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Abstract

In this paper we consider a particular method of clustering for graphs, namely
the modularity density maximization. We propose a hierarchical divisive
heuristic which works by splitting recursively a cluster into two new clusters
by maximizing the modularity density, and we derive four reformulations for
the mathematical programming model used to obtain the optimal splitting.
We report computational results of the eight algorithms (four reformulations
with two different symmetry breaking strategies) obtained on some instances
from the literature. Statistical tests show that the best model in terms of
computational time is the one that is obtained with a dual reformulation of
the bilinear terms arising in the objective function. Moreover, the hierar-
chical divisive heuristic provides generally near-optimal solutions in terms of
modularity density.

Keywords: Clustering, Modularity density maximization, Multilinear
terms, Reformulation, Heuristic

1. Introduction

Given a graph, cluster analysis aims to find subsets of vertices, called
clusters, where inner edges (i.e., edges connecting vertices in the same cluster)
are dense and cut edges (i.e., edges connecting vertices in different clusters)
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are sparse [1, 2]. This problem has many applications, e.g., recommender
systems [3], social networks [4], biology and bioinformatics [5, 6].

Many methods have been proposed to tackle this problem, and they can
be divided into three main classes:

• Heuristics without a function to optimize, for example the Girvan and
Newman’s heuristic [4] where the edge with highest “betweenness” (i.e.,
the number of shortest paths between pairs of nodes that run along that
edge) is iteratively removed.

• Certain rules which must be respected by each cluster. Examples are
the strong and weak definitions of Radicchi et al. [7] which impose, for
the vertices in a cluster, some conditions on the number of neighbors
inside and outside that cluster. Other examples are the semi-strong and
extra-weak definitions by Hu et al. [8], and the almost-strong definition
[9].

• A certain function that needs to be optimized. The most famous is the
maximization of the modularity, which represents the fraction of edges
within clusters minus the expected fraction of such edges in a random
graph with the same degree distribution [4, 10]. Many heuristics [5, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20] and some exact methods [21, 22, 23]
have been proposed to solve the modularity maximization problem,
which has been proved to be NP-hard by Brandes et al. [22]. A study
on the impact of the definitions presented above when applied to the
modularity maximization problem is presented by Cafieri et al. [24].

Of particular interest from a mathematical programming point of view is
the method of modularity maximization. Given an unweighted graph G =
(V,E), where V is the set of vertices and E is the set of edges, its modularity
Q is defined as [2, 4]:

Q =
1

2m

n∑
i=1

n∑
j=1

(
aij −

kikj
2m

)
δ(ci, cj), (1)

where m is the total number of edges of G (i.e., m = |E|), n is the number of
vertices of G (i.e., n = |V |), aij is an element of the adjacency matrix of G
(i.e., aij = 1 if {vi, vj} ∈ E, aij = 0 otherwise), ki is the degree (i.e., number
of neighbors) of vertex vi, ci and cj are the clusters to which the vertices
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vi and vj belong, and δ(ci, cj) is the Kronecker symbol, which is equal to 1
if ci = cj, and it is equal to 0 otherwise. Another equivalent definition of
modularity is the following [2, 10]:

Q =
∑
c∈C

Qc =
∑
c∈C

(
mc

m
− Kc

2

4m2

)
, (2)

where C is the set of clusters, Qc is the contribution to modularity of cluster
c, mc is the number of edges within cluster c, Kc is the sum of the degrees
of the vertices which are inside the cluster c, mc

m
is the fraction of edges in

cluster c, and K2
c

4m2 is the expected number of edges in cluster c in a graph
where vertices have the same distribution of degrees of G but edges are placed
randomly.

Using Equation (1) the modularity maximization problem can be modeled
by means of the clique partitioning formulation [22, 25]. Recently, improved
versions of the model derived by Grötschel and Wakabayashi [25], having a
smaller set of inequalities, have been proposed [26, 27]. On the other hand,
using Equation (2), the modularity maximization problem can be formu-
lated as a convex Mixed Integer Quadratic Programming problem [21]. Note
that in this case the cardinality of C, that is not known a priori, must be
determined. This information is not needed if using Equation (1).

