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Branching and bounds tightening

techniques for non-convex MINLP

Pietro Belotti⋆,†, Jon Lee‡, Leo Liberti♦, François Margot†, and Andreas Wächter‡

Many industrial problems can be naturally formulated using Mixed Integer Nonlinear Pro-
gramming (MINLP). Motivated by the demand for Open-Source solvers for real-world MINLP
problems, we have developed a spatial Branch-and-Bound software package named couenne

(Convex Over- and Under-ENvelopes for Nonlinear Estimation). In this paper, we present the
structure of couenne and discuss in detail our work on two of its components: bounds tight-
ening and branching strategies. We then present experimental results on a set of MINLP in-
stances including some industrial applications. We also compare the performance of couenne

with a state-of-the-art solver for nonconvex MINLPs.

1. Nonconvex MINLP: Introduction and applications

Consider the following Mixed Integer Nonlinear Programming (MINLP) problem:

(P′) min f(x)
s.t. gj(x) ≤ 0 ∀j ∈M

xl
i ≤ xi ≤ x

u
i ∀i ∈ N0

xi ∈ Z ∀i ∈ N I
0 ⊆ N0,

where f and the gj are possibly nonconvex functions, n = |N0| is the number of
variables, and x = (xi)i∈N0

is the n-vector of variables. We assume that f and
all gj ’s are factorable, i.e., they are expressed as

∑
i

∏
k hik(x), where all functions

hik(x) are univariate — notice that binary operators such as division or power
are also included in this framework (this definition extends that given in [53] by
considering an arbitrary number of factors in the product).

This general type of problem finds applications in a number of fields: Chemical
Engineering [16, 31, 41], Portfolio Optimization [23], and Computational Biology
[48, 49, 65] are just a few examples. Both the integrality of a subset of variables
and the possible nonconvexity of f and the gj create difficulties when solving this
type of problem.

When f is linear and all of the gj are affine, we have a Mixed Integer Lin-
ear Programming (MILP) problem, a class of difficult problems for which practi-
cal Branch-and-Cut methods have been successfully developed [40, 63, 85]. These
methods have three essential ingredients: a bounding scheme returning a lower
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bound on the optimal value of the problem, a branching scheme partitioning a
problem into two or more smaller problems, and a cutting scheme adding valid
inequalities to the problem. The key ingredient in the process is the computation
of an optimal solution x̄ of the linear relaxation of the problem (i.e., the relaxation
obtained by ignoring the integrality requirement on the variables). The bounding
scheme is then simply the computation of the objective value of the solution x̄ of
the relaxation. A simple branching scheme is to select an integer variable xi whose
value x̄i is not integer and to create two problems — one obtained by appending
the inequality xi ≤ ⌊x̄i⌋ to the problem and the other obtained by appending the
inequality xi ≥ ⌊x̄i⌋ + 1 to the problem. Finally, the cutting scheme uses various
algebraic techniques for generating inequalities satisfied by all feasible solutions,
but violated by x̄.

The adaptation of these techniques to solve MINLP is a challenging research
area. The present work squarely lies in this area, as we pursue the implementation
of a general-purpose algorithm for solving MINLP based on existing software tools
for MILP. The numerous industrial applications that are inherently nonlinear and
nonconvex provide a strong incentive for developing efficient MINLP solvers.

When the functions f and the gj are nonlinear but convex, a Branch-and-Cut
approach mimicking closely the steps of the MILP case can be used [17, 28, 66].
However, when some of these functions are nonconvex, many additional difficulties
have to be overcome. As an example, computing a lower bound on the optimal
value of the problem becomes much harder. Indeed, relaxing the integrality of the
variables yields a nonconvex Nonlinear Program (NLP) with potentially many local
minima. A valid lower bound can be obtained by finding a global minimum of the
relaxed problem, a task not even aimed at by most current NLP solvers, or via
convex relaxations of P′. As a result, the simple branching scheme described above
is not sufficient, as branching might be necessary even if the problem has no integer
variables.

The method of choice for solving nonconvex MINLPs is Branch-and-Bound (BB),
an implicit enumeration of the local minima based on a divide and conquer ap-
proach. This method sequentially solves subproblems of P′ that are obtained by
partitioning the original solution space. The initial problem is subdivided into two
or more subproblems and each is solved separately, if needed by recursively par-
titioning it into smaller subproblems. For each subproblem, one computes lower
and upper bounds for the objective function value, bounds that are used to dis-
card from the search those subproblems guaranteed to contain no global optimum.
In the MINLP literature, BB algorithms are also called spatial Branch-and-Bound
(sBB), and we use this term throughout the paper.

A vast body of literature covers solution techniques for problem P′. The reader
may refer to [39, 78, 79], the surveys [36, 45], and references therein for a general
introduction on MINLP solvers. One of the first papers on continuous global opti-
mization by Branch-and-Bound dates from 1969 [27]. In the 1970s and 1980s, work
on continuous or mixed integer global optimization was scarce. Most of the pa-
pers published in this period dealt either with applications of global optimization
to very specific cases, or with theoretical results concerning convergence proofs.
One notable exception was the work of McCormick [53] who considered symbolic
transformations of problems to formulate a convex relaxation of nonconvex NLPs.
Branch-and-Bound techniques were proposed in order to solve particular classes
of problems (e.g. concave minimization problems [38]). The first method that was
able to deal with problems in the form P′ was the Branch-and-Reduce algorithm
[68, 69]. Shortly afterwards, Floudas’ team published their first article on the αbb

Branch-and-Bound method [10] which was then thoroughly explored and anal-
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ysed in several subsequent papers [3, 4, 5, 6, 7, 8]. One notable limitation of the
αbb algorithm is that it relies on the functions being twice differentiable in the
continuous variables. Since the introduction of the αbb algorithm, a number of
Branch-and-Select algorithms geared towards the most generic nonconvex MINLP
formulation appeared in the literature, e.g. the Symbolic Reformulation sBB ap-
proach [75, 76, 77], the Reduced Space Branch-and-Bound approach [26] (which
only applies to continuous NLPs), the Branch-and-Contract algorithm [86] (which
also only applies to continuous NLPs) and Barton’s Branch-and-Cut framework
[42]. Several Interval Analysis based global optimization methods [61, 80, 87] also
belong to the sBB class of algorithms.

Several implementations are available for both the general problem P′ and some
of its special cases. Among the exact approaches to solve P′ we mention baron

[71] and lindoglobal [52], which take advantage of a factorable formulation of
P′ to derive valid bounds and exact solutions, while αbb [6] and lago [60] use
linear and quadratic approximations of f and the gj instead. A large amount of
work has also been carried out for the special case of convex MINLPs, where f
and the gj are all convex [83] or quasi-convex [58]. Well-known codes for solving
convex MINLPs are: sbb [35], minlp bb [28, 29, 44], bonmin [17] and filmint

[1]. Notice that solvers for convex MINLPs can be used on nonconvex problems as
heuristics, as they may provide a feasible solution. In particular, the Branch-and-
Bound algorithmic option of bonmin has some parameter options that can be set
appropriately so as to encourage a search for good feasible solutions.

In this paper, we describe an Open-Source software package called couenne

(Convex Over- and Under-ENvelopes for Nonlinear Estimation), implementing an
sBB for problems of the form P′. couenne is built within the COIN-OR framework
[22]. Following the example of many other Open-Source codes, instead of focusing
on the effectiveness of the algorithm, we have chosen to create a flexible structure,
that any user with working knowledge of the C++ language can easily change
and specialize to a particular class of MINLP problems, or improve by adding new
techniques to the general structure.

The next section describes the basic spatial Branch-and-Bound algorithm and
introduces the specific building blocks (linearization, bounds tightening, branching,
and heuristics) corresponding to subsequent sections of this paper. In Section 7,
we present experimental tests conducted on a set of publicly available MINLP
instances. Section 8 closes the paper with a few comments.

2. Spatial Branch-and-Bound

An sBB method creates a hierarchy of nodes represented by a binary tree, known
as the sBB tree. At the root of the tree is the initial problem P′; partitioning P′ is
equivalent to creating two descendent nodes 1 and 2, with corresponding problems
P1 and P2, which can in turn be partitioned. In the following, k denotes a node
of the sBB tree containing a restriction Pk of P′, while CPk is the continuous
(nonlinear) relaxation of Pk and x̂k a local minimum of CPk. A valid lower bound
on Pk can be obtained through its convex relaxation. couenne creates a linear
relaxation of Pk, which we denote LPk, and x̄k is an optimal solution of LPk.

A schematic description of the sBB algorithm is provided in Table 1; the right
column gives a pointer to the section describing in detail the corresponding step
as implemented in couenne. The essential components of any sBB algorithm are
as follows:

• a method to compute a lower bound on Pk;
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Input: Problem P′

Output: An optimal solution of P′

Define set L of subproblems
L← {P′}; zu ← +∞
while L 6= ∅

choose Pk ∈ L
L← L \ {Pk}
apply bounds tightening to Pk (Sec. 4)
if Pk is feasible, then

generate a linear relaxation LPk of Pk (Sec. 3)
repeat

solve LPk; let z̄k be the optimal objective value
refine linearization LPk

until z̄k does not improve sufficiently
(optional) find a local optimum ẑk of CPk (Sec. 6)
zu ← min{zu, ẑk}
if z̄k ≤ zu − ǫ then

choose a variable xi (Sec. 5.1)
choose a branching point xb

i (Sec. 5.5)
create subproblems:

Pk− with xi ≤ x
b
i ,

Pk+ with xi ≥ x
b
i

L← L ∪ {Pk−,Pk+}
output zu

Table 1. An sBB algorithm for the MINLP P
′.

• a method to compute an upper bound or a feasible solution for Pk;

• a branching technique to partition Pk;

• a bounds tightening procedure to reduce the feasible space of Pk — and hence
the running time of the algorithm — without eliminating any optimal solution.

The bounds tightening component is not essential for the convergence of the sBB,
but an efficient implementation of this component can dramatically improve per-
formances.

This paper focuses on two parts of the sBB algorithm: branching and bounds
tightening. We discuss lower bounding by linearization in Section 3. In Section 4,
we describe an implementation of bounds tightening, used before generating the
linear relaxation LPk at each sBB node and in other parts of the sBB. In Section 5,
we extend the idea of reliability branching [2] to continuous variables in an MINLP
setting, and compare it with standard spatial branching techniques as well as one
introduced by Tawarmalani and Sahinidis [79].

3. Linearization of nonconvex MINLPs

The linear relaxation LP0 of the root node problem P0 is constructed in two steps:
reformulation and linearization. The former translates the problem to an equivalent
one that is easier to deal with from a symbolic viewpoint; the latter generates
the actual linear relaxation. Reformulation is only required at the root node P0,
while linearization is also performed at all other nodes Pk. More specifically, the
linearization LPk of node Pk is a refinement of the one of the ancestor of Pk.

Although this technique is well known in the Global Optimization community,
we describe it in detail to introduce notation and concepts that are useful to discuss
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other features of couenne.

3.1. Reformulation

A factorable function h(x) is either a simple univariate function h(xi) = xi for some
i, or it can be obtained using one of the following operations on other factorable
functions hj(x):

• a linear combination, h(x) = a0 +
∑k

j=1 ajhj(x);

• a product, h(x) =
∏k

j=1 hj(x);

• a quotient, h(x) = h1(x)/h2(x);

• a power, h(x) = h1(x)
h2(x); or

• a composition of univariate functions, h(x) = h1(h2(x)) (e.g. sine, logarithm,
exponential, absolute value. . . ).

The reformulation corresponding to h(x) is built recursively as follows: if h(x) is
obtained using functions hj(x) for j = 1, . . . , k, a new auxiliary variable wn+j is
introduced as well as the defining constraint wn+j = hj(x) for j = 1, . . . , k.

Let us define the set of operators as

Θ = {sum,product, quotient,power, exp, log, sin, cos, abs}.

The reformulation is applied recursively to hj(x) until all auxiliary variables
are associated with operators of Θ, and each can thus be defined as wn+j =
ϑj(x,wn+1, wn+2 . . . , wn+j−1) with ϑj ∈ Θ.

The power function ϑ(xi, xj) = xxi

j is transformed into the univariate term

ϑ′(xk) = exk , where a new auxiliary variable xk is associated with xi log xj. This
transformation gives an equivalent problem assuming that xj > 0 was implied by
the other constraints. Otherwise, all solutions x such that xj = 0 are excluded.

Notice that this reformulation lifts the original problem to a larger space by
adding a set of auxiliary variables indexed by Q = {n + 1, n + 2, . . . , n + q}. It
is an opt-reformulation [46, 47], i.e. a reformulation where all local and global
optima of the original problem are mapped into local and global optima of the
reformulation. This allows us to use one linearization technique for each operator
of Θ. The reformulation is, in general, as follows:

(P′′) min wn+q

s.t. wi = ϑi(x,wn+1, wn+2 . . . , wi−1) i ∈ Q
wl

i ≤ wi ≤ w
u
i i ∈ Q

xl
i ≤ xi ≤ x

u
i i ∈ N0

xi ∈ Z i ∈ N I
0 ⊆ N0

wi ∈ Z i ∈ QI ⊆ Q,

where ϑi ∈ Θ for all i ∈ Q; we assume that the objective function is replaced by the
last generated auxiliary variable xn+q. We remark that the bounding box [wl, wu]
and the integrality of auxiliaries w can be inferred from the bounds and integrality
of the original variables x and from the constraints of P′. From now on we drop
the notation wi = ϑi(x,wn+1, wn+2 . . . , wj−1) and use instead the more compact
wi = ϑi(x,w), keeping in mind that ϑi(x,w) only depends on x and wn+1, . . . , wi−1.
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3.2. Structure of the reformulation

Reformulating P′ produces an equivalent problem P′′ whose underlying structure
— effectively represented as a directed acyclic graph (DAG) — can be used to
improve the solution approach. Consider the directed graph G = (V,A) with
V = {1, 2, . . . , n + q} and an arc (i, j) if there is i ∈ V such that ϑi(x,w) ex-
plicitly depends on the j-th variable (which can be either original or auxiliary). By
definition, original variables have no outgoing arcs, as there is no ϑi corresponding
to original variables. Different occurrences of the same expression can either be as-
signed to different auxiliary variables, one per occurrence, or to the same variable.
In both cases we obtain an opt-reformulation of the original problem. The latter
case, which is implemented in couenne, allows for a DAG with larger and fewer
connected components, which in turn yields improved results on bounds tightening
procedures.

Once the reformulation is carried out, the distinction between original and auxil-
iary variables can be ignored for most purposes, and we simply obtain the following
MINLP with more variables and nonlinear constraints exhibiting a simpler struc-
ture than the original one:

(P) min xn+q

s.t. xi = ϑi(x) i ∈ Q ⊆ N
xl

i ≤ xi ≤ x
u
i i ∈ N

xi ∈ Z i ∈ NI ⊆ N,

where N comprises both original and auxiliary variables and NI is the set of indices
of integer variables, including auxiliary variables constrained to be integer. Problem
P is equivalent to the Smith’s MINLP standard form [77]. In what follows, we
assume that P is the problem at hand, and we make no distinction between original
and auxiliary variables. As P and P′ are equivalent, there is no need to re-define the
problems Pk considered at each node of the sBB tree: these are simply restrictions
of the root node problem P obtained through branching rules.

