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Improved strategies for branching on general disjunctions
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Abstract Within the context of solving Mixed-Integer Linear Prograifoy a Branch-and-
Cut algorithm, we propose a new strategy for branching. Ggatnal experiments show
that, on the majority of our test instances, this approacimemates fewer nodes than tradi-
tional branching. On average, the number of nodes in the eratian tree is reduced by a
factor two, while computing time is comparable. On a fewanses, the improvements are
of several orders of magnitude in both number of nodes anguating time.
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1 Introduction

Mixed Integer Linear Programs (MILPSs) arise in several-géalapplications, and are usu-
ally solved via a Branch-and-Cut algorithm such as that@mgnted by Cplex [10], where
the node bound is obtained by solving a Linear Programmi®) (elaxation of the MILP.
Usually, branching occurs on the domain of integer varilitethe formx; < k on one
branch andj > k+1 on the other branch, whekeis an integer. However, this need not
be so: any disjunction not excluding points that are feasiblthe original MILP can be
used for branching. We use the tebmanching on general disjunctiorte mean a branching
strategy where the disjunctions are two disjoint halfspaafethe formmx < o, X > By
with Bo < B1. Branching on a general disjunction is considered impcatbecause of the
large computational effort needed to find a suitable brargchirectionr. A recent paper
[11] proposes branching on general disjunctions arisingnfGomory Mixed-Integer Cuts
(GMICs). GMICs can be viewed as intersection cuts [4]. Atheaode there is a choice
of possible GMICs from which to derive the branching disjiime. The branching strategy
suggested in [11] is based on the distance cut off by the sporaling intersection cut as a
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quality measure for the choice of disjunction. The improeetrin objective function value
that occurs after branching is at least as large as the imprent obtained after adding
the corresponding intersection cut. In this paper, we pseomodification in the class of
disjunctions used for branching; instead of simply commythe disjunctions that define
GMICs at the optimal basis, we try to generate a new set ofiiisions in order to in-

crease the distance cut off by the corresponding intersectit. By combining branching
on simple disjunctions and on general disjunctions we abaai improvement over tradi-
tional branching rules on the majority of test instances.

2 Preliminaries and notation

In this paper we consider the Mixed Integer Linear Prograstamdard form:

min ¢Tx
Ax=Db
x>0
vVieN Xxj € Z,

z 1)

wherec e R", be R™, Ae R™" andN, € N = {1,...,n}. The LP relaxation of (1) is
the linear program obtained by dropping the integralitystaaints, and is denoted by.
The Branch-and-Bound algorithm makes an implicit use ofcthrcept of disjunctions [5]:
whenever the solution of the current relaxation is fracipwe divide the current problem
Z into two subproblems?; and &2, such that the union of the feasible regionsf
and 2, contains all feasible solutions t&. Usually, this is done by choosing a fractional
componenk; (for somei € N;) of the optimal solutiorx to the relaxation?, and adding the
constraintsg < X | andx; > [X| to £, and %%, respectively.

Within this paper, we take the more general approach whdyednching can occur with
respect to a directiomr € R" by adding the constraintsx < fy, x > B; with By < 1 to
21 and Z, respectively, as long as no integer feasible point is cut@ffen and Mehrotra
[12] generated branching directiorsvherer; € {—1,0,+1} for all j € N; and showed that
using such branching directions can decrease the size ehilmaeration tree significantly.
Aardal et al. [1] used basis reduction to find good branchingctions for certain classes
of difficult integer programs. Karamanov and Cogjals [11] proposed using disjunctions
arising from GMICs generated directly from the rows of thémjal tableau. Give C N an
optimal basis of#Z, andJ = N\ B, i.e.J is the set of nonbasic variables, the corresponding
simplex tableau is given by

X =xX—Y ajx VieB. )
2

Forj € J, letr} € R" be defined as

. (-&ifieB

l={1 ifi=] 3)
0  otherwise

These vectors are the extreme rays of the doreR" | Ax=bA V] € J (x; > 0)} with apex
. Let D(m1, 1p) define thesplit disjunctionrtx < oV 11" x > 1+ 1, whererme Z", 1p €

Z,m =0fori ¢ N,/ = | ' X|. By integrality of (17, 1), any feasible solution o satis-
fies every split disjunction. Let(1t, 15) = 11" X— 7 be the violation by of the first term of



D(m, ). Assume that the disjunctidd(T, 7p) is violated byx; i.e. 0< £(m, p) < 1. Balas
[4] defines thentersection cubssociated with a basand a split disjunctio®(, 1) as

Xj

3 e 2t @

where for allj € J we define
—ﬁ*e(n"’rr?) if rrTrI: <0
aj (1, o) = 1%81(7’:’%") ifr'rl >0 (5)
00 otherwise

The Euclidean distance betweeand the cut defined above is (see [6]):

1
5B mm)= | —1—: (6)
ZJEJ aj(TTA,TF:))Z

3 Branching on general disjunctions: a quadratic optimizaton approach

Assume that the optimal solutionto the LP relaxatior#” is not feasible to%?. We would
like to generate a good branching disjunctidfrr, 1p). In [11] it is shown that the gap closed
by branching on a disjunctidd(7, 1) is at least as large as the improvement in the objective
function obtained by the corresponding intersection chtsl it makes sense to attempt to
increase the value of the distan@€B, 11, 1) as much as possible. It is easy to see from (6)
that this means increasing the valuem{, ) for all j € J, which in turn corresponds
to decreasing the coefficient of the intersection cut (4)] fbnsidered intersection cuts (4)
obtained directly from the optimal tableau (2) as GMICsifarBN N, such thai ¢ Z.