It has been pointed out that modularity maximization presents some
issues. One of them is the resolution limit, i.e., the difficulty to find small
clusters which may remain hidden within larger clusters [28, 29]. To overcome
this problem, some authors presented a new function to be maximized called
modularity density [30]. The modularity density D of a graph G, whose
original formulation is reported in Li et al. [30], can be defined as:

D =
∑
c∈C

Dc =
∑
c∈C

(
2mc − m̄c

nc

)
, (3)

where for each cluster c ∈ C containing nc vertices, mc is the number of
inner edges, m̄c is the number of cut edges, and Dc is its modularity density.
Notice that the structure of this formulation is similar to Equation (2), and
again the optimal number of clusters |C| is not known a priori. The corre-
sponding optimization problem is nonlinear because of the denominator in
Equation (3). Some exact linearizations have been presented by Costa [31],
but they require the computation of an upper bound (possibly tight) for the
modularity density of a cluster, that is not an easy task in general.

3



It it still unclear whether modularity density maximization is NP-hard
or not. The argument given by Li et al. in [30] is invalid (see Costa [32]).
Indeed, the modularity density maximization problem is not easy to solve, as
it is integer and nonlinear. Even though it was possible to obtain some exact
Mixed Integer Linear Programming (MILP) reformulations (see Costa [31]),
experiments performed therein showed that only small size instances can be
solved (see the results reported in Table 5). The main motivation for the
heuristic presented in this paper is to provide a method which can find good
quality solutions and which is faster than the exact method. More precisely,
we propose a hierarchical divisive heuristic which works by splitting recur-
sively a cluster into two clusters by maximizing the modularity density. More
details about this method are presented in Section 2. After that, we present
in Section 3 some formulations for the problem of the optimal splitting of a
cluster. Some strategies to break symmetries of the problem are introduced
in Section 4. We then compare performances of different formulations, and
also the quality of the results with respect to global optimal solutions of [31]
in Section 5. Finally, we draw conclusions in Section 6.

2. Divisive hierarchical heuristic

The main idea of the heuristic, which was originally proposed for modu-
larity maximization by Cafieri et al. [19, 20] and then extended to bipartite
modularity maximization by Costa and Hansen [33], is to start from an ini-
tial cluster containing all the vertices and then recursively split it into two
clusters by maximizing the modularity density. The splitting of a cluster is
stopped when either the size of the cluster is too small or the current division
produces two clusters whose total modularity density is lower than that of
the original cluster. By “small sized cluster” we mean a cluster containing
less than four vertices: it has been proven in [31] that a cluster with one
vertex (if not isolated) does not belong to the optimal partition, as it can
be merged with another cluster to increase the total modularity density. If
a cluster has less than four vertices, the splitting would produce at least
one subcluster with one vertex, therefore we do not consider such cases. A
pseudo-code for the heuristic is shown in Algorithm 1.

The most important part of the algorithm is the procedure MDS (Mod-
ularity Density Splitting), which takes as an input the cluster ci and gives
as an output clusters c2i and c2i+1, which are obtained by maximizing the
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Algorithm 1: Hierarchical divisive heuristic

Input: graph G = (V,E)
Output: a partition C of V

1 c1 ← V
2 C ← {c1}
3 i← 1
4 while i > 0 do
5 /* Splitting ci into two clusters maximizing modularity density */
6 (c2i, c2i+1)← MDS(ci)
7 /* Modularity density D is computed according to Equation (3) */
8 if D(c2i) +D(c2i+1) ≥ D(ci) then
9 C ← (C\{ci}) ∪ {c2i} ∪ {c2i+1}

10 end if
11 /* Record indices of the clusters that need to be visited */
12 I ← {j : (cj ∈ C) ∧ (|cj| > 3) ∧ (cj not visited)}
13 if I = ∅ then
14 i← 0
15 else
16 i← min

j∈I
j

17 end if
18 end while
19 return C

modularity density. More details on the MDS procedure are provided in the
next section.

