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Abstract. Branch-and-Cut is the most commonly used algorithm for solvingInte-
ger and Mixed-Integer Linear Programs. In order to reduce thenumber of nodes
that have to be enumerated before optimality of a solution can be proven, branch-
ing on general disjunctions (i.e. split disjunctions involving more than one variable,
as opposed to branching on simple disjunctions defined on one variable only) was
shown to be very effective on particular classes of instances, but not much work has
been done to study general purpose methods of this kind. In this paper, we survey
known results related to this line of research, and we study the relationship between
branching and cutting from a split disjunction.
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Introduction

Solving Mixed-Integer Linear Programs (MILPs) is of great practical use in a number
of applications, and efficient software exists for this purpose. One key ingredient is the
Branch-and-Bound algorithm [21]. Branch-and-Bound has two main components: divid-
ing a problem into subproblems, which is known as branching,and computing bounds
on the objective function value at the subproblems. The ideais to recursively subdivide
the initial problem into smaller problems, until the subproblems can be easily solved, and
use bounds to eliminate as many as possible. Subproblems aretypically stored in a tree
structure, hence they are callednodesin the literature. The bounding phase is carried out
by considering the Linear Programming (LP) relaxation of each node; in this paper, we
focus on the branching phase.

Whenever the solution̄x to the LP associated with a node is fractional on a variable
xi that is required to take on integer values, a natural way of branching is to create two
subproblems imposing the constraintxi ≤ ⌊x̄i⌋ on one subproblem andxi ≥ ⌈x̄i⌉ on
the other. In this paper, we take a different approach whereby branching can occur on a
general hyperplane with integer componentsπ by imposingπ⊤x ≤ π0 on one child and
π⊤x ≥ π0 + 1 on the other.

How do we chooseπ? We use the connections between branching and cutting from
split disjunctions [12], Gomory Mixed-Integer (GMI) cuts [16] and intersection cuts [7].
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GMI cuts arise as intersection cuts from a split disjunction, and provide a computation-
ally inexpensive way of generatingπ. Therefore, we generate a pool of possible branch-
ing hyperplanes this way, and select one by using strong branching [6]. We also inves-
tigate the effect of modifying the hyperplanes by strenghtening the underlying GMI cut
with a Reduce-and-Split like algorithm [4,15].

Computational experiments on MIPLIB instances show that this approach is effec-
tive in practice, and can significantly reduce the size of theenumeration tree; on average,
the reduction in number of nodes is by more than a factor two onmixed-integer instances.

Extended versions of this work have appeared in [14,19]. In this paper, we give a
unified treating of this topic. In Section 1, we give some preliminaries and survey the
research carried out in this area. In Section 2 we introduce our notation and recall sev-
eral known results that are useful for the subsequent parts of the paper. Section 3 stud-
ies the relationship between the integrality gap (i.e. the difference between the integer
optimum and the relaxed optimum) closed by generating an intersection cut from a split
disjunction, or branching on the same disjunction. In Section 4 we describe a branching
scheme that is based on exploiting the disjunctions definingthe GMI cuts read directly
from an optimal simplex tableau; Section 5 modifies this scheme by adding a disjunc-
tion strenghtening step. In Section 6 we discuss the size of the coefficients of “good”
disjunctions. Finally, Section 7 concludes the paper with acomputational evaluation.

1. Preliminaries and Literature Review

In this paper we consider the Mixed Integer Linear Program instandard form:

min c⊤x
Ax = b
x ≥ 0

∀j ∈ NI xj ∈ Z,















P

wherec ∈ R
n, b ∈ R

m, A ∈ R
m×n andNI ⊂ N = {1, . . . , n}. The LP relaxation of

P is the linear program obtained by dropping the integrality constraints, and is denoted
by P̄. We denote byP the set of feasible solutions of̄P, which is a polyhedron. The
Branch-and-Bound algorithm makes an implicit use of the concept of disjunctions [8]:
whenever the solution to the current LP relaxation is fractional, we divide the current
problemP into two subproblemsP1 andP2 such that the union of the feasible regions
of P1 andP2 contains all feasible solutions toP. Usually, this is done by choosing a
fractional component̄xi (for somei ∈ NI ) of the optimal solution̄x to the relaxation̄P,
and adding the constraintsxi ≤ ⌊x̄i⌋ andxi ≥ ⌈x̄i⌉ toP1 andP2 respectively. Choosing
which variable should be branched on at each step is of fundamental importance for the
performance of Branch-and-Bound. We refer to [2] for a recent survey on this topic.

Here, we take a more general approach whereby branching can occur with respect to
a directionπ ∈ R

n by adding the constraintsπx ≤ β0, πx ≥ β1 with β0 < β1 toP1 and
P2 respectively, as long as no feasible point ofP is cut off. A natural way of generating
such directions is to consider split disjunctionsD(π, π0) of the form:

π⊤x ≤ π0

∨

π⊤x ≥ π0 + 1 (1)



with π ∈ Z
n, π0 ∈ Z, πi = 0 ∀i /∈ NI . By integrality, every feasible solution toP

satisfies any split disjunction. In other words, a split disjunction is defined by two parallel
hyperplanes that have no integer point in the interior of the“strip” between them. In
the branching literature, disjunctions involving only onevariable are labeledsimpleor
elementary, whereas those involving more than one variable are calledgeneral.

