
SelfSelf--Adaptive Middleware: Adaptive Middleware:
A contribution towards taming the complexity A contribution towards taming the complexity

of distributed information systemsof distributed information systems

Yves Caseau

CAL 07 – 3 Octobre

OverviewOverview

Part I – Information Systems Complexity

Part II – OAI through adaptive middleware

Part III – Sensitivity to IS patterns

Part IV – Conclusion

2

YCS – 3/10/ 2007

3

Which complexity ?Which complexity ?

Size (2005 figures)

Over 1 million function points, 50 M TPMC (~1000 servers),
700 To

60% makes a tightly integrated global system (SIC)

Impact & Testing makes a larger and larger part of software
projects costs

Time & Dependency

Production Planning

Project planning

Quality of Service

Customer-facing IT

Level of expectation is constantly increasing
I: Bouygues Telecom’s IT

YCS – 3/10/ 2007 I: Information Systems Complexity

Issues resulting from complexityIssues resulting from complexity

Quality of Service – meeting business expectation

Complexity of heterogeneous process management

Resilience

lowest possible impact of system-scale failures of one or many components

Coherence of Distributed Data Management & Long Running
Transactions

Practical issue: interaction between signaling flows (process control)
and synchronization flows

• Assume a separate mechanism that will ensure the coherence of the
distributed objects ?

• Take responsibility of “business object distribution & coherence” as part as
the business process management ?

• Define an acceptable level of “chaos”, that is accept that complete
coherence is not necessary ?

4

YCS – 3/10/ 2007 I: Information Systems Complexity

Biology of Distributed Information SystemsBiology of Distributed Information Systems

From a mechanical toward a biology vision
of fault-tolerance ☺

Biomimetics meets Information Systems: when
the solutions to the previous issues are
emergent properties, not designed.

An approach that may be applied :

System Level : Grid computing, Autonomic
computing

Process Level: self-adaptive process
management (from the infra-structure : topic of
this talk)

Operations level : « Organic » operations = rely
on alternate processes and operations patterns.

5

ST1 ST2 ST3

ST1
secours

ST3
secours

System-based
monitoring / recovery

Process monitoring
/ recovery

ST1 ST2 ST3

ST4

YCS – 3/10/ 2007 I: Information Systems Complexity

6

OAI : Problem DefinitionOAI : Problem Definition

(2) Service Level Agreements (3) random events

Bus

Processflow Engine

adapter

CRMPFS Customer
Base

ProvisioningHelp

Context: (1) business processes which run over a shared set of components

Question: Can process management (load balancing) be automated to
maximize business priority satisfaction ?

20 clients per
Hour in less

than 2 minutes

•Activité bursts
•Failures
•Interaction with other processes

YCS – 3/10/ 2007 I: Information Systems Complexity

7

CRM Service
Platform

Customer
Base

Provisioning

NetworkHelpAccounts

Fraud Order
Management

Processes
- SLA
- Priorities

IT Systems
-throughput
-latency
-availability
-Message protocol

Midleware
-Throughput
-Latency
-Availability
-Message routing

OAI: Optimization of Application IntegrationOAI: Optimization of Application Integration

Goals (SLA)
- Availability
-Latency
-Throughput
For each
process

i-mode™ launch example

i-mode subscription is one of many
business processes

Others include billing / Account
management /

SLA goals seemed straightforward …

IV: Optimization of Application Integration
YCS – 3/10/ 2007 I: Information Systems Complexity

8

The challenge of OAIThe challenge of OAI

Why is OAI hard ?

Asynchronous availability is hard to compute

Sizing (multi-commodity flow)

Stochastic (irregular flows & bursts)

Non-linear behavior (message protocol)

Monitoring is difficult (for explanations)

Functional dependencies between processes (QoS/QoD)

Culture problem

Batch, Client/server, 3/3 architecture have been around for a
while -> incident solving know-how

Distributed, asynchronous systems that exchange messages are far
less common

BP culture is long to grow (global perspective)

YCS – 3/10/ 2007 I: Information Systems Complexity

OverviewOverview

Part I – Information Systems Complexity

Part II – OAI through adaptive middleware

Part III – Sensitivity to IS patterns

Part IV – Conclusion (BDIS)

9

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

SLAs, Priorities and Adaptive StrategiesSLAs, Priorities and Adaptive Strategies

Each process has a SLA (throughput, latency, availability)

Business processes have different priorities
An adaptive strategy should balance the load according to priorities
and SLAs

Self-adaptive = tolerance to bursts

Self-healing = tolerance to short failures (fail-over)

Two approaches:
Message Handling Rules : modify the order in which messages are
handled (higher priority first)

Control Rules : slow down lower priority flows

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

Simulation Model (default)Simulation Model (default)

5 Processes (simplified real problem)
P1 is a high priority “subscription” process. (high latency)

P2 is a medium priority automated baring process.

P3 is a lower priority (3) barring.