In this paper we consider split disjunctions arising from &8l generated from linear
combinations of the rows of the simplex tableau (2):

i;)\ixi :X—%ﬁjxj'7 7

X= ZiEB)‘ixlz ) (8)
5J' = zieB)\ia@j forjeJd.
Note that in order to generate a GMIC we nee#lZ and therefor@ # 0. Fori € B, it will
be convenient to defing = A;. The GMIC associated with (7) is the inequality

where

J>1 ©)
jeZw aj
where
max( =L X=X ) if jeN
aj = X(flj~LajJ’ 1414 nhen (10)
max(%,@—a?jx) if jeN\N.

By convention,a; is equal to+ce when one of the denominators is zero in (10). Note that
the GMIC (9) may not cut ofk whenJ; is not integer foii € BNN, or A; # 0 fori € B\ N;.
On the other hand, wheh is integral fori € BNN, andA; = 0 fori € B\ N, the GMIC



(9) is of the form (4) since all the basic variables have a pefficient ¥ a;. In this case,
the distance cut off is given by (6). For this reason, we igsturselves to nonzero integral
multipliers A. In this case, the split disjunctidB(, 1p) that defines the GMIC associated
to (7) can be computed as (see [4,9]):

FZ\J{ if j e N nJanddj — [& ] <% — (K]
o= d 1&]ifjeNinJandd) — &j| >%— X
17 YA ifjeNnB 1)
0 otherwise

= |n'X|.

It is easy to check that if we plug (11) intw;(1T, 7p) as defined in (5) we get exactty,
as defined in (10) fof € J. Since ¥ aj = 0 for j € B, this shows that the GMIC (9) is an
intersection cut.

In this paper we study a method for decreasirigj1for j € J. By (6), this yields a
disjunction with a larger value od(B, 11, ), which is thus likely to close a larger gap.
To achieve this goal, we choose an integral vedtdahat defines (7), which we have seen
to have an influence on both the numerators and the denonsnaftg10) through (8). It
seems difficult to optimizer; for j € JNN, because both terms of the fraction are nonlinear.
Furthermore, forj € Ni, 1/aj is always between 0 and 1 independent of the choice of
A. For j € J\ N, the coefficient Ya;j is not bounded, therefore we concentrate on these
coefficients. From (10) we see that the denominatarjofor j € J\ N; is a linear function
of A through (8), whereas the numerator is a nonlinear functionand is always between
0 and 1. For this reason we attempt to minimégefor j € J\ Ny over integral vectora.
More specifically, we would like to minimiz¢d~\|, where

d=(&j)jean - (12)

Let B = BNN;, Jc = J\ N;; apply a permutation to the simplex tableau in order to
obtainB = {1,...,|Bi|},d = {1,..., ||}, and define the matrip € RIB 1l d; = &;.
Minimizing ||d|| can be written as

min || 'S Adil. (13)
rezBi\{0} B,

This is a shortest vector problem in the additive group geeerby the rows ob. If these
rows are linearly independent, the group defines a lattivg w& have the classical shortest
vector problem in a lattice, which is NP-hard under rand@aizeductions [2].

Andersen, Corngjols and Li [3] proposed a heuristic for (13) based on a reédoc
algorithm which cycles through the rows Bfand, for each such rody, considers whether
summing an integer multiple of some other row yields a raduacof ||dy||. If this is the
case, the matriD is updated by replacindk with the shorter vector. Note, however, that
this method only considers two rows at a time.

Our idea is to use, for each rosk of D, a subseRy C B, of the rows of the simplex
tableau withdy € Ry, in order to reducddy|| as much as possible with a linear combination
with integer coefficients ofic andd; for all i € R¢\ {k}. This is done by defining, for each
row di that we want to reduce, the convex minimization problem:

min 'S Adill, (14)
AkeRIRd Ak=1"i&
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and then rounding the coefficiem to the nearest integei<|. There are several reasons
for imposing)\lf = 1. One reason is that not only do we want to solve the shoraztbr
problem, but it is also important to find a vectof with small norm. We will come back to
this issue in Section 3.1. Another reason is that we mustéabei zero vector as a solution.
Yet another is to get different optimization problems foe 1,...,|B|, thus increasing
the chance of obtaining different branching directionmishing the partial derivatives of
|| Sier, Afdi|| with respect to\X for all i, we obtain arjR| x |R¢| linear system that yields
the optimal (continuous) solution. We formalize our probidor k =1,...,|B;| we solve
the linear system

ANK = pK,

whereAK € RIRIxIRd andbk € RIRI are defined as follows:

1 ifi=j=k
Al = {0 if i = kor j =k but not both

3’ .
517 dindjn otherwise )

1 ifi=k
bk = -
! (3% 4. .
— Y 1 dindkn otherwise

The form of the linear system guarantéé‘% 1 in the solution.

Once these linear systems are solved and we have the opteféitientsA k € RIR for
allke {1,...,|Bi|}, we round them to the nearest integer. Then, we considerdire of
Yicr, [AK]di- If || Sicr, [AK]di]| < [|dk]|, then we have an improvement with respect to the
original row of the simplex tableau; in this case, we use

Ao =5 A% — Z Y i € RAfGijx;, (16)
i€ i€ IE
instead of roway in order to compute a GMIC, and consider the possibly impaalisjunc-
tion for branching.