There are mainly two different categories of approaches to branching on general
disjunctions that have been proposed in the MILP literature. The first category contains
methods that try to identify “thin” directions ofP ; the second category focuses on
improving as much as possible the LP bound at the children nodes. [25] discusses both
problems, which are shown to be stronglyNP-hard in [26].

1.1. Branching on thin directions

The concept of thin direction requires the notion ofwidth of a full-dimensional polyhe-
dronP along a directionu, which is defined asmaxx,y∈P (ux − uy). Thus, for apure
integer program associated withP , theinteger widthis defined as

min
π∈Zn\{0}

max
x,y∈P

(πx− πy).

This definition naturally extends to the mixed integer case by considering integer direc-
tionsπ ∈ Z

n \ {0} with πj = 0 for j /∈ NI .
The work of Lenstra [23] on solving integer programs in fixed dimension in poly-

nomial time (see also [17,24]) is at the origin of the idea of branching on thin directions
of P . The method works as follows. First, some thin directions ofP are computed, us-
ing the lattice basis reduction algorithm by Lenstra, Lenstra and Lovász [22]. Then, the
space is transformed so that these directions correspond tounit vectors, and the problem
is solved by Branch-and-Bound in the new space. Thus, branching on single variables in
the transformed space translates back to branching on general disjunctions in the original
space. This method has proven successful for some particular instances where standard
Branch-and-Bound fails because of the huge size of the enumeration tree, such as the
Market Split instances [13], whose solution is discussed in[1]. Other examples are given
in [20,27].

1.2. Branching for maximum bound improvement

Another line of research which has been pursued is that of selecting a good general dis-
junction for branching at each node of the Branch-and-Boundtree, in order to improve
as much as possible the bound at the children nodes. Owen and Mehrotra [28] proposed
branching on split disjunctions with coefficients in{−1, 0, 1} on the integer variables
with fractional values at the current node. They generate all possible such disjunctions,
and evaluate them using strong branching (i.e. solving the LPs associated with the chil-
dren nodes to optimality), in order to select the one that gives the largest improvement of
the dual bound. [14,19] follow this idea of generating disjunctions for maximum bound
improvement, and try to do so by exploiting the relationshipbetween split cuts [12] and
split disjunctions for branching.
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Figure 1. Deriving a split cut.

2. Split Disjunctions: Cutting and Branching

Given a split disjunctionD(π, π0) of the form (1), asplit cutfor P is a cut which is valid
(i.e. does not cut off any integral feasible solution) for both P1 = P ∩ {x : π⊤x ≤ π0}
andP2 = P ∩{x : π⊤x ≥ π0+1}. SinceP1∪P2 contains all integral feasible points of
P , such a cut is valid forP as well. Split cuts were introduced in [12]. It is intuitive to see
that there should be some kind of relationship between a split cut derived fromD(π, π0)
and the “strength” of the two polyhedraP1, P2; since the aim of branching is exactly
that of creating two strong (but smaller) subproblemsP1,P2 associated withP1, P2, we
want to study this relationship. To do so, we first investigate some useful properties of
split cuts that will lead to the formulas used in the rest of this paper.

Split cuts are disjunctive cuts [8], i.e. cutting planes which are valid forconv(P1 ∪
P2). A pictorial representation of such a cut is given in Figure 1. Is there an easier way of
deriving split cuts without having to resort to disjunctiveprogramming? [5] establishes
a correspondence between split cuts and intersection cuts [7], showing that each split cut
for P can be derived as an intersection cut from a split disjunction and a suitable basis
of P̄. This allows for a geometric understanding of their derivation, and for closed form
formulas.

We need some definitions. Abasisfor P̄ is anm-subsetB of N such that the column
submatrix ofA induced byB is an invertible submatrix ofA. LetJ := N \B denote the
index set of the nonbasic variables,BI = B∩NI the set of integer basic variables,JI =
J ∩NI the set of integer nonbasic variables,JC = J \NI the set of continuous nonbasic
variables. Additionally, we denote by〈x〉 the fractional part ofx, i.e. 〈x〉 = x − ⌊x⌋.
A further relaxation of the setP with respect to a basisB is obtained by removing the
non-negativity constraints on the basic variables. We denote it byP (B):

P (B) := {x ∈ R
n : Ax = b and xj ≥ 0 for j ∈ J}. (2)

This set is a translate of a polyhedral cone:P (B) = C+ x̄, whereC = {x ∈ R
n : Ax =

0 and xj ≥ 0 for j ∈ J} andx̄ solves{x ∈ R
n : Ax = b and xj = 0 for j ∈ J}, i.e. x̄

is thebasic solutioncorresponding to the basisB. Typically,B will be the optimal basis
of an LP relaxation of MILP, but not necessarily so (see e.g. [11]). In this paper,B will
be optimal forP̄. The coneC can be expressed also in terms of its extreme rays,rj for
j ∈ J : P (B) = Cone({rj}j∈J ) + x̄, whereCone({rj}) denotes the polyhedral cone
generated by vectors{rj}. Looking at the simplex tableau associated withB written in
the usual form:
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xi = x̄i −
∑

j∈J

āijxj ∀i ∈ B, (3)

the extreme rays ofP (B) can be read directly as:

rji =







−āij if i ∈ B
1 if i = j
0 otherwise.

