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Abstract

The Molecular Distance Geometry Problem consists in finding the positions in R
3 of the atoms of

a molecule, given some of the inter-atomic distances. We show that under an additional requirement
on the given distances (which is realistic from the chemical point of view) this can be transformed to
a combinatorial problem. We propose a Branch-and-Prune algorithm for the solution of this problem
and report on very promising computational results.
Keywords: molecular distance geometry problem, branch-and-prune algorithm.

1 Introduction

We present a discrete formulation and a very fast and accurate solution method for a subclass of instances
of the Molecular Distance Geometry Problem (MDGP) [2, 4, 6, 8, 9]. The MDGP is related to the
determination of the tridimensional structure of a molecule based on knowledge of some distances between
pairs of atoms. The tridimensional structure is very important because it is associated to the physical
and chemical properties of the molecule.

The MDGP can be seen as finding a distance-preserving immersion in R
3 of a given undirected

weighted graph G = (V,E, d), so it can be very naturally cast as a continuous search problem.

Under three additional assumptions which are satisfied by most proteins (a very interesting and rich
class of molecules), we transform the MDGP to a discrete search problem. The assumptions are:

1. covalent bond lengths and angles are known;

2. the molecule has the shape of a protein backbone, i.e. it is a sequence of n atoms such that there
is a covalent bond between every pair of consecutive atoms;

3. all distances between atoms separated by three covalent bonds are known (using distance data
obtained from the NMR experiments this assumption is realistic [1, 13]);

4. no bond angle is equal to kπ, for k ∈ Z.
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Naturally, distances between atoms separated by two covalent bonds can be easily calculated from the
covalent bond lengths and bond angles.

In Section 2, we show a discrete formulation for the problem. In Section 3, we describe the Branch-
and-Prune algorithm, which will be applied to the solution of the MDGP. The computational results are
discussed in Section 4. Section 5 concludes the paper.

2 The Molecular Distance Geometry Problem

Formally, the MDGP can be defined as the problem of finding Cartesian coordinates x1, . . . , xn ∈ R
3 of

the atoms of a molecule such that for all (i, j) ∈ S,

||xi − xj || = dij ,

where S is the set of pairs of atoms (i, j) whose Euclidean distances dij are known. If all distances are
given, the problem can be solved in linear time [4]. If there is an order on the atoms such that the given
distances form cliques on each set of five contiguous atoms, the problem is polynomially solvable [5]. In
general, however, the problem is NP-hard [12].

The MDGP is usually formulated as a continuous least-squares minimization problem, where the
objective function is as follows:

f(x1, . . . , xn) =
∑

(i,j)∈S

(||xi − xj ||
2 − d2

ij)
2. (1)

Obviously, (x∗
1, . . . , x

∗
n) solve the problem if and only if f(x∗

1, . . . , x
∗
n) = 0.

Note that, as stated above, the MDGP bears no connection whatsoever with molecules. In fact the
MDGP appears in such diverse application fields as 3D graph drawing [3] and network design [5]. Our
assumption that all distances between atoms separated by one, two, and three covalent bonds are known
can be expressed as an additional condition on the set S of distances, namely that S can be partitioned
into two disjoint sets E, F of distances where

E = {(i, i + 1) | 1 ≤ i ≤ n− 1} ∪

{(i, i + 2) | 1 ≤ i ≤ n− 2} ∪

{(i, i + 3) | 1 ≤ i ≤ n− 3},

and
F = {(i, j) | j − i ≥ 4}.

We also assume that for all pairs of atoms in F , the distances are shorter than a given cut-off value ∆
(usually this is taken to be 5Åusing, for example, NMR analysis [1, 13]), that is, dij ≤ ∆ ∀(i, j) ∈ F .

As we shall show in Section 2.1, for each group of four consecutive atoms, if we know all the distances
between them and fix the first three, with probability 1 (see Section 2.2) the fourth atom can only have
two possible symmetric placements. This allows us to give a discrete formulation for the considered
problem.

2.1 Discrete formulation

Consider a molecule as being a sequence of n atoms with Cartesian coordinates given by x1, . . . , xn ∈ R
3

and such that there is a covalent bond between every pair of atoms (i, i + 1), for i = 1, . . . , n − 1. The
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bond length ri is the Euclidean distance between atoms i − 1 and i (i.e. ri = di−1,i for all i = 2, . . . , n).
The bond angle θi ∈ [0, π] is the angle between the segments joining atoms i− 2, i− 1 and i− 1, i (for all
i = 3, . . . , n). The torsion angle ωi ∈ [0, 2π] is the angle between the normals through the planes defined
by the atoms i− 3, i− 2, i− 1 and i− 2, i− 1, i (for all i = 4, . . . , n). See Fig. 1.

i

i + 1

i + 2

i + 3

ri+1

ri+2

ri+3

di,i+2

di+1,i+3

θi+2

θi+3

ωi+3

Figure 1: Definitions of bond lengths, bond angles and torsion angles.