Example 1Suppose we have the following matiix

3182 3 2 3
D— 1-2012-2-4-5
0-141 4 5-1
11110 0 2

and we apply the reduction algorithm to the first rdwFollowing (15), we obtain the linear
system:

10 00 A1
0194-91| [AL| | 4
0-9 60 2| [AZ| |-52]|°
01 28 [A} [-20

whose solution isA1 = (All,Azl,Ag},)\j)T = (1,-0.0042 —0.7906 —2.3018 " . Rounding
each component to the nearest integer and complpﬁﬁbTD we obtain the row:

[102-1-1-30],



whosel, norm is 4, as opposed to the initial normdaf which is 10. Thus, we compute the
corresponding row of the simplex tableau with the same aieffisA*, and consider the
possibly improved disjunction for branching.
On the other hand, if we apply the reduction algorithm to #mosd row oD, we obtain
the linear system:
10005223 [AZ] [ 4
0 10 1| (A2]1
52 060 2| |AZ] | 9
200 2 8| [AZ] |1

)

whose solution ig2 = (Af,)\zz,/\??,)\})T = (—0.0627,1,0.2050 —0.0196 ' . Rounding each
component to the nearest integer and computmfﬂTD gives the original rowd,, hence
the reduction algorithm did not yield an improvement.

3.1 The importance of the norm af

Although solving the shortest vector problem (13) is impottfor finding a deep cut, it
is not the only consideration when trying to find a good bramgldirection. In the space
BN N, the distance between the two hyperplanes that define adsgjlinctionD(r, o) is
related to the norm of, and is in fact equal to A || as can be seen from (11). Therefore,
in this space disjunctions that cut off a larger volume wél/a a small|A ||. We illustrate
this with an example.

Example 2 Consider the following tableau, whexe, x, are binary variables ang,y, are
continuous:
{Xl =1/3+98y1+Y> 17)
Xo = 1/37 99y1 — 1.Oly2

The solution to the shortest vector problem (13) is givenhgy integer multipliersA; =
99 A, = 98 which yield the shortest vector in the latti@0.02) and the disjunction 99 +
98x, < 65V 993 + 98x, > 66. Our heuristic method computes the continuous multplie
A1 =1,A2 =98/99 which are rounded td; = 1,A, = 1, that correspond to the disjunction
X1+ X2 <0V X1+ X > 1. It easy to verify that the distance between these two ipypees
is roughly ten times larger than in the first case. Thereforéhe unit square, the disjunc-
tion obtained through our heuristic method dominates tlteeammputed through the exact
solution of the shortest vector problem. Figure 1 gives &upécof this.

3.2 Choosing the s&

The choice of each sd¥ C B, for all k has an effect on the performance of the norm
reduction algorithm. Although usinBx = B is possible, in that case two problems arise:
first, the size of the linear systems may become unmanageaptactice, and second, if
we add up too many rows then the coefficients on the variabitsimdices inJ NN, may
deteriorate. In particular, we may get more nonzero coefiisi. Thus, we do the following.
We fix a maximum cardinalitp|,; if Mg > [Bi|, we setR¢ = By. Otherwise, for each
row k that we want to reduce, we sort the remaining rows by ascgmdimber of nonzero
coefficients on the variables with indices {he JN N |aq = 0}, and select the fird¥lg |
indices as those iR. The reason for this choice is that, although the value oftiedficients
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Fig. 1 Representation of the disjunctions discussed in Example 2.

on the variables with indices ihN N, is bounded, we would like those that are zero in row
& to be left unmodified when we compulgjcg, pﬂij. As zero coefficients on those

variables yield a stronger cut, we argue that this will yialdtronger split disjunction as
well. During the sorting operation, to keep computatioirakts to a minimum we use the
row number as a tie breaker.

3.3 The depth of the cut is not always a good measure

As stated earlier, the improvement in the objective fumctiiven by a GMIC is a lower
bound on the improvement obtained by branching on the quureting disjunction. We
give an example showing that this lower bound may not be &gidtin fact the difference
between these two values can be arbitrarily large.

Example 3Consider the integer program:

min —X; — X

Xp < 15
X <1
X1/Mm—Xz > 1.5/m—1.25 4 (18)
mx — X < 1.5m-0.75
X1, X2 € Z,

wherem > 1 is a given parameter close to 1. The solution to the LP réltaxas (1.5,1),
with an objective value of-2.5. The intersection cut obtained from the disjunctigr x, <
0Vvx1—x2 > 1isxg + X2 <2, which gives an objective value ef2. Now suppose we branch
onx; — X < 0V Xy —X > 1. We obtain two childre??; and &2,, which are both feasible.

One can verify that optimal solution af; is (127229n L5-123m) it opjective value



—2137L25M and the optimal solution of?; is (120=1.73 05m=0.75

— 225 Therefore, the gap closed by branching is:

15-125m 2m-25
1-m = m-1

which can be made arbitrarily large whamtends to 1 from above. At the same time, the

intersection cut associated with the same disjunctioreslasgap of ® regardless afn. We
give a picture of the situation fon= 1.1 in Figure 2.

) with objective value

max{—2 }—25

’
’

’ X1/M—X%; > 1.5/m—1.25

mx,—Xp <15m-0.75

X1+X <2
X1 <15
. °«
~ ./ cost function

Fig. 2 Representation of Example 3 for=1.1.

Example 3 suggests that we should not choose the branchiecfidn by relying on
the distance cut off by the intersection cut only, even thotige quality of the underlying
intersection cut gives an indication of the strength of @distion and can guide us towards
generating better disjunctions. Therefore, in our compurtal experiments (see Section 4)
we employed strong branching to select a disjunction amboget computed with the pro-
cedure described so far.