3. Formulations for the optimal splitting problem

The MDS procedure computes the optimal splitting of a cluster into two
clusters by maximizing the modularity density. To do that, an optimization
problem need to be solved.

Let c = (Vc, Ec) be the cluster to be split into new clusters ca and cb, Yi
the binary variable that equals to 1 if the vertex vi belongs to ca, and 0 if
the vertex vi belongs to cb, and ki is the degree of the vertex vi. According
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to Li et al. [30] and Costa [31], the problem can be expressed as follows:

max


4
∑

{vi,vj}∈Ec

YiYj −
∑
vi∈Vc

kiYi∑
vi∈Vc

Yi
+

4
∑

{vi,vj}∈Ec

(1−Yi)(1−Yj)−
∑
vi∈Vc

ki(1− Yi)

|Vc| −
∑
vi∈Vc

Yi

 (4)

s.t. 2 ≤
∑
vi∈Vc

Yi ≤ |Vc| − 2 (5)

∀vi ∈ Vc Yi ∈ {0, 1}. (6)

Solving this problem can be computationally expensive if using nonlinear
solvers such as Couenne [34] or BARON [35]: some experiments performed
by Costa [31] showed that using the exact nonlinear model on the strike
instance (the smallest considered in this paper), the solver Couenne was
still running after 2000 seconds on a server more powerful that the laptop
used for our experiments. We can linearize exactly the objective function as
shown by Costa [31] and then use the solver CPLEX [36], but this requires the
computation of an upper bound for the modularity density of each cluster,
but this can be computationally expensive because the upper bound is found
by solving an additional Nonlinear Program (NLP). This bound is required to
define the McCormick’s inequalities [37], used to linearize the fractions arising
in the nonlinear formulation. The reader interested in finding more details
about the exact MILP reformulations of the modularity density maximization
problem can refer to [31]. Here we employ another strategy, which turns
out to be more efficient in terms of computational time. In order to find
the optimal solution of Problem (4)–(6), we fix the denominator of the first
term of Equation (4) to p ∈ {2, . . . , |Vc| − 2}. Then, we can solve a simpler
problem for each value of p, and take the best solution found. Given the value
of p, after some manipulations, the Bipartition Modularity Density (BMD)
model can be expressed as follows:
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max

4|Vc|
∑

{vi,vj}∈Ec

YiYj + (2p−|Vc|)
∑
vi∈Vc

kiYi − 4p
∑

{vi,vj}∈Ec

(Yi+Yj)− p
∑
vi∈Vc

ki + 4p|Ec|

p (|Vc| − p)
s.t.

∑
vi∈Vc

Yi = p

∀vi ∈ Vc Yi ∈ {0, 1}.
(BMD)

Notice that this problem, unlike (4)–(6), can be solved directly with CPLEX.
We have now all the ingredients to define the MDS procedure. It is shown
in Algorithm 2.

Algorithm 2: Modularity Density Splitting (MDS)

Input: cluster c = (Vc, Ec)
Output: two subclusters c1, c2 obtained from c by maximizing the modu-
larity density

1 p← 2
2 D∗ ← −∞
3 while p ≤ |Vc| − 2 do
4 (ca, cb)← solve BMD for the given p
5 /* Modularity density D is computed according to Equation (3) */
6 if D(ca) +D(cb) ≥ D∗ then
7 D∗ ← D(ca) +D(cb)
8 (c1, c2)← (ca, cb)
9 end if

10 p← p+ 1
11 end while
12 return (c1, c2)

The code of line 4 in Algorithm 2 takes as an input the value of p, solves
BMD, and returns the optimal splitting. One might wonder if it is possi-
ble to derive a more efficient formulation than BMD. This question will be
addressed in following subsections, where we derive some reformulations of
BMD.
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3.1. Fortet reformulation