3.3. Linearization

Consider the variable xj = ϑj(x) created in the reformulation phase, with ϑj ∈ Θ
and the bounds B = [xl, xu] on x. An inequality ax ≥ b is a linearization inequality
for xj = ϑj(x) if it is satisfied by all points of the set {x ∈ B : xj = ϑj(x)}.
A linearization for xj = ϑj(x) in B, or a ϑj-linearization, is a system of linear
inequalities Ajx ≥ bj such that XLP := {x ∈ B : Ajx ≥ bj} ⊇ {x ∈ B : xj =
ϑj(x)}. In the univariate case xj = ϑj(xi), with xl

i ≤ xi ≤ xu
i , a ϑj-linearization

is a set {(xi, xj) : ahxi + bhxj ≥ ch, h = 1, . . . ,H}, such that all inequalities are
satisfied by all points of the set {(xi, xj) : xj = ϑj(xi), x

l
i ≤ xi ≤ x

u
i }.

If a ϑj-linearization is created for each variable xj = ϑj(x), j ∈ Q, the overall
linear problem LP0, defined as min{xn+q : Ax ≥ b}, is a linear relaxation of P0,
hence all feasible solutions of P0 are also feasible for LP0 and an optimal solution
x̄ of LP0 provides a valid lower bound x̄n+q for the optimal value of P0.

Analogously to reformulation, several degrees of freedom can be used to improve
the performance of the lower bounding procedure, for instance by providing a more
compact linear relaxation.

In order to obtain a good lower bound, couenne seeks a tight linearization
while keeping low the number of inequalities in the linearization. Consider a vari-
able defined as a univariate continuously differentiable function, xj = ϑj(xi) with
xi ∈ [xl

i, x
u
i ]. If ϑj is convex, then for any x̃i ∈ [xl

i, x
u
i ] the inequality xj ≥
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ϑj(x̃i)+ ∂ϑj

∂xi
(x̃i)(xi− x̃i) is valid for the ϑj-linearization. Initially, couenne adds a

linearization inequality for each x̃i in a discretization of the interval [xl
i, x

u
i ], so that

a reasonable approximation is obtained. The number of points in the discretization
is a parameter that can be set prior to the execution. On the other hand, the tight-

est upper bound for ϑj is given by the inequality xj ≤ ϑj(x
l
i)+

ϑj(xu
i )−ϑj(xl

i)
xu

i −xl
i

(xi−x
l
i).

It is satisfied at equality only at the bounds of xi. For concave functions, similar
considerations apply. For functions that are neither convex nor concave (odd pow-
ers and trigonometric functions), an effort is made to use, in a separate fashion,
the subintervals of [xl

i, x
u
i ] where ϑj is convex or concave. For odd powers, we apply

the linearization procedure described by Liberti and Pantelides [50], which uses a
Newton method to find the minimum of a univariate function. We use a similar
technique for sines and cosines.

The two remaining operators are product and quotient. These are treated in a
unified manner with a linearization for the set {(x1, x2, x3) : x3 = x1x2, x

l
i ≤ xi ≤

xu
i , i = 1, 2, 3}1. If x1 and x2 are bounded and x3 is not, the well-known linearization

inequalities by McCormick [53] are known to be the tightest (Al-Khayyal et al. [9]):

x3 ≥ x
l
2x1 + xl

1x2 − x
l
2x

l
1 x3 ≤ x

l
2x1 + xu

1x2 − x
l
2x

u
1

x3 ≥ x
u
2x1 + xu

1x2 − x
u
2x

u
1 x3 ≤ x

u
2x1 + xl

1x2 − x
u
2x

l
1.

When the bounds on x3 are stricter than those inferred by x1 and x2, other con-
siderations apply, which we do not include here for the sake of conciseness. Figure
1 provides a geometric interpretation of how some operators are linearized.

xl
1

xu
1

x1

x2

(a) x2 = x3
1

xl
1

xu
1

x1

x2

(b) x2 = log x1

xl
1 xu

1 x1

x2

(c) x2 = x2
1

x1

x2

x3

(d) x3 = x1x2

Figure 1. Linear approximation of nonlinear functions.

The initial linearization LP0 is created at the root node, and can be improved
with a refinement procedure both at the root node and at any node k of the sBB
tree. Specifically, if the solution x̄k of LPk is infeasible for Pk, one may improve
the lower bound x̄k

n+q by branching (this will be discussed in Section 5) or by
refining LPk, i.e. by amending linearization inequalities, yielding an incremental
linearization. Such a tighter relaxation LP′

k of Pk, which does not contain x̄k, is a
convex set. Hence one faces a separation problem: a linear inequality is sought that
separates x̄k from LP′

k. If x̄k is feasible for any linearization of Pk, and thus the
separation problem is infeasible, branching is necessary. Otherwise, the inequality
is appended and the new relaxation LP′

k can be solved. This refinement step can
be repeated for a given number of iterations, until a feasible solution for Pk is

1The sets {(x1, x2, x3) : x3 = x1x2, xl
i ≤ xi ≤ xu

i , i = 1, 2, 3} and {(x1, x2, x3) : x2 = x3/x1, xl
i ≤ xi ≤

xu
i , i = 1, 2, 3} are equivalent assuming xu

1 < 0 or xl
1 > 0. If xl

1 < 0 < xu
1 , no linearization inequalities are

appended for x2 = x3/x1, and branching using branching rules x1 ≤ 0 and x1 ≥ 0 may be necessary.
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found, or until branching becomes necessary. Although refining the linearization
is seldom sufficient, it can improve the lower bound and thus avoid creating too
many sBB nodes by branching.

In couenne, the relaxation is improved by solving the separation problem for
each auxiliary variable xj = ϑj(x). Refining a ϑj-linearization consists of finding a
linearization inequality ax ≥ b that is violated by x̄k. Consider the variable xj =
ϑj(xi) with ϑj convex univariate. If x̄k

j > ϑj(x̄
k
i ), no inequality can be appended

as (x̄k
i , x̄

k
j ) is contained in every convex relaxation of ϑj . If x̄k

j < ϑj(x̄
k
i ), then

one linearization inequality violated by x̄k is tangent to ϑj in (x̄k
i , ϑj(x̄

k
i )), and is

given by xj ≥ ϑj(x̄
k
i ) + ∂ϑj

∂xi
(x̄k

i )(xi − x̄
k
i ) as in Figure 2a, where the darker shade

shows the refined ϑj-linearization and the lighter one shows the area cut by the
new linearization inequality. However, the deepest cut, i.e., a cut with maximum
violation with respect to (x̄k

i , x̄
k
j ), corresponds to the line tangent to ϑj at the

point (xt
i, x

t
j) of the curve closest to (x̄k

i , x̄
k
j ); see Figure 2b. couenne implements

the latter approach for all univariate functions, computing (xt
i, x

t
j) by solving a

one-dimensional, convex optimization problem by means of a Newton method.
Notice that, although x̄k is a vertex of LPk, (x̄k

i , x̄
k
j ) needs not be a vertex of

the ϑj-linearization (the shaded area in Figure 2); indeed, the ϑj-linearization is
only a relaxation of LPk defined by inequalities in xi and xj , and, in general, it
contains the projection of LPk onto the (xi, xj) space.

xj

xi

(x̄k
i , ϑj(x̄

k
i ))

(x̄k
i , x̄

k
j )

(a) Current LP point

xj

xi

(xt
i, x

t
j)

(x̄k
i , x̄

k
j )

(b) Closest point on the curve

Figure 2. Refining the linear approximation of the convex function xj = exi .

In general, the quality of the linearization of xj = ϑj(x) improves when the
bounding box of x is reduced. This suggests that an sBB approach is well suited
to solve MINLP problems: partitioning a problem into two subproblems is likely
to improve the linearization, and therefore the lower bound, of both of them.

4. Bounds tightening

Bounds tightening (BT) for a variable xi is the process of reducing the interval
[xl

i, x
u
i ] while guaranteeing that the optimal value of the problem is not changed.

As a result, one gets a reduction of the solution set and an improved linearization.
BT is performed by propagating the constraints’ effect to the variable bounds in
various ways [37, 57, 67]. As BT procedures are of varying complexity, the most
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time consuming ones are not performed at all sBB nodes but only at the root node
or up to a limited depth. One such procedure is the Optimality-Based Bounds
Tightening (OBBT). It formalizes and solves auxiliary optimization problems in
order to tighten the variable bounds as much as possible [45, 66, 75].

Fast bounds tightening procedures can instead be performed at all sBB nodes.
The usual procedures are similar to interval propagation in Constraint Program-
ming (CP) and are known in the Global Optimization literature as Feasibility-
Based Bounds Tightening (FBBT) [21, 45, 54, 74, 75, 81]. couenne implements
both OBBT and FBBT, as well as reduced cost bounds tightening, a well-known
LP based technique [68, 69].

4.1. Optimality-based bounds tightening

OBBT uses the existing linearization LPk to improve the bounding box [74]. Con-
sider the bounding box Bk = [xl,k, xu,k] of Pk and the solution set of the lineariza-
tion, XLPk

:= {x ∈ Bk : Ax ≥ b}. The following are valid bounds for any variable
xi:

min{xi : x ∈ XLPk
} ≤ xi ≤ max{xi : x ∈ XLPk

}.

While this procedure is useless in MILP, in MINLP the bounds tightened by
OBBT provide extra information that is in turn used to improve the linearization.
OBBT requires solving at most 2(n+ q) LP problems. Normally, it is applied only
at the root node; in couenne, however, it may also be applied at other nodes of
the sBB tree up to a limited depth defined by the value of the parameter Lobbt,
typically less than 10. For nodes at depth λ > Lobbt, couenne applies OBBT with
probability 2Lobbt−λ.

4.2. Feasibility-based bounds tightening

The FBBT procedure takes as input the reformulation Pk at node k and a bounding
box Bk = [xl,k, xu,k], and returns tighter bounds (including, possibly, a better lower

bound for xl,k
n+q, i.e. on the objective function) or proves that Pk is infeasible, or

that its lower bound is above the best feasible solution. In the remainder of the
paper, we drop the notation Bk = [xl,k, xu,k] and xl,k

n+q in favor of the more compact

B = [xl, xu] and xl
n+q when it is clear from the context.

FBBT allows the creation or refinement of a tighter linearization of a MINLP.
Its low computational cost makes it a useful procedure to be applied at every sBB
node. The trade-off is that FBBT provides in general weaker bounds than the ones
obtained from OBBT. Another main difference is that FBBT relies on Pk rather
than on LPk to tighten the bounds. We also use FBBT in other settings than
described in this section (see Sections 4.3 and 6).

Consider the reformulation P and the directed acyclic graph G = (V,A) associ-
ated with it (see Section 3.2). Graph G provides a straightforward way to connect
the change in the bounds of a variable of P with the rest of the problem. For
instance, if the bounds of a variable xi (i ∈ N) change, the bounds on all variables
depending on xi may also change. This upward propagation of the bounds is easily
done by checking all nodes {i ∈ V : (i, j) ∈ A}. The tightened bounds can, in
turn, trigger other bound changes that are checked by repeating this procedure.
This allows the tightening of bounds of all variables using those of the original
variables.
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Consider a variable defined as xi = ϑi(x) with x ∈ B. The bounds on x are used
to derive a tighter bound on xi by applying techniques of interval arithmetics on
the operator ϑi(·):

min
x∈B

ϑi(x) ≤ xi ≤ max
x∈B

ϑi(x).

This can be done in the reverse direction, giving a downward propagation whereby
a change in the bounds of a variable xi triggers a change in the bounds of all
variables on which xi depends, i.e., all nodes in {j ∈ V : (i, j) ∈ A}. In fact, if
the bounds on xi do not depend only on those of x and ϑi(·) but are also given
explicitly as branching rules, constraints, or an upper bound x̂n+q, tighter bounds
may be inferred on x. In MILP, a special case of this procedure allows tightening
of the bounds of a set of variables in a bounded linear expression. Suppose xh+1 =

a0 +
∑h

i=1 aixi, where xl
i ≤ xi ≤ xu

i for all i ∈ {1, 2, . . . , h, h + 1}. Let us denote
H+

i = {j ∈ 1, 2, . . . , h : j 6= i, aj > 0} and H−
i = {j ∈ 1, 2, . . . , h : j 6= i, aj < 0}.

Then a common preprocessing step is as follows:

∀i ∈ {1, 2, . . . , h} : ai > 0, xi ≥
1
ai

(
xl

h+1 −
∑

j∈H+

i
ajx

u
j −

∑
j∈H−

i
ajx

l
j − a0

)
,

xi ≤
1
ai

(
xu

h+1 −
∑

j∈H+

i
ajx

l
j −

∑
j∈H−

i
ajx

u
j − a0

)
;

∀i ∈ {1, 2, . . . , h} : ai < 0, xi ≥
1
ai

(
xu

h+1 −
∑

j∈H+

i
ajx

l
j −

∑
j∈H−

i
ajx

u
j − a0

)
,

xi ≤
1
ai

(
xl

h+1 −
∑

j∈H+

i
ajx

u
j −

∑
j∈H−

i
ajx

l
j − a0

)
.

In general, for a variable xh+1 = ϑh+1(x1, x2, . . . , xh), one aims at improving the
bounds of each xi, i = 1, 2, . . . , h, by using the bounds of xh+1 and of all other
variables in the expression:

xi ≥ min{xi : x ∈ B,xl
h+1 ≤ ϑh+1(x1, x2 . . . , xh) ≤ xu

h+1} ∀i = 1, 2 . . . , h,

xi ≤ max{xi : x ∈ B,xl
h+1 ≤ ϑh+1(x1, x2 . . . , xh) ≤ xu

h+1} ∀i = 1, 2 . . . , h.

For monotone, univariate functions xj = ϑj(xi), this simplifies to

xl
j ≤ xj ≤ x

u
j ⇒

{
ϑ−1

j (xl
j) ≤ xi ≤ ϑ

−1
j (xu

j ) if ϑj(·) is increasing,

ϑ−1
j (xu

j ) ≤ xi ≤ ϑ
−1
j (xl

j) if ϑj(·) is decreasing,

while the procedure is more involved for multivariate operators. The procedure,
which consists of repeatedly alternating upward and downward bound propagation,
is sketched in Table 2. Notice that a limit max iter on the number of iterations
is set as an iteration may produce only very small improvements. For example,
consider two constraints x1 = ax2 and ax1 = x2, with 0 < a < 1 and both
variables bounded in [0, 1]. Although the only feasible value is (0, 0), at iteration p
the bounds on both x1 and x2 are tightened to [0, a−p], thus making the procedure
enter an infinite loop. The complexity of each iteration of the do-while loop in Table
2 can be estimated as linear in the number of variables as long as only univariate
and bivariate functions are used in P.

Consider again the DAG G = (V,A) associated with P. An iteration of the
procedure outlined above scans the DAG from the bottom up, starting from the
nodes with no outgoing arcs, whose variables have bounds as given initially or
changed through branching rules. Then the downward pass is performed, where
the bounds on the variables with no entering arcs are used to infer tighter bounds
on other variables.
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Input problem P, initial bounding box B0

Output tightened bounding box B
B ← B0

iter ← 0
do

tightened ← false
apply upward propagation to (P, B)
if infeasible, return ∅
if at least one bound has tightened

apply downward propagation to (P, B)
if infeasible, return ∅
if at least one bound has tightened,

tightened ← true
iter ← iter +1

while iter < max iter ∧ tightened = true
return B

Table 2. Feasibility-based Bounds tightening (FBBT).