4 Computational experiments

To assess the usefulness of our approach, we implementhith wie Cplex 11.0 Branch-
and-Bound framework the following branching methods:



— branching on single variables (Simple Disjunctions, SD),

— branching on split disjunctions after the reduction stegt the proposed in Section 3
(Improved General Disjunctions, IGD),

— branching on the split disjunctions that define the GMICdatdurrent basis (General
Disjunctions, GD), in order to compare with the work of Kaamv and Corngjols [11],

— branching on split disjunctions after the application af fReduce-and-Split reduction
algorithm (Reduce-and-Split, RS), in order to compare wlith work of Andersen,
Cornwgjols and Li [3],

— a combination of the SD and IGD method (Combined Generalubijon, CGD),
which is described in Section 4.2.

In each set of experiments we applied only the methods theg meaningful for that par-
ticular experiment. We applied strong branching in ordechoose the best branching de-
cision. When not otherwise stated, the best branching idecis considered to be the one
that generates the smallest number of feasible childrein thie case of a tie, the one that
closes more gap, computed as fahx!,c’x?} wherext,x? are the optimal solutions of
the LP relaxations of the children nodes. Note that thesatisak are computed by the
CPXdualopt () function of the Cplex’s callable library, because the onhgikable strong
branching functiongPXstrongbranch(), does not support branching on general disjunc-
tions. If a branching decision generates only one feastild at the current node, one side
of the disjunction (i.e. the feasible one) can be considaeed cutting plane; when several
disjunctions of this kind are discovered, we add all thegérguplanes. This leads to only
one feasible child, but with possibly a larger closed gaphwétspect to the case where we
add only one disjunction as branching constraint. Unlelssratise stated, our testbed is the
union ofmiplib2.0, miplib3 andmiplib2003, after the removal of all instances that can
be solved to optimality in less than 10 nodes by the SD algotit and the instances where
the root node, including strong branching, cannot be psmres less than 30 minutes by all
the algorithm3. In total, the set consists in 96 heterogeneous instanbesndde selection
strategy was set tbest boundand the value of the optimal solution was given as a cutoff
value for all those instances where the optimum is knbWihese choices were meant to
reduce as much as possible the size of the enumeration tré¢o aninimize the effect of
heuristics and of other uncontrollable factors (such agithe to find the first integer solu-
tion) in order to get a more stable indication of the alganitherformance on branching.

The rest of this section is divided as follows. In Section wel consider the different
branching algorithms separately, and compare them in alerespects. In Section 4.2 we
capitalize on the insight gained with the different expennts of the previous section, and
we combine the methods into a single branching algorithnichwve test in a Branch-and-
Cut framework. All averages reported in the following aremetric averages; to compute
the geometric average of a set of values not necessarilyegrigsan zero, we summed 1 to
all values before computing the mean, and subtracted 1 fnemesult.

4.1 Comparison of the different methods

The first set of experiments involves branching at the roatenim order to evaluate the
amount of integrality gap closed; we compute the relatiosed integrality gap a%%dgg;p

1 Theinstances are:ir01, air02, air03, air06, misc04, stein09.

2 The instances are: atlanta-ip, ds, momentuml, momentum2, momentum3, msc98-ip,
mzzvll, mzzv42z, netl2, rd-rplusc-21, stp3d.

3 See theniplib2003 web sitehttp://miplib.zib.de/miplib2003. php.
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for those instances where the optimal solution is known)enioir other instances we sim-
ply compare the absolute closed gap. In this set of expetBnee evaluated all possible
branching decisions via strong branching: that is, for SDowanched on all fractional in-
teger variables, for GD we branched on the split disjunstioomputed from the rows of
the simplex tableau where the associated basic variabl&@etonal integer variable, and
for IGD we branched on all the split disjunctions obtaine@iathe reduction step described
in Section 3 applied to all rows of the simplex tableau whaeedssociated basic variable
is a fractional integer variable. For IGD, the maximum numiiferows considered in each
reduction step was set to 50 (M | = 50 for allk). The experiments were made in a bare
Branch-and-Bound setting; that is, presolving, cuttingngls and heuristics were disabled.
In these experiments, we chose the branching decision litggd the largest gap, regard-
less of the number of feasible children. In Table 1 we give mreary of the results for
this experiment. We report the average relative integrglitp closed by each method, the

Average closed gap
(on instances with known optimum)
Simple disjunctions (SD): 4.27%
General disjunctions (GD): 6.71%
Improved general disjunctions (IGD):  6.56%

Number of instances with largest closed gap

Simple disjunctions (SD): 58
General disjunctions (GD): 64
Improved general disjunctions (IGD): 70

Number of instances with one child

Simple disjunctions (SD): 10
General disjunctions (GD): 29
Improved general disjunctions (IGD): 27

Table 1 Results after branching at root node

number of instances where each method closes at least theeadzsulute gap as the other
two methods, and the number of instances where the dispmtiat closes the largest gap
generates only one feasible child. For the first criteriorowly considered instances where
the optimal solution is known, so that we could compute tHatikee amount of integral-
ity gap closed; for the remaining criteria, we also consdehe instances with unknown
optimum. We immediately observe that branching on genésalmttions instead of single
variables yields a significantly larger amount of closeégnality gap. In our experiments,
the GD method closes more gap on average than the other twmdsgtand both GD and
IGD clearly outperform SD under this criterion. Not only GBdIGD close more gap, but
they also more frequently generate only one feasible cluttenthe number of children was
not taken into account when choosing the branching decisitiris set of experiments, but
it is interesting to note that with GD and IGD we often haveguistions that close a large
amount of gap and also do not increase the size of the enuaretate. Although the GD
method closes slightly more gap on average than IGD on tharioss with known opti-
mum, if we compare the number of instances where each methsedscat least the same
amount of gap as the other two methods then IGD ranks first ¥dtmstances over 96 in
total.
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For many reasons, applying strong branching on all posbitaleching decisions is im-
practical, as it requires a very large computational effdrich is not counterbalanced by
the reduction of the size of the enumeration tree. In the r@nexperiments we evaluated
the performance of the branching algorithms in a framewdnkne strong branching is ap-
plied only to the most promising branching decisions. Thmber of branching decisions
evaluated with strong branching was set to 10. In the cas®pf@ picked the 10 integer
variables with the largest fractionary part (i.e. closef16). For GD and IGD, we picked
the 10 split disjunctions associated with the 10 GMICs tleatthe largest cut off distance
(equation (6), see [11]), where for IGD the distance was adetpafter the reduction step.

