge (s;, s;) then
the robot will move to 7 when it arrives in ¢. We cannot use any graph for routing, thus Gr needs
certain properties which we will specify soon. The node set & corresponds to the set of stations.
To represent this in G, two nodes are neighboring if their corresponding stations on the line are
neighboring. The distance between nodes corresponds to the stations on the line, and we will use
the distance function [ : E — R, . We number all nodes continuously according to their appearance
on the line, thus we can say the nodes s;, s;+1 are neighboring for all 1 =0,...,n — 2.

A request 71 = (Sa, S¢c) € R crosses station bif a < b < c or ¢ < b < a. Suppose the robot transports
object r1 and b was declared to be a reload station. The robot picks up 71 at node s, and starts
moving towards s.. Along the way it will pass sp. At this point it may drop r; and transport any
other object, before it returns to s, and continues the transportation of r{ towards s..

Given a directed multigraph G = (V, A), we denote by 6~ (v) (6" (v)) the number of incoming
(outgoing) edges of v € V. We will now define what kind of graphs the robot needs. It is easy to see
that all the following properties are necessary and sufficient in order to describe a feasible routing
for the robot.

Definition 1 A transport graph G = (S, E) has the following properties:

(1) For every (si,s;) € R exists a one-to—one sequence

((Swoaswl)a(3:617312)’---a(swpflaszp)) where vq:O,...,p—l : (quaswq+1) € F, vq:l,...,p—l D8z, €
BCS,

such that 8i = Szo < Szy < Szgpy < Sz, =8; ifi1<j, and
8i = Swg > Swy > Swepy > Szp = Sj ifi1>]

(2) Gr uses at most k reloads, i.e. |B| < k.

(3) Gr is degree balanced, i.e. Vscs: 6 (s) = 6 (s)

(4) Gr is connected

The cost of such a graph G is [(GT) = Y. l(e) + |B|A. Property 1 demands that the movement
of every object has to be performed, but it allows to split the single edge (s;, s;) into several smaller
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Figure 2.1. (a) graph with request edges (solid) and flow values (b) same graph with added aug-
menting edges (dashed)

edges along the unique path from 7 to j. Note that every request needs its own sequence as the
robot can only hold one item at a time. Property 2 permits to split these requests at most k times.
Property 3 is known as the Fuler criterium. Together with the last property it assures that the
robot will be able to return to the start node, because every connected component will be strongly
connected.

Referring to the line, we call the section between the stations s; and s;;1 the interval i, and
1(i) = l(s;, $i+1) is the length of interval i.

Definition 2 The flow ¢(i) across an interval i is defined as
d(1) = |{(Sa, sp) € Ela <1 <b}| — |{(sp,34) € Ela <1i < b}

We know that we do not have to care about the node degrees if and only if we establish a zero flow
across all the intervals.

Lemma 1 (Atallah, Kosaraju 1988 [1])
Vsigs 10 (81) = (5+(Si) = Vi:O,...,nfl : ¢(Z) =0.

We now want to construct a minimum cost transport graph Gr. Suppose E initially consists of
all request edges (s;,s;) € R. Together with the properties of I, one can deduct from Lemma 1
how to minimally augment G in order to degree balance all nodes s; € §. We do so by adding
augmenting edges to E. For any interval 7 we have to add ¢(¢) edges (s;, si+1) (resp. (si+1,i)) to
E if ¢(i) < 0 (resp. > 0). The cost of such an augmentation is v := 7' 1(i)|$(i)|. Figure 2.1
illustrates an example. After adding these edges to F all nodes of G are degree balanced, but G
is not necessarily connected.

Remark 1 For a given connected component CC C S and an arbitrary node s; € CC, all requests
of CC can be independently transported, such that the robot starts and ends in s;.

In order to transport all objects of every component the robot must be able to switch from one
component to another. The robot has two choices to join connected components. First, it could

212



add more augmenting edges between neighboring nodes of different connected components. Doing
s0, it will always add two anti—parallel edges (s;, Si+1), (Si+1,8:), or otherwise the flow criterium of
Lemma 1 will be violated. Alternatively, the robot may use one of the k reload stations to switch
from one connected component to another and back again. To calculate the optimal solution out
of these alternatives we will construct an auxiliary graph H, whose node set will be the connected
components of Gr. We use a known algorithm to construct a spanning tree 1" for H. In one special
case we will need to do some local repair on T in order to use it as direction of how to traverse the
connected components of Gr.

3 Endogenous reload stations

Construct an undirected auxiliary graph H = (C, ETUEP®). For every strongly connected component
CC; of Gr, create a supernode v; € C. The edges are either colored red (e € E™) or blue (e € E®).
In either case an edge is weighted by ¢: E" U E® — R. Starting with E" = E® = (), construct H as
follows.

e Add a red edge (v;,v;) € E" with cost ¢(v;,v;) = l(a,b) to H, if there exist nodes sq4,s5 € S
which are neighbors, but in different connected components s, € CC;j,sp € CCj, 4 # j of Gr.

e Add a blue edge (vi,v;) € E° with cost c(v;,v;) = A to H, if there exists an edge (sq,s:) € R
with 54,5, € CC; which crosses a node s; € S, 55 € CCj,1 # j in Gr.

We know that H contains a spanning tree on the red edges, because every node s; # sg has a
neighbor s;_1 “towards” sp.

Definition 3 Let G = (V, E"UE®) be an undirected graph. A k-tree is a spanning tree T C E" UE®
with |T N E°| < k.

Proposition 1 (Gabow, Tarjan 1984 [2]) Let G = (V,E = E" U E®) be an undirected graph
and ¢ : E — R a cost function. If it exists, a minimal cost k—tree T C FE can be calculated in
O(|E|log |V| + |V|1og |V|) time.

Theorem 1 Let T be a minimal k—tree of H with cost ¢(T) = 3 crnprcle) + |T N EY|A. T can
be used to construct an optimal transport graph G3. with cost (G}) =2 crnpr c(e) + BA + v in
O(nlogn) time, where 7y is the cost to degree balance the initial graph and

T NE° ifA>0
k ifA<O

The idea of using the tree T' to construct G7 is the following, starting with G = Gr. Let CCy
be the connected component containing the start node sg. Choose vy as root and traverse T' using
depth-first search. Suppose v; is the current node and v; its son. If (v;,v;) € E" there exist two
neighboring nodes s € CC; and t € CC;. Add both edges (s, 1), (t,s) to Gi. If (v;,v;) € EP there
is a chance that an edge starting and ending in CCj crosses a node t € CCj. In this case split
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the request edge at ¢ and add ¢ to B. Otherwise there is an edge starting and ending in CCj that
crosses a node t € C'C;. We can exploit the structure of the line to show that there must be another
blue edge out of an anchestor of v; that we can use instead. In case A < 0,|T'N E’| < k, we can
choose any node ¢t € S\ B and add it to B. Repeating this step until |T'N E°| = k will improve
the quality. If there is a transport graph D with I(D) < I(G}.), we can always construct a k-tree
T" with ¢(T") < ¢(T).
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Dynamic programming algorithms for the elementary
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Abstract

When vehicle routing problems with additional constraints (e.g. capacities or time windows) are
solved via column generation and branch-and-price, it is common that the pricing problem requires
the computation of a minimum cost constrained path on a graph with costs on the arcs and prizes
on the nodes. The pricing problem is usually solved via dynamic programming in two possible ways:
requiring elementary paths or allowing paths with cycles. We experimentally compare these two
strategies and we evaluate the effectiveness of some algorithmic ideas to improve their performance.

Key words: shortest path, vehicle routing, dynamic programming, column generation

Vehicle routing problems require to compute a set of tours for a fleet of vehicles in charge of
providing a given kind of service to a set of customers. Each vehicle starts from a given depot
and goes back to it after visiting a subset of customers; the objective is to minimize the total
distance traveled. The structure of the vehicle routing problem (VRP) intuitively suggests the use
of mathematical programming techniques like Dantzig-Wolfe decomposition and column generation.
In a column generation approach the master problem is a set partitioning or set covering problem
with a constraint (and a corresponding dual variable) for each customer, while the pricing problem
consists of finding a tour with minimum reduced cost. This kind of pricing problem is a shortest
path problem with some special characteristics: first, it is formulated on a graph with costs on the
arcs and prizes on the nodes, where the prizes correspond to the optimal dual values computed at the
last iteration on the restricted linear master problem. This is equivalent to formulate it on a graph
with no prizes but with negative cost arcs and possibly negative cost cycles. Therefore the requisite
that the solution must be an elementary path does no longer come for free from cost minimization
and it must be explicitely enforced. Second, the pricing problem is typically subject to a number of
restrictions, due to the limited capacity of the vehicles or to time windows. These constraints are
very common in many vehicle routing applications and they are not taken into account at master
problem level; they are usually represented as resource constraints, since distances, costs, time,
capacities can all be interpreted as resources, that are consumed every time a vehicle travels along
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Dynamic programming algorithms

an arc or visits a customer. Therefore the pricing problem turns to be an elementary shortest path
problem with resource constraints (ESPPRC).

The elementary shortest path problem (without resource constraints) has been studied in many
textbooks: see for instance the classical reference by Ahuja et al. [1]|, chapter 5. The shortest path
problem with resource constraints has been addressed with methods based on Lagrangean relaxation
of the resource constraints, like those of Handler and Zang [10] and Beasley and Christofides [2];
however these methods are effective when the Lagrangean subproblem is easy, that is when arc costs
are non-negative.

The ESPPRC is N P-complete [7] and it has been addressed so far by dynamic programming,
following the approach of Desrochers et al. [5], who exploited a pulling label-correcting algorithm
also described in [6] and [8]. In [5] the authors describe a state-space relaxation such that paths with
cycles are allowed. In this way the pricing problem can be solved in pseudo-polynomial time; the
drawback is that the lower bound computed at each node of the search tree, when this technique is
employed in a branch-and-price framework, can be weaker than it would have been if only elementary
paths had been considered. Feillet et al. [8] and Chabrier et al. [3] worked in the direction of
forbidding cycles and enhancing the performance of the exact dynamic programming algorithm.
They claimed that this choice yields much better bounds at the root node (and sometimes integer
solutions) and its cost in terms of increased computing time is tolerable. All these papers mainly
refer to the VRP with time windows, even if Feillet et al. also cite some other applications, quoting
an unpublished Ph.D. thesis [9].

There is an evident trade-off between the computing time spent at each column generation iteration
by the pricing algorithm and the quality of the lower bound obtained, that in turn influences the
overall effectiveness of branch-and-price. Our experience with a branch-and-price algorithm for the
VRP with simultaneous pick-up and delivery [4] brought to our attention the need of comparing
exact dynamic programming versus state-space relaxation on a variety of routing problems and
with constraints of different strength and this is the purpose of this paper. Moreover we suggest
here some algorithmic ideas to improve the performance of dynamic programming algorithms, both
exact and with state-space relaxation, and for each of them we present some experimental measures
of effectiveness. In particular we illustrate and discuss bi-directional search, bounded-depth tree
search, 2-cycle and k-cycle avoidance, cycle prevention on critical nodes, stabilization techniques
and efficient data-structures.