4.3. Aggressive FBBT

Suppose that, at an sBB node k with bounding box B = [xl, xu], a local minimum
x̂k ∈ B of CPk is known. In order to check if it is worth restricting the search
around x̂k, FBBT is applied to portions of B that exclude x̂k. The portions yielding
a problem that is infeasible or a lower bound above the cutoff value (the objective
value at x̂k) can be excluded, and tighter bounds are obtained.

couenne implements this on a per-variable basis: for each variable xi, FBBT
is applied to the fictitious bounding box B ∩ {x : xi ≤ x̃i}, where a suitable x̃i is
chosen in ]xl

i, x̂
k
i [. If the resulting problem is infeasible or has lower bound above the

best upper bound, then x̃i ≤ xi ≤ xu
i is a valid tightening. Analogously, if a value

x̃i ∈ ]x̂k
i , x

u
i [ is chosen and the FBBT applied to the bounding box B∩{x : xi ≥ x̃i}

proves that the problem is infeasible, then the tightening xl
i ≤ xi ≤ x̃i is valid.

This technique, called Aggressive Bounds Tightening (ABT), is analogous to
probing techniques used in both MILP [72] and MINLP [78]. Similarly to OBBT,
ABT is also time consuming as it requires several executions of FBBT for each
variable of Pk; also, it may require a call to an NLP solver for computing a new
local optimum if one is not available in the bounding box B. It is used in all nodes
of the sBB tree up to a certain depth, specified by a parameter Labt that is typically
2 in couenne, and with probability 2Labt−λ for nodes at depth λ > Labt.

4.4. Reduced-cost bounds tightening

Reduced-cost bounds tightening, introduced for solving MILP problems [59], has
also been developed for MINLP [68, 69]; we briefly describe it here. Assume we are
given a lower bound z̄k for Pk, an upper bound ẑ for P, both finite, an optimal
solution x̄k to LPk, and the vector of (nonnegative) reduced costs (di)i=1,2,...,n+q.
For each i such that x̄k

i is one of the bounds for xi, the following tightening is valid:

x̄k
i = xl

i, di > 0 ⇒ xi ≤ x
l
i + ẑ−z̄k

di
,

x̄k
i = xu

i , di > 0 ⇒ xi ≥ x
u
i −

ẑ−z̄k

di
.
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5. Branching techniques

An effective branching strategy aims at minimizing the size of the sBB tree and
can strongly affect the performance of an sBB algorithm. As it is difficult to predict
the size of the sBB tree for a given strategy, surrogate criteria are used to design
branching strategies: an sBB node k is partitioned

• to improve the lower bound of the resulting two (or more) subproblems, or
• to create subproblems of similar difficulty to keep the sBB tree balanced, or

• to eliminate a portion as large as possible of the solution set.

These three goals conflict with one another, and putting emphasis on one or
the other leads to alternative branching strategies that appear to be reasonable.
Empirical testing of these strategies is then necessary to evaluate their performance.

If the lower bound x̄k
n+q of an sBB node Pk is smaller than the best known

feasible solution value and x̄k is infeasible for Pk, branching may be required. In
this section, we only consider branching on a variable, although other branching
strategies are possible. When branching on a variable, one picks a variable xi, a
lower branching point Bl, and a upper branching point Bu with Bl ≤ Bu. The two
subproblems generated by branching are obtained by adding the constraint xi ≤ Bl

in the first one and xi ≥ Bu in the second one.
If xi is an integer variable but the value x̄k

i is fractional, a usual choice is Bl =
⌊x̄k

i ⌋ and Bu = ⌈x̄k
i ⌉. This is the simple branching scheme for MILP described in

Section 1. If xi is a continuous variable, it might be necessary to branch on xi as
illustrated in the following example. Consider the function xj = ϑj(xi) = x2

i and
an LP solution x̄k. Assume that (x̄k

i , x̄
k
j ) is inside the linearization of xj = x2

i and

that x̄k
j > (x̄k

i )
2 (see Figure 3a). As (x̄k

i , x̄
k
j ) is not separable with a linearization

cut, branching is necessary. Here, branching is carried out on xi with Bl = Bu = xb
i

and it results in two linearizations, both excluding (x̄k
i , x̄

k
j ) (see Figure 3b).

xl
i xu

i

xj

xi

x2
i

(x̄k
i , x̄

k
j )

(a)

xl
i xu

i

xj

xi

xb
i

x2
i

(x̄k
i , x̄

k
j )

xvl
i xvu

i

(b)

xl
i xu

i

xj

xi

xb
i

x2
i

π− π+

(x̄k
i , x̄

k
j )

(c)

Figure 3. Branching on a nonlinear expression.

The decisions to be made when branching are (i) the selection of the branching
variable and (ii) the choice of branching points. In MILP, while the latter is trivial,
the former is driven by the aim of reaching a feasible solution as soon as possible:
one selects an integer variable xi whose value x̄k

i is fractional, i.e. a variable that
violates one of the constraints that were relaxed. A similar decison can be taken in
the MINLP case. However, it could happen that x̄k

i is integer for all i ∈ NI , while
x̄k is not feasible for Pk, as illustrated in Figure 3. It is thus necessary to introduce
a measure of infeasibility for a continuous variable xi.
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If xi = ϑi(x) is a constraint of P, we define the ϑi-infeasibility of an auxiliary
variable xi at node k as the discrepancy between x̄k

i and ϑi(x̄
k), scaled with the

norm of the gradient of ϑi(·) at x̄k, and denote it with Ui(x̄
k) = |x̄k

i −ϑi(x̄k)|
1+||∇ϑi(x̄k)||2

.

Scaling Ui with 1 + ||∇ϑi(·)||2 avoids selecting a variable xi with a small bound
interval [xl

i, x
u
i ] (unlikely to improve the linearization if selected for branching) but

with a large |x̄k
i −ϑi(x̄

k)|. For example, consider xi = exj with xj ∈ [M,M + ǫ] and
M = 20, ǫ = 10−3; a linearization of xi = exj contains a point (x̄k

j , x̄
k
i ) such that

x̄k
i − e

x̄k
j = eM+ǫ/2(eǫ/2 − 1) ≈ 60, and which is in general proportional to eM ; the

scaled measure is eǫ/2(eǫ/2 − 1) ≈ ǫ/2, independent of M .
The concept of ϑi-infeasibility has a direct parallel in MILP: given a solution x̄k

to a linear relaxation, an integer variable xi has infeasibility Ui(x̄
k) = min(x̄k

i −
⌊x̄k

i ⌋, ⌈x̄
k
i ⌉ − x̄

k
i ), and a solution is (integer) feasible when all variables have zero

infeasibility. In the MINLP case, x̄k is feasible if and only if all integer variables
have integer values, and the infeasibility of all variables is 0.

5.1. Branching-variable selection

Branching variable selection in couenne is subject to priorities. Integer variables
have higher priority than continuous variables, hence if there are integer variables
with a fractional value in x̄k, one of them is chosen for branching. The selection of
integer variables for branching is out of the scope of this work; suffice it to say that
couenne applies standard MILP techniques to select integer branching variables.

From now on, we assume that no integer variable has fractional value and that
continuous variables are the only candidates for branching. The key difference with
MILP branching is that the infeasibility of a continuous variable is the outcome
of a violated (nonlinear) definition of a variable, xi 6= ϑi(x). Further notation is
needed: we define the dependence set of xi, denoted as D(xi), the set of variables
in x on which xi depends directly, that is, the set of variables appearing in ϑi(x).
For instance, if x37 = x5x11, then D(x37) = {x5, x11}, regardless of x5 or x11 being
auxiliary variables themselves or not. The infeasibility of a continuous variable
can hence be associated with xi itself or with all variables of D(xi). Because the
result of the decision process must be a variable rather than an expression, we have
chosen a measure that is associated with each variable xi, and that is related to
all expressions depending on it. To this purpose, consider a variable xi and the set
E(i) = {j ∈ N : xi ∈ D(xj)} of variables depending on xi; we define the nonlinear
infeasibility as the following linear combination:

ΩN
i (x̄k) = µ1

∑
j∈E(i)Uj(x̄

k)+

+µ2 maxj∈E(i)Uj(x̄
k)+

+µ3 minj∈E(i)Uj(x̄
k),+

with parameters µk ≥ 0, k = 1, 2, 3 and µ1 + µ2 > 0 to ensure that x̄k is infeasible
if and only if ΩN

i (x̄k) > 0 for at least one variable xi. couenne uses (µ1, µ2, µ3) =
(0.1, 1.3, 0.8). A simple branching variable selection procedure, that we call br-
plain, returns the variable xi with largest ΩN

i (x̄k). However, as ΩN
i (x̄k) is hardly

correlated with the improvement of the lower bound that the two new subproblems
would return when branching on xi, a more sophisticated choice is advised. This is
similar to the observation that for MILP problems, branching on the most fractional
variable is a poor choice [2].

To this purpose, we implemented two strategies: the first one, Violation Transfer,
described in the next section, has been proposed by Tawarmalani and Sahinidis [79].
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The second one, reliability branching, is an extension of the reliability branching in
MILP and is discussed in Section 5.3.

5.2. Violation Transfer

Tawarmalani and Sahinidis [78], [79, §6.2.1] present an algorithm, called Violation
Transfer, to estimate the impact of a variable on the current status of the problem,
when all other variables are fixed.

Violation Transfer works with the Lagrangian function of a relaxation of Pk,
defined as Lk(x) = f̄(x) +

∑
j∈H πj ḡj(x), where πj’s are nonnegative multipliers

while f̄(x) and ḡj(x), j ∈ H give a convex relaxation min{f̄(x) : ḡj(x) ≤ 0, j ∈ H}
of Pk. It also assumes that a solution x̄k to that relaxation is given.

The smallest interval [xvl
i , x

vu
i ] ⊆ [xl

i, x
u
i ] containing x̄k

i is sought such that, for
each j ∈ E(i), there exists a point x̃ij in [xvl

i , x
vu
i ] such that x̄k

j = ϑj(x̃ij). In other

words, given the feasible solution x̄k, all variables xj defined as functions of xi

are feasible for at least one point in the interval. Figure 3b depicts the interval
I0 = [xvl

i , x
vu
i ] for nonlinear xj = (xi)

2. If other variables xj1 , xj2 , . . . , xjh
depend

on xi, the smallest interval containing all corresponding values x̃ij is chosen.
Then, the maximum and the minimum of Lk(x) are estimated on the set Xi

R =
{x : xj = x̄k

j ∀j 6= i, xi ∈ [xvl
i , x

vu
i ]}; notice that here all variables are fixed except

xi. The assumption is that branching on a variable xi for which these minima and
maxima are far apart is likely to improve the lower bound in the two subproblems.
If a linear relaxation min{xn+q : ajx ≥ bj, j ∈ H} is considered, then f̄(x) = xn+q,
ḡj(x) = bj−ajx. Assume that π is the vector of optimal dual variables of the linear
constraints. Denoting γvt

i = xvu
i −x

vl
i , an estimate of the change in the lower bound

is made through a linear optimization problem on a segment, Xi
R:

Ω̃vt
i = maxx∈Xi

R
Lk(x)−minx∈Xi

R
Lk(x) =

= maxx∈Xi
R

(
f̄(x) +

∑
j∈H πj ḡj(x)

)
−minx∈Xi

R

(
f̄(x) +

∑
j∈H πj ḡj(x)

)
=

= maxx∈Xi
R

(
xn+q +

∑
j∈H πj(bj − ajx)

)
−minx∈Xi

R

(
xn+q +

∑
j∈H πj(bj − ajx)

)
=

(⋆) = maxxi∈[xvl
i ,xvu

i ]

(
−

∑
j∈H πjaji

)
xi −minxi∈[xvl

i ,xvu
i ]

(
−

∑
j∈H πjaji

)
xi =

=
∣∣∣
(
xvu

i − x
vl
i

) ∑
j∈H πjaji

∣∣∣ =

= γvt
i

∣∣∣
∑

j∈H πjaji

∣∣∣ ,

where (⋆) holds because all dropped terms are constant within Xi
R. The term∣∣∣

∑
j∈H πjaji

∣∣∣ is the absolute value of the reduced cost of variable xi in LPk, which

has zero coefficient in the objective function. This algorithm is hence similar to
reduced cost branching, where the non-zero reduced cost of variable xi is weighted

with γvt
i . As an alternative to the absolute value of the reduced cost,

∣∣∣
∑

j∈H πjaji

∣∣∣,
Tawarmalani and Sahinidis [79] use

∑
j∈H |πjaji|. Accordingly, we define

Ωvt
i = γvt

i

∑
j∈H |πjaji|

and select the variable with largest Ωvt
i for branching in couenne.

5.3. Reliability branching

Strong Branching, introduced by Applegate et al. [11] in the 1990s for solving



15

Traveling Salesman problems, is a procedure to select a branching rule among a
set of candidates. We first give a simplified description of strong branching in the
case of MILP.

Consider a MILP problem whose n variables are integer, ILP : min{cx :
x ∈ X ∩ Zn}, where X = {x ∈ Rn : Ax ≥ b}. Let x̄ be an optimal so-
lution of its linear relaxation LP : min{cx : x ∈ X}. Assume that the set
F = {i : x̄i /∈ Z} is nonempty. For each i ∈ F , we potentially can branch on xi,
creating subproblems with relaxations LP (i,−) : min{cx : x ∈ X,xi ≤ ⌊x̄i⌋} and
LP (i,+) : min{cx : x ∈ X,xi ≥ ⌈x̄i⌉}. The strong branching procedure solves, for
all i ∈ F , LP (i,−) and LP (i,+) obtaining their respective optimal values z(i,−)
and z(i,+). It then computes a score associated with each potential branching and
selects the variable with highest score. The score is computed as follows: Denote
ϕ−

i and ϕ+
i the nonnegative improvements in the optimal values associated with

the two subproblems, i.e., ϕ−
i = z(i,−) − cx̄ and ϕ+

i = z(i,+) − cx̄. The score for
branching on variable xi is then

αmax{ϕ−
i , ϕ

+
i }+ (1− α)min{ϕ−

i , ϕ
+
i } (1)

where the weight α ∈ [0, 1] is found empirically [2] and is set to 0.15 in couenne.
Strong branching is very efficient in reducing the size of the enumeration tree

in MILP, but requires a lot of time. Variants to improve speed while not degrad-
ing performances too much, such as solving the subproblems with a limit on the
number of dual simplex pivots, can be used. Another possibility is to estimate the
effect of branching rules using pseudocosts [15], avoiding the solution of several
LPs at each node. One of the most commonly used techniques today is reliability
branching, introduced by Achterberg et al. [2]: strong branching is only applied to
the initial nodes of the enumeration tree. Then, statistics are collected to estimate
the improvement of the lower bound per unit of change in a branching variable;
these estimates are called pseudocosts and are used in subsequent nodes instead of
computing ϕ−

i and ϕ+
i . More precisely, after strong branching is performed at the

root, the pseudocosts for variable xi are initialized to:

ψ−
i =

ϕ−
i

x̄i − ⌊x̄i⌋
, ψ+

i =
ϕ+

i

⌈x̄i⌉ − x̄i
.

notice that the change in the lower bound is divided by the change of the branching
variable, δ−i = x̄i − ⌊x̄i⌋ and δ+i = ⌈x̄i⌉ − x̄i. This scaling yields a measure that is
independent of the distance of x̄i to the closest integer.