In the next two experiments, we solved up to 1000 nodes in itiieneration tree. We
reverted back to the original branching decision selectimthod that favours those dis-
junctions which generate a smaller number of feasible ohildHaving a smaller number
of children is a considerable advantage as we are able toge®durther in depth of the
enumeration tree, thus possibly leading to a larger closgd Bhe evaluation criterion was
the percentage of the integrality gap closed after 1000 syamteif the instance was solved
in less than 1000 nodes, the number of nodes required to sntygtimality. For this set of
experiments, 7 instancewere excluded from the testbed, as solving 1000 nodes estjuir
more than 12 hours. To choose the number of riyg, that defines the size of the lin-
ear system at each iteration of the reduction step for the m@&thod, we compared three
different values: 10, 20 and 50; we included in the comparibe Reduce-and-Split (RS)
coefficient improvement method introduced by AndersennGajols and Li [3], in order to
test whether their algorithm to generate good cutting aves also suitable for branching.
For fairness, we used for RS the same procedure as for the |&Boafs: we picked the
10 split disjunctions associated with the 10 GMICs that hidaeelargest cut off distance
after the reduction step, and applied strong branching.dNevwed the implementation of
the RS reduction algorithm given in the CGL library [8]. A somary of the results is given
in Table 2. It can be seen that IGD using 20 or 50 rows for thecgon step yields very
similar results in terms of average closed gap on instancesatved by any method, and
both choices close more gap than IGD with, | = 10 or RS on the unsolved instances.
The average number of nodes is smallerNbg,| = 50. In particular IGD outperforms RS
for branching. We give the following possible reason. Onéhefadvantages of RS for cut
generation is that the reduction algorithm generates aksplit disjunctions, trying to in-
crease the distance cut off by each one of the associatédgcptanes. As several cuts are
generated at each round, this approach is effective [3].d¥ew at each node of a Branch-
and-Bound tree only one disjunction is chosen for brancthsega method which tries to
compute only one strong disjunction is more fruitful thare dinat generates a set of several
possibly weaker ones. This may explain why the reductioarélym described in Section 3
seems to be more effective than RS for branching. We decalede IGD withMg, | = 50
in all following experiments. We did not test larger valuédhe parameter, since solving
the linear system would take too much time in practice.

A summary of the comparison between SD, GD and IGD Mtg | = 50 can be found
in Table 3. The increase in the gap per node that can be closédabching on general
disjunctions with respect to branching on single variaigdarge. This is confirmed by the
results in [11]. Besides, the IGD method seems to be on agesggerior in all respects to the
other two methods, as it closes more gap for the unsolvedrinoes under 1000 nodes, and
requires less nodes for the solved instances. This is alderauf we compare the number of
instances where each method closes at least the same algagds the other two methods:

4 The instances ar@ano3mip, fast0507, manna8l, mitre, protfold, sp97ar, t1717.
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Number of solved instances

RS: 37
IGD with Mig,| = 10 (IGD10): 43
IGD with Mig,| = 20 (IGD20): 42
IGD with Mg, = 50 (IGD50): 42

Average number of nodes
on instances solved by all methods

RS: 57.8
IGD with Myg,| = 10 (IGD10): 418
IGD with Mjg,| = 20 (IGD20): 44.0
IGD with Mjg,| = 50 (IGD50): 39.7

Average gap closed
on instances not solved by any method

RS: 12.80%
IGD with Mg, = 10 (IGD10): 14.12%
IGD with Mg = 20 (IGD20): 15.06%
IGD with Mg | = 50 (IGD50): 14.85%

Number of instances with largest closed gap

RS: 53
IGD with Myg,| = 10 (IGD10): 63
IGD with Mjg,| = 20 (IGD20): 62
IGD with Mjg,| = 50 (IGD50): 66

Table 2 Results after 1000 solved nodes

IGD ranks first with 63 instances over the 89 instances in ¢lsesét. However, there are
two instances where branching on simple disjunctions iserpoofitable than branching on
general disjunctions: theiro4 andair05 instances are solved by the SD method in 225
and 139 nodes respectively, while GD and IGD do not managalte them in 1000 nodes.
All other instances which are solved by SD are also solved bya&d IGD.

4.2 Combination of several methods

Results in Table 3 suggest that IGD is indeed capable ofrgjosiore gap per node on a
large number of instances; however, a more detailed asadyshe results shows that there
are a few instances where branching on general disjundgamst profitable, and thus both
GD and IGD perform poorly. This may also happen, for exampleero gap instances,
where the enumeration of nodes with SD is usually more é¥fecthus, we decided to
combine both the SD and the IGD method into a single branchiggrithm which tries
to decide, for each instance, if it is more effective to bfana simple disjunctions or on
general disjunctions. First we describe the ideas and tetipal considerations behind the
algorithm, and then we will describe how we implemented it.