One of the ways to obtain an exact reformulation (i.e., using the terminol-
ogy of Liberti [38], a formulation which preserves all the optimality informa-
tion of the original model) of BMD is to employ the Fortet inequalities [39]
to linearize the products between the binary variables Yi and Yj arising in the
objective function of BMD (notice that Fortet inequalities are a special case
of the McCormick’s inequalities [37] for binary variables). This technique is
often employed in clustering problems [20, 31, 33, 40]. More precisely, each
product YiYj can be replaced by a new variable Wij and the following linear
inequalities:

Wij ≤ Yi (7)

Wij ≤ Yj (8)

Wij ≥ 0 (9)

Wij ≥ Yi + Yj − 1. (10)

Since we are maximizing YiYj in the objective function, we can discard (9)
and (10), thus obtaining the following model, BMD-F:

max

4|Vc|
∑

{vi,vj}∈Ec

Wij + (2p− |Vc|)
∑
vi∈Vc

kiYi − 4p
∑

{vi,vj}∈Ec

(Yi + Yj)− p
∑
vi∈Vc

ki + 4 p |Ec|

p (|Vc| − p)
s.t.

∑
vi∈Vc

Yi = p,

∀{vi, vj} ∈ Ec Wij ≤ Yi,

∀{vi, vj} ∈ Ec Wij ≤ Yj,

∀{vi, vj} ∈ Ec Wij ∈ R,
∀vi ∈ Vc Yi ∈ {0, 1}.

(BMD-F)

3.2. Dual reformulation

It was shown by Rikun [41] that multilinear functions (i.e., functions
µ(x) = µ(x1, . . . , xk) of the form x1 · · ·xk) defined on hyperrectangles [xL, xU ] ⊆
Rk are vertex polyhedral, i.e., their convex envelopes are the convex envelopes
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of their restriction to the vertices of the corresponding box [42]. In this sec-
tion we exploit the dual representation of polyhedra in terms of their vertices
to provide another representation (different from Fortet’s, see previous sec-
tion) of the convex envelope of bilinear products occurring in Formulation
BMD above. It turns out that the computational behaviour of Branch-and-
Bound (BB) algorithm improves when using dual reformulations (see Section
5). This is consistent with the findings by Costa and Liberti [43].

Let w(x) be the value of the convex envelope of µ(x) and denote by
p1, . . . , pν ∈ Rn the vertices of the box [xL, xU ]. Since the box [xL, xU ] is a
polyhedron, it is convex. Hence we can write any x ∈ [xL, xU ] as a convex
combination of p1, . . . , pν as follows:

x =
ν∑
`=1

λ`p`, (11)

1 =
ν∑
`=1

λ`, (12)

for some nonnegative vector λ = (λ` | ` ≤ ν) ≥ 0. Since µ(x) = x1 · · ·xk we
have:

µ(x) =
k∏

h=1

xh =
k∏

h=1

ν∑
`=1

λ`p`h, (13)

and by vertex polyhedrality we can exchange sum and product, yielding:

w(x) =
ν∑
`=1

λ`

k∏
h=1

p`h. (14)

If a polynomial program consists of many multilinear monomials, the dual
relaxation can be carried out term by term, yielding an alternative relaxation
of the whole program. This relaxation was discussed by Costa and Liberti
[43] in an abstract setting. Although its tightness is exactly the same as
the generalized Fortet relaxation (so the bounds it yields are the same), the
computational performance of BB is improved, and it was empirically shown
to be more stable across the whole Branch-and-Bound (BB) tree.