In general, pseudocosts are initialized using the information provided by strong
branching at the low-depth sBB nodes, and updated using the optimal values of the
relaxations corresponding to actual nodes of the sBB tree as follows. After selecting
a branching variable xi and performing the actual branching, the pseudocosts ψ−

i
and ψ+

i are updated by averaging the change in the lower bound per unit of change
in the branching variable. At any point of the enumeration, consider the sets K−

i
and K+

i of sBB nodes that result from applying the branching rules xi ≤ xb
i and

xi ≥ x
b
i , respectively, on variable xi; consider also the resulting change in the lower

bounds, ψk−
i and ψk+

i , and the multipliers δk−
i and δk+

i , obtained when creating
nodes of K−

i and K+
i . Then the current pseudocosts for xi are given by:

ψ−
i =

1∣∣K−
i

∣∣
∑

k∈K−

i

ϕk−
i

δk−
i

ψ+
i =

1∣∣K+
i

∣∣
∑

k∈K+

i

ϕk+
i

δk+
i

.
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As soon as |K−
i | and |K+

i | are large enough, pseudocosts ψ−
i and ψ+

i for xi are
deemed reliable and are no longer updated.

Pseudocosts are computed at the first nodes of the sBB algorithm and used to
estimate the improvement of the objective function for a given branching variable.
We provide here a simplified presentation where pseudocosts are only computed
at the root node and updated at all other nodes. Suppose that the solution x̄k

to the relaxation LPk of a subsequent node Pk is fractional, and the fractional
components of x̄k are indexed by F ′ ⊆ {1, 2, . . . , n}. Then the branching variable
is selected as in (1), where the improvements are not computed by solving an LP,
but estimated by multiplying the pseudocosts by δk−

i = (x̄k
i − ⌊x̄

k
i ⌋) and δk+

i =
(⌈x̄k

i ⌉ − x̄
k
i ):

ϕ−
i = ψ−

i δ
k−
i , ϕ+

i = ψ+
i δ

k+
i .

5.4. Pseudocosts in MINLP

Generalizing pseudocosts for integer variables in MINLP problems is immediate,
as the same method described in the previous section can be used. However, the
fact that branching on continuous variables might occur requires modification of
the use of the pseudocosts, and in particular of the multiplying factors δk−

i for ψ−
i

and δk+
i for ψ+

i at node Pk, values that cannot be set to δk−
i = (x̄k

i − ⌊x̄
k
i ⌋) and

δk+
i = (⌈x̄k

i ⌉ − x̄
k
i ).

For MILP, we can interpret δk−
i and δk+

i as the predicted change of xi in the
LP solutions of the subproblems generated by the branching rule. For MINLP,
however, branching rules applied at node Pk do not imply a nonzero change in the
value of xi. Indeed, when branching on a continuous variable xi, it might happen
that the optimal solution of one of the subproblems (and even both of them when
x̄k

i is the branching point) still has xi = x̄k
i .

Consider a candidate variable xi and a branching point xb
i ∈ [xl

i, x
u
i ]. Also, de-

fine x̄k− and x̄k+ the solutions of the linear relaxation at the left and the right
subproblems, respectively. We study five definitions of δk−

i for ψ−
i and δk+

i for ψ+
i :

rb-inf: δk−
i = δk+

i = Ωi(x̄
k): the multipliers are both set to the infeasibility

of a variable, analogously to MILP.
rb-int-br: δk−

i = xb
i − x

l
i; δk+

i = xu
i − x

b
i . This strategy considers the new

range of xi when estimating the improvement in the lower bound. When
xl

i or xu
i are infinite, the corresponding multiplier is set to Ωi(x̄

k). This
measure takes into account the size of the feasible set of each subproblem
(when projected on xi). There are three variants of rb-int-br:
• rb-int-br-rev: δk−

i = xu
i − xb

i ; δk+
i = xb

i − xl
i. This inverts rb-int-br

and accounts for situations where the half-intervals are unbalanced: if
xb

i ≈ xu
i , the right branch is a much tighter problem with a (possibly)

much better lower bound, as opposed to the left branch which is almost
unchanged. This suggests that the multiplier of the pseudocost should be
larger for the right branch and smaller for the left branch.

• rb-int-lp and rb-int-lp-rev: the multiplier is computed based on the LP
point x̄k

i rather than xb
i , i.e., δk−

i = x̄k
i − x

l
i; δk+

i = xu
i − x̄

k
i and δk−

i =

xu
i − x̄

k
i ; δk+

i = x̄k
i −x

l
i, respectively. To avoid null multipliers when x̄k

i is
at one of the bounds, the actual value used is max{min{x̄k

i , x
u
i −ρ}, x

l
i+ρ}

where ρ = β(xu
i − x

l
i) and 0 < β < 1

2 . In couenne, β is set to 0.05.

rb-lpdist: δk−
i = ||x̄k − x̄k−||2; δk+

i = ||x̄k − x̄k+||2, i.e., the Euclidean dis-
tance between the LP solution of the parent node and that of the subprob-
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lem. This is only available when updating the pseudocosts, after solving
the LP of the new subproblem; also, this gives an estimate of the change
for the vector x rather than only for xi.

rb-proj: Consider Figure 3c, where branching on xi at xb
i results in two

new linearizations. Each contains the projection onto the (xi, xj) space of
the linearization obtained after the respective branching. A lower bound
on the distance between the previous LP point (x̄k

i , x̄
k
j ) and the two

new linearizations is the distance between (x̄k
i , x̄

k
j ) and π− = (xπ−

i , xπ−
j ),

π+ = (xπ+
i , xπ+

j ), therefore δk−
i = ||(x̄k

i , x̄
k
j ) − (xπ−

i , xπ−
j )||2; δk+

i =

||(x̄k
i , x̄

k
j )− (xπ+

i , xπ+
j )||2. If other variables than xj depend on xi, the max-

imum distance among all these variables is considered.
rb-vt: Consider the interval γvt

i = xvu
i − x

vl
i used in Violation Transfer (see

Section 5.2). The multipliers are set to δk−
i = xb

i − x
vl
i and δk+

i = xvu
i − x

b
i .

5.5. Branching-point selection

We tested three branching point selection strategies. For the sake of simplicity,
consider a branching variable xi appearing in one single expression xj = ϑj(xi),
and assume that xi is continuous. One seemingly desirable attribute for a branching
rule is that the resulting sBB subtree be balanced, hence a reasonable branching
point selection is based on the areas of the resulting linearizations (See Fig. 4b).

LP-based strategy. An obvious goal of branching is to make sure that x̄k becomes
infeasible in both subproblems. Selecting branching point x̄k

i for a variable xi with
positive infeasibility will ensure that, as the linearization is exact at the bounds of
xi. However, selecting a branching point too close to the bounds is likely to create
a very easy subproblem and a very hard one (see Figure 4a). Thus, for a variable xi

with bounds [xl
i, x

u
i ] it is usual [78] to use as branching point a convex combination

of x̄k
i and the midpoint xm

i = 1
2(xl

i + xu
i ). Therefore, a selection strategy that

guarantees a minimum distance from the variable bounds is as follows:

xb
i = max{xl

i + b,min{xu
i − b, αx̄

k
i + (1− α)xm

i }}, (2)

where 0 < α < 1 and b = β(xu
i − x

l
i) for 0 < β < 1

2 . couenne sets α and β to 0.25

and 0.2, respectively — notice that this default setting makes xl
i + b and xu

i − b
irrelevant in (2). This strategy aims at balancing the half-intervals of xi as a way
to balance the difficulty of the subproblems.

If a local optimum x̂k is known, x̂k
i can be chosen as a branching point for variable

xi. This technique proves to be effective in some cases, as shown by Shectman and
Sahinidis [74]. They describe a separable concave minimization problem for which
the branching point is chosen as the value of variables at a local minimum. The
resulting convexification, which is exact at the new bounds enforced by branching,
happens to return a solution x̄k very close to x̂k and thus quickly closes the gap.

Expression-based strategies. Consider a convex, univariate function, xj = ϑj(xi),
and a set of linearization inequalities, LP = {(xi, xj) : ahxi + bhxj ≤ ch, h =
1, 2 . . . ,H}; for brevity, we denote it as LP = {(xi, xj) : axi + bxj ≤ c} with a =
(ah)Hh=1, b = (bh)Hh=1, and c = (ch)Hh=1 vectors of order H. For a branching variable
xi, we consider the impact of the branching point xb

i on the two linearizations that
arise from branching on xi, i.e., LP ′ = {(xi, xj) : a′xi + b′xj ≤ c′} from xi ≤ xb

i
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Figure 4. Strategies for selecting a branching point.

and LP ′′ = {(xi, xj) : a′′xi + b′′xj ≤ c
′′} from xi ≥ x

b
i , with vectors a′, b′, c′ of size

H ′ and vectors a′′, b′′, c′′ of size H ′′.
Branching is required when x̄k

j > ϑj(x̄
k
i ), as illustrated in Figure 3. The branching

point determines the shape and area of LP ′ and LP ′′. If one aims at reducing the
sum of the areas of the resulting convexification, a minimum-area strategy can be
applied. Note that this is equivalent to maximizing the area of LP that is cut by
the subsequent linearizations. As ϑj is convex, this branching point is the unique

solution of ∂ϑj

∂xi
(xi) = ϑ̇j(xi) = ϑj(xl

i)−ϑj(xl
i)

xu
i −xl

i

, namely

xb
i = ϑ̇−1

j

(
ϑj(x

l
i)− ϑj(x

l
i)

xu
i − x

l
i

)
. (3)

This is the point on the curve, (xb
i , ϑj(x

b
i )), with maximum distance from the line

defining the upper envelope of ϑj(xi) in the interval [xl
i, x

u
i ]. The implementation

for univariate functions is straightforward. For bilinear terms xk = xixj, it can be
shown that the minimum volume of the resulting linearization is attained when
branching on either xi or xj at the middle of the bound interval [14].

We point out that minimizing the sum of the areas of LP ′ and LP ′′ may help
reduce the search space of the problem, but it does not necessarily make solving the
subproblems of similar difficulty. The strategy described below aims at balancing
the linearization areas. As discussed in Section 3, one inequality for each of LP ′

and LP ′′ is the upper envelope of ϑj; let us denote them as a′0xi + b′0xj ≤ c′0 and
a′′0xi + b′′0xj ≤ c

′′
0 , respectively — note that the coefficients depend on xb

i . Suppose
that xb

i is known; for any point xi ∈ [xl
i, x

b
i ] (resp. [xb

i , x
u
i ]), let us define u′(xi)

(resp. u′′(xi)) as the distance between (xi, ϑj(xi)) and the line a′0xi + b′0xj = c′0
(resp. a′′0xi + b′′0xj = c′′0):

u′(xi) =
c′0 − a

′
0xi − b

′
0ϑj(xi)√

(a′0)
2 + (b′0)

2
u′′(xi) =

c′′0 − a
′′
0xi − b

′′
0ϑj(xi)√

(a′′0)
2 + (b′′0)

2
.

The value of xi that maximizes u′(xi) is obtained from (3) on the half-interval
[xl

i, x
b
i ]. Analogously we obtain a value maximizing u′′(xi). A balanced strategy finds

a branching point through a binary search on the interval [xl
i, x

u
i ] that minimizes

the difference between the maximum u′(xi) and the maximum u′′(xi), i.e.,

xb
i ∈ argmin

∣∣∣∣ max
xi∈[xl

i,x
b
i ]
u′(xi)− max

xi∈[xb
i ,x

u
i ]
u′′(xi)

∣∣∣∣ .
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This strategy aims at balancing the maximum distance between the points on ϑj(·)
and the upper envelope, rather than the areas of the resulting linearizations (see
Figure 4c).

6. Upper bounds

If an optimal solution x̄k to LPk is infeasible for Pk, we may try to compute a
feasible solution x̂k by applying an NLP solver with an initial point x0 to a modified
problem in which all integer variables xi for i ∈ NI are fixed to integer values.

We find this initial point by repeated calls to FBBT: if x̄k
i is integer, then x0

i = x̄k
i ;

otherwise, FBBT is applied to two problems Pk(i,−) and Pk(i,+), where x0
i is

set to ⌊x̄k
i ⌋ in Pk(i,−) and to ⌈x̄k

i ⌉ in Pk(i,−)′i. If the resulting lower bound in
Pk(i,−) is smaller than in Pk(i,+) or if Pk(i,−)′i is infeasible, then x0

i = ⌊x̄k
i ⌋, and

analogously if the opposite happens. If both Pk(i,−) and Pk(i,+) are infeasible,
the procedure terminates without result. This procedure is explained in full detail
in a forthcoming paper [14]. To avoid excessive calls to the NLP, this procedure is
used at all nodes up to a certain depth Lnlp of the sBB tree, which is set to 2 by
default in couenne. At a depth λ beyond Lnlp, it is used with probability 2λ−Lnlp .

7. Computational tests

We compare several variants of couenne with combinations of bounds tightening
and branching techniques. We first compare our sBB with and without all tight-
ening methods described above, to assess the utility of each independently. Then,
we test our implementations of reliability branching against the better known Vi-
olation Transfer algorithm and against a very plain branching scheme. We also
briefly report on the branching point selection strategies described in Section 5.5.
Finally, we compare couenne with one of the state-of-the-art packages for Global
Optimization, baron [71]; see Section 7.3.

Our testbed consists of 84 instances from publicly available MINLP libraries:

minlplib: a collection of MINLP instances, convex and nonconvex [20];
Misc: various MINLP instances, two of them convex (CLay* [64]); barton is

a nonconvex MINLP for production planning in the natural gas industry;
airConduct is a 2D bin-packing problem for the design of air conducts [34];

conic MINLP: several Mixed-Integer Conic Programming problems from
the testbed of a MICP solver [83];

MacMINLP: a collection of MINLP problems, convex and nonconvex [43];
Nonconvex: a collection of nonconvex MINLPs [64];
MIQQP: Mixed-Integer quadratically constrained quadratic programs [55];

model qpsi.mod was used;
globallib: a collection of continuous NLP problems [51];
boxQP: continuous nonconvex box-constrained quadratic problems [82];
QCQP: continuous quadratically constrained quadratic programs [56];

among the three available models, qcqp.mod was used.

We also include six real-world instances of problems arising in Chemical Engi-
neering: nConvPl, a nonconvex MINLP for the design of a water treatment plant
[70], and five Hicks instances of a non-convex NLP problem of design and control
of a production plant [30]. Tables 3 and 4 below describe characteristics of the
problems: number of variables (var), of integer variables (int), of constraints (con),
and of auxiliary variables created (aux), i.e., |N \ N0|. A time limit of two hours
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for solving any instance is used in all tests.
couenne is available on the COIN-OR repository, and it is distributed

under the Common Public License [62]. A general description is given at
https://projects.coin-or.org/Bonmin/wiki/Boncouenne. The release used for the
tests is couenne-0.91. All tests reported below, except those that compare
couenne with baron, have been conducted on a Linux machine equipped with a
2GHz Opteron processor, 3 GB of memory, and gcc compiler version 3.3.3.

couenne relies on other programs, some of them Open-Source and part of the
COIN-OR software framework: continuous relaxations CPk are solved by ipopt

[84], while the sBB is implemented using routines of Cbc and the LP solver to
solve relaxations LPk is Clp. The generator of linearization inequalities is a spe-
cialization of the cgl library for cut generation. couenne also uses software not
from the COIN-OR framework: Blas, Lapack, routines ma27 and mc19 from hsl,
and the AMPL Solver Library (asl).

name var con aux name var con aux
GlobalLib (pure NLPs) [51]

qp1 50 2 1277 ex5 2 5 32 19 110
qp2 50 2 1277 ex5 3 3 62 53 113
qp3 100 52 52 foulds3 [32] 168 48 193

QCQP (qcqp.mod) [56]
dualc8 9 16 52 values 203 2 3824
dual4 76 2 2801 qbrandy 206 124 71
dual1 86 2 3560 qshare1b 221 111 91
dual2 97 2 4510 qetamacr 543 334 3012
qadlittl 97 54 129 gouldqp2 700 350 699
cvxqp1 s 101 51 397 primal4 1490 76 1565
cvxqp2 s 101 26 389 stcqp1 3159 1 4685
cvxqp3 s 101 76 406

Box QPs [82]
spar030-060-1 30 0 265 spar050-050-1 50 0 636
spar030-060-2 30 0 256 spar060-020-1 60 0 354
spar040-050-1 40 0 399 spar060-020-2 60 0 359
spar040-050-2 40 0 406 spar070-025-1 70 0 618
spar040-060-1 40 0 478 spar080-025-1 80 0 789
spar050-040-1 50 0 498 spar090-025-1 90 0 1012

Hicks [30]
Hicks 5 83 68 226 Hicks 50 848 698 2251
Hicks 10 168 138 451 Hicks 100 1698 1398 4501
Hicks 20 338 278 901

Table 3. NLP (continuous) instances used in the tests.