The most evident drawback of branching on general disjanstis that it is slower
than using simple disjunctions. It is slower in several egtg the first reason is that the
computations at each node take longer. This is because veetbasompute the distance
cut off by the GMIC associated with each row of the simplexdah, and the reduction
step that we propose involves the solution ofMg,| x Mg, linear system for each row
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Number of solved instances

Simple disjunctions (SD): 35
General disjunctions (GD): 42
Improved general disjunctions (IGD): 42

Average number of nodes
on instances solved by all methods

Simple disjunctions (SD): 92.7
General disjunctions (GD): 52.9
Improved general disjunctions (IGD): 43.2

Average gap closed
on instances not solved by any method
Simple disjunctions (SD): 9.36%
General disjunctions (GD): 13.78%
Improved general disjunctions (IGD):  14.15%

Number of instances with largest closed gap

Simple disjunctions (SD): 55
General disjunctions (GD): 56
Improved general disjunctions (IGD): 63

Table 3 Results after 1000 solved nodes

which is improved, where we chodér | = 50. All these computations are carried out
several times, thus the overhead per node with respect tetirsg on simple disjunctions
is significant. The second reason is that, by branching oergédisjunction, we add one
(or more) rows to the formulation of children nodes, whichymesult in a slowdown of
the LP solution process. On the other hand, branching onlsidigjunctions involves only
a change in the bounds of some variables, thus the size ofRhdoks not increase. This
suggests that branching on general disjunctions should®e only if it is truly profitable,
which in turn requires a measure of profit. We decided to usethount of closed gap as
a measure of profit. Besides, since the computational oadrper node is significant when
considering general disjunctions for branching, we woikd to consider them only if it
brings an improvement in the solution time. Thus, if on a givestance general disjunctions
are never used because simple disjunctions are more ptefitae would like to disable
their computation as soon as possible in the enumeratienAiethe polyhedron underlying
a problem may significantly change in different parts of trenlshing tree, it may be a good
idea to test branching on general disjunctions periodiaalen if it has been disabled, in
order to verify whether it has become profitable.

We implemented a branching algorithm based on the abovédsrations in the follow-
ing way: at each node, branching on general disjunctiondeaactive or not. If it is active,
we test 10 possible branching decisions with strong brawgchi general disjunctions, and 3
simple disjunctions. General disjunctions are picked dirtlyey generate a smaller amount
of children nodes, or (in case of a tie) if the amount of cloged is at least 50% larger.
As a consequence, at all nodes where we do not manage to cpgajawe always prefer
simple disjunctions if they generate the same number ofidil as general disjunctions.
At the beginning of the enumeration tree, branching on gerdisjunctions is active for
the first 3 nodes; moreover, we put an increased effort atdbierrode, where we consider
up to 20 simple disjunctions and 20 general disjunctionseléhrer a general disjunction is
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Algorithm 1 CGD branching algorithm

Initialization: ActiveGDCounter— 3, FailedActivation— 0,NodeCounter— 0
while branchingdo
if root nodethen
NumGD+~— 20,NumSD~— 20
else
if ActiveGDCounter- 0then
NumGD«— 7,NumSD— 3
else
NumGD« 0,NumSD+ 10
end if
end if
generatNumGDgeneral disjunctions
generatNumSDsimple disjunctions
for all branching decisiondo
apply strong branching
end for
choose a disjunctioB(, )
if ActiveGDCounter> 0then
if D(11, ) has support- 1 then
ActiveGDCounter— 10
FailedActivation— 0
else
ActiveGDCounter— ActiveGDCounter- 1
if ActiveGDCounter= Othen
FailedActivation— FailedActivation+ 1
end if
end if
else
NodeCounter— NodeCounte# 1
end if
if FailedActivation< 10N NodeCounter= 100then
ActiveGDCounter— 1
NodeCounter— 0
end if
end while

chosen for branching, then branching on general disjunsti® activated for the following
10 nodes. Otherwise, when it is disactivated (because gfigidisjunctions being preferred
to general disjunctions for a given number of consecutivéesoi.e. 3 at the beginning of
the enumeration tree, 10 otherwise), it is reactivatedreaer 100 nodes, but only for one
node, in order to test whether in that part of the enumerates general disjunctions are
worthwhile. If a general disjunction is chosen, then bramglon general disjunctions is re-
activated for the following 10 nodes. After 10 consecutinéruitful activations, i.e. general
disjunctions are not chosen after being activated for 1@eoutive times, branching on gen-
eral disjunctions is permanently disabled. When perfogntire reduction step described in
Section 3, in order to save time we do not consider all rowsdduction, but only the most
promising ones. We do this by looking at the GMIC associatét each row where the
basic integer variable is fractional, and sorting them lgy¢brresponding distance cut off
(6). The 10 rows (20 at root node) with the largest distaneevardified with the reduction
step of Section 3. Since only 7 have to be selected for stroamgching, we recompute the
distances and pick the 7 largest ones. We give a descripitihisalgorithm in Algorithm 1.

To assess the practical usefulness of this approach, wearedhphis branching algo-
rithm, which we will call Combined General Disjunctions (O§ with SD. In order to
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evaluate the same number of branching decisions via stn@amgbing with both methods at
each node, we modified SD in order to consider, at root noaehthnching decisions cor-
responding to the 40 integer variables with largest fractigpart, and then reverting back to
the usual 10 for the following nodes. We let Cplex 11.0 appiyiog planes with the default
parameters, and branched for two hours. Again, prepraweasid heuristics were disabled.
In Table 4 we compare the number of solved instances witlgriwlo hours limit, the av-
erage closed gap on instances not solved by either methedyvtdrage number of nodes
and average CPU time on instances solved by both methodsieBhtts clearly indicate

Number of solved instances
Simple disjunctions (SD): 67
Combined general disjunctions (CGD): 70

Average number of nodes
on instances solved by both methods
Simple disjunctions (SD): 195.1
Combined general disjunctions (CGD): 98.0