Our purpose is to give a useful contribution to developers of branch-and-price algorithms for routing
problems in the implementation of effective pricing algorithms and in the choice of the most suitable
dynamic programming algorithm according to the specific constraints of the problem instances at
hand. For this reason we also discuss the compatibility of the enhanced dynamic programming
algorithms with various branching strategies.
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The Ramsey Numbers of Paths Versus Kipases
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Abstract

For two given graphs G and H, the Ramsey number R(G, H) is the smallest positive integer p
such that for every graph F' on p vertices the following holds: either F' contains G as a subgraph
or the complement of F' contains H as a subgraph. In this paper, we study the Ramsey numbers
R(P,, Km), where P, is a path on n vertices and K, is the graph obtained from the join of K; and
P,,. We determine the exact values of R(P,, Km) for the following values of n and m: 1 <n <5
and m>3;n>6and (misodd, 3<m<2n-—1)or (miseven,4 <m<n+1);n=06or 7 and
m=2n—2orm>2n;n>8andm=2n—2orm=2nor (g-n—29g+1<m<q-n—q+2 with
3<g<n-5)orm>(n—-3)%o0ddn>9and (g-n—3¢+1 <m < ¢g-n—2q with3 < g < (n—3)/2)
or(g-n—g—n+4<m<qg-n—2qwith (n—1)/2<q¢g<n-—4).

Key words: kipas, path, Ramsey number
AMS Subject Classifications: 05C55, 05D10

1 Introduction

Throughout this paper, all graphs are finite and simple. Let G be such a graph. The graph G is the
complement of G, i.e., the graph obtained from the complete graph on |V (G)| vertices by deleting
the edges of G. A kipas K, is the graph on m+ 1 vertices obtained from the join of K; and P,,. The
vertex corresponding to K is called the hub of the kipas. Given two graphs G and H, the Ramsey
number R(G, H) is defined as the smallest positive integer p such that every graph F on p vertices
satisfies the following condition: F contains G as a subgraph or F contains H as a subgraph.

In 1967 Geréncser and Gyarfas [3] determined all Ramsey numbers for paths versus paths. After
that, Ramsey numbers R(P,, H) for paths versus other graphs H have been investigated in several
papers, for example in [5], [1], [6], [4], [2], [7] and [8]. We study Ramsey numbers for paths versus
kipases.
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2 Main results

We determine the Ramsey numbers R(Pn,f(m) for the following values of n and m: 1 <n <5 and
m>3;n>6and (misodd, 3 <m <2n—1) or (miseven,4 <m <n+1); n =06 or 7 and
m=2n—2orm>2n;n>8andm=2n—2orm=2nor (¢g-n—29+1<m<q-n—q+2 with
3<g<n-5orm>(n—-3)%o0ddn>9and (¢g-n—3¢g+1<m<g-n—2qwith3 <q<(n—-3)/2)
or(g-m—g—m+4<m<qg-n—2qwith (n—-1)/2<qg<n-—4).

Theorem 1

(1 forn=1and m >3

m+ 1 for either (n =2 and m > 3)
or (n =3 and even m > 4)

R(Pna-km):< m+2 for (n =3 and odd m > 5)

3n — 2 for either (n =3 and m = 3)

or (n>4and m is odd,3 <m <2n—1)

[ 2n — 1 for n >4 and m is even,4 <m <n + 1.

Theorem 1 can be obtained by indicating suitable graphs for providing sharp lower bounds, and
using some result in [8] for getting the best upper bounds. We omit the details.

The next lemma plays a key role in our proofs of Lemma 2 and Lemma 3. The proof of this lemma
has been given in [7].

Lemma 1 Let n > 4 and G be a graph on at least n vertices containing no P,. Let the paths
P, P2 ..., Pk in G be chosen in the following way: U§:1 V(P?) = V(G), P! is a longest path in
G, and, if k > 1, P! is a longest path in G — U;Zl V(P?) for 1 <i <k—1. Let z be an end
vertex of Pk, Then:

(1) [V(PY| > [V(P?)] > ... > [V(P")|;

(2) If [V(P*)| > [n/2], then |N(2)] < |V(P*)| - 1;

(3) If [V(P¥)| < [n/2], then N(2)| < |n/2] - 1.
Lemma 2 Ifn >4 and m = 2n — 2 or m > 2n, then

> < m+mn—1 form =1 mod(n — 1)

m +n — 2 for other values of m.
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Proof. Let G be a graph that contains no P, and has order

m+mn—1form=1mod(n—1
V(@) = i (n = 1) (1)

m + n — 2 for other values of m.

Choose the paths P!,..., P* and the vertex z in G as in Lemma 1. Because of (1), not all P* can
have n — 1 vertices, so |V(P¥)| < n — 2. By Lemma 1, |[N(z)| < n — 3. We will use the following
result that has been proved in [1]: R(P;,Cs) = s+ |t/2] — 1 for s > [(3t + 1)/2]. We distinguish
the following cases.

Case 1 |N(z)|<|n/2] —2ornisodd and |[N(z)| = |n/2] — 1. )
Since |[V(G) \ N [z]| > m + |n/2]| — 1, we find that G — N [z] contains a Cp,. So, there is a K, in
G with z as a hub.

Case 2 niseven and |[N(z)| =n/2 — 1.

Since |[V(G)\N [z]| > (m+n—2)—n/2 = m+n/2—2, we find that G — N [z] contains a Cy,_1; denote
its vertices by wvq,v9,v3,...,V;,_1 in the order of appearance on the cycle with a fixed orientation.
There are n/2 — 1 vertices in U = V(G) \ (V(Cp—1) UN [2]), say u1,ug, ..., Upy/a—1- If some vertex
v; (i =1,...,m—1) is no neighbor of some vertex u; (j =1,...,n/2—1), w.l.o.g. assume vp,_1u; ¢
E(G). Then G contains a K,, with hub z and its other vertices V1,0V, U3, - - « s U2, Um—1, U1. NOW
let us assume each of the v; is adjacent to all u; in G. For every choice of a subset of n/2 vertices
from V(Cp,—1), there is a path on n — 1 vertices in G alternating between the vertices of this
subset and the vertices of U, starting and terminating in two arbitrary vertices from the subset.
Since G contains no P,, there are no edges v;v; € E(G) (3,5 € {1,...,m — 1}). This implies that
V(Cm-1) U{z} induces a K, in G. Since G contains no P,, no v; is adjacent to a vertex of N(z).
This implies that G contains a K,, 1 — e for some edge zw with w € N(z), and hence G contains
a R'm with one of the v; as a hub.

Case 3 Suppose that there is no choice for P* and z such that one of the former cases applies.
Then |N(w)| > [n/2] for any end vertex w of a path on |V (P¥)| vertices in G — Uf;ll V(P7). This
implies all neighbors of such w are in V/(P*) and [V (P*)| > [n/2] + 1. So for the two end vertices
z1 and zo of P¥ we have that |N(z) N V(P*)| > [n/2] > |V(P*)|/2. By standard arguments in
hamiltonian graph theory we obtain a cycle on |V (P¥)| vertices in G. This implies that any vertex
of V(P¥) could serve as w. By the assumption of this last case, we conclude that there are no edges
in G between V(P*) and the other vertices. This also implies that all vertices of P*¥ have degree in

G at least
m+1if |[V(G)|=m+n—1

m if |[V(G)|=m+n—2.

We now turn to P¥~! and consider one of its end vertices w. Since |V (P*¥~1)| > |V(P*)| > |n/2]+1,
similar arguments as in the proof of Lemma 1 show that all neighbors of w are on P*~1. If [N (w)| <
|n/2], we get a K, in G as in Case 1 and 2. So we may assume |N(w;) NV (P > |n/2] >
|V (P*~1)|/2 for both end vertices w; and wy of P¥~1. By standard arguments in hamiltonian graph
theory we obtain a cycle on |V (P*~1)| vertices in G. This implies that any vertex of V(P¥~1) could
serve as w. By the assumption of this last case, we conclude that there are no edges in G between
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V(P*~1) and the other vertices. This also implies that all vertices of P¥~! have degree in G at least

m if|V(G)=m+n-—1
m—1if |[V(G)|=m+n—2.

(2)

Repeating the above arguments for P¥=2,..., P! we eventually conclude that all vertices of G have
degree in G at least as (2).

Now let |V(P*)| = £ and H = G — V(P*). If V(G) = m + n — 1, then in the graph H all vertices
have degree at least m — £ >m/2+ (n—1) —€>i(m+2n—2—L—(n—2)) = s(m+n—{) =
S(V(H)| +1). If V(G) = m +n — 2, then in the graph H all vertices have degree at least
m—1-4>m/24+(n—1)-1—-L>i(m+2n—-4—L—(n—2)) =F(m+n—2-1¢) = F|V(H).
Hence, there exists a Hamilton cycle in H. Since |V (H)| > m and z is a neighbor of all vertices in
H, it is clear that G contains a K, with z as a hub. s

Corollary 1.1 If (4 <n<6andm=2n—2orm >2n) or (n >7 and m =2n—2 or m = 2n
orm>(n—-3)2)or(n>8andq-n—2¢+1<m<q-n—q+2 for3<q<n-25), then

. m+mn—1 form =1 mod(n — 1)
R(PnaKm) =
m +n — 2 for other values of m.

Corollary 1.1 can be obtained by indicating suitable graphs for providing sharp lower bounds, and
combining them with the upper bounds from Lemma 2. We omit the details.

Lemma 3 Ifoddn >7andqg-n—q+3 <m<qg-n—29+n—2 with2 < q <n—2>5, then
R(P,,K,) <m+mn—3.

The proof of Lemma 3 is modeled along the lines of the proof of Lemma 2. We omit the details.

Corollary 1.2 If (n =7 and m = 15) or (odd n > 9 and (¢-n—3qg+1 <m < q-n — 2q with
3<g<(n=3)/2)or(g-n—qg—n+4<m<gqg-n—2q with (n—1)/2 < q < n-—4)), then
R(P,,K,) =m+n—3.

Proof. For n =7 and m = 15, the graph 3Kg and for odd n > 9 and m = q-n — 2q — j with either
B<g<(m—3)/2and0<j<g—1)or((n—-1)/2<g<n—-5and 0<j<n-—qg—4), the graph
(g—j—1)Kn_oU(j +2)K,_3 shows that R(P,, K,;,) > m +n — 4. Using Lemma 3, we obtain that
R(Py,Kyn)=m+n—3. 1
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Abstract

We describe a common extension of the fundamental theorem of Linear Programming on the exis-
tence of a global minimum in a vertex for lower bounded linear programs, and of the Frank-Wolfe
theorem on the existence of the minimum of a lower bounded quadratic function on a polyhedron.