All tables report, for each instance and algorithm, either the running time if it is
below the two-hour time limit, or the lower bound in brackets, and the best upper
bound. A “–” means that no lower or upper bound is found after two hours, while
“NUM” indicates numerical problems.

We have added performance profiles [24] to illustrate the performance of each
variant of couenne. Performance profiles conveniently depict a comparison of a
set S of algorithms on a set Π of instances. For each algorithm s ∈ S and instance
p ∈ Π, we define tsp the solution time, or +∞ if s could not solve p within the time
limit. To compare running times, consider the minimum time tmin

p = mins∈S tsp;

1Available through svn at https://projects.coin-or.org/svn/Bonmin/branches/Couenne-0.9-candidate

https://projects.coin-or.org/Bonmin/wiki/Boncouenne
https://projects.coin-or.org/svn/Bonmin/branches/Couenne-0.9-candidate
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name var int con aux name var int con aux
MinlpLib [20]

nvs19 8 8 8 45 fo7 112 42 211 226
nvs23 9 9 9 55 no7 ar2 1 112 42 269 283
du-opt5 18 11 6 221 no7 ar3 1 112 42 269 283
du-opt 20 13 8 222 no7 ar4 1 112 42 269 283
tln5 35 35 30 56 o7 2 112 42 211 226
ex1252 39 15 43 68 enpro56pb 128 73 192 188
ex1233 48 12 52 121 eniplac 140 24 149 112
nous1 48 2 41 78 enpro48pb 154 92 215 206
nous2 48 2 41 78 tls5 161 136 90 111
tln6 48 48 36 73 tls6 213 177 120 151
ex1243 57 15 75 98 csched2 401 308 138 217
csched1 74 60 17 25 stockcycle 480 432 97 98
m6 84 30 157 170 cecil 13 733 117 686 670
ex1244 86 21 110 160 lop97icx 986 899 87 407

Nonconvex [64]
Synheat 53 12 65 150 par72 568 56 240 805
SynheatMod 53 12 61 148 c-sched-4-7 233 140 138 217
Multistage 185 18 265 226

MIQQP [55]
ibell3a 122 60 104 284 imisc07 260 259 212 957
ibienst1 505 28 576 541 iran8x32 512 256 296 1025

MICP [83] (conic MINLP)
robust 30 0 123 31 96 96 robust 30 1 123 31 96 96
shortfall 30 0 124 31 97 97 shortfall 30 1 124 31 97 97
classical 40 0 120 40 83 83 classical 40 1 120 40 83 83

MacMINLP, Nonconvex [43]
space-25 893 750 235 136 space-25-r 818 750 160 136
trimlon7 63 63 42 92 trimlon12 168 168 72 217

Misc
airConduct 102 80 156 157 nConvPl [70] 948 148 920 749
CLay0203H 90 18 132 211 barton [12] 818 23 987 823
CLay0204H 164 32 234 329

Table 4. MINLP instances used in the tests.

for each algorithm s ∈ S, the nondecreasing step-wise function

τsΠ(λ) =
∣∣{p ∈ Π : tsp ≤ λt

min
p }

∣∣

is the number of instances of Π solved by s in at most λ times the best time
performance on these instances by any algorithm in S. If the performance profile
of an algorithm s1 is higher than that of another algorithm s2 then s1 is preferable.

As many instances in our testbed could not be solved within the time limit, we
use performance profiles on a similar measure for the lower bound. Further notation
is needed; for an instance p ∈ Π:

rsp: the root-node lower bound, i.e. the solution of LP0 after one round of
linearization inequalities are generated;

z̄sp: the lower bound;
ẑsp: the best upper bound found by s;
z̄p = mins∈S:z̄sp>−∞ z̄sp: the overall smallest finite lower bound;
ẑp = mins∈S ẑsp: the overall best upper bound;
rp = mins∈S:rsp>−∞ rsp: the overall smallest finite root-node lower bound.

If all rsp are infinite, we set rp to z̄p. Instances where all z̄sp are infinite are ignored.
If no upper bound is known, we set ẑp = maxs∈S z̄sp. A normalized measure of the
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lower bound, lsp = ẑp−z̄sp

ẑp−rp
∈ [0, 1], describes the remaining gap for algorithm s on

instance p.
This measure aims at comparing the lower bounds rather than the overall perfor-

mance of a set of algorithms, thus ignoring the upper bound and the initial lower
bound found by each algorithm. Although these affect the performance — for in-
stance, the upper bound helps eliminate part of the solution set through bounds
tightening and pruning by bound — they are neglected as the purpose of this paper
is to study the effectiveness of branching rules and bounds tightening techniques.

In order to provide a fair comparison on the lower bound, we create performance
profiles considering the subset of instances of Π that no algorithm in S could solve
before the time limit, defined as Γ(Π) = {p ∈ Π : tmin

p = +∞}. Analogously to
performance profiles for CPU time, the nondecreasing step-wise function

µsΠ(λ) = |{p ∈ Γ(Π) : lsp ≤ λ}|

is the number of instances of Γ(Π) for which algorithm s has a remaining gap
at most λ. For these performance profiles as well, the higher µsΠ(λ), the better.
For all classes of instances and of algorithms, we show performance profiles with
both τsΠ(λ) and µsΠ(λ). Tables and graphs are presented for MINLP instances and
for continuous NLP instances separately. The best performances (running time or
remaining gap) are highlighted in bold in the tables, and so are those within the
10% of the best in order to neglect small differences. The time performance profiles
also report, in brackets, the number of instances that at least one algorithm could
solve within two hours, i.e., |Π \ Γ(Π)|, whereas the number of instances that no
algorithm could solve in two hours, i.e., |Γ(Π)|, is the highest point in the y-axis
of the remaining gap performance profile.

7.1. Bounds tightening tests

Tables 11, 12, and 13 report the comparison of the following variants of couenne:

no bt: no bounds tightening;
fbbt: FBBT only;
obbt: FBBT and Optimality-based bounds tightening (OBBT) with param-

eter Lobbt = 3 (see Section 4.1);
abt: FBBT and Aggressive Bounds Tightening (ABT) with parameter
Labt = 3 (see Section 4.3);

tuned: a standard setting with FBBT and where both OBBT and ABT are
active with Labt = 1 and Lobbt = 0.

Notice that FBBT is performed at all sBB nodes in all variants except the first.
The purpose of these tests is to show how different bounds tightening techniques
help improve the performance of couenne. The branching scheme used in all these
tests is the br-plain described at the end of Section 5.1.

From Tables 11 and 12, none of the variants seems to have an overall performance
significantly better or worse than the others in MINLP instances. Although the
no bt variant achieves the best performance in some instance, (e.g. m6, ibell3a
and ibienst1), it fails to find lower bounds in Multistage, csched1, and csched2,
shows numerical problems in ex1233, and has poor performance in c-sched-4-7 and
par72. The results for instance csched2 are in some contradiction to those for other
problems: the best bound is obtained with FBBT alone, while using ABT is of no
use and OBBT degrades the performance substantially, and consequently tuned,
which uses all of them, does not perform well either. Notice, however, that no bt
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fails to provide a lower bound.
In Table 13, it appears that the tuned variant, using a combination of OBBT,

ABT, and FBBT, performs better especially for the Hicks instances. Again, no bt
shows good performance in some of the instances but cannot find a lower bound
in the qp* instances.

The continuous Hicks instances suggest that each bounds tightening technique
can help improve the lower bound: although the contribution of each technique is
hard to quantify, OBBT appears to dramatically improve the lower bound when
paired with FBBT, but only when using all three of them (see column tuned), all
instances are solved before the time limit.

We ran extra tests on the same set of instances to compare the obbt variant with
one, called obbt-only, which never uses FBBT. The results can be summarized
as follows:

• three instances were solved by obbt-only and not by obbt before the time
limit; three other instances were solved by obbt and not by obbt-only before
the time limit;

• for three instances (Multistage, csched1, and csched2), obbt-only could not
find a finite lower bound, while obbt finds lower bounds for all instances;

• bounds and solution times were substantially better in obbt-only than in
obbt in nine cases, and viceversa in eleven;

• for all other instances, the results are similar.

Hence, the additional tightening given by FBBT has a limited impact on the
solution time, but it helps find a finite lower bound.
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Figure 5. Performance profiles for bounds tightening on MINLP instances. The number of instances that
at least one algorithm could solve within two hours, i.e., |Π \Γ(Π)|, is given in brackets in (a); the number
of instances that no algorithm solved in two hours, i.e., |Γ(Π)|, is the highest point on the y-axis in (b).

Figure 5a shows that no-bt solves most quickly some of the instances, but not
as many as fbbt, tuned, and obbt within the time limit; all variants for “easy”
instances (those solved in less than two hours) solve about the same number of
instances. In the performance profile for remaining gap (Fig. 5b), however, the
losing strategy is no-bt, which is consistently below all other graph and has a tail
of about 5 instances for which virtually no gap is covered. Obbt and tuned obtain
a gap below 5% for 15 instances out of 30, but then their performances are similar
to that of abt and fbbt.
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Figure 6. Performance profiles for bounds tightening on continuous NLP instances.

For continuous nonlinear instances (see Figure 6), the best strategy is again
tuned for instances solved within the time limit, although it takes ten and 100
times longer than no-bt and fbbt to solve two instances: spar-030-060-2 and pri-
mal4, respectively. It dominates obbt and abt, which have the worst time per-
formance. For the instances that are not solved in two hours, no-bt turns out to
be a poor choice as it is dominated by most strategies, but obbt also performs
poorly, with a remaining gap of more than 50% for almost half of the instances.
There is no strictly dominating variant, although fbbt is better or comparable to
the others, thus suggesting that, at least for continuous NLP instances, ABT and
OBBT should be limited, for instance by running them only at the root node.

Table 5 briefly reports on the number of sBB nodes and the maximum depth
of the sBB tree obtained by bounds tightening variants. These results are only in-
cluded for the 21 instances that at least two of the variants in the comparison could
solve before the time limit. For each variant, we report the number of instances
solved (#solved), the number of instances on which the variant obtained the best
time (#best time), the number of instances with lowest nodes count (#best nodes),
and the number of instances with minimum sBB tree depth (#best depth) — these
numbers are taken as “best” if they are within 10% of the minimum among all
variants. It is apparent that tuned gets the best node and depth performance far
more often than the other variants. We do not show the detailed results on each
instance; however, we point out that the instances where no bt obtains the best
number of nodes are mostly the box-QP spar-* instances.

Variant #solved #best time #best nodes #best depth
tuned 19 12 14 16
fbbt 16 2 4 6
abt 14 1 3 6
no-bt 16 10 7 10
obbt 16 2 8 9

Table 5. Comparison of the performance on number of sBB nodes and maximum depth.
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7.2. Branching-techniques tests

The purpose of this set of tests is to assess the quality of the branching techniques
implemented in couenne. It also compares Violation Transfer with two methods
that proved successful in MILP, namely strong and reliability branching. For all
tests below, the bounds tighening parameters are as in the tuned variant described
above.

Branching-variable selection

We performed an initial test on a small set of instances with several branching
options, to narrow the choice to the most promising ones. Many of them are variants
of the reliability branching scheme discussed in Section 5.3, differing in the choice
of the multipliers δk− and δk+ for the pseudocosts. Recall that these multipliers are
used in two steps: (i) when estimating the change in the objective function and (ii)
when updating the pseudocosts. We tested options rb-inf, rb-int-br, rb-int-lp-rev,
rb-proj, rb-vt (see Section 5.4), as well as:

str-br: strong branching at all nodes; although computationally expensive,
this allows for the comparison of the overall quality of pseudocost multipli-
ers — i.e. of their ability to estimate the per-unit of change in the branching
variable;

rb-proj+lpdist: rb-proj when estimating the change in the lower bound, and
rb-lpdist for updating the pseudocosts;

rb-vt+lpdist: rb-vt when estimating the change in the lower bound, and
rb-lpdist for updating the pseudocosts;

pure-vt: the Violation Transfer algorithm;
br-plain: the infeasibility-based branching, where the variable xi with largest

Ωi(x̄
k) is selected for branching (see Section 5.1).

These initial tests are summarized in Table 6. For each strategy we report the
number of instances that were solved before the two-hour time limit (#<2h), the
number of times when its solution time was minimum1 (#best), the geometric
average of the running time (tavg), the number of times when the remaining gap
was minimum1 (#best gap) and the geometric average of the remaining gap (gavg).

The average of both the running time and of the remaining gap are computed
on different subsets for each variant (those instances that are solved in less than
two hours and those that are not solved, respectively), hence columns tavg and gavg

give somewhat inconsistent information. However, for the strategies that we have
later chosen for the detailed tests, these averages are made on sets of instances that
share a fairly large common subset, of 13 and 28 instances respectively.

Name #<2h #best tavg #best gap gavg

br-plain 19 8 545.4 8 0.1968
pure-vt 22 7 435.6 4 0.1466
str-br 23 6 400.6 2 0.1012
rb-proj 13 6 764.5 0 0.1400
rb-proj+lpdist 13 3 558.0 2 0.1471
rb-inf 20 8 379.8 3 0.1344
rb-int-br 24 6 384.1 11 0.1233
rb-int-lp-rev 16 5 716.6 2 0.1831
rb-vt 14 5 654.0 1 0.1739
rb-vt+lpdist 16 3 413.5 6 0.1638

Table 6. Initial comparison of branching techniques.

1Running times and remaining gaps are taken as “equal” if they do not differ by more than 10%.
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From Table 6 it appears that the most promising branching techniques are br-
plain, pure-vt, str-br, rb-inf, and rb-int-br. We also tested two variants of
rb-int-br: rb-int-br-rev and rb-int-br-rev-LP, which is similar to rb-int-br-
rev except that the update of the pseudocost multiplier is done with rb-lpdist.
These three variants are compared with one another to show that they perform
similarly, and we include only one of them, rb-int-br-rev, in the comparison with
the other branching techniques. Performance profiles for these three variants are
given in Figures 7 and 8. On MINLP instances, rb-int-br and rb-int-br-rev
have good performances both in terms of running time and remaining gap. While
str-br performs worse on those instances that are solved within the time limit
(Fig. 7a), it does a good job on those that are not solved by any of these branching
techniques, where rb-int-br-rev-LP is dominated (Fig. 7b). Results on continuous
NLP instances favor all of the rb-int-* strategies against str-br on all instances.

1
0

5

10

15

str-br

rb-int-br

rb-int-br-rev

rb-int-br-rev-LP

(a) CPU time (25 instances)
0.0 0.2 0.4 0.6 0.8
0

5

10

15

20

25

str-br

rb-int-br

rb-int-br-rev

rb-int-br-rev-LP

(b) Remaining gap

Figure 7. Performance profiles for rb-int-* branching techniques on MINLP instances.
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Figure 8. Performance profiles for rb-int-* branching techniques on continuous NLP instances.