Average number of nodes
on instances not solved by either method
Simple disjunctions (SD): 35796.0
Combined general disjunctions (CGD):  15075.7

Average gap closed
on instances not solved by either method
Simple disjunctions (SD): 5.35%
Combined general disjunctions (CGD): 7.03%

Average CPU time [sec]
on instances solved by both methods
Simple disjunctions (SD): 3.03
Combined general disjunctions (CGD): 3.35

Table 4 Results in a Branch-and-Cut framework with a two hours timetlimi

that the CGD is able to combine the potential of the IGD mettwodlose more gap with
the rapidity of branching on simple disjunctions when gahdisjunctions are not worth
the additional required time. Not only CGD solves all insssolved by SD, but it solves
3 more:10teams in 273.46 seconds of CPU timgesa2_o in 2616.2 seconds, an@ut in
2540.74 seconds. On the instances which have not been dphesther of the two methods,
the average integrality gap closed by CGD is 31% larger atina terms than the one closed
by SD. This result is even more important if we consider th@aDds slower: in the 2 hours
limit CGD solved only half as many nodes as SD on average,ttieigap closed per node
is significantly larger for CGD. These average values oritg tato account the instances
with known optimum value.

We report a full table of results on the instance that havévaet solved in less than two
hours by the SD method in Table 5. If we consider the 5 instafmewhich the optimal
solution value is not known, then on theu instance both methods close the same abso-
lute gap, omano3mip CGD closes more gap, and on the remaining 3 instangey 4r,
t1717, timtab2) SD closes more gap. However, on all 5 instances CGD solvewles
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SD ALGORITHM CGDALGORITHM GAP

CLOSEDGAP CLOSED GAP CLOSED

INSTANCE ABS. REL. NODES ABS. REL.| NODEs||By CuTs
10teams™ 0 0% 11775 2 28.5% 398 71.3%
alclsl 337.58 3.219 5340 371.423 3.54%  2578| 62.29%
aflow40Ob 36.854 22.79 20398 25.8243 15.9% 5477 57.3%
arkiO01 88.0556 6.83% 3612 580.27  45% 4000|| 28.27%
dano3mip 0.322586 1 8 0.374207 1 6 0%
danoint 0.310476 10.2% 5547 0.286139 9.44% 4790 2%
fast0507 0.262111 14.1% 587 0.0561795 3.03% 96 0%
gesa2_0* 84644.7 27.9% 195797 147352 48.5% 13181 51.4%
glass4 3293.85 0% 84369 3104.73 0% 79050 0%
harp2 199205 43.99 74255 215937 47.5% 12565 32.6%
liu 214 -| 108162 214 -| 100347 0%
marksharel 0 0%] 11027872 0 0%| 2540405 0%
markshare2 0 0%| 8606987 0 0%| 2431791 0%
mas74 859.296 65.2% 2405902 641.509 48.7% 800207 4.6%
mkc 2.92749 6.19 14486 6.52824 13.6% 8663 5.7%
noswot 0 0%| 3192040 0 0%] 1598812 0%
nsrand-ipx 158.293 6.82% 3932 222.726  9.6Y 1431|| 49.08%
opt1217 0 0%| 409010 1.33599 33.2% 316821 17%
protfold 2.32009 21.2% 140 2.14092 19.5% 150 3.6%
rol113000 127.615 7.12% 3083 293.192 16.4%  1406|| 40.68%
rout® 55.1337 57.6% 189312 94.9211 99.2% 28137 0.8%
setich 977.236 4.34% 120033 1355.82 6.02% 41034|| 86.06%
seymour 1.44368 7.54% 1251 1.09335 5.71% 688|| 41.66%
sp97ar 1.48955e+06 F 4231(| 1.41919e+06 F 318 0%
swath 28.3223 21.3% 20831 15.7973 11.9% 4724 34.9%
t1717 785.581 4 76 695.249 4 31 0%
timtabl 108754 14.8% 130014 103832 14.1% 35760 62.2%
timtab2 531157 4 50595 530454 {1 12461 0%
tr12-30 183.374 0.158% 17852 691.388 0.594%  6883|| 99.142%

Table 5 Results in a Branch-and-Cut framework on the instances wedah two hours by the SD method.
Instances with & have been solved by the CGD method.

amount of nodes since it is slower, and the relative diffeeei.e. 2359200 1) in
closed gap on the 3 instances where SD closes more gap is emallmtab2, the differ-
ence is only (L3%, but CGD requires 4 times fewer nodes; @97ar the difference is
4.95% in favour of SD, but CGD requires 13 times fewer nodes.diffierence increases on
thet1717 instance: SD closes in relative terms92% more gap than CGD, solving twice

as many nodes in the two hours limit.

On a few instances, CGD performs strikingly better than Starkples are therkioo1
andopt1217 instances, which are difficult instancesmp1ib2003. Forarkioo1, branch-
ing with CGD closes 45% of the gap, whereas branching with B doses 683%. Sim-
ilarly, for opt1217 CGD closes 32%, versus 0% for SD. Therkioo1 instance was first
solved to optimality only recently by Balas and Saxena fi@ytinvest a large computational
effort in order to generate rank-1 split cuts that clos®B%o of the integrality gap, and then
use Cplex’s Branch-and-Bound algorithm to close the reimgigap (1695%) in 643425
nodes. We report that, if we run CGD amnkio01 without time limits, 2827% of the inte-
grality gap is closed by Cplex’s cutting planes with defgaltameters, while the remaining
71.73% is closed by our branching algorithm in 925738 nodese Mwit Balas and Saxena
used the preprocessed problem as input, while in this papaefwmays work with the original
instances (i.e. without preprocessint)teams, gesa2_o, harp2, rout andtr12-30 are five