(4)

Observe that our interest is in split disjunctions that are violated by the current frac-
tional solutionx̄. This is because we do not wantx̄ to be feasible for eitherP1 or P2, so
that the solution to the LP relaxation is forced to “move” after branching. The same is
true for cutting planes: the most interesting ones are typically those that cut off̄x. How
do we generate a split cut as an intersection cut? Given any disjunctionD(π, π0) violated
by x̄, we can generate a split cut usingD(π, π0) andP (B) as exemplified in Figure 2. In
particular, the intersection cut is a half-space bounded bythe hyperplane passing through
the intersection points ofD(π, π0) with the extreme rays ofP (B).

In order to find the intersection points, for allj ∈ J we compute the scalars:

αj(π, π0) :=







− ε(π,π0)
πT rj

if πT rj < 0,
1−ε(π,π0)

πT rj
if πT rj > 0,

+∞ otherwise,
(5)

whereε(π, π0) := πT x̄ − π0 is the amount by which̄x violates the first term of the
disjunctionD(π, π0). The numberαj(π, π0) for j ∈ J is the smallest numberα such
that x̄+ αrj satisfies the disjunction. In other words,xj = x̄+ αj(π, π0)r

j lies on one
of the disjunctive hyperplanesπTx = π0 andπTx = π0 + 1.

Now, the intersection cut associated withB andD(π, π0) supports the pointsxj and
is given by:



∑

j∈J

xj

αj(π, π0)
≥ 1. (6)

The Euclidean distance betweenx̄ and this hyperplane is:

d(B, π, π0) :=

√

1
∑

j∈J
1

(αj(π,π0))2

(7)

This quantity, calleddistance cut offor depth, was used as a measure of cut quality in
[9].

The well known GMI cuts from a basisB, which are included in virtually every
Branch-and-Cut based software for solving MILPs, can be viewed as intersection cuts
from a particular split disjunction [7]. They can be obtained as follows. We start from a
disjunction on the integer basic variables:

∑

i∈BI

π̂ixi ≤

⌊

∑

i∈BI

π̂ix̄i

⌋

∨ ∑

i∈BI

π̂ixi ≥

⌊

∑

i∈BI

π̂ix̄i

⌋

+ 1, (8)

with π̂i ∈ Z ∀i ∈ BI and
∑

i∈BI
π̂ix̄i 6∈ Z. (8) is then strengthened on the nonbasic

integer variables where the affectedαj are modified so that the distance cut off (7) is
maximized. We obtain the following disjunction:

πj =















⌊
∑

i∈BI
π̂iāij

⌋

if j ∈ JI and
〈
∑

i∈BI
π̂iāij

〉

≤
〈
∑

i∈BI
π̂ix̄i

〉

⌈
∑

i∈BI
π̂iāij

⌉

if j ∈ JI and
〈
∑

i∈BI
π̂iāij

〉

>
〈
∑

i∈BI
π̂ix̄i

〉

π̂j if j ∈ BI

0 otherwise,

π0 =
⌊

π⊤x̄
⌋

.

(9)

Plugging (9) into (5) gives a GMI cut that cuts offx̄. In the original cutting plane pro-
cedure of Gomory [16], (8) is an elementary disjunction. Notice that we have a closed
form formula for this disjunction, therefore we can computeit very efficiently. This is
the class of split disjunctions that will be employed in the remainder.

3. Gap Closed by Cutting and by Branching

A violated split disjunction can be used for generating an intersection cut but it can be
used for branching as well. A good intersection cut cuts deeply into P and improves the
LP bound at the children nodes. Our suggestion is that a splitdisjunction defining a deep
cut is good for branching too.

Indeed, the improvement in the lower bound caused by branching on a split dis-
junction is no less than the improvement by the corresponding intersection cut. Let̄x1

andx̄2 be the LP relaxation optima ofP1 andP2 (if Pk is infeasible then̄xk = ∞ for
k ∈ {1, 2}).

Proposition 3.1. min
j∈J

c⊤xj ≤ min(c⊤x̄1, c
⊤x̄2).



Proof. We havex̄1 = argmin{c⊤x : c ∈ P1}, x̄2 = argmin{c⊤x : c ∈ P2}. LetP r
1 =

P (B) ∩ {x ∈ R
n : π⊤x ≤ π0} andP r

2 = P (B) ∩ {x ∈ R
n : π⊤x ≥ π0 + 1}. By the

definition of the pointsxj ∀j ∈ J , minj∈J{c
⊤xj} = min{c⊤x : x ∈ P r

1 ∪ P r
2 }. Since

P ⊆ P (B),min{c⊤x : x ∈ P r
1 ∪P

r
2 } ≤ min{c⊤x : x ∈ P1∪P2} = min(c⊤x̄1, c

⊤x̄2),
which completes the proof.

Therefore, in order to generate children nodes that have tight LP relaxations, it
makes sense to try to maximize the lower bound given in Proposition 3.1; as this quantity
is bounded from below by the gap closed by the corresponding intersection cut, this ex-
plains our intuition. However, it can be shown with a small example that the bound on the
gap closed by branching given by the corresponding intersection cut can be arbitrarily
far from the real value.