In most molecular conformation calculations, all covalent bond lengths and bond angles are assumed
to be known a priori [10]. Thus, the first three atoms in the sequence can be fixed and the fourth atom
is determined by the torsion angle ω4. The fifth atom can be determined by the torsion angles ω4 and
ω5, and so on. So, given all bond lengths r2, r3, . . . , rn, bond angles θ3, θ4, . . . , θn, and torsion angles
ω4, ω5, . . . , ωn of a molecule with n atoms, the Cartesian coordinates xi = (xi1, xi2, xi3) for each atom i

in the molecule can be obtained using the following formulae [10]:




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= B1B2 · · ·Bi
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

∀ i = 1, . . . , n, (2)

where

B1 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, B2 =









−1 0 0 −r2

0 1 0 0
0 0 −1 0
0 0 0 1









,

B3 =









− cos θ3 − sin θ3 0 −r3 cos θ3

sin θ3 − cos θ3 0 r3 sin θ3

0 0 1 0
0 0 0 1









,

and

Bi =









− cos θi − sin θi 0 −ri cos θi

sin θi cos ωi − cos θi cos ωi − sin ωi ri sin θi cos ωi

sin θi sin ωi − cos θi sin ωi cos ωi ri sin θi sin ωi

0 0 0 1









, (3)

for i = 4, ..., n. We call Bi the torsion matrices and denote by Ci =
∏

j≤i Bj the cumulative torsion

matrices. For every four consecutive atoms xi, xi+1, xi+2, xi+3 we can express the cosine of the torsion

3



angle ωi+3 in terms of the distances ri+1, di+1,i+3, di,i+3 and the bond angle θi+2, θi+3 by using the cosine
law for torsion angles [11] (p. 278), as follows:

cos ωi+3 =
r2
i+1 + d2

i+1,i+3 − 2ri+1di+1,i+3 cos θi+2 cos θi+3 − d2
i,i+3

2ri+1di+1,i+3 sin θi+2 sin θi+3
. (4)

Hence, if we know all the bond lengths (ri), bond angles (θi), and distances between atoms separated
by three covalent bonds (di,i+3), we can calculate the cosine of the torsion angles defined by the atoms
i, i+1, i+2, i+3 for i = 1, . . . , n− 3. We note in passing that in order for (4) to hold, we obviously need
the denominator to be nonzero.

Using the bond lengths r2, r3 and the bond angle θ3, we can determine the torsion matrices B2 and
B3 and obtain

x1 =





0
0
0



 ,

x2 =





−r2

0
0



 ,

x3 =





r3 cos θ3 − r2

r3 sin θ3

0



 ,

fixing the first three atoms of the molecule. Since we also know the distance d14, by (4) we can obtain
the value cos ω4. Thus, the sine of the torsion angle ω4 can have only two possible values: sinω4 =
±

√

1− (cos ω4)2. Consequently, we obtain only two possible positions x4, x
′
4 for the fourth atom:

x4 =





−r2 + r3 cos θ3 − r4 cos θ3 cos θ4 + r4 sin θ3 sin θ4 cos ω14

r3 sin θ3 − r4 sin θ3 cos θ4 − r4 cos θ3 sin θ4 cos ω4

−r4 sin θ4

√

1− (cos ω14)2



 ,

x
′

4 =





−r2 + r3 cos θ3 − r4 cos θ3 cos θ4 + r4 sin θ3 sin θ4 cos ω4

r3 sin θ3 − r4 sin θ3 cos θ4 − r4 cos θ3 sin θ4 cos ω4

r4 sin θ4

√

1− (cos ω4)2



 ,

along with the respective torsion matrices B4, B
′
4 such that

(x4, 1)
⊤

= C3B4(0, 0, 0, 1)
⊤

(x′
4, 1)

⊤
= C3B

′
4(0, 0, 0, 1)

⊤
,

where C3 is a cumulative torsion matrix. This dichotomy, shown pictorially in Fig. 2, is the basic reason
why this problem can be formulated combinatorially.