The tests on branching strategies br-plain, pure-vt, rb-inf, str-br, and rb-
int-br-rev are shown in Tables 14 and 15 for MINLP instances, and in Table 16
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for continuous NLP instances. For all variants tested, all five Hicks instances were
solved at the root node by the standard bounds tightening setting, and are thus
excluded from these tables.

On spar-* instances, str-br instances performs consistently worse, while all other
variants give similar results. These are box QP problems: max{cx + xTQx : x ∈
[0, 1]n}. The similarity of the performances of simple strategies br-plain and of
more elaborate ones such as pure-vt and rb-* is highlighted in Figure 9; pure-
vt has a similar performance also in terms of sBB nodes (not displayed in the
tables). This suggests that the infeasibility ΩN

i used in br-plain is as reliable for
unconstrained problems as more sophisticated branching strategies such as pure-
vt or rb-*. A plausible explanation for the poor performance of str-br is that
it spends most of the CPU time in solving the LP problems necessary to select
the branching variable: between 90% and 95% in all instances that are not solved
within the time limit, and 60%, 96%, and 34% in the remaining three.

Variants br-plain and pure-vt perform better than strong and reliability
branching variants on other quadratic instances. This holds for instances dual1,
dual4, and cvxqp3 s, whose size does not allow str-br or rb-* variants to develop
a sBB tree larger than a few nodes, while br-plain and pure-vt create far more
sBB nodes and thus improve the lower bound.
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Figure 9. Performance profiles for comparing all branching rules on the spar-* instances.

The comparison between branching rules on MINLP instances does not show a
clear winner. The difference is highly dependent on the single instances, but the
tables suggest that br-plain and pure-vt often have similar performances to each
other, while rb-inf and rb-int-br-rev and, in some cases, str-br, seem to perform
equally well — this is apparent in MINLP instances nvs19, ex1233, nvs23, csched2,
cecil 13, lop97icx (see Table 14), trimlon12, foulds3, barton, space-25 (see Table 15)
and in NLP instances ex5 3 3, dual4, and values (Table 16).

The performance profiles for MINLP instances (Figure 10) provide a clearer
perspective: for relatively easy instances, the time profile shows that pure-vt and
br-plain are good branching strategies as opposed to str-br and rb-int-br-rev.
With more difficult instances, pure-vt and br-plain perform much worse and are
dominated by the strong and reliability branching variants. This observation holds
for easy NLP instances (Figure 11a) but not for the more difficult ones: the gap
performance profile (Figure 11b) suggests that br-plain and pure-vt give a better
bound, although not by a large amount, while str-br is dominated by all other
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strategies.
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Figure 10. Performance profiles for reliability branching, VT, and infeasibility-based branching on
MINLP instances.
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Figure 11. Performance profiles for reliability branching, VT and infeasibility-based branching on
continuous NLP instances.

Branching-point selection

We briefly report here on our tests on the branching point selection strategies
described in Section 5.5. As with variable selection, there is no single strategy that
obtains better results, but a combination of them appears to be the best choice.

We tested the LP-based strategies on general MINLP instances and the
expression-based strategies (balanced and min-area) on a set of instances that use
a comprehensive subset of operators of Θ. We used a set of parametric instances
from the Cops collection [25], comprising most of the operators that are handled
by couenne and with parameters that allow to create instances of any size.

We performed extensive tests on both LP- and expression-based strategies, which
we do not report here, and summarize the results below:
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• the LP point x̄k should always be taken into account for the two resulting
nodes to be of similar difficulty; this also ensures that x̄k is cut;

• in further support to the previous point, the expression-based strategies do
not have an influence on the performance of couenne, even when compared
on a per-operator basis, suggesting that minimizing or balancing the size of the
resulting linearizations is not as important as improving the bounds;

• xb
i should not be close to the bounds, but it should be kept at a minimum

distance from them;

• some operators (product, quotient) benefit from having operands that are
either nonnegative or nonpositive, thus if the branching point is relatively close
to zero it should be set to zero. For instance, if there is an auxiliary variable
x3 = x1x2 with x1 ∈ [0,+∞), x2 ∈ [−1, 1] and x2 has been selected as branching
variable with xb

2 = ǫ with a small ǫ, we restrict the sign of x3 in both resulting
nodes by setting xb

2 = 0, so that x3 ≤ 0 in one node and x3 ≥ 0 in the other;
this is useful in situations such as that pointed out in footnote 1 at page 7.

Therefore, the default strategy implemented in couenne, which is used in test-
ing both the bounds tightening techniques and the branching variable selection
techniques, sets xb

i as in (2), or to zero if sufficiently close to zero with respect
to its bounds. This strategy is similar to the one described by Tawarmalani and
Sahinidis [79, page 194].

Number of sBB nodes and maximum depth

We discuss here the performance of the branching strategies in terms of number
of nodes and of maximum depth of the sBB tree. We only provide these results
on the 33 instances that at least two of the variants in the comparison could solve
before the time limit. Table 17 reports the running time, number of sBB nodes, and
maximum depth of the sBB tree for variants str-br, pure-vt, rb-int-br-rev, rb-
inf, and br-plain. Empty entries in the table correspond to instances that could
not be solved in two hours.

Table 7 below summarizes the results on these 33 instances, providing, for each
variant, the number of instances solved (#solved), the number of instances the
variant obtained the best time (#best time), number of nodes (#best nodes), and
maximum sBB tree depth (#best depth) — again, the number of nodes and the
maximum depth are taken as “best” if they are within 10% of the best.

Variant #solved #best time #best nodes #best depth
str-br 25 1 17 11
pure-vt 26 13 4 20
br-plain 23 14 7 15
rb-inf 23 11 4 8
rb-int-br-rev 25 9 5 8

Table 7. Comparison of the performance on number of sBB nodes and maximum depth.

As expected, str-br is the best strategy 17 times out of 33 in terms of number of
nodes created, far above all other strategies. However, it runs in shortest time only
once, much worse than pure-vt and br-plain. These two strategies, although not
as elaborate as strong or reliability branching, perform relatively well in terms of
nodes and depth. They obtain the best sBB tree depth 20 and 15 times, respectively,
and hence are better than the others in keeping the sBB tree balanced. There is no
substantial difference between rb-int-br-rev, rb-int-br, and rb-int-br-rev-LP,
not shown in the tables.



30

7.3. Comparison with baron

baron [71] is a state-of-the-art solver for MINLP problems. It implements sev-
eral bounds tightening and linearization techniques, and the Violation Transfer,
described in Section 5.2, as branching technique. It is therefore the ideal candidate
for a comparison with couenne.

The comparison is conducted on all the instances of the testbed. From the
result of the computational tests shown above, we have chosen the variant of
couenne that has reliability branching turned on with rb-int-br-rev as pseu-
docosts multiplier strategy; FBBT, ABT, and OBBT are turned on with Labt = 1
and Lobbt = 0. Version 7.5 of baron has been used, with options workfactor=2000
and epsr=1e-09. Both algorithms were run on a machine equipped with a 3.2GHz
processor, 2.5GB of RAM memory, gcc version 4.1.2, and Linux kernel 2.6.23.
While couenne reads input .nl files generated by AMPL [33], baron has been
run from GAMS [19]. Instances from minlplib and globallib were originally only
in GAMS format, and their AMPL version has been created with the convert fea-
ture in GAMS. Some other instances are available in AMPL format only, and their
GAMS version has been created with a conversion program from the coconut

software package [73] or, when coconut returns an error, with a conversion rou-
tine available in couenne.

The performances of the two algorithms are reported in Tables 8, 9, and 10 and
are graphically summarized in Figure 12, which is divided in four parts: Fig. 12(a,b)
compares the CPU times of all instances that baron or couenne can solve before
the time limit, while Fig. 12(c,d) depicts a comparison between the remaining gaps
of the two algorithms — see definition in the first part of Section 7.

The graphs in Figures 12(a,c) contain one point for each instance: baron is on
the x-axis and couenne on the y-axis, therefore a point in the lower right part
favors couenne. Figures 12(b,d) contain time and gap performance profiles.

baron uses probing extensively. On the instances that required more than ten
seconds of CPU time, a percentage between 41% and 99% of the CPU time was
spent in probing, with a geometric average of 77%. This results in baron generating
fewer sBB nodes than couenne in all the instances. We do not report the sBB
nodes of the two algorithms in detail, but the geometric mean of their ratio is 1:5;
this average is computed on the 64 instances that required at least two nodes for
both algorithms.

The tables and graphs suggest that the performances of baron and couenne

are comparable, although it is clear that baron is on average better both in CPU
time and in lower bound. In the large, nonconvex instances Multistage, Synheat,
SynheatMod, c-sched-4-7, and par72, baron provides both better lower and up-
per bounds, while couenne performs better with ibienst1, imisc07, ibell3a, and
iran8x32 (the last two are convex).

couenne dominates in the spar-* box-QP instances. Let us take as example
instance spar030-060-1. baron spends 96% of the allotted time in probing (which
is done at all sBB nodes), while couenne spends less than 10% of the time in
separation of linearization cuts (adding in total 4,229,270 of them) and bounds
tightening. The difference here seems to be in the number of nodes, 22,567 for
baron and 100,726 for couenne, in accordance with the average ratio. baron

seems to have numerical problems in the continuous Hicks instances, as it cuts all
optimal solutions and claims optimality of a local minimum instead.

couenne seems to perform slightly better than baron in continuous NLPs than
in general MINLPs. There are various possible explanations for this; for example,
couenne has only a simple heuristic for finding upper bounds, which fails to
obtain an integer feasible solution for some of the instances. A more sophisticated
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baron couenne

Name time (lb) ub time (lb) ub
GlobalLib (pure NLPs) [51]

ex5 2 5 (-5054.59) -3500 (-6831.8) -3500
ex5 3 3 (2.173) 3.234 (1.869) 3.325
qp1 (-0.3047) 8.093e-4 (-0.0861) 8.093e-4
qp2 (-0.3056) 8.093e-4 (-0.0817) 8.093e-4
qp3 (-0.0938) 8.093e-4 (-0.3017) 8.093e-4
foulds3 (-69.804) -8 (-71.311) -8

QCQP [56]
cvxqp1 s (9622.57) 11590.7 (10775.1) –
cvxqp2 s (6919.6) 8120.94 (7291.6) –
cvxqp3 s 180.14 11943.4 (11943.1) –
dual1 (-178.1) 0.0350 (-214.431) 0.0350
dual2 (-184.408) 0.0337 (-221.265) 0.0337
dual4 (-202.002) 0.746 (-304.143) 0.746
dualc8 (18306.4) 18309.3 (18309.1) 18309.2
gouldqp2 (-0.185) 1.842e-4 (-0.166) 1.842e-4
primal4 (-0.779) 0 1395.74 -0.746
qadlittl 200.39 480319 (480319) 480995
qbrandy 8.68 28375.1 58.88 28375.1
qetamacr (61835.2) 86760.4 (63739.6) 86760.4
qshare1b 1042.44 720078 (720005) –
stcqp1 (148327) 157759 (148329) 155144
values (-12.914) -1.396 (-13.621) -1.396

BoxQPs [82]
spar030-060-1 (-830.163) -706 2028.56 -706
spar030-060-2 3.55 -1377.17 27.00 -1377.17
spar040-050-1 (-1403.03) -1154.5 (-1195.63) -1154.5
spar040-050-2 (-1635.81) -1430.98 3581.21 -1430.98
spar040-060-1 (-2008.91) -1322.67 (-1729.59) -1311.06
spar050-040-1 (-1900.34) -1411 (-1608.66) -1411
spar050-050-1 (-2685.75) -1198.41 (-2220.19) -1193
spar060-020-1 3622.04 -1212 522.99 -1212
spar060-020-2 54.94 -1925.5 54.67 -1925.5
spar070-025-1 (-3168.62) -2538.91 (-2865.74) -2538.91
spar080-025-1 (-4173.78) -3157 (-3775.16) -3157
spar090-025-1 (-5466.5) -3372.5 (-4882.19) -3361.5

Hicks [30]
Hicks 5 21.89 227.542 31.82 227.257
Hicks 10 43.81 229.13 31.68 227.257
Hicks 20 334.37 229.733 129.42 227.257
Hicks 50 3967.71 227.406 820.14 227.257
Hicks 100 (0) 234.158 2615.85 227.257

Table 8. Comparison between baron and couenne on continuous NLP problems.

heuristic would help eliminate portions of the solution space in two ways: bounds
tightening and pruning by bound. Also, in the above experiments couenne did
not include MILP cutting planes available in COIN-OR (e.g. lift-and-project cuts,
mixed-integer Gomory cuts, etc.); some preliminary tests have shown that those
cuts improve the performance for some of these instances: Synheat, SynheatMod,
ex1233, and ex1244.

8. Concluding remarks

This paper presents couenne, an Open-Source solver for MINLP problems. It is
meant to provide the Optimization Community with a flexible tool of immediate use



32

baron couenne

Name time (lb) ub time (lb) ub
Nonconvex [64]

Multistage 70.88 -7581.03 (-36943.6) –
Synheat 4680.42 154997 (131034.7) 160435.5
SynheatMod 3815.93 154997 (81950.5) 161010
c-sched-4-7 (-193716) -133402 (-257752) –
par72 (-1930.9) 2456.07 (-8057.684) –

MICP [83] (conic MINLP)
robust 30 0 57.21 -0.0455 2.29 -0.0455
robust 30 1 189.92 -0.0477 5134.01 -0.0477
shortfall 30 0 27.09 -1.080 1427.64 -1.080
shortfall 30 1 215.28 -1.085 (-1.088) -1.078
classical 40 0 216.98 -0.0815 1797.52 -0.0815
classical 40 1 20.97 -0.0847 200.90 -0.0847

MacMINLP, Nonconvex [43]
space-25 (156.669) 493.914 (93.9194) –
space-25-r (160.45) 786.343 (68.7403) –
trimlon12 (26.710) 583.8 (29.342) –
trimlon7 (13.174) 15.1 3840.18 15

Misc
CLay0203H 0.69 NUM (40377.4) –
CLay0204H 1.37 7885 (4650) 10510
nConvPl (8944.50) 7529.30 (-8793.307) -4362.174
airConduct (24.5113) 25.6905 (24.5108) 26.8327
barton (-103.315) -81.8659 (-103.007) –

MIQQP [55]
ibell3a (-3.370e+09) 2.966e+06 896.17 878785
ibienst1 (-2.424e+09) 48.7377 5099.96 48.7377
imisc07 (0) – (2447.98) 2815.82
iran8x32 141.21 NUM 4972.72 5255.45

Table 9. Comparison between baron and couenne on MINLP problems.

that can be enhanced or suited to specific classes of nonconvex MINLP problems.
The main components of couenne, linearization, branching and bounds tight-

ening, are well-known to the MINLP community, however they lacked, up to now,
a computational basis to develop new MINLP solution approaches that specialize
the standard Branch-and-Bound procedure.