We then show that several known results providing continuous formulations for discrete optimiza-
tion problems can be easily derived and generalized with our result. These include the Quadratic
Programming formulation of the maximum clique problem by Motzkin and Straus and its weighted
extension by Gibbons et al., the equivalence between the minimization of a multilinear function
on the continuous and discrete unit hypercube by Rosenberg, and a recent continuous polynomial
formulation of the maximum independent set problem by Abello et al.

Furthermore, we use our extension of the fundamental theorem of Linear Programming to ob-
tain combinatorial formulations and polynomiality results for some nonlinear problems with simple
polyhedral constraints.

1 Introduction

For the solution of several optimization problems it is often advantageous to be able to approach
them with different and complementary methods. The most notable example is Linear Program-
ming, where both a continuous and a combinatorial structure are used on the basis of the celebrated
fundamental theorem that guarantees the existence of a vertex optimal solution. Such result remains
valid and is used also for the broader class of (quasi-) concave minimization problems on a polyhe-
dron.

We describe here a further extension of the fundamental theorem of Linear Programming based on
the concept of directional (quasi-) concavity, and we show that this result can be used as a general
tool for establishing the Frank-Wolfe theorem on the existence of the minimum in lower bounded
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Connections between continuous and combinatorial optimization problems

quadratic programs as well as new and old connections between continuous and combinatorial
optimization problems.

In particular, we describe connections among nonlinear programs with box constraints, pseudo-
Boolean optimization and the maximum weight independent set problem on a graph. Furthermore,
we establish the equivalence between a nonlinear optimization problem over a simplex and a min-
imum weight (or maximal) clique problem on a graph. Some special cases of the equivalent for-
mulations presented here have been obtained in the literature [1, 4, 5, 6], and have been exploited
to tackle combinatorial optimization problems with nonlinear programming tools. Here we point
out that also the opposite direction might be fruitful. Indeed, we show that some nonlinear pro-
gramming problems can be solved in polynomial time by means of a reduction to an equivalent
polynomially solvable combinatorial problem.

2 An extension of the fundamental theorem of Linear Programming

We now describe an extension of the fundamental theorem of Linear Programming based on the
concept of directional (quasi-) concavity of a function. We first need to introduce some definitions
and notation. The affine hull of a subset § of R™ is the smallest affine manifold containing S.
We denote by lin(S) (with a non-standard notation) the smallest linear subspace of R containing
S —{2°} = {z — 2" : z € S}, where z° is a point of S. The relative interior rint (S) of S is the
interior of S for the topology relative to the affine hull of S.

Given a pointed polyhedron P, a point z in P and a direction d € R™ \ {0} we consider the set
Py(z) ={z € P:z =1z + A\d, X € R} obtained intersecting P with the line passing through = with
direction d. Note that, since P is pointed, Py;(z) is either a segment or a half-line for every x in P
and d € R™ \ {0}.

We will use the following conditions:

P4(x) is bounded and f is quasi-concave on Py(x); (1)
f is concave and bounded below on Py(z); (2)
f is strictly quasi-concave on Py(z). (3)

We say that a face F' of P satisfies Property A, B or C, if for every z € rint F' there exists
d € lin(F) \ {0}, such that:

Property A condition (1) or (2) or (3) holds;
Property B condition (1) or (2) holds;

Property C condition (3) holds.

We let Fa, Fp and F¢ denote the sets of all faces of P that do not satisfy Property A B and C,
respectively. By definition, each set F4, Fp and F¢ contains all the vertices Vp of P.
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Theorem 1 (Existence and location of minima) We have

i — min inf
égpf(m) FeFy égFf(a:),

where the first infimum is attained if and only if the second infimum is attained. Furthermore, if

the infimum is attained we have

mi — min mi d i cl|]F
mEllI—"lf(m) FnellfIil gél}l?lf(x) an arg I:vneljlalf(x) - Pe
Fc

Theorem 1 clearly extends the fundamental theorem of Linear (and Concave) Programming. Fur-
thermore it also extends the Frank-Wolfe theorem [3], which states that a quadratic function that
is bounded below on a polyhedron P attains its minimum on P . Indeed, the Frank-Wolfe theorem
can be easily obtained from Theorem 1, by observing that when f is quadratic the family of faces
Fp defined above coincides with the family of faces of P where f is strictly convex. Furthermore,
by coercivity, the minimum of a strictly convex quadratic function on a closed set always exists.

3 Optimization with box constraints, pseudo-Boolean optimization, and maxi-
mum independent set in a graph

A simple class of polyhedra to which Theorem 1 can be easily applied are the rectangles (or boz
constraints) R = [(,u] = {z € R" : £ < z < u}. In particular, without much loss in generality, we
consider the case of the (continuous) unit hypercube R = [0, 1]", and the corresponding discrete (or
Boolean) hypercube B" = {0,1}". Let N = {1,...,n}. Given a real-valued function f on R, we
define I = {i € N : f is quasi-concave with respect to z;}. Furthermore, for every K C I we set

RK)={z€R:z;=/;fori€ K and z; =u; fori € I \ K}
K)= i .
P(K) xeﬂ}l{l(r;()f(w)

Theorem 2 If f attains its minimum on R, the following equality holds:

min f(z) = min¢(K). (4)

T€R KCI

Theorem 2 extends a result of Rosenberg for multilinear functions. It can be proved that if f is a
submodular function on R, then 9 (K) is a submodular function on the power set 2! of all subsets
of I. Since submodular functions can be minimized in polynomial time on power sets, we obtain
the following.

Theorem 3 If f is a submodular function on R, and ¥(K) can be evaluated in polynomial time
for every K C I, then f can be minimized in polynomial time over R.

Note that any quadratic function of the form f(z) = %xTCa: + ¢T'z, with cij <Oforalli,j €N
satisfies the assumptions of theorem 3 (with I = N).
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Theorem 2 can also be used to provide a continuous formulation of the weighted maximum in-
dependent set problem in a graph. Our formulation includes as a special case the one pro-
posed in [1] for the unweighted case. Let G = (N, E) be a simple undirected graph, where
N = {1,...,n} is the set of nodes and FE is the set of edges. A subset S C V is an inde-
pendent set if there is no edge joining nodes in S. Let w; denote the weight of node 7 in N,
and w(S) = )_,cqw; the weight of the subset S of nodes. An independent set S has mazimum
weight if w(S) is maximum among all independent sets. Let aq,...,a, and f,..., B, be quasi-
convex real-valued functions on [0,1] satisfying the following properties. For every i = 1,...,n,
a;(1) = Bi(0) = 0, a;(0) = B;(1) = 1, and a;(z),Bi(z) > 0, forallz € (0,1). Consider the
function f : [0,1]" — R defined by f(z) = > ;cn wici(@i) [1(; jyer Bj(2;)- Note that for every
z € {0,1}" we have f(z) = > ;cy wi(l — @) [ j)ep ;- To every subset S C N we associate the
point % € {0,1}" defined by :cf =0iffi € § (2% is the complement of the characteristic vector of
S).

Theorem 4 Let T be a mazimum-weight independent set in G. Then

fl@") =w(T) = Jax f(=)= max f(z) (5)

4 Optimization over a simplex and the maximum clique problem

We now consider the problem of minimizing a function f over a simplex in R". Also in this case
we can restrict our attention, without much loss in generality, to a standard situation, i.e., the case
where the feasible set is the standard simplex A = {z € R* : Y 1 z; =1,z; > 0,5 =1,...,n} .
The special case where f is a quadratic function is already an N P-complete problem, known as the
standard quadratic optimization problem [2].

Let d;; = €' — €/, where eF denotes the k-th unit vector in R®. Consider the graph G = (N, E),
where N = {1,...,n} and E is the set of all pairs (4,7) such that f is quasi-concave on Ay, (z) for
all z in A. To every subset Q of N we associate the face Fg = {z € A: >, oz; =1} of A. Note
that the mapping @ — Fg is a bijection between the subsets of N and the faces of A. We also
consider the weight function W(Q) = min{f(z) : z € Fp} defined on the subsets @ of N. Recall
that a subset @ of N is a cliqgue of G if every pair of nodes in @) are joined by an edge in E. A
clique is mazimal if it is not strictly contained in any larger clique. We denote by C the set of all
cliques of G and by CM the set of all maximal cliques of G. Given a real-valued function W(Q) on
the subsets of N, a mazimum (minimum) weighted clique is a clique that maximizes (minimizes)
W(Q) on the set C of all cliques of G. Note that there exists a maximum (minimum) weighted
clique that is also a maximal clique if the function W is isotone (antitone), i.e. W(Q) < W(Q')
(W(Q) > W(Q")) whenever @ C @Q'. In the classical maximum weighted clique problem the function
W is modular, i.e., W(Q) = 3> ;.o wi. The following result shows that the minimization problem
on the standard simplex is equivalent to the minimum weighted clique problem on the associated
graph. Furthermore, since our weight function is antitone, we can restrict the search for the global
minima of f on A to those faces Fg corresponding to maximal cliques @ of G.
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Theorem 5 We have

min f(z) = min{f(z) : v € QgM Fo} =minW(Q) = min W(Q).

Theorem 5 shows that the problem of minimizing a function on the standard simplex can be solved
efficiently when the clique number of the associated graph is small. Furthermore, if we specialize
Theorem 5 to a suitable class of quadratic functions we obtain the quadratic programming formu-
lation of the maximum clique by Motzkin and Straus [5] and its weighted extension by Gibbons et
al. [4]. We conclude by mentioning that if f(z) = %wTCa: +¢Tz, and C is a Monge matriz (i.e.,
for all i < j and h < k, we have ¢; + cjr, < ¢ + ¢j5) then, we can use Theorem 5 to show that the
minimum of f on A is attained at one of its n vertices.
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On cliques associated to 3-set packing problems

Luis M. Torres!

Escuela Politécnica Nacional, Quito, Ecuador

Given a family £ of n subsets of a ground set V, and a weight function w : £ — Q4, the set
packing problem SSP is the task of finding a subfamily £* C £ of disjoints sets, for which w(&*) :=
> pece- w(E) is maximal. This problem can be formulated as the following integer program:

min w?
s.t.
(SSP)
Ar <1,
z € {0,1}".

where A € {0,1}™*" is a 0/1-matrix whose columns are the incidence vectors of the members from
& (assuming m := |V|), and each binary variable z; corresponds to a set F; € £ having weight
w; = w(E;).

In the k-set packing problem (k-SSP), we additionally require all sets in £ to have cardinality less
than or equal to k, or, equivalently, we require the matrix A to have at most k¥ nonzero entries per
column. One can prove that 1-SSP is a trivial problem, and that 2-SSP is equivalent to a matching
problem. Meanwhile, 3-SSP is already N P-complete (see e.g. Garey & Johnson [5] for a reduction
from 3-SAT).