For the fifth atom, we will obtain four possible positions, one for each combination of ±
√

1− (cos ω4)2

and ±
√

1− (cos ω5)2. By an easy induction argument, we can see that for the i-th atom we obtain 2i−3

possible positions. So, for a molecule shaped as a sequence (a linear chain) of n atoms, we get 2n−3

possible sequences of torsion angles ω4, ω5, . . . , ωn, each defining a different tridimensional structure.
By using the matrices Bi defined above, we can convert a sequence of torsion angles into Cartesian
coordinates x1, . . . , xn ∈ R

3. Thus, this problem has a finite search space. To test a candidate solution
we simply use the function f defined in (1); the candidate solution (x1, . . . , xn) will be a valid solution if
and only if f(x1, . . . , xn) = 0.

The discussion above can be summarized in the following theorem.
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Figure 2: Discretization of the problem. The atom i + 3 can only be in the two shown positions in order
to be feasible with the distance di,i+3.

2.1 Theorem

Consider a sequence M of n atoms such that:

(i) atom i is covalently bonded to atom i + 1 for all i ≤ n− 1;

(ii) all bond angles and bond lengths are known;

(iii) no bond angle is a multiple of π;

(iv) all distances between atom i and i + 3 are known, for all 1 ≤ i ≤ n− 3.

Then there is a finite number of distinct immersions p : M → R
3 such that:

(a) p(1) = (0, 0, 0), p(2)1 = 0, p(2)2 = 0, p(3)1 = 0 (where p(i)k is the k-th coordinate of p(i) for
k ≤ 3, i ≤ n);

(a) for all atoms i, j with known atomic distance dij we have:

||p(i)− p(j)|| = dij .

2.2 Undiscretizable instances

As has been remarked, the instances of the considered problem have a finite number of valid solutions
with probability 1. The only case where an instance is not susceptible of a discrete formulation is when
there is a subsequence of three consecutive atoms i, i+1, i+2, where the bond angle θi+2 is kπ for k ∈ Z:
since ωi+3 is an angle between two normal vectors to given planes, ωi+3 is undefined when at least one of
the planes is undefined, i.e. if the two vectors defining the plane are collinear. In other words, if the bond
angle θi+2 is a multiple of π, we have the situation depicted in Fig. 3, where di,i+3 is feasible for every
position of atom i + 3 on the circle shown in the drawing. Since the set {π} has measure 0 in [0, 2π], the
probability that any given instance is discretizable is 1. In any case the “undiscretizable cases” do not
often occur in practice.
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Figure 3: An instance which cannot be discretized. The i + 3-rd atom can be on any position on the
circle shown without affecting the feasibility of the distance di,i+3.

3 The Algorithm

In this section we shall present a Branch-and-Prune (BP) algorithm designed for solving the considered
problem. The approach is very simple and mimicks the structure of the problem closely: at each step we
can place the i-th atom in two possible positions xi, x

′
i. We then branch the search and prune away the

infeasible branches. More precisely, for each position we check feasibility with all distance pairs (j, i) ∈ F

by checking that (||xj − xi||
2 − d2

j,i)
2 < ε, where ε > 0 is a given tolerance. There are four possible

outcomes:

1. both xi, x
′
i are feasible: in this case we store both positions and explore both branches in a depth-

first fashion;

2. only xi is feasible: we only store the feasible position xi and prune the infeasible branch x′
i;

3. only x′
i is feasible: we only store the feasible position x′

i and prune the infeasible branch xi;

4. neither position is feasible: we prune both branches and backtrack the search.

Notice that this algorithm, as described, will find all solutions to the problem. If we are only interested
in one, we can stop the search as soon as we have placed the last atom in a feasible position.

Let T be a graph representation of the search tree. Initially, T is initialized to 1 → 2 → 3 since the
first three atoms can be fixed to feasible positions x1, x2, x3 as explained earlier. By the current rank of
the search tree we mean the index of the atom being placed at the current node. At each search tree
node of rank i we store:

• the position xi ∈ R
3 of the i-th atom;

• the cumulative product Ci =
∏i

j=1 Bj of the torsion matrices;

• a pointer to the parent node P (i);

• pointers to the subnodes L(i), R(i) (initialized to a dummy value PRUNED if infeasible).
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Notice that the edge structure of the graph T is encoded in the operators P (), L(), R() defined at each

node. The recursive procedure at rank i− 1 is given in Algorithm 1. Let y = (0, 0, 0, 1)
⊤

, ε > 0 a given
tolerance and v a node with rank i− 1 in the search tree T .

Algorithm 1 BP algorithm.