P4 is a high-priority de-barring process (low latency)

P5 is a query process of medium priority.

Finite-event model

Scenarios to evaluate « graceful degradation »
II: Self-Adaptive Middleware

Processflow
Engine

Infrastructure

Monitor

StartProcess

StartTask

System
TimeOutAlert

EndProcess

EndTask

StartTask

EndTask

SetStatus Failure

ReceivedTask
ReceivedTask

YCS – 3/10/ 2007

Routing StrategiesRouting Strategies

FCFS (FIFO)

Default method for most middleware – respects temporal
constraints

However, temporal ordering is not preserved by load
distribution

LCFS (FILO)

Good strategy for handling backlogs

“SLA routing”

Prediction of processing time based on SLA

Sort message according to “expected scheduled time”

Combination with priorities

Process high priority messages first

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

ScenariosScenarios

3 types of scenarios

Reference = static (with overload)

Burst (high-priority & low priority)

Component failure

Different event distribution (uniform, Poisson, …)

Performance evaluation

Multiple runs

Average, standard deviation of SLA achievement

Goal is to observe « graceful degradation » (lower priority
processes degrade first)

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

S1 S11 S12 S13 S2

FCFS 98% [97-100]
98% [98-99]
98% [97-99]
88% [76-98]
84% [71-99]

98% [97-100]
98% [98-99]
98% [97-99]
88% [76-98]
84% [71-99]

83% [45-99]
59% [4-99]
76% [38-99]
47% [0-98]
46% [0-99]

28% [0-98]
15% [0-79]
22% [0-98]
12% [0-78]
13% [0-77]

98% [97-99]
98% [98-99]
98% [97-99]
93% [72-99]
90% [71-98]

LCFS 98% [97-99]
98% [96-99]
98% [97-99]
93% [86-97]
96% [94-98]

98% [97-99]
96% [93-98]
98% [96-99]
90% [81-97]
94% [90-99]

92% [77-99]
85% [71-99]
91% [79-99]
72% [50-97]
86% [76-99]

75% [63-99]
66% [56-89]
73% [62-92]
52% [36-86]
79% [73-92]

98% [97-99]
98% [97-99]
98% [97-99]
94% [88-99]
96% [93-98]

SLA 98% [97-99]
98% [98-99]
98% [97-99]
98% [96-99]
99% [99-99]

98% [97-99]
98% [98-99]
98% [97-99]
98% [96-100]
99% [98-99]

82% [47-99]
75% [39-99]
78% [39-99]
69% [25-99]
74% [39-99]

26% [0-98]
18% [0-96]
22% [0-98]
15% [0-79]
20% [0-89]

98% [96-99]
98% [98-99]
98% [97-99]
98% [97-100]
99% [99-99]

PRF 98% [97-99]
97% [91-99]
97% [84-99]
98% [94-100]
93% [88-99]

98% [96-99]
96% [86-99]
94% [80-99]
98% [93-99]
89% [80-99]

98% [97-99]
81% [45-99]
44% [0-99]
95% [85-99]
69% [24-99]

98% [97-99]
48% [0-99]
2% [0-27]
86% [53-99]
45% [1-93]

98% [96-99]
98% [90-99]
98% [88-99]
98% [96-99]
93% [81-98]

PRL 98% [96-99]
97% [92-99]
97% [87-99]
98% [95-100]
95% [91-98]

98% [96-99]
96% [92-99]
92% [82-99]
98% [95-99]
93% [86-99]

98% [97-99]
83% [54-99]
54% [7-99]
96% [88-99]
82% [63-99]

97% [95-98]
73% [45-98]
59% [17-98]
97% [93-99]
70% [36-98]

98% [97-99]
97% [90-99]
96% [86-99]
98% [96-99]
95% [88-98]

PRSS 98% [97-100]
97% [91-99]
97% [91-99]
98% [96-99]
96% [91-99]

98% [97-99]
96% [88-99]
94% [80-99]
98% [97-99]
94% [86-99]

98% [96-99]
83% [51-99]
44% [0-99]
98% [97-99]
79% [49-99]

98% [96-99]
50% [0-99]
3% [0-30]
97% [91-99]
52% [3-97]

98% [97-100]
98% [91-99]
98% [96-99]
98% [97-99]
96% [87-99]

Computational results (1)Computational results (1)

14

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

Computational Results (II)Computational Results (II)

15

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

ResultsResults

Priority routing works. The algorithms that use process
priority as part of the sorting strategy are able to maintain
the SLA of high priority processes much longer.

The second lesson is that FCFS is not a good default
algorithm. LCFS does better as soon as the event flow
become tight.

The combination of priority and SLA sorting is the best
approach.

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

Flow RulesFlow Rules

First intuition at Bouygues Telecom was to implement control flow
mechanisms (emergency mode)

Before actually implementing it in the EAI adapter, we use the
simulation engine to evaluate two strategies :

1. RS1: When the QoS of a system X fails lower than 90% of its SLA
level (cf. Section 3), we reduce the flow of systems that are
providers of X whose priority is lower than X. A dual rule restores
the default setting once the QoS of X reaches 90%.