3.2.1. The dual reformulation of BMD

Formulation BMD is a Mixed-Integer Nonlinear Program (MINLP) with
bilinear terms Wij = YiYj, where Yi, Yj ∈ {0, 1}, which means that the
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continuous relaxation has Yi, Yj ∈ [0, 1]. Since we have a bilinear term defined
over a box, the convex envelope is vertex polyhedral, so we have ν = 4,

p1 = (0, 0), p2 = (0, 1), p3 = (1, 0), p4 = (1, 1),

and

Yi =
4∑
`=1

λij`p`1, (15)

Yj =
4∑
`=1

λij`p`2, (16)

Wij =
4∑
`=1

λij`p`1p`2, (17)

1 =
4∑
`=1

λij`, (18)

∀` ∈ {1, . . . , 4} λij` ≥ 0. (19)

We observe further that since p1 = (0, 0) we do not need λij1 for any i, j:
in particular, this replaces the quantifier ∀` ∈ {1, . . . , 4} by ∀` ∈ {2, . . . , 4}
throughout and Constraint (18) can be replaced with

∑4
`=2 λij` ≤ 1. More-

over, since λij`p`1p`2 is only nonzero whenever p`1p`2 = 1, which only happens
whenever ` = 4, we can replace Constraint (17) with Wij = λij4. In summary,
we obtain the following reformulation:

max

4|Vc|
∑

{vi,vj}∈Ec

λij4 + (2p− |Vc|)
∑
vi∈Vc

kiYi − 4p
∑

{vi,vj}∈Ec

(Yi + Yj)− p
∑
vi∈Vc

ki + 4p|Ec|

p (|Vc| − p)
s.t.

∑
vi∈Vc

Yi = p

∀{vi, vj} ∈ Ec λij3 + λij4 = Yi

∀{vi, vj} ∈ Ec λij2 + λij4 = Yj

∀{vi, vj} ∈ Ec λij2 + λij3 + λij4 ≤ 1

∀{vi, vj} ∈ Ec, ∀` ∈ {2, 3, 4} λij` ≥ 0

∀{vi, vj} ∈ Ec, ∀` ∈ {2, 3, 4} λij` ∈ R
∀vi ∈ Vc Yi ∈ {0, 1}.

(BMD-λ)
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3.3. Square reformulation

Another way to reformulate the problem is to express the products YiYj
in terms of the sum Yi + Yj. When the variables are binary, the following
relationship holds:

(Yi + Yj)
2 = Y 2

i + Y 2
j + 2YjYj = (Yi + Yj) + 2YjYj, (20)

where we use the fact that Y 2 = Y if Y is binary. From Equation (20)
it turns out that we can replace each term YiYj in the objective function

of BMD with the expression
(Yi+Yj)

2−(Yi+Yj)
2

. After a few manipulations, we
obtain the following formulation, BMD-S:

max

2|Vc|
∑

{vi,vj}∈Ec

(Yi + Yj)
2 + (2p− |Vc|)

∑
vi∈Vc

kiYi − 2(|Vc|+ 2p)
∑

{vi,vj}∈Ec

(Yi + Yj)

p (|Vc| − p)
+

+

−p
∑
vi∈Vc

ki + 4p|Ec|

p (|Vc| − p)
s.t.

∑
vi∈Vc

Yi = p

∀vi ∈ Vc Yi ∈ {0, 1}.
(BMD-S)

4. Symmetry breaking strategies

There exist symmetric solutions for the modularity density splitting prob-
lem, for example one can swap the vertices of the two subclusters obtained
after the splitting to get an equivalent solution. It has been shown by Costa
et al. [44] that symmetric solutions can impair the performances of Branch-
and-Bound algorithms. Hence, we propose two possible strategies to reduce
the number of symmetric solutions.

The first way to do it, which was already exploited in Cafieri et al. [20],
Costa and Hansen [33], is to fix the vertex with highest degree to belong
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to one cluster. In case there exist multiple vertices with the same highest
degree, we choose the one with the smallest index:

Yg = 0, g = min
{
j | kj = max{ki, ∀vi ∈ Vc}

}
. (21)

Another way to reduce the symmetries of the problem is to consider
only half of the values of p in the procedure MDS in Algorithm 2. In fact,
the solution obtained with p = p̂ is the same obtained with p = |Vc| − p̂.