Following a usual approach in polyhedral combinatorics, we consider in the following the set packing
polytope Pr(A), defined by the convex hull of all feasible solutions to an instance of k-SSP, and its
fractional relazation P(A):

Pr(A) :=conv {z €{0,1}" : Az <1},
P(A):={z €R} : Az < 1}.

Edmonds [3] suggested for the first time that SSP can also be expressed in graph theoretic terms.
Namely, given the integer programming formulation of the problem, we define the intersection or
conflict graph G(A) = (V,E) of A as a graph having one node for each column of A, and an edge
between each pair of nodes whose corresponding columns intersect at least in one row. Moreover,
weights associated with the columns of A are transmitted to the nodes in G. The set packing problem
is then equivalent to the problem of finding a maximum-weight stable set in G(A). Padberg [7, §]
showed that this fact can be exploited to obtain valid (and even facet-defining) inequalities for
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Pr(A) from certain structures (node-induced subgraphs) in G(A). During the last three decades,
this has been the most successful approach for obtaining results concerning the facetial structure of
the set packing polytope (see e.g. Borndorfer [1] for a survey).

Our interest has been to study how the cardinality restriction in the x-set packing problem is
reflected both on the packing polytope and on the conflict graph. In this paper, we are going to
consider some results related to one specific structure in the conflict graph of 3-set packing problems.
Observe that introducing redundant restrictions of the form z; < 1, it is always possible to reduce
this problem to the case where all columns of A have ezactly three ones. Therefore, we call the
sets in & just triangles, and the elements of the ground set V just points. Similarly, A is the point-
triangle incidence matrix and the linear inequalities defining the fractional polytope P(A) are the
point constraints.

Historically, one of the first graph structures studied in the context of the stable set polytope was
the clique: a subgraph consisting of mutually adjacent nodes. If @) is the set of vertices of a clique
in G(A), then the inequality

Z Tj < 1

1€Q
is (trivially) valid for Pr(A). Moreover, (as noticed by Fulkerson [4] and Padberg [7]) this inequality
defines a facet of the set packing polytope if and only if the clique is maximal with respect to node
inclusion. Note that by definition all rows in A correspond to cliques in G(A), but the converse is
generally not true.

Grotschel et al. [6, Section 9.2, page 283] showed that the separation problem for clique inequalities
is N'P-complete. At the same time, the authors proved that these inequalities belong to a larger class
of polynomially separable orthonormal representation constraints. Graphs for which the stable set
polytope is completely described by clique and nonnegativity inequalities are called perfect graphs,
and if A is a clique-node incidence matrix of a perfect graph, then P;(A) = P(A) holds. A matrix
having this property is called a perfect matriz.

In conflict graphs related to 2-SSP, cliques must stem from one of the two structures showed in
Figure 0.1. Here, edges represent the 2-sets from £ and nodes the elements of the ground set
V. Observe that the conflict graphs are obtained in this case as the line graphs of the structures
showed in the figure. Moreover, remark that the clique inequality associated to the second case is
exactly the point inequality corresponding to the point 1 (the center of the star). Hence, the only
inequalities which might be violated by points of P(A) come from structures like the first one. Since
these structures involve only three variables, it follows that clique inequalities can be separated in
polynomial time for 2-SSP.

Unfortunately, the situation is not so easy in 3-SSP, and one can give examples of arbitrarily large
cliques that are associated to violated clique inequalities. However, it is still possible to separate
clique inequalities in polynomial time. This is a consequence of the following theorem that we have
proven:

Theorem 1 (Cliques of Triangles) Let Q C & be a mazimal clique of triangles. Then one of the
two following statements hold:
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On cliques associated to 3-set packing problems

(a) (b)

Figure 0.1. Cliques in 2-SSP. The only possible structures giving rise to cliques in the conflict graph
are (a) the K3 and (b) the stars.

(i) There exists a set S CV, with |S| = 3 such that

Q={E€&:|SNE|>2},

(ii) there exists a point v € V' with the property

{E€Q:vg E} <5

Another issue we looked at are fractional vertices in P(A) associated to violated clique inequalities.
We have proven that such vertices can have maximal seven nonintegral coordinates and enumerated
all possible configurations for the corresponding cliques using a computer. The set consisting of all
nonintegral coordinates must be equal to one of the following:

——

fa
|
—N—

)—‘[\'ill—‘ N | =
)—‘[\'ill—‘ N | =
— N = DN =
— W= W
e o
N W= W

P—‘[\.:).ll—‘
-
| | |

There is only one structure associated to vertices of the class Xg. It consists of seven triangles and
seven points, configured as shown in the matrix from Figure 0.2. The reader can verify that this
structure is combinatorially equivalent to the Fano plane depicted in the figure.

Moreover, there are several similarities between this structure and the K3 considered above when
discussing 2-SSP :

(i) Both cliques cannot be further extended.
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Figure 0.2. Clique of triangles associated to the vertex class Xg. The clique contains 7 triangles and
7 points, configured according to the point-triangle incidence matrix shown. Representing triangles
by lines, the structure turns out to be isomorphic to the Fano plane.

(ii) The number of sets is equal to the number of points.
(iii) The cliques are regular: Each point appears in exactly k sets.

(iv) For any two points, there is exactly one set containing both of them.
(v) The cliques are self-dual in the sense of hypergraph duality.
For k > 3, such structures are called finite projective planes of order kK — 1 and one fundamental

unresolved conjecture in combinatorics (see Bruck & Ryser [2]) states that they exist only for
k = p® + 1, where p is a prime number and a € N.
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Subdivision of the hierarchy of H-colorable graph classes
by circulant graphs'

Akihiro Uejima ®2? and Hiro Ito 2?3

aSchool of Informatics, Kyoto University Yoshida-honmachi, Sakyo-ward, Kyoto 606-8501 Japan

Abstract

For any integer p > 2, p-colorable graphs are Cgp1-colorable and Cj,1-colorable graphs are p + 1-
colorable, where Cyp; is the complement graph of a cycle of order 2p+ 1. The converse statements
are however incorrect. This paper presents that the above inclusion can be subdivided by a subset of
circulant graphs H(n,k) (n,k € N, k < |n/2]). The subdivided hierarchy of inclusion contains the
well-known inclusion of Copq-colorable graphs. Moreover, we prove some NP-complete problems
for planar H (n, k)-colorings, including the Cs-coloring.

Key words: H-coloring; Color-family; Circulant graphs; time complexity

1 Introduction

For a given graph G with vertex set V(G) and edge set E(G), a p-coloring of G is a mapping of
V(G) to {1,2,...,p} such that no two vertices on the same edge receive the same color. Given
graphs G and H, a homomorphism f of G to H is an edge preserving mapping of V(G) to V(H),
i.e., a mapping f of V(G) to V(H) such that f(z) and f(y) are adjacent vertices of H if z and y
are adjacent vertices of G. Such a homomorphism is also called an H-coloring of G. For any fixed
graph H, H-coloring problem is deciding whether there is an H-coloring of a given input graph G.
We say that G is H-colorable if an H-coloring exists. A complete graph of order n is denoted by
K,,. Then, the problem of deciding whether G is Kj-colorable is the problem of deciding whether
G is p-colorable. Thus, H-coloring problem is a natural generalization of the traditional graph
colorings, and it has been studied in various contexts [2, 5, 6, 7, 8, 9]. The interconnections between
homomorphisms and the theory of grammar forms were investigated in [5], and H-coloring problems
include T'-colorings and problems related to channel assignment problems [6].

Equivalently, H-coloring problem may be considered as a decision problem related to a class
L(H) := {G | G is H-colorable}. Such classes are called color-families and their structure has
been an important theme, e.g., Theorems 3 and 4, which will be shown later. Some terms are

1 This research is supported by The 21st Century COE Program and the Scientific Grant-in-Aid
from Ministry of Education, Science, Sports and Culture of Japan.

2 yejima@lab2.kuis.kyoto-u.ac.jp
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Table 11
Inclusion on H(n, k) and relation with K, Cy, and C,

L xe | [ e [ & | o | T | & |
H(2,1) c H(3,1) c---
H(4,2) c H(5,2) | c H(6,2) c | #H,2) | c---
H(6,3) c H(7,3) C H(83) C H(9,3) C H(10,8) C H(11,3) C ---
8,49 | c | Ho,9 c H10,4) [ cHO1,49c | Haz,4) | cHO3, 9 c | HA4,4) | cHO5,4) C ---

defined for explaining the statements we show, as follows. We say that two graphs H and H' are
homomorphically equivalent if H-colorable and H'-colorable are equivalent for any graph. A graph
H is a core if it does not admit a homomorphism to a proper subgraph. For example, all complete
graphs, odd cycles, and complements of odd cycles are cores. It was proven in [9] that every graph
H contains a unique (up to isomorphism) subgraph H' which is a core and admits a homomorphism
of H to H'; we call H' the core of H. For positive integers n and 1 < aq,as,...,a; < [n/2], the
circulant graph (n; a1, a9, ...,a;) has the vertex set {0,1,...,n — 1}, and two vertices z and y are
adjacent if and only if y — z (mod n) or z —y (mod n) € {a1,as,...,ar}.

We mainly prove two theorems for the subclass of circulant graphs H(n, k) := (n; k,k+1,...,|n/2])
for 1 < k < [n/2] as follows. Corollary 1.1 is obtained from Theorem 1. (X C Y denotes that X
is a proper subset of Y, C,, is a cycle of order p, and H is the complement graph of a graph H.)

Theorem 1 (see Tab. 11) For any integers p > 2, n, k> 1,
(H(n,k)) C L(H(n +1,k)),
(H(pk —1,k)) C L(H(pk,k)) C L(H(pk + 1,k)) and K, is the core of H(pk,k), and
(H

(2p+1)k —1,2k)) C L(H((2p + 1)k, 2k)) C L(H((2p + 1)k + 1,2k)) and Copi1 is the core
of ((2p + 1)k, 2k).

Corollary 1.1 For any integers p > 2, L(H(4p,4)) C L(H(4p + 1,4)) C L(H(4p + 2,4)) C
L(H(4p + 3,4)) C L(H(4(p + 1),4)). Moreover, K, and Copy1 are the cores of H(4p,4) and
H(4p + 2,4), respectively.

Theorem 2 Planar H(8,4)-coloring problem is in P. For any 9 < n < 15, planar H(n,4)-coloring
problem is NP-complete. Otherwise, it is in O(1) to solve. Planar Copi1-coloring problem is NP-
complete for any integer p > 2. 1

Color-families have the already-known basic inclusions as follows (see Tab. 11). The inclusion in
Theorem 1 is a subdivided hierarchy of these inclusions.