We have proposed a computational study that focuses on the effectiveness of
bounds tightening and branching rules. The former prove, on average, to be im-
portant for speeding up the convergence of the Branch-and-Bound. For branching
rules, we have adapted a well known approach of MILP, reliability branching, that
has been thoroughly studied for integer variables, to a more general class of prob-
lems that can require branching on continuous variables. We have shown its utility
in the MINLP framework, although simpler techniques such as Violation Transfer
sometimes give better results.

couenne is also a fair competitor of state-of-the-art solvers such as baron, al-
though it would benefit from a good heuristic for finding feasible solutions. A possi-
bility is to use a convex MINLP solver such as Bonmin [17] or a heuristic developed
for that purpose, the Enhanced Feasibility Pump [18]. Current developments com-
prise a class of cuts handling disjunctions arising from nonconvex MINLP problems,
SOS branching [13], and different operators for handling quadratic expressions and
other functions.
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baron couenne

Name time (lb) ub time (lb) ub
MinlpLib [20]

cecil 13 (-115895) -115657 (-116057) –
csched1 (-30639.3) -30639.3 141.42 -30639.3
csched2 (-247203) -148733 (-262709) –
du-opt 72.11 3.556 248.16 3.556
du-opt5 28.34 8.073 (7.965) 70.088
eniplac (-140736) -131855 1582.04 -132117
enpro48pb 20.14 187277 168.11 187277
enpro56pb 66.57 263428 56.09 263428
ex1233 169.79 155011 (83587.12) 155522.5
ex1243 1.33 83402.5 6.44 83402.5
ex1244 25.01 82042.9 (72342.1) 84035.6
ex1252 0.23 143555 102.03 128894
fo7 (12.643) 22.392 (0) 33.5943
lop97icx (2722.78) 4373.74 (3086.75) –
m6 283.19 82.256 (60.485) 123.91
no7 ar2 1 4719.64 107.815 (94.325) 131.985
no7 ar3 1 (71.8686) 111.247 (86.873) 119.587
no7 ar4 1 (72.5545) 100.419 (68.601) 109.943
nous1 169.23 1.567 (0.745) 1.567
nous2 1.22 0.625 42.41 0.625
nvs19 32.46 -1098.4 40.61 -1098.4
nvs23 117.7 -1125.2 182.54 -1125.2
o7 2 (66.32) 128.054 (63.7769) 130.553
stockcycle 668.23 119949 (119872) 145727
tln5 155.59 10.3 76.91 10.3
tln6 (14.6675) 15.3 7112.72 15.3
tls5 (5.634) 11.2 (3.633) –
tls6 (5.743) 15.6 (5.010) –

Table 10. Comparison between baron and couenne on MINLP problems. “NUM” indicates numerical problems.
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tuned fbbt abt no-bt obbt
Name time (lb) ub time (lb) ub time (lb) ub time (lb) ub time (lb) ub
nvs19 (-1463.84) -971.4 (-1105.05) -1094 (-1110.59) -1094.8 (-42192) – (-1202.95) -1073.6
nvs23 (-1310.02) -1091.2 (-233524) – (-233558) – (-233484) – (-1360.12) -1089.4
du-opt5 47.2 8.07366 17.5 8.07366 50.9 8.07366 15.3 8.07366 414.4 8.07366
du-opt 57.7 3.55634 16.2 3.55634 39.6 3.55634 19.9 3.55634 519.5 3.55634
tln5 (6.74481) 10.6 (6.45067) 10.8 (6.3782) 10.8 (5.68835) 10.6 (7.12437) 10.3
ex1252 61.3 128894 60.8 128894 69.0 128894 (0) – 43.4 128894
ex1233 1144.9 155011 620.0 155011 590.5 155011 NUM – 922.5 155011
nous1 (-0.232433) 1.56707 (-0.432783) 1.62254 (-0.433816) 1.56707 (-0.519321) 1.56707 (-0.174955) 1.56707
nous2 4.5 0.625967 431.5 0.625967 (-9.501e-02) 1.38432 (-0.467679) 0.625967 10.8 0.625967
tln6 (7.96525) – (7.66781) – (7.65883) – (7.78365) – (8.11623) –
ex1243 47.8 83402.5 47.2 83402.5 50.1 83402.5 (75688.2) – 54.4 83402.5
csched1 (-41999.5) -29397.7 (-45987) – (-45987) – – – (-44263.6) –
m6 141.1 82.2569 145.5 82.2569 231.5 82.2569 106.9 82.2569 700.4 82.2569
ex1244 7.8 82042.9 3.8 82042.9 8.2 82042.9 3.4 82042.9 41.8 82042.9
fo7 (1.95463) 28.2364 (1.95463) 28.2364 (1.95463) 29.1573 (1.95463) 33.9566 (2.01885) 36.1932
no7 ar2 1 (72.9292) – (71.8953) – (70.583) – (83.387) – (69.4742) –
no7 ar3 1 (51.0052) – (50.7747) – (49.2448) 128.495 (61.2455) 130.911 (44.4205) –
no7 ar4 1 (46.4066) 127.966 (47.2538) – (45.4067) 122.135 (58.9944) 106.393 (40.2347) –
o7 2 (9.99795) 153.94 (9.8579) 142.047 (9.71642) 154.248 (7.65306) 153.688 (9.39165) 147.859
enpro56pb 772.0 263428 714.2 263428 765.1 263428 449.2 263428 (260898) –
eniplac 1280.1 -132117 1442.5 -132117 1622.8 -132117 (-170806) – 1815.6 -132117
enpro48pb 49.8 187277 65.6 187277 84.7 187277 88.2 187277 835.3 187277
tls5 (0.281252) – (0.692908) – (0.691527) – (0) – (1.03417) –
tls6 (0.472321) – (0.687032) – (0.685201) – (9.176e-02) – (1.06872) –
csched2 (-3.907e+07) – (-689735) – (-690558) – – – (-3138600) –
stockcycle 133.8 119949 115.8 119949 129.9 119949 130.9 119949 150.1 119949
cecil 13 (-124286) – (-115771) -115656 (-115774) -115656 (-116363) – (-115843) -115656
lop97icx (2654.42) – (2662.7) – (2658.59) – (2613.1) – (2654.85) –

Table 11. Tests on bounds tightening variants for MINLP instances. The “NUM” for no bt on instance ex1233 is caused by a numerically unstable initial linearization LP0.
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Name time (lb) ub time (lb) ub time (lb) ub time (lb) ub time (lb) ub
Synheat (140732) 155174 (140667) 155376 (151425) 154997 (139465) 155510 (143798) 154997
SynheatMod (150668) 154997 (150030) 154997 (151379) 154997 (135633) 160497 (151396) 154997
c-sched-4-7 (-433662) – (-6.222e+07) – (-9.089e+07) – (-1.579e+08) – (-5.602e+07) –
par72 (-21696.5) – (-337822) 2423.41 (-411453) 2423.41 (-6.053e+07) – (-1.971e+07) 2448.61
Multistage (-57499.5) – (-56658.2) – (-56658.2) – – – (-29200.4) –
space-25 (122.365) – (103.979) – (103.825) – (42.6826) – (100.266) –
space-25-r (69.7149) – (69.6589) – (69.6244) – (61.7838) – (69.6452) –
trimlon7 (5.06921) – (5.05375) 21.1 (5.06725) – (5.0581) – (5.64155) –
trimlon12 (16.1689) – (13.3971) – (13.3971) – (11.5577) – (16.0731) –
iran8x32 (5087.56) 5393.52 (5084.18) 5554.62 (5070.81) 5539.45 (5094.53) 5591.68 (5039.13) 5575.38
ibell3a 975.4 878785 1520.5 878785 1483.0 878785 618.9 878785 1414.7 878785
ibienst1 4536.7 48.7377 5143.1 48.7377 5580.1 48.7377 4207.4 48.7377 (24.923) 54.6463
imisc07 (1765.82) 2975.27 (1790.73) 3255.2 (1769.01) 3094.7 (1811.63) – (1442.17) –
nConvPl (-8268.21) -4362.17 (-8267.89) -4362.17 (-8292.82) -4362.17 (-8741.39) – (-8302.14) -4362.17
foulds3 (-76.1689) -8 (-75.5308) -8 (-79.2133) -8 (-80.1292) -8 (-75.1851) -8
barton (-113.257) – (-105.795) – (-105.795) – (-113.267) – (-104.034) –
CLay0203H (0) – (41573.1) 41573.3 (41573.2) 41573.3 (0) – 3750.3 41573.2
CLay0204H (0) – 68.0 6545 122.3 6545 (0) 7300 627.8 6545
airConduct (24.5116) 26.8327 (24.512) 25.4557 (24.512) 26.8327 (24.2041) – (24.512) 26.8327
shortfall 30 0 104.9 -1.08072 (-1.08075) – (-1.08075) -1.07975 646.6 -1.08072 193.0 -1.08072
shortfall 30 1 (-1.08838) -1.07865 (-1.08834) -1.07207 (-1.08834) -1.07865 (-1.08832) -1.07489 (-1.0884) -1.07865
classical 40 0 (-8.289e-02) -7.861e-02 1187.7 -8.152e-02 1003.1 -8.152e-02 578.4 -8.152e-02 1630.3 -8.152e-02
classical 40 1 6031.5 -8.475e-02 2054.9 -8.475e-02 1530.1 -8.475e-02 663.3 -8.475e-02 2126.2 -8.475e-02
robust 30 0 1.3 -4.545e-02 1.3 -4.545e-02 1.6 -4.545e-02 1.4 -4.545e-02 1.4 -4.545e-02
robust 30 1 135.7 -4.775e-02 (-9.091e-02) -4.726e-02 (-9.108e-02) -4.580e-02 57.7 -4.775e-02 (-7.049e-02) -4.739e-02

Table 12. Tests on bounds tightening variants for MINLP instances (continued).
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tuned fbbt abt no-bt obbt
Name time (lb) ub time (lb) ub time (lb) ub time (lb) ub time (lb) ub
ex5 2 5 (-5186.13) -3500 (-5185.4) -3500 (-5245.9) -3500 (-5395.08) -3500 (-4588.03) -3500
ex5 3 3 (1.66301) 3.39097 (1.65313) 3.30464 (1.65883) 3.23402 (1.63485) 3.23402 (1.67527) 3.23402
foulds3 (-76.1689) -8 (-75.5308) -8 (-79.2133) -8 (-80.1292) -8 (-75.1851) -8
qp1 (-0.130191) 8.093e-04 (-0.13365) 8.093e-04 (-0.128582) 8.093e-04 – 8.093e-04 (-0.13861) 8.093e-04
qp2 (-0.143293) 8.093e-04 (-0.121931) 8.093e-04 (-0.13552) 8.093e-04 – 8.093e-04 (-0.136783) 8.093e-04
qp3 (-0.303239) 8.093e-04 (-0.367258) 8.093e-04 (-0.379187) 8.093e-04 – 8.093e-04 (-0.23947) 8.093e-04
Hicks 5 7.5 227.257 (2.630e-02) 227.257 (1.6942) 227.257 (1.18405) 227.257 (141.096) 227.257
Hicks 10 29.0 227.257 (2.914e-03) 227.257 (0.868933) 227.257 (1.833e-02) 227.257 (0.261244) 227.257
Hicks 20 111.2 227.257 (2.975e-03) 227.257 (0.515046) 227.257 (5.346e-02) 227.257 30.7 227.257
Hicks 50 735.4 227.257 (0.197572) 227.257 (0.284617) 227.257 (6.934e-03) 227.257 (0.443255) 227.257
Hicks 100 2684.3 227.257 (0.446834) 227.257 (0.334031) 227.257 (5.032e-03) 227.257 481.8 227.257
spar030-060-1 3226.8 -706 2958.3 -706 3071.1 -706 2794.3 -706 (-707.375) -696.5
spar030-060-2 20.7 -1377.17 2.0 -1377.17 6.9 -1377.17 1.7 -1377.17 468.2 -1377.17
spar040-050-1 (-1172.88) -1154.5 (-1173.29) -1154.5 (-1174.81) -1154.5 (-1169.87) -1154.5 (-1347.16) -1154.5
spar040-050-2 3238.4 -1430.98 3223.2 -1430.98 3215.8 -1430.98 2635.0 -1430.98 (-1593.19) -1430.98
spar040-060-1 (-1735.62) -1322.67 (-1735.5) -1322.67 (-1737.06) -1322.67 (-1708.97) -1311.06 (-2110.22) -1311.06
spar050-040-1 (-1613.34) -1411 (-1612.84) -1411 (-1613.78) -1411 (-1594.53) -1411 (-1948.22) -1411
spar050-050-1 (-2254.94) -1193 (-2254.25) -1193 (-2257) -1193 (-2221.94) -1193 (-2886.12) -1193
spar060-020-1 405.2 -1212 376.5 -1212 421.1 -1212 276.2 -1212 5167.5 -1212
spar060-020-2 33.1 -1925.5 5.3 -1925.5 17.3 -1925.5 4.5 -1925.5 2072.6 -1925.5
spar070-025-1 (-2881.28) -2538.91 (-2879.97) -2538.91 (-2882.72) -2538.91 (-2861.72) -2538.91 (-3333.94) -2538.91
spar080-025-1 (-3786.06) -3157 (-3782.25) -3157 (-3790) -3157 (-3755.56) -3157 (-4386.94) -3157
spar090-025-1 (-4899.62) -3361.5 (-4896.69) -3361.5 (-4905) -3361.5 (-4862.06) -3361.5 (-5671.62) -3361.5
dualc8 (18309.1) 18309.2 (18309.2) 18309.2 (18309.1) 18309.2 (18309.2) 18309.2 (18309.2) 18309.2
dual4 (-78.3223) 0.746091 (-65.9165) 0.746091 (-70.537) 0.746091 (-68.8498) 0.746091 (-305.806) 0.746091
dual1 (-78.21) 3.501e-02 (-50.2085) 3.501e-02 (-56.7133) 3.501e-02 (-58.0487) 3.501e-02 (-214.391) 3.501e-02
dual2 (-221.494) 3.373e-02 (-60.5728) 3.373e-02 (-221.494) 3.373e-02 (-71.5777) 3.373e-02 (-221.494) 3.373e-02
qadlittl 2186.2 480319 2215.9 480319 2674.6 480319 760.6 480319 2227.1 480319
cvxqp1 s (10680.2) – (10681) – (10680.2) – (9577.69) – (10381.7) –
cvxqp2 s (7424.12) – (7422.84) – (7422.35) – (6906.99) – (7301.97) –
cvxqp3 s (11943.4) 13727.9 (11932.5) 12024.6 (11934) 12103.9 (11932.7) 12035 (11943) 11947.2
values (-7.28079) -1.39662 (-8.13076) -1.39662 (-8.21165) -1.39662 (-8.06712) -1.39662 (-8.51661) -1.39662
qbrandy 32.7 28375.1 85.2 28375.1 199.1 28375.1 43.0 28375.1 136.1 28375.1
qshare1b 6571.0 720078 (720078) 720078 (720078) 720078 (719944) – 6707.9 720078
qetamacr (63739.6) 86760.4 (70321.8) 86760.4 (69397.5) 86760.4 (70810.4) 86760.4 (63555.4) 86760.4
gouldqp2 (-0.15444) 1.843e-04 (-0.154362) 1.843e-04 (-0.154406) 1.843e-04 (-0.154254) 1.843e-04 (-0.206172) 1.843e-04
primal4 1180.6 -0.746091 7.4 -0.746091 (-0.746759) -0.746091 8.0 -0.746091 800.4 -0.746091
stcqp1 (151116) 155144 (151296) 155144 (151254) 155144 (151341) 155144 (148329) 155144