Example 3.2. Consider the integer program:

min −x1 − x2

x1 ≤ 1.5
x2 ≤ 1

x1/m− x2 ≥ 1.5/m− 1.25
mx1 − x2 ≤ 1.5m− 0.75

x1, x2 ∈ Z,































P (10)

wherem > 1 is a given parameter close to 1. The solution to the LP relaxation is
(1.5, 1), with an objective value of−2.5. The intersection cut obtained from the disjunc-
tion x1 − x2 ≤ 0 ∨ x1 − x2 ≥ 1 is x1 + x2 ≤ 2, which gives an objective value of−2.
Now suppose we branch onx1 − x2 ≤ 0∨ x1 − x2 ≥ 1. We obtain two childrenP1 and
P2, which are both feasible. One can verify that optimal solution to the LP relaxation of
P1 is ( 1.5−1.25m

1−m
, 1.5−1.25m

1−m
) with objective value−2 1.5−1.25m

1−m
, and the optimal solu-

tion to the LP relaxation ofP2 is ( 1.5m−1.75
m−1 , 0.5m−0.75

m−1 ) with objective value− 2m−2.5
m−1 .

Therefore, the gap closed by branching is:

max{−2
1.5− 1.25m

1−m
,−

2m− 2.5

m− 1
} − 2.5,

which can be made arbitrarily large whenm tends to 1 from above. At the same time, the
intersection cut associated with the same disjunction closes a gap of0.5 regardless ofm.
We give a picture of the situation form = 1.1 in Figure 3.

4. Branching on Disjunctions Defining the GMI Cuts

We need a procedure for selecting promising split disjunctions for branching. As we dis-
cussed in the introduction, optimizing over the set of all split disjunctions is strongly
NP-hard [26]. [19] simply suggests to concentrate on a finite class of general disjunc-
tions generated directly from the current optimal basis — the setG of split disjunctions
defining the GMI cuts that can be read from the simplex tableau. The GMI cuts as de-
fined by Gomory [16] arise from simple disjunctions (8) withπ̂ = ei for i ∈ BI where
x̄i 6∈ Z. These cuts have been shown to be very effective in practice [10]. The reasons



cost function

x2 ≤ 1

x1/m− x2 ≥ 1.5/m− 1.25

mx1 − x2 ≤ 1.5m− 0.75

x1 + x2 ≤ 2

x1 ≤ 1.5

Figure 3. Representation of Example 3.2 form = 1.1.

for this choice are the following. First, the setG is not only finite but relatively small. Its
cardinality at a given node of the Branch-and-Bound tree equals the number of integer
variables with fractional values in the current basic solution. Second, these disjunctions
are fast to obtain. They can be read from the current tableau with a closed form formula
(9). Third, as we explained at the end of Section 2, these disjunctions can be viewed as
strengthened simple disjunctions (with respect to the cut depth) which suggests that they
could perform better than the elementary disjunctions.

The branching procedure proposed in [19] is as follows. Consider the set of all GMI
disjunctions arising from elementary disjunctions for a specific basic solution, and select
a subsetS of it, containing the most promising disjunctions according to the chosen
criterion for comparison. The distance (7) cut off by the underlying intersection cut, is
used as a criterion for selecting promising disjunctions, picking those with the largest
distance. The cardinality ofS is limited to a parameterk, which can be used to manage
the computational effort at different levels, e.g. a largerk can be used close to the root
where branching decisions are more important and a smallerk in the deep levels. Finally,
in view of Example 3.2, we apply strong branching to the disjunctions inS, in the spirit
of [6,28], to evaluate the true impact of each disjunction. Note that the computational
complexity of this algorithm is dominated by the strong branching phase.

Once strong branching is performed and we know the objectivefunction improve-
ment at the children nodesc⊤x̄1, c

⊤x̄2, we use

γmin(c⊤x̄1, c
⊤x̄2) + (1− γ)max(c⊤x̄1, c

⊤x̄2), (11)

with 0 ≤ γ ≤ 1, as a measure of quality of a disjunction, attempting to increase the LP
bound. This approach is not new: for instance, [2] proposesγ = 5/6 in the context of
branching on elementary disjunctions.



5. Strengthening the GMI Disjunctions

GMI cuts derived from elementary disjunctions are very strong in practice; but can we
do better? [4,15] experiment with cutting planes derived asGMI cuts from split disjunc-
tions, with good results. In our framework, their procedurecan be seen as a method for
finding a disjunction (8) that gives rise to an intersection cut with better cut coefficients
on the continuous variables. The starting disjunctionπ̂ is then plugged into (9) as usual.
Clearly, this approach is computationally more expensive:the elementary disjunctions of
Section 4 can be read from the tableau with no additional cost, but finding a strong split
disjunction of the form (8) is not as simple, as there is an infinite number of them.

[14] proposes the following approach, which has also been modified and enhanced
for cutting plane generation in [15]. The motivating idea traces back to [4]. We look at
the expression ofαj (5) for the intersection cut derived from (9):

αj















max

(

〈

∑

i∈BI
π̂ix̄i

〉

〈

∑

i∈BI
π̂iāij

〉 ,
1−

〈

∑

i∈BI
π̂ix̄i

〉

1−
〈

∑

i∈BI
π̂iāij

〉

)

if j ∈ JI

max

(

〈

∑

i∈BI
π̂ix̄i

〉

∑

i∈BI
π̂iāij

,
1−

〈

∑

i∈BI
π̂ix̄i

〉

−
∑

i∈BI
π̂iāij

)

if j ∈ JC

(12)

whereαj = ∞ if its denominator is zero. A largerαj means a smaller cut coefficient in
(6), hence a stronger cut, as can be seen from (7); and by Proposition 3.1, we argue that
a disjunction with largeαj will be strong for branching as well. Therefore, we study a
method for increasingαj by acting on̂π.