Theorem 3 [5/ For any integersp > 1, g > 2, L(K,) C L(Kp+1). Moreover, L(K2) C L(Cog+1) C
ﬁ(Kg) = ﬁ(Cg) and [,(CQq_H) C E(CQq_l).

Theorem 4 [7] For any integer p > 2, L(K,) C L(Cops1) C L(Kpi1)- 1

For general graphs, the complexity of H-coloring problem is well-known, the problem is in P if H
is bipartite, otherwise it is NP-complete [2]. However, the proofs in [2] cannot be directly extended
for planar graphs and it is still open. Needless to say, the problem is in P if H is bipartite. The
situation is well-understood for complete graphs: For any fixed p > 4 or p = 1, the Kj,-coloring
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problem is easy to solve [3], and Ks-coloring problem is in P. K3-coloring problem is NP-complete
[1].

In this paper, we are also interested in studying the time complexity of H-coloring of planar graphs
and analyze the threshold graph H such that planar H-coloring problem changes from P to NP-
complete preserving a inclusion of color-families. For this purpose, subdividing the inclusion of
L(H), e.g., the inclusions in Theorems 3 and 4 into the one in Theorem 1, is not only elegant but
also useful for analyzing such a threshold graph H.

For the inclusion in Theorem 4, the most part of the complexity of planar Cy,41-coloring problems
are solved. For any p > 4, it is in P since £(K4) C L(Copt1). For p = 3, we presented that Cr-
coloring problem is NP-complete [8]. The case p = 2 is only open (note that it is shown in Theorem
2.). We make the time complexity of planar H(n,4)-coloring problems clear for the new inclusion
in Corollary 1.1 and show that L(K2) C L(Copt1), |L(Copt1) — L(K2)| is boundlessly small, and
planar Cop1-coloring problem is NP-complete for positive infinity p in Theorem 2.

We introduce some terms and notations as follows. Consider a graph G and a vertex subset V' C
V(G). A graph (V' {(z,y)|z,y € V', (z,y) € E(G)}) is called an induced subgraph of G by V'. An
induced subgraph of G by V(G) — V' is denoted by G — V'. If (z,y) € E(G) (resp., (z,y) ¢ E(G))
for any vertex pair z,y € V', V' is called a clique (resp., an independent set). For a graph G, the
maximum order of its cliques is denoted by w(G). An elementary homomorphism in a graph H
consists of contracting two non-adjacent vertices z and y in H. A graph H' is a morphic image of a
graph H if it is obtained from H by finitely many elementary homomorphisms. H is also considered
to be a morphic image of itself.

Theorem 5 [5] A graph G is H-colorable if and only if a morphic image G' of G is isomorphic to
a subgraph of H.

2 Proof of Theorem 1

Theorem 1 can be directly obtained by the following lemmas.

Lemma 1 For any integersn > 2,1 <k < |n/2], L

]
Proof. Let z be a vertex of V(H(n + 1),k). H(n,k
Thus, H(n, k) is H(n + 1, k)-colorable, so all H(n,k)-

(n,k)) C LH(n + 1,k)).

(H
) is a proper subgraph of H(n + 1,k) — {z}.
colorable graphs are H(n + 1, k)-colorable. 1

Lemma 2 For any integers n,r > 2, 1 < k < |n/2], H(rn,rk) is not a core. That is, H(n, k) and
H(rn,rk) are homomorphically equivalent and H(n, k) is a proper subgraph of H(rn,rk).

Proof. A induced subgraph of H(rn,rk) by {0,r,2r,...,(n — 1)r} is H(n,k). Thus, H(n,k) is
H (rn,rk)-colorable.

On the other hand, V; := {ri,ri + 1,ri + 2,...,7(i + 1) — 1} for ¢ € {0,1,...,n — 1} (see Fig.
2.1(a)). Then, each V; is a independent set. There is no adjacent vertex-pair between V; and V4,
if j € {1,2,...,k — 1}, otherwise there is at least one adjacent vertex-pair between them. Hence,

a morphic image of H(rn,rk) constructed by contracting each V; is H(n,k). From Theorem 5,
H(rn,rk) is H(n, k)-colorable. 1

Lemma 3 For any integersp > 2,1 < k < |n/2|, L(H(pk—1,k)) C L(H (pk,k)) C L(H (pk+1,k))
and L(H((2p + 1)k —1,2k)) C L(H((2p + 1)k, 2k)) C L(H((2p + 1)k + 1, 2k)).
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Proof. We show a sketch of proof about L(H (pk — 1,k)) C L(H(pk,k)) C L(H(pk + 1,k)) (the
remaining proof is omitted due to limitations of space).

The case L(H(pk—1,k)) C L(H(pk,k)): From Lemma 2, a core of H(pk, k) is K,,. w(H (pk—1,k)) =
(pk —1)/k] =p—1 < p, hence H(pk, k) is not H(pk — 1, k)-colorable.

The case L(H (pk,k)) C L(H(pk + 1,k)): Assume that H(pk + 1,k) is Kp-colorable (V(K,) :=
{0,1,...,p—1}). Then, a induced subgraph of H(pk+1,k) by {0,k,2k,...,(p—1)k} is K. Thus,
we can assume that a homomorphism f of H(pk + 1,k) of H(pk,k) such that f(z) = ¥, = €
{0,k,...,(p — 1)/k} without loss of generality. The one by {0, k,2k,...,(p — 2)k,(p — 1)k + 1} is
also K, s0 f((p—1)k+1) = p—1 (see Fig. 2.1). After pk+ 1 steps of same operation, f(0) =p—1,
it contradicts the assumption f(0) =0.

V-1 Vo
(n-D)r 0 1 r
(n-2)r o) .
i .
Vhk § ‘ .
Vi ZAl
H(rn, rk) 1
oy ir H(].Z, 4) = (_’]_2, 4,5, 6) H(13, 4) _ (13’ a5 6)
(€Y )

Figure 2.1. Sketch of proofs

3 Proof of Theorem 2

For this proof, we can reduce Planar 3SAT [4] to the problems (the proofs are omitted). The
reductions are similar to the reduction used to prove that planar 3-coloring problem is NP-complete

[1]-

4 Concluding remarks

This paper was interested in studying the time complexity of H-coloring of planar graphs. We
mainly showed a new inclusion of H(n, k)-colorable graphs and the time complexity of some planar
H (n, k)-coloring problems.
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To be or not to be Yutsis
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1 Introduction

A binary coupling tree on n + 1 leaves is an unordered binary tree in which each leaf has a distinct
label. A Yutsis graph of order n consists of two binary coupling trees on n + 1 leaves, in which
the unique leaf edges with the same label are identified. In addition both root nodes are connected
by an additional edge. The leaf nodes themselves disappear from the graph. Figure 1.1 shows an
example. The graph thus obtained is cubic and has 2n nodes and 3n edges. Moreover it has the
property that it contains an edge-cut on n+ 2 edges that separates the graph into two trees of equal
size, which we call a defining cut. The trees are called defining trees.

. . A
b

Figure 1.1. (a) Two binary coupling trees 7 and T, and (b) the corresponding Yutsis
graph of order 4

k k k k k k k k k
1 2 3 4 5 3 5 1 4

(@) (

Yutsis graphs appear in the context of quantum theory of angular momenta, where they represent
a 3nj-coefficient. The binary coupling trees correspond to the coupling schemes in the bra/kets of
the 3nj-coefficient [BL81, YLV62]. Yutsis graphs are used to calculate a summation formula for
such a 3nj-coefficient [VF04].
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To be or not to be Yutsis

So far no better method is known to determine whether a cubic graph is Yutsis than searching for
a defining tree (or cut). In this article we will tackle the decision problem whether a given cubic
graph is Yutsis or not. For the quantum theory of angular momenta, we are interested in obtaining
large testcases by generating large cubic graphs at random and filter out those graphs which are
not Yutsis. In addition we would like to identify the non Yutsis graphs and study their structure.
Yutsis graphs cannot contain a bridge by construction, so from now on we only consider bridgeless
cubic graphs.

2 The decision problem is NP-Complete

We prove the stronger result that deciding whether a given cubic graph is Yutsis or not is NP-
complete when restricted to the subclass of cubic polyhedra, i.e. 3-connected planar cubic graphs.
This of course implies the weaker result for general cubic graphs.

Lemma 1 A cubic planar graph is Yutsis iff its dual planar graph is Hamiltonian.

Chvatal and Wigderson proved, independent of each other, that finding a Hamiltonian cycle is a
NP-complete problem, even when restricted to triangulations [Chv85, Wig82]. We prove that the
Yutsis decision problem is NP-complete by showing that the decision problem whether a given
triangulation contains a Hamiltonian cycle can be transformed in polynomial time to the Yutsis
decision problem and that a solution for the Yutsis decision problem, by means of a defining tree,
can be checked in polynomial time.

Theorem 1 The decision problem whether a given cubic graph is Yutsis or not is NP-complete for
cubic polyhedra, i.e. cubic 3-connected planar graphs.

3 A local search approximation algorithm

In order to perform local search for a given problem, one has to define the set of problem instances
O, a cost function f and a neighbourhood function N. Let, for the following definitions, G = (V, E)
be a cubic graph with 2n nodes and 3n edges.

Definition 1 We define the set of problem instances O(G) for G as the set of (27?) possible subsets
of V of size n.

Let from this point on V; € O(G) and V1 =V \ 1.

Definition 2 We define a neighbourhood function N as follows:

N:Vie N(Vi) = {Vi\ {0} U{@}jv e ViAT ¢ W1},
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n | #Yutsis r=1 r=2 r=3 r=4 r=mn

6 80 76 80

7 475 424 463 471 475

8 3836 3355 3673 3775 3804 3832

9 39555 33299 37728 38795 39166 39521
10 | 495045 | 412231 | 469052 | 483781 | 489379 | 494584
11 | 7159696 | 5857400 | 6749785 | 6849959 | 7066865 | 7153 345

Table 12
The number of Yutsis graphs recognized using r restarts. The second column shows the
number of Yutsis graphs on 2n nodes.

Define an edge cut to be the set of edges going from one partition to the other in a partioning
[V1,V1] of the nodeset V. Counting edges, it is easily shown that every edge cut on n + 2 edges
separating connected components is a defining cut. This idea is the basis for our cost function f:

Definition 3 A cost function f can be defined as follows:
f:Vll—)|‘n—|-2—k‘—i—Cl—i—El—2,

with k the number of edges on the cut [V1,V1], and c1 (respectively ¢1) the number of components
of V1 (respectively V).

This function evaluates to 0 i.f.f. [V7, V] is a defining cut. Call f* the global minimum of f(V;) for
Vi € O(G) and fmin the absolute minimum of f over all O(G) for all cubic graphs G on 2n nodes.
Clearly f* = fiin = 0 for a given cubic graph G i.f.f. G is Yutsis.

We will show that the time complexity of the basic algorithm is O(n*).