Therefore, we just need to consider the values of p in {2, . . . ,
⌊
|Vc|
2

⌋
} in the

procedure MDS (and the condition in line 3 of Algorithm 2 becomes p ≤⌊
|Vc|
2

⌋
). This way, we have to solve approximately half of the subproblems.

Notice that in general we cannot combine this strategy with Constraint (21).
Therefore, we study their impact separately.

5. Computational results

In this section we present the results obtained with some instances from
the literature, whose details are reported in Table 1. The instances are
available on the Pajek repository [45] (we consider the largest connected
component if the graph is composed of more than one. Moreover, if present,
we replace directed arcs with undirected edges and we remove duplicated
edges). We also report the results, in terms of computational time, obtained
with some artificially generated instances. Experiments were performed on
a 2.8 GHz core i7 CPU with 8GB of RAM running Linux and the solver
CPLEX 12.6 [36].

5.1. Quantitative results: comparison between the different formulations

We compare here the four formulations (i.e., BMD, BMD-F, BMD-λ, and
BMD-S) in terms of the total number of Branch-and-Bound nodes and total
computational time needed to find the optimal partition C of Algorithm
1. Table 2 reports the results when employing the first symmetry breaking
strategy described in Section 4 (i.e., fixing the vertex with highest degree in
one of the clusters), whereas Table 3 presents the results obtained with the
second strategy (i.e., considering half of the values of p). The best results in
terms of computational time are highlighted in bold.

Visual representation of the data from Tables 2, 3 can be found in Figure
1. We have performed regression to the origin, in other words the intercept
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Table 1: Information about the instances.

ID Graph |V | |E|
1 Strike 24 38
2 Galesburg F 31 63
3 Galesburg D 31 67
4 Karate 34 78
5 Korea 1 35 69
6 Korea 2 35 84
7 Mexico 35 117
8 Sawmill 36 62
9 Dolphins small 40 70

10 Journal index 40 189
11 Graph 60 114
12 Dolphins 62 159
13 Les Misérables 77 254
14 A00 main 83 135
15 Protein p53 104 226
16 Political books 105 441

is assumed to be zero (since it is reasonable to expect the algorithm to solve
a problem of size zero in zero seconds). The best regression fit in terms of R2

values was obtained when the regressor is the product |V | |E|. Adjusted R2

values are more than 98% and p-values associated with slopes are less than
5 · 10−15 in both cases. We can observe from Figure 1 that the slope of the
regression line corresponding to the BMD-λ formulation is the smallest one,
indicating that it outperforms the other formulations in terms of computa-
tional time with respect to the size of the instances. Furthermore, in Table
2 the slope for the BMD-λ formulation is 2.2 · 10−3, whereas in Table 3 it
is 1.4 · 10−3, thus indicating that the second symmetry breaking strategy is
more effective.

To further support our conclusions, we performed a non-parametric sta-
tistical test. We employ the Quade test [46] (that is an extension of the
Wilcoxon signed-rank test) instead of the Friedman test as it seems to be
more powerful when the number of groups of data is low (we compare four
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Table 2: Comparison between the four models with the symmetry breaking strategy of
fixing the vertex with the highest degree. The column “time” refers to the total running
time of the algorithm for solving the corresponding instance.

BMD BMD-F BMD-λ BMD-S
ID nodes time [s] nodes time [s] nodes time [s] nodes time [s]

1 0 4.38 0 5.81 0 4.69 0 4.31
2 149 5.51 0 6.57 0 5.15 0 4.66
3 111 7.36 0 6.26 0 5.1 0 5.85
4 0 3.69 0 4.6 0 4.44 0 5.97
5 0 3.47 0 4.38 0 5.45 0 5.2
6 17 7.78 0 9.35 0 4.86 0 7.18
7 0 7.09 0 8.4 239 5.31 0 9.15
8 5 4.84 0 6.11 0 13.47 0 8.62
9 0 6.57 0 6.77 0 8.06 0 8.42
10 570 16.32 117 19.85 2424 10.5 0 18.49
11 0 20.78 0 25.54 0 15.56 0 26.54
12 200 31.63 0 30.97 637 19.53 0 34.04
13 586 51.25 181 46.99 638 40.68 86 50.72
14 149 27.38 0 25.73 0 26.89 0 26.13
15 83 79.81 0 78.05 87 46.3 0 81.14
16 2819 140.23 1763 140.2 9053 106.2 2750 142.31