It seems difficult to optimizeαj for j ∈ JI because both terms of the fraction are
nonlinear. Furthermore, forj ∈ NI , αj is always at least 1, independent of the choice of
π̂. For j ∈ JC , αj can be smaller than 1, therefore we concentrate on trying to improve
theseαj . From (12) we see that the denominator ofαj for j ∈ JC is a linear function
of π̂, whereas the numerator is a nonlinear function ofπ̂ and is always between 0 and 1.
For this reason we attempt to minimize the denominator, i.e.

∑

i∈BI
π̂iāij for j ∈ JC ,

over integral vectorŝπ. More specifically, we would like to minimize‖d̃‖, where

d̃ = (
∑

i∈BI

π̂iāij)j∈JC
. (13)

Since we try to improve the disjunction by looking at the cut coefficients on the contin-
uous variables, the method described in this section is onlysuitable for mixed-integer
instances.

Apply a permutation to the simplex tableau in order to obtainBI = {1, . . . , |BI |}, JC =
{1, . . . , |JC |}, and define the matrixD ∈ R

|BI |×|JC |, dij = āij . Minimizing ‖d̃‖ can be
written as

min
π̂∈Z

|BI |\{0}
‖
∑

i∈BI

π̂idi‖. (14)

This is a shortest vector problem in the additive group generated by the rows ofD. If
these rows are linearly independent, the group defines a lattice, and we have the classical
shortest vector problem in a lattice, which is NP-hard underrandomized reductions [3].



[4] proposes a heuristic for (14) based on a reduction algorithm which cycles through
the rows ofD and, for each such rowdk, considers whether summing an integer multiple
of some other row yields a reduction of‖dk‖. If this is the case, the matrixD is updated
by replacingdk with the shorter vector. Note, however, that this method only considers
two rows at a time.

The idea of [14] is to use, for each rowdk of D, a subsetRk ⊂ BI of the rows of the
simplex tableau withdk ∈ Rk, in order to reduce‖dk‖ as much as possible with a linear
combination with integer coefficients ofdk anddi for all i ∈ Rk \ {k}. This is done by
defining, for each rowdk that we want to reduce, the convex minimization problem:

min
π̂k∈R

|Rk|,π̂k
k
=1

‖
∑

i∈Rk

π̂k
i di‖, (15)

and then rounding the coefficientsπ̂k
i to the nearest integer

⌊

π̂k
i

⌉

. There are several rea-
sons for imposinĝπk

k = 1. One reason is that not only do we want to find a short vector,
but it is also important to find a vector̂πk with small norm: in the spaceB ∩ NI , the
distance between the two hyperplanes that define a split disjunctionD(π, π0) is related
to the norm ofπ̂: in this space, disjunctions that cut off a larger volume have a small
‖π̂‖. We will come back to this issue in Section 6. Another reason is that we must avoid
the zero vector as a solution. Yet another is to get differentoptimization problems for
k = 1, . . . , |BI |, thus increasing the chance of obtaining different branching directions.
Vanishing the partial derivatives of‖

∑

i∈Rk
π̂k
i di‖ with respect tôπk

i for all i, we obtain
an|Rk| × |Rk| linear system that yields the optimal (continuous) solution.

Once these linear systems are solved and we have the optimal coefficientsπ̂k ∈

R
|Rk| for all k ∈ {1, . . . , |BI |}, we round them to the nearest integer. Then, we consider

the norm of
∑

i∈Rk

⌊

π̂k
i

⌉

di. If ‖
∑

i∈Rk

⌊

π̂k
i

⌉

di‖ < ‖dk‖, then we have an improvement
with respect to the original row of the simplex tableau; in this case, we use

∑

i∈Rk

π̂k
i xi =

∑

i∈Rk

π̂k
i x̄i −

∑

j∈J

∑

i∈Rk

π̂k
i āijxj , (16)

instead of rowāk in order to compute a GMI disjunction, and consider the possibly
improved disjunction for branching.

It is natural to ask how to chooseRk ⊂ BI . Although usingRk = BI is possible,
in that case two problems arise: first, the size of the linear systems may become too
large, and second, if we add up too many rows then the coefficients on the variables with
indices inJ ∩NI may deteriorate. In particular, we may get more nonzero coefficients.
Thus, we do the following. We fix a maximum cardinalityM|Rk|; if M|Rk| ≥ |BI |, we
setRk = BI . Otherwise, for each rowk that we want to reduce, we sort the remaining
rows by ascending number of nonzero coefficients on the variables with indices in{i ∈
J ∩ NI |āki = 0}, and select the firstM|Rk| indices as those inRk. The reason for this
choice is that̄akj = 0 impliesαj = ∞, i.e. the cut is strong on that variable. Therefore,
we would like those coefficients that are0 in row āk to be left unmodified when we
compute

∑

j∈Rk

⌊

π̂k
j

⌉

āj .



6. On Non-Dominated Disjunctions

Although solving the shortest vector problem (14) is important for finding a deep cut,
it is not the only consideration when trying to find a good branching direction. In the
spaceB ∩ NI , the distance between the two hyperplanes that define a splitdisjunction
D(π, π0) is equal to1/‖λ‖ as can be seen from (9). Therefore, in this space, disjunctions
that cut off a larger volume have a small‖λ‖. We illustrate this with an example.