2. RS2: This is a similar rule, but the triggering condition is based on
processes. When the QoS of a process P fails below 90%, we
reduce the flow of all systems that have a lower priority than P
and who are providers of a system that supports P.

Control flow is more complex to operate but it is not necessarily part
of the middleware infrastructure

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

Routing RulesRouting Rules

We implemented rules that dynamically change the message
handling strategy (using a “status” : FAST means use PRL to
process a backlog)

RS3: When the QoS of a system X drops below 95%, the system is
switched to FAST status. The system resumes normal status once
the QoS returns above 95%.

RS4: When the QoS of a process P drops below 95%, all systems that
support this process are switched to FAST status.

RS5: A system is switched to FAST status whenever its mailbox size
grows over 100. Obviously, the triggering size is a constant that
depends on the volume that is processed by the EAI and the number
of connected systems.

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

ResultsResults
S33 S51 S2

FCFS PRSP FCFS PRSP FCFS PRSP

No
R
u
l
e
s

38%
31
%

35%
29%
44%

70%
44%
22%
66%
67%

56%
48%
50%
44%
57%

75%
61%
33%
70%
75%

98%
98%
98%
93%
90%

98%
98%
98%
98%
97%

RS1 46%
23%
42%
33%
31%

70%
44%
23%
65%
39%

60%
25%
55%
47%
35%

75%
61%
33%
70%
52%

98%
98%
98%
93%
81%

98%
98
%

98%
98%
92%

RS2 52%
25%
46%
25%
33%

70%
43%
23%
65%
66%

62%
29%
55%
46%
35%

75%
61%
33%
70%
66%

98%
98%
98%
93%
90%

98%
98%
98%
98%
97%

S33 S51 S2

PRF PRSP PRF PRSP PRF PRSP

No
Rul
es

69%
42%
23%
63%
65%

70%
44%
22%
66%
67%

76%
62%
37%
70%
72%

75%
61%
33%
70%
75%

98%
98%
98%
98%
93%

98%
98%
98%
98%
97%

RS3 74%
69%
58%
75%
72%

75%
69%
59%
77%
72%

76%
69%
65%
73%
79%

74%
68%
64%
72%
80%

98%
97%
98%
98%
92%

98%
98%
98%
98%
96%

RS4 71%
64%
52%
69%
67%

76%
68%
57%
74%
70%

76%
66%
59%
72%
78%

74%
64%
59%
69%
78%

98%
98%
98%
98%
93%

98%
98%
98%
98%
97%

RS5 77%
74%
65%
77%
72%

78%
73%
63%
80%
74%

77%
74%
65%
77%
72%

75%
66%
57%
72%
80%

98%
98%
98%
98%
93%

98%
98%
98%
98%
97%

Does not provide
any stable
improvement

-Small improvement
-Simpler is better

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

OverviewOverview

Part I – Information Systems Complexity

Part II – OAI through adaptive middleware

Part III – Sensitivity to IS patterns

Part IV – Conclusion (BDIS)

20

IS patterns (I) : short servicesIS patterns (I) : short services

Default vs. Short processes

21

Irregular load is easier to manage with shorter processes

The opposite is observed with bursts

YCS – 3/10/ 2007 III: Sensitivity to IS patterns

IS patterns (II) : longer processesIS patterns (II) : longer processes

default vs longer processes (non-homogeneous)

22

different difficulty patterns …

… but the relative ranking of methods is not changed

YCS – 3/10/ 2007 III: Sensitivity to IS patterns

IS patterns (III) : IS patterns (III) : «« Lean ManufacturingLean Manufacturing »»

Contrast

« lean » IS : 60% capacity usage, tight SLA (50% lean ratio)

« optimized IS »: 80% capacity usage, loose SLA (10-20% lean ratio)

23

An experimental verification of Taichi Ohno’s intuition (Toyota) ☺
lean = under-optimization of resources to achieve flexibility and
robustness.

YCS – 3/10/ 2007 III: Sensitivity to IS patterns

ConclusionsConclusions

A first step towards “autonomic BPM”

1. Self-optimization:
Priority handling works: it is possible and fairly simple to take
process priority into account for routing messages and the results
show a real improvement.

Routing (mailbox sorting) algorithm matters: the more
sophisticated SLA projection technique showed a real
improvement over a FCFS policy.

Control rules are interesting, but they are secondary to the
routing policy: it is more efficient to deal with congestion
problems with a distributed routing strategy rather than with a
global rule schema.

2. Self-healing: some form of self-healing is demonstrated but
true self-healing requires collaboration with HW

3. Self-configuration: the goal is to make configuration
declarative (e.g., SLA) vs. defining time & resource
configuration (e.g., schedules)

V: Conclusions 24

YCS – 3/10/ 2007