models and two symmetry breaking strategies). We use the computational
time on each instance as block (rows), and the formulations as groups (columns).
The null hypothesis of the test is that there is no difference among the groups.
This allows us to assess if one of the formulations is consistently better than
the others in the majority of instances. The comparisons are performed at
the 95% significance level: if we obtain a p-value < 0.05 then we can conclude
that one formulation is more efficient than the others. We report in Table 4
the results of the Quade test.

The Quade test confirms that the best formulation is BMD-λ, and that
the best symmetry breaking strategy is to consider half of the values of p
(Table 3).

It is also interesting to notice that BMD-λ seems to be associated to the
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Table 3: Comparison between the four models with the symmetry breaking strategy of
considering only half of the values of p. The column “time” refers to the total running
time of the algorithm for solving the corresponding instance.

BMD BMD-F BMD-λ BMD-S
ID nodes time [s] nodes time [s] nodes time [s] nodes time [s]

1 17 2.26 0 2.85 0 2.37 0 2.49
2 0 3.14 0 3.39 0 2.65 0 3.52
3 0 3.73 0 3.9 0 2.99 0 4.82
4 8 4.44 0 3.59 0 2.48 0 4.19
5 15 3.82 0 3.72 0 2.81 0 2.93
6 27 5.37 0 8.3 0 2.8 0 6.46
7 0 5.74 0 6.18 29 3.35 0 5.97
8 93 4 0 5.37 0 1.89 0 4.01
9 0 5 0 4.79 0 2.58 0 5.2
10 1710 10.02 0 11.77 1491 6.92 5 11.03
11 17 12.75 0 13.73 0 7.37 0 16.42
12 0 16.35 0 16.45 987 17.65 0 15.44
13 805 38.46 155 36.06 615 30.04 157 36.33
14 153 19.03 0 15.55 0 14.59 0 15.36
15 17 60.27 0 54.51 0 30.49 0 56.77
16 1200 93.49 1321 91.43 6294 72.47 1262 91.39

Table 4: Results of the Quade test.

Models tested Best model p-value

Table 2 (all) BMD-λ 0.0025
Table 3 (all) BMD-λ < 10−4

BMD-λ Tables 2, 3 BMD-λ Table 3 < 10−5

larger total number of BB nodes. However, the computational times are
lower, thus indicating that the subproblems solved by CPLEX, even though
larger in number with respect to the other formulations, are easier to solve.
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Figure 1: Data of Table 2 (left plot) and Table 3 (right plot). The x-axis is the size of
the instance, i.e., the product |V ||E|, and the y-axis is the computational time in seconds.
Straight lines represent regression lines. The best formulation (i.e., the one associated
with the regression line having the smallest slope) is BMD-λ in both cases.

5.2. Qualitative results: heuristic versus optimal solution

In this section we compare the partitions (number of clusters and mod-
ularity density value) obtained with the heuristic to the optimal solutions
of Costa [31]. Those optimal solutions are known only for the first ten in-
stances. The results are presented in Table 5, together with the gap between
the heuristic modularity density (Dheur) and the optimal modularity density
(Dopt). The gap is computed using the CPLEX definition:

gapD =

(
100|Dopt −Dheur|
|Dheur|+ 10−10

)
%.

Optimal solutions better than those of the divisive heuristic are highlighted
in bold. In Table 5, |Cheur| and |Copt| denote the number of clusters obtained
with the divisive heuristic and the optimal one, respectively. It appears
that the results of the heuristic are close, and often equal to the optimal
ones. Note that the optimal solution times were obtained on a server more
powerful than the PC used for the heuristic.
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Table 5: Comparison of the results between the divisive heuristic proposed in this paper
and the optimal solutions reported in [31].