17

other instances where CGD greatly outperforms SD. Amongeies that were solved by
both algorithms (see Table Gje¢113a required 15955 nodes using SD versus only 20 using
CGD, bel15 required 773432 nodes using SD versus 24 using CGDgassb required
38539 nodes using SD versus 140 using CGD. There is also anverpent in computing
time by several orders of magnitude on these three instances

On those instances which are solved by both methods, CGDOresqon average only
half the nodes needed by SD, and the average CPU time is &gy fdr both methods (with
a slight advantage for SD). Full results are reported ing&bl

Summarizing, in our experiments the combination betweeaSDIGD, which we have
called CGD, seems clearly superior to the traditional bnamg strategy that is represented
by branching on single variables. Moreover, as Cplex'satéd library is not optimized for
branching on general disjunctions, the implementation@D&ould be made faster.
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GAP CLOSED SD ALGORITHM CGD ALGORITHM

By CuTs BY BRANCHING TIME TIME

INSTANCE ABs. REL. || NODES [SE] NODES [SE]
aflow30a 65.9% 59.6358 1813 77.886 1725 99.839
air04 17.9% 494.084 181 164.972 203 683.874
air05 15.1% 421.787 209 105.902 241 133.679
bell3a 70.8% 4638.26 15955 11.822 20 0.047
bell3b 89.6% 39855.3 1206 2.177 526 5.512
belld 91.93% 44957.8 9091 24177 3636 24.242
bellb 85.6% 51456.8 773432 | 553.703 24 0.128
blend2 23.2% 0.524858 539 5.321 454 9.920
bm23 24.8% 10.0974 119 0.272 78 0.364
cap6000 37.6% 113.47 289 30.176 236 111.553
dcmulti 68.5% 1323.83 41 1.050 56 2.853
dsbmip 100% 0 15 1.666 23 2.754
egout 35.7% 568.101 1 0.009 1 0.011
fiber 91.83% 20400.8 153 3.944 28 4.025
fixnet3 97.98% 227.43 5 0.300 5 0.421
fixnet4 87.7% 573.738 33 1.438 52 8.526
fixnet6 83.4% 461.791 1087 20.417 1365 52.859
flugpl 11.8% 30286.3 199 0.074 16 0.021
gen 100% 112313 0 0.021 0 0.026
gesa2 74.9% 76271.3 38539 | 1232.150 140 28.490
gesa3 69.3% 48425.7 51 2.149 63 4.016
gesa3_o 70.9% 45960.5 89 3.934 34 9.955
gt2 91.65% 643.634 236 0.412 43 0.139
khb05250 || 99.9336% 7317.49 0.06649 5 0.106 2 0.105
1152lav 30.1% 65.4949 552 15.614 149 16.251
1p4l 76% 5.875 3 0.059 3 0.160
lseu 68.1% 91.0289 61 0.181 46 0.349
manna81 100% 0 0 0.143 0 0.147
mas76 4.2% 1065.02 309659 | 651.702 || 377398 | 2608.890
miscO1 44.5% 281.057 251 3.836 274 7.151
misc02 56.6% 295.312 19 0.148 10 0.191
misc03 9.8% 1308.17 255 3.73 496 11.875
misc05 45.2% 29.3913 103 1.658 33 0.823
misc06 26.5% 6.83269 17 1.110 17 2.365
misc07 5.8% 1313.75 12139 | 462.649 25940 | 1536.48
mitre 100% 0 15 4.394 15 10.759
mod008 21.9% 12.5493 345 0.937 13 0.095
mod010 28% 11.5 25 0.567 2 0.440
mod011 68.2%)]| 2.40503e+06 707 | 2633.340 250 | 3539.000
mod013 30.1% 17.4348 115 0.317 107 0.422
modglob 73.7% 81583 1879 48.692 2387 75.699
nw04 9.1% 501.358 . 83 75.879 48 109.610
p0033 99.9159%  0.478261 0.08419 3 0.005 3 0.007
p0040 100% 62027 0 0.002 0 0.001
p0201 46% 400 69 1.147 50 1.635
p0282 96.99% 2458.44 3.019 23 0.218 12 0.261
p0291 48.5% 5223.75 51.59 0 0.017 0 0.018
p0548 99.9274% 6.08471 0.07269 9 0.076 6 0.157
p2756 98.49% 6.56956 7 0.364 13 1.205
pipex 63.5% 5.30334 19 0.041 12 0.050
pk1 0% 11 243317 | 956.355|| 189740 | 1468.170
pp08aCUTS 87.1% 240.666 711 12.363 658 18.583
pp08a 94.38% 258.537 392 4.633 372 4.481
qiu 0% 798.766 19399 | 2780.000 19399 | 2901.890
gnetl 71% 509.709 53 3.156 74 26.939
qneti_o 85.1% 585.272 17 1.267 13 3.826
rentacar 51% 759381 11 12.047 11 14.973
rgn 15.9% 28.0903 2089 2.143 1703 3.826
sample2 46.5% 68.4556 35 0.092 33 0.103
sentoy 24.9% 50.6089 . 52 0.175 53 0.266
setlal 99.9521% 2.2619 0.04799 5 0.056 6 0.145
setlcl 34.7% 6484.25 0 0.021 0 0.023
steinib 0% 2 42 0.058 44 0.068
stein27 0% 5 1628 3.785 1537 3.721
steindb 0% 8 29676 | 218.862 28882 | 215.015
vpmi 89.1% 0.5 17 0.092 17 0.107
vpm2 77% 0.888645 1299 15.646 477 5.723

Table 6 Results in a Branch-and-Cut framework on the instancesdbly®oth the SD and the CGD method.