The probability for success is highly influenced by the choice of the initial problem instance V; €
O(G). Since the shape of an initial solution depends on the used labeling, it is hard to obtain a
good initial V7 in acceptable time. For this reason we choose an initial problem instance at random
and provide an option to restart the algorithm with a new random V; when the local search ends
in a local optimum 6 s.t. f(6) # fmin- This option makes the algorithm behave like a Monte-Carlo
algorithm: it is possible that we get a wrong negative answer, i.e. the algorithm can conclude that
a given Yutsis graph is not Yutsis. We can lower this probability by augmenting the number of
restarts  with a new random Vi, which is a typical property of a Monte-Carlo algorithm.

Running the algorithm on all Yutsis graphs unpto » = 11 and on sets of larger randomly generated

cubic graphs we obtained the results shown in Table 12 and Table 13. As one can see, this approach
is quite succesfull considering its cost.
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To be or not to be Yutsis

n|#Yutsis |r=1|r=2|r=3|r=4|r=n
10 995 869 964 | 986 987 995
20 2000 | 1493 | 1842 | 1939 | 1965 | 2000
30 2999 | 2080 | 2659 | 2874 | 2942 | 2999
50 500 299 | 412 | 442 483 500
100 1000 | 455 696 828 888 | 1000
200 2000 586 971 - - -

Table 13

The number of Yutsis graphs recognized using r restarts for 100n (n < 30) or 10n randomly
generated graphs (n > 30). The second column shows the number of Yutsis graphs in
these sets.

n | Yutsis/cubic | n | Yutsis/ cubic | n Yutsis/ cubic
3 18/ 18| 8 3836/ 3874 || 11 7159696/ 7187627
6 80/ 81| 9 39555/ 39866 || 12 | 116040456/ 116349635
7 475/ 480 || 10 | 495045/497818 || 13 | 2068 782009/2 072 540 352

Table 14
Cubic (bridgeless) graphs vs. Yutsis graphs

4 Which graphs are not Yutsis?

Using a fast exhaustive algorithm [VF03c|, we obtained the number of Yutsis graphs within the set of
bridgeless cubic graphs, shown in Table 14. Clearly non Yutsis graphs are rare and the results even
propose that asymptotically allmost all cubic graphs are Yutsis. Nevertheless non Yutsis graphs of
arbitrary large girth do exist, even 3-connected ones:

Theorem 2 For every g > 2 there exists a 3-connected non Yutsis graph with girth g.

The proof is constructive and based on the existence of cubic cages of arbitrary large girth [ES63|
and the fact that all cages are 3-connected [FHR97|. In [Jae74] Jaegar proved for the planar case
that all cyclically 4-connected cubic graphs have a Hamiltonian cycle in their planar dual and thus
are Yutsis. In the same article Jaeger conjectures that all cyclically 4-connected cubic graphs are
Yutsis. This conjecture is still open.

In addition we present some graph classes which are not Yutsis.
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The complexity of arc-colorings for directed hypergraphs

Andrea Vietri!

Dipartimento Me.Mo.Mat., Universita di Romal, Via A. Scarpa 16, 00161 Roma, Italia

The notion of directed hypergraph is not univocally defined in the literature. In the present abstract
we are referring to [1, 2|.

Definition 1 A directed hypergraph H = (V(H),E(H)) consists of a set V, the nodes, together
with a set E C P(V) x V. Each element ¢ = (A,z) of E is a hyperarc (or simply an arc). A and
z are respectively the tail and the head of €. If v € V, the degree of v is 6(v) := max(|{(4,z) € E:
ve A}, |{(A,z) € E:v==z}|). The degree of H is A(H) := maxycy (6(v)).

Figure 0.1. Directed hypergraphs

Computer science has often invoked directed hypergraphs, in connection with database theory
and functional dependencies among attributes [1]|, as well as with artificial intelligence, deductive
databases, diagnostic, logic [2].

The following notion of arc-coloring for directed hypergraphs has been introduced in [11]. In the
case of digraphs, such coloring coincides with the arc-coloring defined and studied in [6, 10].

Definition 2 An arc-coloring of H is a map  : E(H) — N such that
i) ((4,3) € E,(B,y) € B, ANB #0) = 1(A,2) #7(B,y)
ii) ((C,2) € E,(D,z) € E)=~(C,z) £ (D, z)

provided (A, z) # (B,y) and (C,z) # (D,z) .

If k colors are enough for coloring the arcs of H, then H is said k-colorable. The (directed) chromatic
index of H, denoted by q(H), is the least number k such that H is k-colorable.

1 E-mail: vietri@dmmm.uniromal.it, http://www.dmmm.uniromal.it/~vietri.
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A E-coloring of H can be interpreted as a partition of E(H) into k classes, each class consisting
of one or more (disjoint) directed paths which yield no fragmentation of flow (both in input and in
output) at any node.

Proposition 1 An optimal arc-coloring of a digraph can be performed in polynomial time with
respect to its size.

Hint of the proof. A digraph D is equivalent to a bipartite graph G p whose vertices are partitioned
into two copies of the nodes of D. Now a classical result proved by Gabow [7] guarantees the
existence of a polynomial algorithm for optimally coloring the edges of a bipartite graph.

Proposition 2 There erists a polynomial algorithm which decides the 2-colorability of a given di-
rected hypergraph of degree 2.

Hint of the proof. A polynomial reduction can be easily performed from this problem to the 2-
coloring problem for the vertices of a suitable non-directed graph.

Definition 3 (I) A directed hypergraph H is an interval (directed) hypergraph if there ezists a
linear ordering < of its nodes, such that every tail of H is a closed interval with respect to < . (II)
H is non-overlapping if there exists no pair of arcs of H sharing the same head and some node of
the tails.

Theorem 1 Let H be a non-overlapping, interval hypergraph of degree 2. Then, there erists a
polynomial algorithm which evaluates q(H).

Proof. Using the inequality ¢(H) < 2A(H) — 1, which is satisfied by any non-overlapping, interval
hypergraph [11], it turns out that evaluating g(H) is equivalent to deciding whether H is 2-colorable
or not, and Proposition 2 ensures that such question can be answered in polynomial time.

From the viewpoint of arc-coloring, non-overlapping hypergraphs play a basic role. Indeed, the
following holds [11].

Theorem 2 Every overlapping hypergraph H can be transformed in polynomial time into a non-
overlapping hypergraph H' such that q(H) = q(H'). (...)

Hint of the proof. See Figure 0.2.

33

Figure 0.2. From an overlapping hypergraph to a non-overlapping one

Furthermore, non-overlapping hypergraphs can be easily represented by certain labelled adjacency
matrices, namely walls [11, 12, 13, 14]. Such rephrasing may speed up proofs. In Figure 0.3 we show
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The complexity of arc-colorings for directed hypergraphs

how to associate a non-overlapping hypergraph H with the corresponding wall Pg. In particular,
all the equally labelled squares of Py are related to the same arc of H. Notice that the nodes of H
need to be indexed, and that the representation depends on the given indexing. Also notice that if
H is a digraph, Py reduces to the transposed adjacency matrix of H.

12345

; B(H) ={({1},2),({1,2},3), 1L ;

1 4 |

(sha.(ehe. 3ERL

; ({43.4), ({2,319} SL L
H Py

Figure 0.3. An indexed non-overlapping hypergraph and the related wall

In most cases the arc-coloring of directed hypergraphs provides N P-complete problems.

Theorem 3 For all integers k,d such that k > d > 2 and k > 3, the k-colorability of the arcs of a
given non-overlapping hypergraph having degree d is an N P-complete problem.

Hint of the proof. In [9] a polynomial reduction is provided from the 3 — SAT problem to the edge-
coloring problem of cubic graphs. Using this remarkable result, a polynomial reduction from the
latter problem to the arc-coloring problem in the claim is then performed, as follows. In the first step
we reduce the edge-coloring problem to the 3-colorability of non-overlapping hypergraphs of degree
2. Subsequently, we reduce the latter problem to the k-colorability of non-overlapping hypergraphs
of degree 2 with k > 4, by recursion, as sketched in Figure 0.4 (we use the representation in terms
of walls).

[a ] a CTal  Tblal T alp] T :
c . : c c
Ld] e : : €] dle
L119] 7 — |19 7 g
h : b Rl
____________________ 117 5 117 112
e z
Py Py

Figure 0.4. A(H) = A(H)=2,qH)<ksqH)<k+1

Finally, a third reduction is performed from the above problem to the general problem.

It is clear that N P-completeness still holds if the non-overlap hypothesis is dropped.
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Fast and Simple Algorithms for Weighted Perfect
Matching

Mirjam Wattenhofer !, Roger Wattenhofer 2

Department of Computer Science, ETH Zurich, Switzerland

Abstract

We present two fast and simple combinatorial approximation algorithms for constructing a
minimum-weighted perfect matching on complete graphs whose cost functions satisfy the trian-
gle inequality. The first algorithm runs in O(n?logn) time and is at most a factor logn worse than
an optimal solution. In the second algorithm, the average time until a node is matched is O(n?)
and the approximation ratio is log? n.

Key words: weighted matching, approximation algorithms

1 Introduction and Motivation

Let G = K(V) be a complete graph of an even number of |V| = n nodes and a non-negative cost
function w : E — R, satisfying the triangle inequality. A perfect matching of G is a subset M C E
such that no two edges in M are adjacent and each node is incident to one edge in M. The weight
w(M) of a matching M is the sum of the weights of its edges. The problem is to find a perfect
matching of minimum weight (MM).

This problem can be solved in polynomial time by the algorithm of Edmonds [Edm65]. Though its
running time was improved from O(n*) to O(n(m+mnlogn)) by [Gab90] it is still too time-consuming
for many applications. Hence, much effort was done to find good approximation algorithms for MM
which are faster than the exact algorithm (e.g. [GW92], [VA99]). Besides its running time, Edmonds’
algorithm has another disadvantage: By making use of the linear programming dual of the MM
problem viewed as a linear program, the algorithm and its analysis are difficult to understand,
implement, or teach. Unfortunately, most of the other exact or approximation algorithms for MM
are based on Edmonds’ algorithm or a linear programming approach. This almost inevitably leads
to a less intuitive understanding of the algorithms and/or their analysis.

! E-mail: mirjam.wattenhoferQinf.ethz.ch.
2 E-mail: wattenhofer@inf.ethz.ch.
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In this paper we will in a first step introduce a simple, purely combinatorial algorithm for MM,
which yields a 2logn approximation in O(n?logn) time. In a next step, we are able to reduce the
average time until a node is matched to O(n?) by losing a factor of logn in the approximation.
Given that the only other simple MM algorithm we are aware of, the greedy algorithm, has an
approximation ratio of Q(n?%8) [RT81] and that the fastest approximation algorithms need time
at least O(n?+/na(m,n)logn)[GTI1], respectively O(n?logn) [GW92], also on average, we believe
that our results are of two-fold interest. On the one hand the algorithms and their analysis are
intuitive, and could be used as a stepping stone to explain more intricate algorithms. On the other
hand, the approximation ratio and running time of our algorithms slightly improve the currently
best known results for polylogarithmic approximations. Altogether, due to their simplicity and
efficiency, we hope that our algorithms or derivations thereof will be applicable in the distributed,
online, and/or mobile computing setting.