Table 13. Tests on bounds tightening variants for continuous NLP instances.
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str-br rb-int-br-rev br-plain pure-vt rb-inf
Name time (lb) ub time (lb) ub time (lb) ub time (lb) ub time (lb) ub
nvs19 208.7 -1098.4 31.8 -1098.4 (-1463.84) -971.4 (-1230.4) -1078.8 58.2 -1098.4
nvs23 927.3 -1125.2 153.5 -1125.2 (-1310.02) -1091.2 (-1283.64) -1083.2 310.1 -1125.2
du-opt5 1777.6 8.07366 (7.96564) 157.292 47.2 8.07366 47.3 8.07366 525.6 8.07366
du-opt 564.6 3.55634 359.6 3.55634 57.7 3.55634 57.9 3.55634 301.2 3.55634
tln5 132.3 10.3 57.0 10.3 (6.74481) 10.6 95.6 10.3 41.8 10.3
ex1252 89.8 128894 91.7 128894 61.3 128894 22.4 128894 (96158.2) 140049
ex1233 (98260.7) 313541 (85451.1) 313541 1144.9 155011 911.1 155011 (90049.1) 313541
nous1 (1.13599) 1.56707 (1.54113) 1.56707 (-0.232433) 1.56707 (0.585914) 1.56707 (0.469265) 1.56707
nous2 577.1 0.625967 463.6 0.625967 4.5 0.625967 5.2 0.625967 104.7 0.625967
tln6 2133.0 15.3 (15.1) 15.6 (7.96525) – (7.98961) – 1451.6 15.3
ex1243 9.4 83402.5 4.8 83402.5 47.8 83402.5 103.5 83402.5 2.9 83402.5
csched1 52.1 -30639.3 24.9 -30639.3 (-41999.5) -29397.7 9.1 -30639.3 (-30639.3) -30639.3
m6 (82.193) 82.2855 (61.4593) 82.2855 141.1 82.2569 138.9 82.2569 (78.8575) 111.297
ex1244 135.0 82042.9 (73629.7) 85275.1 7.8 82042.9 8.9 82042.9 744.9 82042.9
fo7 (9.17862) 26.8476 (4.50536) 25.8579 (1.95463) 28.2364 (1.95463) 28.2364 (6.34519) 28.1697
no7 ar2 1 (105.138) 107.863 (92.6172) 117.579 (72.9292) – (72.9557) – (95.1179) –
no7 ar3 1 (90.9676) 116.287 (88.3894) 137.694 (51.0052) – (50.9655) – (85.2688) 134.893
no7 ar4 1 (84.8417) 125.531 (69.8584) 120.749 (46.4066) 127.966 (46.4613) 127.966 (71.7896) –
o7 2 (65.6153) 158.178 (67.0205) 140.876 (9.99795) 153.94 (10.0484) 153.94 (74.0129) 137.399
enpro56pb 57.3 263428 64.4 263428 772.0 263428 751.3 263428 44.4 263428
eniplac (-134499) – 1314.5 -132117 1280.1 -132117 1290.2 -132117 2267.8 -132117
enpro48pb 83.2 187277 84.8 187277 49.8 187277 49.7 187277 454.5 187277
tls5 (5.6) – (4.07901) – (0.281252) – (0.281717) – (4.75417) –
tls6 (5.66333) – (5.54602) – (0.472321) – (0.490006) – (5.25982) –
csched2 (-305830) – (-255056) – (-3.90708e+07) – (-3.90219e+07) – (-305830) –
stockcycle 1581.6 119949 (119933) 145727 133.8 119949 134.2 119949 (119841) 120199
cecil 13 (-116000) – (-116025) – (-124286) – (-124277) – (-116004) –
lop97icx (3091.46) – (3073.41) – (2654.42) – (2654.73) – (3088.98) –

Table 14. Tests for branching techniques on MINLP instances.
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str-br rb-int-br-rev br-plain pure-vt rb-inf
Name time (lb) ub time (lb) ub time (lb) ub time (lb) ub time (lb) ub
Synheat (81061.9) 161010 (76212.1) 161010 (140732) 155174 (144347) 154997 (75746.4) 161010
SynheatMod (79384.7) 161010 (79573.3) 161010 (150668) 154997 (150311) 154997 (78234) 161010
c-sched-4-7 (-261947) – (-254372) – (-433662) – (-223972) – (-263059) –
par72 (-3234.77) 19057.7 (-8535.91) – (-21696.5) – (374.956) – (-3234.77) –
Multistage 533.7 -7582.62 (-36772.2) – (-57499.5) – 2565.2 -7582.62 (-94089.1) –
space-25 (87.9277) – (97.0191) – (122.365) – (120.165) – (85.5853) –
space-25-r (70.8325) – (69.2622) – (69.7149) – (69.7442) – (70.8325) –
trimlon7 (14.7173) – 3593.8 15 (5.06921) – (5.02803) – 1012.6 15
trimlon12 (30.2292) – (29.7712) – (16.1689) – (16.1688) – (30.2558) –
iran8x32 (5229.01) 5649.76 5095.2 5255.45 (5087.56) 5393.52 (5089.34) 5529.02 5125.9 5255.45
ibell3a 3381.4 878785 953.3 878785 975.4 878785 922.1 878785 1213.8 878785
ibienst1 5265.8 48.7377 4292.4 48.7377 4536.7 48.7377 4328.2 48.7377 3671.0 48.7377
imisc07 (2041.18) 2815.47 (2536.14) 2814.37 (1765.82) 2975.27 (1765.25) 2975.27 (2291.95) 2814.54
nConvPl (-8842.22) -4579.99 (-8793.61) -4579.99 (-8268.21) -4362.17 (-8267.71) -4362.17 (-8842.22) -4579.99
foulds3 (-55.7946) -8 (-57.3748) -8 (-76.1689) -8 (-68.7305) -8 (-55.4884) -8
barton (-102.736) – (-102.924) – (-113.257) – (-103.544) – (-102.736) –
CLay0203H (4761.22) 41907.5 (40179) 41573.3 (0) – (33667.7) – (40104.9) 41737.5
CLay0204H 101.8 6545 (3025) 7025 (0) – 64.5 6545 (3025) 6775
airConduct (24.5134) 26.8327 (24.5108) 26.8327 (24.5116) 26.8327 (24.5106) 25.4557 (24.5117) 26.8327
shortfall 30 0 791.0 -1.08072 867.5 -1.08072 104.9 -1.08072 324.9 -1.08072 2888.3 -1.08072
shortfall 30 1 (-1.08833) -1.07865 (-1.08833) -1.07865 (-1.08838) -1.07865 (-1.08731) -1.08069 (-1.08841) -1.07865
classical 40 0 1195.9 -8.152e-02 1070.1 -8.152e-02 (-8.289e-02) -7.861e-02 1254.9 -8.152e-02 (-8.168e-02) -7.833e-02
classical 40 1 882.6 -8.475e-02 146.8 -8.475e-02 6031.5 -8.475e-02 2006.4 -8.475e-02 190.3 -8.475e-02
robust 30 0 1.4 -4.545e-02 1.4 -4.545e-02 1.3 -4.545e-02 1.2 -4.545e-02 1.7 -4.545e-02
robust 30 1 (-4.780e-02) -4.771e-02 (-4.775e-02) -4.351e-02 135.7 -4.775e-02 (-7.035e-02) -4.741e-02 (-4.797e-02) -4.748e-02

Table 15. Tests for branching techniques on MINLP instances (continued).
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str-br rb-int-br-rev br-plain pure-vt rb-inf
Name time (lb) ub time (lb) ub time (lb) ub time (lb) ub time (lb) ub
ex5 2 5 (-7078.7) -3500 (-6900.79) -3500 (-5186.13) -3500 (-7225.22) -3500 (-7079.57) -3500
ex5 3 3 (1.88559) 3.24012 (1.83954) 3.24012 (1.66301) 3.39097 (1.65172) 3.39097 (1.8111) 3.23402
foulds3 (-55.7946) -8 (-57.3748) -8 (-76.1689) -8 (-68.7305) -8 (-55.4884) -8
qp1 (-0.226998) 8.093e-04 (-8.387e-02) 8.093e-04 (-0.130191) 8.093e-04 (-9.678e-02) 8.093e-04 (-0.356874) 8.093e-04
qp2 (-0.233894) 8.093e-04 (-8.195e-02) 8.093e-04 (-0.143293) 8.093e-04 (-9.556e-02) 8.093e-04 (-0.303211) 8.093e-04
qp3 (-0.320343) 8.093e-04 (-0.28616) 8.093e-04 (-0.303239) 8.093e-04 (-0.33229) 8.093e-04 (-0.308834) 8.093e-04
spar030-060-1 (-754.843) -706 1817.1 -706 3226.8 -706 2460.6 -706 1908.9 -706
spar030-060-2 48.6 -1377.17 25.4 -1377.17 20.7 -1377.17 20.4 -1377.17 21.7 -1377.17
spar040-050-1 (-1358.83) -1154.5 (-1183.65) -1154.5 (-1172.88) -1154.5 (-1195.22) -1154.5 (-1175.81) -1154.5
spar040-050-2 (-1557.62) -1430.98 3106.3 -1430.98 3238.4 -1430.98 4269.2 -1430.98 2905.5 -1430.98
spar040-060-1 (-1939.54) -1322.67 (-1716.17) -1311.06 (-1735.62) -1322.67 (-1725.41) -1322.67 (-1699.1) -1322.67
spar050-040-1 (-1809.56) -1411 (-1595.22) -1411 (-1613.34) -1411 (-1616.34) -1411 (-1601.27) -1411
spar050-050-1 (-2496.53) -1193 (-2204.72) -1193 (-2254.94) -1193 (-2289.31) -1193 (-2202.69) -1193
spar060-020-1 1550.7 -1212 422.2 -1212 405.2 -1212 729.0 -1212 366.5 -1212
spar060-020-2 47.1 -1925.5 45.5 -1925.5 33.1 -1925.5 36.3 -1925.5 45.1 -1925.5
spar070-025-1 (-3036.2) -2538.91 (-2853.54) -2538.91 (-2881.28) -2538.91 (-2848.78) -2538.91 (-2852.95) -2538.91
spar080-025-1 (-4030) -3157 (-3759.91) -3157 (-3786.06) -3157 (-3817.44) -3157 (-3763.5) -3157
spar090-025-1 (-5181.81) -3372.5 (-4865.31) -3361.5 (-4899.62) -3361.5 (-5261.44) -3361.5 (-4879.44) -3372.5
cvxqp1 s (10769) – (10790.5) 12468 (10680.2) – (11159.4) 11800 (10764) –
cvxqp2 s (7327.87) – (7297.41) – (7424.12) – (7677.29) – (7329.36) –
cvxqp3 s (11942.9) – (11942.8) – (11943.4) 13727.9 3957.4 11943.4 (11942.9) –
dual1 (-214.431) 3.501e-02 (-214.431) 3.501e-02 (-78.21) 3.501e-02 (-214.431) 3.501e-02 (-214.431) 3.501e-02
dual2 (-221.265) 3.373e-02 (-221.494) 3.373e-02 (-221.494) 3.373e-02 (-221.265) 3.373e-02 (-221.265) 3.373e-02
dual4 (-304.143) 0.746091 (-304.143) 0.746091 (-78.3223) 0.746091 (-79.7629) 0.746091 (-304.143) 0.746091
gouldqp2 (-0.171471) 1.843e-04 (-0.165717) 1.843e-04 (-0.15444) 1.843e-04 (-0.161887) 1.843e-04 (-0.162164) 1.843e-04
qbrandy 317.8 28375.1 46.7 28375.1 32.7 28375.1 (28375.1) 28411.7 (28375.1) –
qadlittl (480318) – 6404.6 480319 2186.2 480319 (480317) – (480304) –
qshare1b (720056) – (720048) – 6571.0 720078 (720078) – (720078) –
dualc8 (18307.1) 18309.3 (18309.2) 18309.2 (18309.1) 18309.2 (18296.9) 18323.6 (17741.6) 18324.2
qetamacr (63739.6) 86760.4 (63739.6) 86760.4 (63739.6) 86760.4 (63739.6) 86760.4 (63739.6) 86760.4
primal4 1214.5 -0.746091 1384.4 -0.746091 1180.6 -0.746091 1194.9 -0.746091 1216.1 -0.746091
stcqp1 (148329) 155144 (148329) 155144 (151116) 155144 (151064) 155144 (148329) 155144
values (-13.6214) -1.39662 (-13.6214) -1.39662 (-7.28079) -1.39662 (-7.03803) -1.39662 (-13.6214) -1.39662

Table 16. Tests for branching techniques on continuous NLP instances.
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str-br rb-int-br-rev br-plain pure-vt rb-inf
Name time nodes depth time nodes depth time nodes depth time nodes depth time nodes depth
Multistage 533.7 1517 85 2565.2 171396 87
trimlon7 3593.8 753835 52 1012.6 208004 45
csched1 35.6 774 46 24.9 3810 66 5.4 880 36
ex1233 1528.8 141176 68 911.1 76662 70
ex1243 9.4 196 95 4.8 650 65 47.8 17115 89 103.5 22256 41 2.9 157 57
ex1244 135.0 604 71 7.8 240 16 8.9 410 21 744.9 119672 85
ex1252 89.8 1357 23 91.7 17519 46 48.3 9956 30 15.5 2359 25
nous2 577.1 4348 143 463.6 75630 88 4.5 270 61 5.2 324 31 104.7 14344 111
nvs19 208.7 4924 39 31.8 4004 39 58.2 7534 40
nvs23 927.3 17166 50 153.5 15450 51 310.1 28350 47
du-opt 564.6 287 102 359.6 192 67 57.7 71 10 57.9 71 10 301.2 177 59
du-opt5 1777.6 1149 64 47.2 112 13 47.3 111 13 525.6 407 43
eniplac 1314.5 118360 23 1280.1 173026 24 1290.2 173026 24 2267.8 194677 29
enpro56pb 57.3 220 35 64.4 1062 36 772.0 3032 29 751.3 3032 29 44.4 503 33
enpro48pb 83.2 222 42 84.8 782 46 49.8 408 18 49.7 408 18 454.5 3573 45
m6 141.1 14882 25 138.9 14882 25
stockcycle 1581.6 7218 137 133.8 8860 108 134.2 8860 108
tln5 132.3 5768 23 57.0 22440 28 95.6 42223 46 41.8 15610 26
tln6 2133.0 58007 34 1451.6 376797 31
iran8x32 5095.2 60354 81 5125.9 68626 89
ibell3a 3381.4 22111 67 953.3 53384 59 975.4 37706 31 922.1 42641 33 1213.8 56548 66
ibienst1 5265.8 3462 21 4292.4 48912 24 4536.7 42754 23 4328.2 42388 23 3671.0 42998 24
CLay0204H 101.8 291 62 64.5 2512 72
shortfall 30 0 791.0 597 79 867.5 4303 95 104.9 6128 61 324.9 26026 44 2888.3 33489 89
classical 40 0 1195.9 783 67 1070.1 16857 68 1254.9 32393 51
classical 40 1 882.6 593 52 146.8 1485 46 6031.5 250966 68 2006.4 57899 45 190.3 1565 47
spar030-060-1 1817.1 100786 24 3226.8 166140 22 2460.6 126538 23 1908.9 102234 25
spar030-060-2 48.6 20 4 25.4 86 14 20.7 118 12 20.4 108 9 21.7 62 13
spar040-050-2 3106.3 125946 26 3238.4 129420 24 4269.2 152992 34 2905.5 112460 24
spar060-020-1 1550.7 5004 20 422.2 23392 23 405.2 23204 22 729.0 42274 21 366.5 19398 21
spar060-020-2 47.1 58 5 45.5 158 7 33.1 284 8 36.3 242 8 45.1 158 7
qbrandy 317.8 1587 83 46.7 1025 70 32.7 704 61
qadlittl 6404.6 400781 167 2186.2 138477 157

Table 17. Number of nodes and maximum sBB tree depth for MINLP and continuous NLP instances.