Example 6.1. Consider the following tableau, wherex1, x2 are binary variables and
y1, y2 are continuous:

{

x1 = 1/3 + 98y1 + y2
x2 = 1/3− 99y1 − 1.01y2

(17)

The solution to the shortest vector problem (14) is given by the integer multipliersλ1 =
99, λ2 = 98 which yield the shortest vector in the lattice(0, 0.02) and the disjunction
99x1 + 98x2 ≤ 65 ∨ 99x1 + 98x2 ≥ 66. The heuristic method of Section 5 computes
the continuous multipliersλ1 = 1, λ2 = 98/99 which are rounded toλ1 = 1, λ2 = 1,
that correspond to the disjunctionx1 + x2 ≤ 0 ∨ x1 + x2 ≥ 1. It is easy to verify that
the distance between these two hyperplanes is roughly ten times larger than in the first
case. Therefore, in the unit square, the disjunction obtained through the heuristic method
dominates the one computed through the exact solution of theshortest vector problem.
Figure 4 gives a picture of this.

x1 +x2 ≤ 0

∨ x1 +x2 ≥ 1

99x1 +98x2 ≤ 65
∨ 99x1 +98x2 ≥ 66

Figure 4. Representation of the disjunctions discussed in Example 6.1.

It is clear from Example 6.1 why disjunctions with small coefficients are likely to
perform better. It is intuitive to think that, at least in theunit hypercube, the coefficients
of “good” disjunctions will be small. However, this is not true in general. We formalize
our statament.



For a polyhedronP , we say that the split disjunctionD(π1, π1
0) dominates

D(π2, π2
0) if P ∩ {π1⊤x ≤ π1

0} ⊆ P ∩ {π2⊤x ≤ π2
0} andP ∩ {π1⊤x ≥ π1

0 + 1} ⊆

P∩{π2⊤x ≥ π2
0+1}, with at least one of the two inclusions being strict. The dominating

disjunction is obviously to be preferred to the dominated one for branching, as it induces
the same partition of the feasible integer points, while generating smaller feasible regions
for the two children. Thus, we are interested in finding non-dominated disjunctions only.
Do the coefficients of non-dominated disjunctions have a “nice” characterization, so that
we can restrict our search to disjunctions with small norm? Unfortunately, the answer
is negative in general. Even by restricting our attention to0/1 polytopes, no polynomial
bound (in the dimensionn) can be given on the size of the coefficients of non-dominated
disjunctions.

Proposition 6.2. The size of the coefficients of non-dominated disjunctions for 0/1 poly-
topes of dimensionn cannot be polynomially bounded inn.

Proof. It is known [29] that the largest integer coefficient in the facet description of a
full-dimensional 0/1 polytope can be exponential inn. Let a⊤x ≥ b be the hyperplane,
which we can assume to have all integer coefficients, describing such a facet with a large
coefficient. Consider the polytope defined byP = {x ∈ [0, 1]n|a⊤x ≥ b, a⊤ ≤ b+0.5}.
The disjunctionD(π, π0) with π = a, π0 = b is non-dominated, and in fact gives the
convex hull of the integer points in one branching step. However, its largest coefficient
has size exponential inn.

Therefore, even though in low dimension non-dominated disjunctions have small
integer coefficients, in general there is no hope of finding a nice characterization of their
coefficients. The method described in Section 5 tries to generate disjunctions with small
coefficients heuristically, following the intuition of Example 6.1.

7. Computational experiments

The ideas proposed in [14,19] were tested in a Branch-and-Bound framework imple-
mented on top of Cplex [18]. The test set consists of all instances inMIPLIB2.0,
MIPLIB3 andMIPLIB2003, excluding those that can be solved in less than 50 nodes
by branching on simple disjunctions, and those for which less than 50 nodes can be
processed in an hour. Also removed were the instances with zero integrality gap, which
leaves 84 instances.

We report tests with three branching algorithms:

• Branching on single variables (Simple Disjunctions, SD);
• Branching on the disjunctions defining the GMI cuts at the optimal LP basis (GMI

Disjunctions, GD);
• Branching on the disjunctions defining the GMI cuts after thestrengthening pro-

cedure described in Section 5 (Improved GMI Disjunctions, IGD).

In order to evaluate the effect of branching on split disjunctions, we focus primarily
on the integrality gap closed by branching. An additional important factor is the number
of infeasible children which are created by branching: in fact, if one of the two sides
of the branching disjunction is infeasible, the number of nodes in the enumeration tree



does not grow. This can be seen as adding a cutting plane (i.e.the feasible side of the
disjunction) to the current node. In case such a disjunctiona discovered, it is always
preferred to the ones that create two children. Note that if both sides of the disjunction
are infeasible, the node is infeasible.

7.1. Branching for Eight Levels

In this experiment, we branch at the top eight levels of the Branch-and-Bound tree, and
compare the resulting gap closed. At each node, for the SD algorithm we consider all
fractional integer variables for branching, whereas for GDwe consider all simple GMI
disjunctions. Note that the number of candidate branching objects is the same for both
SD and GD. We setγ = 5/6 in (11) as suggested by [2], trying to increase the LP
bound in both children nodes. In this experiment, GD performs better, mainly due to
the larger gap closed by branching on split disjunctions. Weobserve an interesting sec-
ondary effect: branching on GMI disjunctions tends to produce more infeasible children,
which additionally decreases the amount of enumeration. Werecord this phenomenon by
counting the number of active nodes at the ninth level.