Heuristic Optimal gapD
ID |Cheur| Dheur timeheur[s] |Copt| Dopt timeopt[s] %

1 4 8.86111 2.37 4 8.86111 1.40 0
2 3 8.28571 2.65 3 8.28571 3.36 0
3 3 6.92692 2.99 3 6.92692 2.90 0
4 3 7.84242 2.48 3 7.8451 4.51 0.03
5 5 10.9667 2.81 5 10.9667 8.75 0
6 5 11.143 2.8 5 11.143 15.55 0
7 2 8.55797 3.35 3 8.71806 58.02 1.87
8 5 8.52929 1.89 4 8.62338 10.11 1.10
9 7 12.8019 2.58 8 13.0519 121.31 1.95
10 4 17.8 6.92 4 17.8 67.92 0
11 7 9.57875 7.37 - - - -
12 5 12.1252 17.65 - - - -
13 9 24.5339 30.04 - - - -
14 11 13.3731 14.59 - - - -
15 8 12.9895 30.49 - - - -
16 7 21.9652 72.47 - - - -

5.3. Artificially generated instances

We report in this section the results obtained by the divisive heuristic us-
ing the best setting identified above (i.e., BMD-λ with the symmetry breaking
strategy of considering half of the subproblems) on some artificial instances
generated with the Matlab Tools for Network Analysis toolbox [47]. More
precisely, for each combination of values of |V | and |E| reported in Table 6,
we have generated 10 random instances and solved them using the divisive
heuristic. Table 6 shows the mean (µ̂) and standard deviation (σ̂) of the
computational times for each case.

It is clear from the average times of Table 6 that the complexity of the
problem increases significatively when the size of the instances grows. More-
over, the standard deviation of the computational time with respect to the
average time increases as well, thus indicating that the particular instance
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Table 6: Results obtained with some artificial instances. For each case we report the mean
and standard deviation of the computational times obtained with the best algorithm (i.e.,
the formulation BMD-λ with the symmetry breaking strategy of considering half of the
subproblems) on 10 random instances.

|V | |E| µ̂ time [s] σ̂ time [s]

50 75 6.68 1.22
50 100 9.02 2.71
50 150 28.94 14.22

100 150 37.87 13.01
100 200 119.00 22.16
150 225 179.79 39.47
200 300 1124.79 622.74
250 350 1984.58 957.56
300 400 4880.81 2349.77

considered can impact more on the complexity when the size increases.

6. Conclusions

In this paper we considered a problem of clustering for graphs via max-
imization of the modularity density. To simplify this nonlinear problem we
proposed a hierarchical divisive heuristic, and used four reformulations with
two symmetry breaking strategies. We performed the comparison of these
eight algorithms on some instances of the literature.

Statistical tests showed that overall the best performing formulation (in
terms of the computational time) is BMD-λ, wich runs up to twice faster than
the other formulations in the worst case scenario. Between the two symmetry
breaking strategies, i.e., fixing the vertex with the highest degree and solving
only half of the subproblems, the latter is the most efficient. Therefore, the
best performing algorithm is the dual reformulation BMD-λ with the symme-
try breaking strategy of considering half of the subproblems. Moreover, the
heuristic’s solutions in terms of modularity density value coincide with the
optimal ones in more than half of instances (for which the optimal solution
is known, see Table 5), thus showing the quality of the proposed method.

Test performed on some larger artificially generated instances show that
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the heuristic can solve problems of size much bigger than that of the exact
method presented in [31]. However, the computational complexity increases
significantly. One of the future work directions is to address this point, in or-
der to test the divisive heuristic on larger instances. To do so one could solve
the problem within a column generation framework (as done for modularity
maximization by Aloise et al. [23]). Moreover, a parallel implementation of
the algorithm would improve the performance significantly. As example, this
could be done by solving the subproblems of the procedure MDS (one for
each value of p, see line 4 in Algorithm 2) in parallel.
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