2 The Algorithms

2.1 Description

The main algorithm, Algorithm 1 (Perfect Matching), takes as input an undirected graph K (V')
with edge costs we > 0 satisfying the triangle inequality and outputs a perfect matching M. The
basic structure of the algorithm involves maintaining a forest F' of edges which is initially empty. In
each iteration ¢ of the algorithm’s while-loop a set of edges is selected connecting distinct connected
components of F'. Define an active component to be any connected component C of F' with an odd
number of nodes, else call the component inactive. The while-loop terminates when all connected
components C' of F' are inactive. The approximation properties of the algorithm will follow from
the way we choose the edges in each iteration ¢ and which algorithm we call as a subroutine to
compute the matching on the forest F. First to the edge-selection step: In each iteration the
algorithm connects every active component to the nearest other active component, where nearest is
meant in the sense of minimizing the weight of the edges to be added (see Figure A.1). Now to the
matching-subroutines: Algorithm 2 (Idle Match) computes the matching on the forest F' after the
termination of the while-loop of Algorithm 1, whereas Algorithm 3 (Instant Match) matches the
nodes in an ongoing fashion in each iteration of the while-loop. Thus, decreasing the average time
until a node is matched significantly but naturally losing some accuracy.

2.2 Analysis

In this section we prove the approximation properties of the Perfect Matching Algorithm (Algorithm
1) in connection with the Idle Match Algorithm (Algorithm 2), respectively the Instant Match
Algorithm (Algorithm 3). By using the Idle Matching Algorithm the matching we compute comes
within a factor of logn of optimal. Whereas, for Algorithm 3 we prove an approximation ratio of
log? n. In the next section we show that the running time of the algorithms is n2 log n, but that for
the Instant Match Algorithm the average time until a node is matched is O(n?).

Lemma 1 The while-loop of the Perfect Matching Algorithm is executed at most logn times.
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Algorithm 1 Perfect Matching
Input: an undirected graph G = K (V') with edge costs w, > 0
Output: a matching M
1: (* depending on preferences either call line 11 or line 14 but not both to compute
matching *)
2: F« 0, M+« 0,p=0,
3: Cp—{{v}:veV}
4: while (3 active component C € C,) do

5: Ecﬁa — @

6: for each active component C € C, do

T find a path P from C to an active component C’, C' # C’, that minimizes w(FE¢),
where Ec = P — F

8: EC¢ — E'C(“J U EC’

9: end for

10 F<«+ FUEg,

11: M < Algorithm 3 with Input (F, M, ¢)
122 p+—p+1

13:  update C,

14: end while;

15: M <« Algorithm 2 with Input F

Algorithm 2 Idle Match
Input: a forest F'
Output: a perfect matching M
1: duplicate every edge of each component of F' and shortcut to obtain a collection of cycles
(see Figure A.2) (x the cycles have even length since all components are inactive *)
2: keep the best matching M out of the two matchings defined by every cycle

Algorithm 3 Instant Match
Input: a forest F', a partial matching M, ¢
Output: a partial matching M
1: if (¢ =0) then
2:  duplicate every edge of each component of F' and shortcut to obtain a collection of
(maybe odd-length) cycles

3:  for every odd cycle fix an arbitrary node to remain unmatched

4:  keep the best matching out of the two (partial) matchings defined by every cycle (and
fixed node)

5: else

6: match free nodes in every component, s.t. the paths between matched nodes are
disjoint (* See Lemma 3 for how to construct such paths. )

7: end if

8: update M

Proof. At least three active components must be connected to each other such that the new
component is active again. Therefore, in each iteration the number of active components decreases
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by a factor of at least three and the logarithmic number of executions follows. O

The incidence vector of the forest F' produced by the Perfect Matching Algorithm is a feasible
solution for following integer linear programm (IP):

(IP) Min > we,
ecE
subject to: z(6(S)) > |S| mod 2 0#£ScCV
ze € {0,1} e€kE,

where §(S5) denotes the set of edges having exactly one endpoint in S and z(F) = ) .pze. The
optimal solution F* to (IP) is obviously of less weight than is the optimal solution M* of the
minimum-weighted perfect matching problem.

Lemma 2 The weight of the set of edges added in each execution of the while-loop of the Perfect
Matching Algorithm is at most the weight of the optimal forest F*: w(Ec,) < w(F™).

Proof. We will argument about an arbitrary iteration ¢. Construct a graph H by considering the
inactive and active components of this iteration as nodes in H. We conceptually divide the edges of
H into red and blue edges. The edges e € F*N§(C) for all C' € C,, are the red edges of H. The edges
e € E¢, added in this iteration to F' are the blue edges® . Keeping in mind that the incidence vector
of edges of F* must be a feasible solution for (IP) we know that for each node v in H associated
with an active component (a so called active node) there is a path P}, consisting of red edges only,
which connects this node to another active node in H. By the way we chose E¢, we know that
there is also a blue path P? connecting v to another active node in H which is at most as heavy as
the corresponding red path: w(P?) < w(Pr). Consequently, > vev, w(P?) < > ey, W(Py), where
Vo is the set of nodes in H associated with active components. Since, ) -y, w(P]) < 2w(F*) and
2w(Ee,) = Y e, w(P?) the lemma follows. (The factors of two arise because each path is counted
twice, once for each endpoint.) O

Corollary 0.1 The weight of the forest F' at the termination of the while-loop of the Perfect Match-
ing Algorithm is at most logn - w(F™).

Proof. The Corollary follows immediately from Lemma 1 and Lemma 2. O

Theorem 1 The matching computed by the Idle Matching Algorithm is a log n-approximation of
the minimum-weighted perfect matching M*.

Proof. We compute an Euler tour with shortcuts on each component and choose the better out
of the two possible matchings for each tour. Since the weight of an Euler tour is at most twice the
weight of the component, the weight of the better matching is at most the weight of the component.
All together the matching has weight at most w(F'), which is by Corollary 0.1 at most logn - w(F™).
Since w(F*) < w(M*) we can deduce the theorem. O

3 Note that some edges may be red as well as blue.
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Before we analyze the Instant Match Algorithm (Algorithm 3) we need following helper lemma.

Lemma 3 Given a tree T = (V,E) and a set of marked nodes S = {vi,v9,...} CV. Let S, =
{(vi,vj),...} C (‘;) be a disjoint pairing of the nodes in S and for each pair (vi,v;), pij the path
connecting v; to v;. Then it is always possible to construct S, in such a way that the paths p;; are
mutually edge-disjoint.

Proof. We prove the lemma by giving a construction for S,. Beginning from the leaves, pair v;
with v; if they have a common ancestor v, and there is no un-paired node v;, which has a closer
common ancestor vy with either v; or v;, where closer is meant in the sense of the length of the path
between the nodes. This construction leads to all desired properties of the set \S,. a

Lemma 4 The weight of the edges added to the matching M at the end of the Instant Match
Algorithm is at most the weight of the input forest F'.

Proof. If ¢ =0 we basically do the same as in the Idle Match Algorithm, except for some cycles
being of odd length, which does not have any implications on the weight of the matching. Hence,
the weight of the edges added to the matching is at most the weight of the components of F', which
is w(F'). For ¢ > 0 we know by Lemma 3 that we can match the free nodes (except for one in each
active component) in a component of F' such that the paths between matched nodes are disjoint.
Furthermore, by the triangle inequality we know that connecting the nodes directly is at most as
expensive as connecting them via other nodes. Consequently, for each component of F' the weight
of the edges added to the matching is at most the weight of the component itself and the lemma
follows. O

Theorem 2 The matching computed by the Instant Match Algorithm is a log? n-approzimation of
the minimum-weighted perfect matching M*.

Proof. By Lemma 2 the weight of the forest in iteration ¢ is at most
w(F) = w(Cy) = w(Cp-1) + w(Ee,_,) <w(Cp-1) + w(F") < - w(F).
By Lemma 4 we have:

logn logn

w(M) w(Cp) < Y - w(FY)

(]

p=1

1
= 5(10g2n +1logn) - w(F*) < log?n - w(M*)

2.8 Implementing the Algorithms

We now turn to the problem of implementing the algorithms efficiently. Both, the Idle Match
Algorithm and the Instant Match Algorithm, have a running time of O(n). Thus, the critical step
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of the implementation is the while-loop of the Perfect Matching Algorithm. More specific, in each
iteration the crucial part is to find the paths P and to merge the components in the update of
C,. If we maintain the components C' as a union-find structure of nodes, merging will take at
most O(na(n,n)) time, a being the inverse Ackermann function |Tar75]. By using a generalized
Voronoi diagram the time to find the shortest path for all active components in an iteration is
O(n?) [SPR80]. Since the while-loop is executed at most logn times, after O(n?logn) time steps,
the Perfect Matching Algorithm terminates, independent of whether we use the Idle Match or the
Instant Match Algorithm as a subroutine.

In the following we will prove that the average time until a node is matched decreases by a factor
of magnitude logn if we use the Instant Match Algorithm.

Theorem 3 After on average at most two iterations of the while-loop of the Perfect Matching
Algorithm and using the Instant Match Algorithm as a subroutine a node is matched.

Proof. After the first iteration at least % of all nodes are matched, since at most one node remains
unmatched in each active component. By the same reasoning, after iteration ¢ at least (1 — (%)“’) n
nodes are matched. For the average matching time we get:

E[# iterations until a node is matched] = Y2257 (1 — (3)#)(1 — (3)* 1) - = Y81 2(3)% i < 3.
O
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A APPENDIX

A.1  Visualization of Matching Algorithms

Figure A.1. Connecting Active Components Figure A.2. Duplicating and Shortcutting
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Abstract

A weighted graph is one in which every edge e is assigned a nonnegative number w(e), called the
weight of e. The weight of a cycle is defined as the sum of the weights of its edges. The weighted
degree of a vertex is the sum of the weights of the edges incident with it. In this paper, we prove
that: Let G be a k-connected weighted graph where £ > 2. Then G contains either a Hamilton cycle
or a cycle of weight at least 2m/(k + 1), if G satisfies the following conditions: (1) The weighted
degree sum of any k + 1 independent vertices is at least m; (2) In each induced claw, each induced
modified claw and each induced P; of G, all edges have the same weight. This generalizes an early
result of Enomoto et al. on the existence of heavy cycles in k-connected weighted graphs.

Key words: heavy cycle, weighted degree (sum), induced claw (modified claw, Py)
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A Terminology and notation

We use Bondy and Murty [5] for terminology and notation not defined here and consider finite
simple graphs only.