Table 1 contains a summary of the results. We report average values, and the number
of times that one method is better than the other according tothe comparison criterion.

Percentage gap closed

average (# better)

Simple disjunctions (SD): 32.1% (20)

GMI disjunctions (GD): 41.7% (48)

Active nodes at level 9

average (# better)

Simple disjunctions (SD): 114.6 (16)

GMI disjunctions (GD): 66.7 (53)

Gap closed and active nodes together

# better

Simple disjunctions (SD): 6

GMI disjunctions (GD): 45

Table 1. Comparison of SD and GD after eight levels of branching. Branch-and-Bound.

In terms of amount of gap closed, SD dominates in 20 cases, GD in 48 cases out
of 84. The average gap closed by SD and GD is 32.1% and 41.7%, respectively. The
difference in the average gap closed is 9.6%. It is statistically significantly larger than
zero with 99% confidence, according to a one-sided paired t-test (p-value=0.0021). These
results support our observation that GD closes more gap.

A graphical representation of the gap closed by SD and GD is shown in Figure 5.A.
In the figure, dots correspond to test instances. The gap closed by SD is shown on the
abscissa while that closed by GD is shown on the ordinate. Thediagonal line represents
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Figure 5. A. Gap closed (in percentage) after eight levels of branching: GD vs. SD. B. Number of active nodes
after eight levels of branching: GD vs. SD. Every data point represents a test instance.

equality in the gap closed by both methods. We observe that most points lie in the upper-
left triangle, corresponding to “GD outperforms SD.” Furthermore, most of the points
that lie in the lower-right triangle are close to the diagonal line – there are few cases in
which SD outperforms GD significantly.

It is interesting to observe that GD typically produces a smaller number of active
nodes at the ninth level. On this criterion, SD performs better in 16 cases while GD does
so in 53 cases. Out of the maximum possible 256 nodes at level nine, SD generates 113
while GD generates 65, on average. A statistical t-test rejects the null hypothesis “GD
produces at least as many active nodes at level nine as SD” at 99.9% level of confi-
dence (p-value=1.30e-6). This indicates that the number ofactive nodes created by GD
is significantly smaller.

The difference in the performance is best seen graphically.In Figure 5.B, we plot
the number of active nodes at level nine produced by GD vs. that produced by SD. Not
only do most of the points lie below the equality line but manyof them reside in the
bottom-right corner, corresponding to a significant difference in the number of nodes.
On the other hand, out of the 16 instances for which SD outperforms GD, only eight lie
visibly far from the equality line.

The effect of a smaller number of active nodes is important not by itself but in
combination with improvement in the gap. Combining both criteria, we count the cases
in which an algorithm strictly dominates in one of the criteria and performs at least as
well in the other criterion. SD is better than GD in only 6 cases, while GD outperforms
SD in 45 cases out of 84.

The reason for the smaller number of active nodes is that GD often generates dis-
junctions that produce only one feasible child. For some instances, this happens at most
nodes of the branching tree, resulting in only a few nodes at level nine. Although SD gen-
erates many infeasible children, GD generates even more. Sometimes, this is combined
with an impressive improvement of the gap closed over SD.



x̄πTx ≤ π0 πTx ≥ π0 + 1

r2
r1

x̄2

p1 p2 βTx = β0

P

Figure 6. Disjunction with only one feasible child.

The combination of a larger improvement in the gap and a smaller number of ac-
tive nodes is a very desirable effect and it deserves more attention. Branching on a dis-
junction that generates only one feasible child is equivalent to adding a single cut to the
formulation. One may argue that this cut would be added by a branch-and-cut algorithm
anyway. This is true in some cases but in others the disjunction inequality is stronger
than the corresponding GMI cut. Figure 6 is an example. The cut generation procedure
considers the polyhedral cone pointed atx̄, relaxing some of the constraints definingP ,
and generates the intersection cutβTx ≤ β0. But it cannot detect the fact that one of
the feasible sets of the children is empty. (Here,P ∩ {x ∈ R

n : πTx ≤ π0}.) When
branching onD(π, π0), we essentially add the cutπTx ≥ π0 +1, which is stronger than
βTx ≤ β0.

Consequently, branching on a split disjunction that generates only one child can
be viewed as strengthening the underlying intersection cut. Thus, branching on a split
disjunction cannot be substituted by adding the corresponding intersection cut even when
one of the disjunctive sets is empty. When both disjunctive sets are non-empty, branching
on a split disjunction can still close more gap than the corresponding cut, as we showed
in Section 3.

We do not consider branching on split disjunctions a substitute for cutting planes.
The procedure comes into play when Branch-and-Cut decides to start branching. It is
important to note that the observed good effects of branching on split disjunctions are
not neutralized by adding cuts. We repeat the above experiment in a Cut-and-Branch
framework where we add ten rounds of GMI cuts, MIR cuts, and knapsack cover cuts. As
expected, aggressive cut generation closes a significant amount of gap (63% on average),
leaving less work for the branching phase. As a result, the amount of gap closed by
branching on the top eight levels is smaller and the difference between the two methods



is smaller. Nevertheless, the mutual relation in performance is preserved, as seen in Table
2.

Percentage gap closed

average (# better)

Simple disjunctions (SD): 5.6% (11)

GMI disjunctions (GD): 7.4% (52)

Active nodes at level 9

average (# better)

Simple disjunctions (SD): 107.6 (23)

GMI disjunctions (GD): 81.6 (44)

Gap closed and active nodes together

# better

Simple disjunctions (SD): 6

GMI disjunctions (GD): 39

Table 2. Comparison of SD and GD after eight levels of branching. Cut-and-branch.

7.2. Effect of the Disjunction Strengthening Procedure

In this section we want to evaluate the impact of the disjunction improvement procedure
on the branching phase. We have already seen that GD is able tooutperform SD in several
respects. We want to see if the same holds true for IGD. Therefore, we design a similar
experiment: we branch for 1000 nodes, and compare the integrality gap closed by each
method (or the number of nodes, for instances solved to optimality in less than 1000
nodes). In this experiment, generating fewer feasible nodes is clearly an advantage, as
it allows to progress further in the tree. Note that IGD can only be applied on mixed-
integer instances, because the disjunction strengtheningprocedure requires the presence
of continuous variable. Thus, for this experiment the test set consists of the 57 instances
with more than one continuous variable only.

Since we are focusing on closing more integrality gap, in this experiment we set
γ = 1 in (11). Besides, to speed up the computations, we do not apply strong branching to
all possible branching disjunctions, but only to the 10 mostpromising ones. This setting
is meant to mimick more closely what is done in commercial software, since strong
branching can be very expensive. This allows us to better evaluate the computational
overhead introduced by branching on split disjunctions. The most promising disjunctions
are chosen as the 10 variables with larges fractional variable (for SD), or as the split
disjunctions with largest distance cut off by the corresponding intersection cut (for GD
and IGD).

For IGD, after some preliminary testing, we decided to setM|Rk| = 50, i.e. we
combine at most 50 rows during the disjunction streanghtening phase.

Table 3 shows that the increase in the gap closed per node by branching on GMI
disjunctions is large compared to branching on single variables. Besides, the IGD method



Number of solved instances

Simple disjunctions (SD): 15

GMI disjunctions (GD): 20

Improved GMI disjunctions (IGD): 20

Average number of nodes

on instances solved by all methods

Simple disjunctions (SD): 125.6

GMI disjunctions (GD): 98.1

Improved GMI disjunctions (IGD): 75.3

Average CPU time [sec]

on instances solved by all methods

Simple disjunctions (SD): 2.53

GMI disjunctions (GD): 5.23

Improved GMI disjunctions (IGD): 4.79

Average gap closed

on instances not solved by any method

Simple disjunctions (SD): 9.02%

GMI disjunctions (GD): 12.99%

Improved GMI disjunctions (IGD): 13.30%

Number of instances with largest closed gap

(at least as much as the other methods)

Simple disjunctions (SD): 34

GMI disjunctions (GD): 33

Improved GMI disjunctions (IGD): 36

Table 3. Results on mixed-integer instances after 1000 solved nodes

seems to be on average superior in all respects to the two other methods, as it closes more
gap for the unsolved instances under 1000 nodes, and requires less nodes for the solved
instances. This is also evident if we compare the number of instances where each method
closes at least the same absolute gap as the other two methods: IGD ranks first with 36
instances over 57.

On the instances solved by all methods, SD is roughly twice asfast as GD and IGD.
Moreover, if we consider only the instances not solved by anymethod (i.e. all branch-
ing algorithms solve 1000 nodes without reaching optimality) we obtain the following
average times:

• SD: 32.59 seconds;
• GD: 150.61 seconds;
• IGD: 176.78 seconds.

This suggests that branching on split disjunctions introduces a significant computational



overhead at each node with respect to branching on simple disjunctions. The average
time spent per node by the three methods, recorded as the geometric mean of the average
time spent per node over all the instances, is as follows:

• SD: 0.02 seconds;
• GD: 0.08 seconds;
• IGD: 0.10 seconds.

Therefore, the most evident drawback of branching on split disjunctions is that it is
slower than using simple disjunctions. It is slower in several respects: the first reason is
that the computations at each node take longer. This is because we have to compute the
distance cut off by the GMI cut associated with each row of thesimplex tableau, and the
reduction step proposed in Section 5 involves the solution of anM|Rk| × M|Rk| linear
system for each row which is improved, where we choseM|Rk| = 50. All these compu-
tations are carried out several times, thus the overhead pernode with respect to branch-
ing on simple disjunctions is significant. Additionally, generating the GMI disjunctions
requires the computation of the optimal simplex tableau, which is not necessary (and is
typically not carried out) when branching on single variables. The second reason is that,
by branching on GMI disjunctions, we add one (or more) rows tothe formulation of
children nodes, which may result in a slowdown of the LP solution process. On the other
hand, branching on simple disjunctions involves only a change in the bounds of some
variables, thus the size of the LP does not increase.

In summary, computational experience with branching on split disjunctions shows
that the size of the enumeration tree can be reduced by a factor of two or more on av-
erage. This is not quite sufficient to compensate for the increased computing time per
node. A possibility for overcoming this drawback is to combine branching on single vari-
ables and on split disjunctions, using the latter disjunctions only when the gap closed is
significantly greater.
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