Let G = (V,E) be a simple graph. G is called a weighted graph if each edge e is assigned a
nonnegative number w(e), called the weight of e. For a subgraph H of G, V(H) and E(H) denote the
sets of vertices and edges of H, respectively. The weight of H is defined by w(H) = - c gy w(e).
For a vertex v € V', Ny (v) denotes the set, and dg(v) the number, of vertices in H that are adjacent
to v. We define the weighted degree of v in H by dj(v) = Y} pen, () w(vh). When no confusion
occurs, we will denote Ng(v), dg(v) and d(v) by N(v), d(v) and d*(v), respectively.
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An unweighted graph can be regarded as a weighted graph in which each edge e is assigned weight
w(e) = 1. Thus, in an unweighted graph, d*(v) = d(v) for every vertex v, and the weight of a
subgraph is simply the number of its edges.

The number of vertices in a maximum independent set of G is denoted by a(G). If G is noncomplete,
then for a positive integer k < a(G) we denote by 0, (G) the minimum value of the degree sum of
any k independent vertices, and by ¢}’(G) the minimum value of the weighted degree sum of any k&
independent vertices. If G is complete, then both o4 (G) and o}’ (G) are defined as oo.

We call the graph K 3 a claw, and the graph obtained by joining a pendant edge to some vertex of
a triangle a modified claw.

B Results

There have been many results on the existence of long paths and cycles in unweighted graphs. In
[3] and [4], Bondy and Fan generalized several classical theorems of Dirac and of Erdés and Gallai
on paths and cycles to weighted graphs. A weighted generalization of Ore’s theorem was obtained
by Bondy et al. [2]. In [11], it was shown that if one wants to generalize Fan’s theorem on the
existence of long cycles to weighted graphs some extra conditions cannot be avoided. By adding
two extra conditions, the author gave a weighted generalization of Fan’s theorem.

Among the many results on cycles in unweighted graphs, the following generalization of Ore’s
theorem is well-known.

Theorem 1 (Fournier and Fraisse [8]) Let G be a k-connected graph where 2 < k < «(G), such
that 0x+1(G) > m. Then G contains either a Hamilton cycle or a cycle of length at least 2m/(k+1).

A natural question is whether Theorem A also admits an analogous generalization for weighted
graphs. This leads to the following problem.

Problem 1 Let G be a k-connected weighted graph where 2 < k < a(G), such that o’ (G) > m.
Is it true that G contains either a Hamilton cycle or a cycle of weight at least 2m/(k +1)?

It seems very difficult to settle this problem, even for the case k = 2. Motivated by the result in
[11], Zhang et al. [10] proved that the answer to Problem 1 in the case k = 2 is positive with two
extra conditions.

Theorem 2 (Zhang et al. [10]) Let G be a 2-connected weighted graph which satisfies the fol-
lowing conditions: (1) o§(G) > m; (2) w(zz) = w(yz) for every vertex z € N(z) N N(y) with
d(z,y) = 2; (3) In every triangle T of G, either all edges of T have different weights or all edges
of T' have the same weight. Then G contains either a Hamilton cycle or a cycle of weight at least
2m/3.

In [7], after giving a characterization of the graphs satisfying Conditions (2) and (3) of Theorem 1,
Enomoto et al. proved that the answer to Problem 1 is positive for any & > 2 with these two extra

254



conditions.

Theorem 3 (Enomoto et al. [7]) Let G be a k-connected weighted graph where k > 2. Suppose
that G satisfies the following conditions: (1) o ;(G) > m; (2) w(zz) = w(yz) for every vertex
z € N(z) N N(y) with d(z,y) = 2; (3) In every triangle T of G, either all edges of T have different
weights or all edges of T' have the same weight. Then G contains either a Hamilton cycle or a cycle
of weight at least 2m/(k + 1).

On the other hand, Fujisawa [9] gave a so-called claw condition for the existence of heavy cycles in
weighted graphs, which is a weighted generalization of a result of Bedrossian et al. [1].

Theorem 4 (Fujisawa [9]) Let G be a 2-connected weighted graph which satisfies the following
conditions: (1) For each induced claw and each induced modified claw of G, all its nonadjacent pair
of vertices x and y satisfy maz{d™(z),d"(y)} > s/2; (2) For each induced claw and each induced
modified claw of G, all of its edges have the same weight. Then G contains either a Hamilton cycle
or a cycle of weight at least s.

A result similar to this theorem was obtained by Chen and Zhang [6]. It also generalizes Theorem
1.

Theorem 5 (Chen and Zhang [6]) Let G be a 2-connected weighted graph which satisfies the
following conditions: (1) o (G) > m; (2) For each induced claw and each induced modified claw of
G, all of its edges have the same weight. Then G contains either a Hamilton cycle or a cycle of
weight at least 2m /3.

Thus, we have the following question: Can Conditions (2) and (3) in Theorem 2 be weakened by
Condition (2) of Theorem 37

Problem 2 Let G be a k-connected weighted graph where 2 < k < a(G). Suppose that G satisfies
the following conditions: (1) o’ 1(G) > m; (2) For each induced claw and each induced modified
claw of G, all of its edges have the same weight. Is it true that G contains either a Hamilton cycle
or a cycle of weight at least 2m/(k +1)?

In this paper, we give a partial answer to this problem. Our result is a generalization of Theorem
2.

Theorem 6 Let G be a k-connected weighted graph where k > 2. Suppose that G satisfies the
following conditions: (1) o}’ ,(G) > m; (2) In each induced claw, each induced modified claw and

each induced Py of G, all of its edges have the same weight. Then G contains either a Hamilton
cycle or a cycle of weight at least 2m/(k + 1).
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Abstract

We prove the following theorem: if the Behzad-Vizing conjecture is true for graphs G and H, then
is it true for the Cartesian product GOH.

Key words: Cartesian graph product, chromatic number, total chromatic number, Vizing
conjecture.

A Introduction

Graph products were first defined by Sabidussi [1] and Vizing [2]. A lot of work was done on various
topics related to graph products, but on the other hand there are still many questions open. For a
very recent survey, see [3].

Here we consider the total chromatic number on the Cartesian product graphs. It is well known and
easy to see that the chromatic number of the Cartesian product is the maximum of the chromatic
numbers of the factors. For the chromatic index (edge-chromatic number), the Cartesian product is
of class I (type I) if at least one of the factors is of class I [4]. In this paper we give a corresponding
result for the total chromatic number. Total chromatic numbers of Cartesian products of a path
and a star, a cycle and a star, a path and a cycle and (in certain cases) of two cycles are given in
[5] (see also [6]).

The Cartesian product GOH of two graphs G and H is the graph with vertex set V(G) x V(H), in
which the vertex (a, b) is adjacent to the vertex (¢, d) whenever a = ¢ and b is adjacent to d, or b = d
and a is adjacent to ¢. The G- and H- layers are the induced subgraphs in GOH on vertex sets
Gy ={(z,u) | £ € V(G)} and H, = {(v,z) | z € V(H)}, respectively. An element of a graph G is
either a vertex or an edge of G. In a proper total coloring, any two elements that are either adjacent
or incident are assigned different colors. The minimum number of colors needed for a proper total
coloring is the total chromatic number of G, denoted by X" (G). The maximum vertex degree in G
is denoted by A(G).

! E-mail: blaz.zmazekQuni-mb.si.
2 E-mail: janez.zerovnikQuni-1j.si.
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Total coloring was introduced by Behzad [7, 8] and Vizing [9], both of whom conjectured that for
any graph G, the following inequality holds:

A(G)+1< X (G) < A(G) +2.

The lower bound is clearly best possible. Graphs that need only A(G) + 1 colors are called graphs
of type 1. Examples include the cycles C3, paths and complete graphs with odd number of vertices
Ko 1. Graphs that need at least A(G) + 2 colors are called graphs of type II. Examples include
the cycles Cs41 and Csgy2, complete graphs with even number of vertices Ky, and the Cartesian
product K>OC5. For a survey on total colorings see [10].

Our key result is the following

Theorem 1 Let G and H be arbitrary graphs such that A(G) < A(H). Then

X (GOH) < A(G) + X" (H).
Clearly, if for H the Behzad-Vizing conjecture is true, then x (GOH) < A(G) + x' (H) < A(G) +
A(H) + 2, hence the conjecture is true for GOH.

Corollary 1.1 If the Behzad-Vizing conjecture is true for graphs G and H, then it is true for the
Cartesian product GOH .

Furthermore, from above result it easily follows:

Corollary 1.2 If the factor with largest vertex degree is of type I, then the product is also of type
L

Corollary 1.3 x' (GOH) < min{A(G) + x (H),A(H) + x (G)} provided A(G) = A(H). In
particular, the product of two cycles Cs,0C,, is of type I.

Corollary 1.4 Any graph product P,,0S,, or P,0C,,, n > 2 is of type I, where Sy, is a star (graph
with one universal vertexr and m vertices of degree 1).

However, there are examples in which one factor is of type I and the other factor is of type II, and
the Cartesian product is in some cases of type I and in other cases of type II. Furthermore, there
are examples where the product of two type II factors is of type I. See examples below.

Proof of Theorem 1. Let G and H be arbitrary graphs such that A(G) < A(H). Then we will
prove that
x (GOH) < A(G) +x (H).

We prove the assertion by constructing the total coloring.
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First color edges of G using colors -1,-2,...,-(A(G) +1). Color edges of all layers G, in the same
way. (Hence vertices, and edges of layers H,, have not yet been colored.) Clearly, there is at least
one color at each vertex v € V(G) which is not used for any edge incident to v. Select a color not
used on any edge incident to v and denote it free(v).

Let Io, I1,...,Jy@)-1 be a decomposition of V(G) into independent sets. Recall that x(G) <
A(G)+1<A(H)+1<x"(H).

Let Ty, T1,. .. N (H)-1 be a decomposition of elements of H into independent sets of some proper
total coloring. (Hence T7; C V(H) U E(H).) Using this decomposition we will now temporarily
assign colors to elements of V(G) x (V(H)UE(H)), in order to complete the total coloring of GOH
by coloring the vertices, and the edges of layers H,, as follows: Element of I; x T} receives color
(i + 7) mod x" (H). It is straightforward to see that colors 0,1,2,...,x (H) — 1 are used and that
this is a proper coloring.

Finally, for each vertex v € V(G), replace color 0 in layer H, by the color free(v). Observe that
this does not introduce any violation of the proper coloring. We omit the details.

Summarizing we see that A(GQ)+1+x (H) colors were used, but after recoloring we have a proper
total coloring with A(G) + x_ (H) colors as claimed. ]

Various examples will be given showing the existence of

type II Cartesian graph product of type II graphs;

type I Cartesian graph product of type II graphs;

type II Cartesian graph products of type II graphs;

Type I Cartesian graph product of type I and type II graphs;

e etc.
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