0: BranchAndPrune(T , v, i)
if (i ≤ n− 1) then

Compute the possible placements for i-th atom:
calculate the torsion matrices Bi, B

′
i via Eq. (3);

retrieve the cumulative torsion matrix Ci−1 from the parent node P (v);
compute Ci = Ci−1Bi, C ′

i = Ci−1B
′
i and xi, x

′
i from Ciy, C ′

iy;
let λ = 1, ρ = 1;
Check feasibility:
for all (j, i) ∈ F do

let δji = (||xj − xi||
2 − d2

ji)
2 and δ′ji = (||xj − x′

i||
2 − d2

ji)
2;

if (δji > ε) then

λ = 0;
end if

if (δ′ji > ε) then

ρ = 0;
end if

end for

Create subnodes as required:
if (λ = 1) then

create a node z, store Ci and xi in z, let P (z) = v and L(v) = z;
set T ← T ∪ {z};
BranchAndPrune(T , z, i + 1);

else

set L(v) = PRUNED;
end if

if (ρ = 1) then

create a node z′, store Ci and xi in z′, let P (z) = v and R(v) = z′;
set T ← T ∪ {z′};
BranchAndPrune(T , z′, i + 1);

else

set R(v) = PRUNED;
end if

else

Rank n reached, a solution was found:
solution stored in parent nodes ranked n to 1, output by back-traversal;

end if

3.1 Detailed example

We now discuss the application of Algorithm 1 to a simple example (artificially generated as explained
in [7], also see Section 4.2).

The instance in question (called lavor11 7), with all bond lengths set to 1.526Åand bond angles set
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to 1.91 radians, has 11 atoms with distances in F given by:

δ(2) = {9}, dF
2 = {3.387634917}

δ(3) = {8, 9, 10}, dF
3 = {3.96678038, 3.003368265, 3.796280236}

δ(4) = {8, 9, 10}, dF
4 = {2.60830758, 2.102385055, 3.159309539}

δ(5) = {9, 10}, dF
5 = {2.689078459, 3.132251169}

δ(6) = {10}, dF
6 = {3.557526815}

δ(7) = {11}, dF
7 = {3.228657023},

where δ(i) indicates the atoms j such that dij ≤ 4Å(the cut-off value). The distances in E are of course
δ(i) = {i + 1, i + 2, i + 3} for all i ≤ n − 3, δ(n − 2) = {n − 1, n}, δ(n − 1) = {n}. The vector of the
distances in E is:

dE = (1.526, 2.491389536, 3.83929637,

1.526, 2.491389536, 3.831422399,

1.526, 2.491389536, 3.835602674,

1.526, 2.491389535, 3.030585263,

1.526, 2.491389534, 2.899348439,

1.526, 2.491389535, 3.086914764,

1.526, 2.491389536, 2.788611167,

1.526, 2.491389536, 2.888815709,

1.526, 2.491389537,

1.526),

where the i-th line contains the distances among atoms i and i + 1, i + 2, i + 3. Of course, the last two
lines contain the distances among the atom n− 2 and atoms n− 1 and n, and the distance between the
atom n− 1 and n, respectively.

As can be seen from the BP tree given in Fig. 4 (this is actually the output of Algorithm 1 on the
given instance), this instance has four solutions: the leaf nodes at rank 11 — the rank is given by the
number of the leftmost node in each row. Notice that the earliest node when some pruning occurs is at
rank 7, i.e. no pruning occurs before the placement of the 8-th atom. This happens because there are no
distances (j, k) ∈ F with k < 8, so each position for atoms with index i < 8 is feasible (by construction
of xi, x

′
i) with the distances in E. The only symmetry-breaking distances are in fact those in F . Again,

there is pruning at ranks 8,9,10, i.e. during the placement of atoms 9,10,11, because there are distances
(j, k) ∈ F with k = 9, 10, 11. One of the solutions is shown in Fig. 5.

4 Computational experiments

In order to test the viability of the proposed method, we tested a class of randomly generated MDGP
instances described in [7]. We present comparative results of BP and another existing MDGP software
called dgsol [9]. It turns out that BP is superior to dgsol for speed and solution accuracy, and inferior
as regards memory requirements and running time reliability.

4.1 Software testbeds

The software code dgsol [9] (version 1.3) can be freely downloaded from
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Figure 4: The BP tree of the instance of Section 3.1.

Figure 5: One of the possible solutions of the lavor11 7 instance.

http://www.mcs.anl.gov/~more/dgsol/.

The algorithm implemented by the dgsol code is very different from ours. First, it targets a more general
problem class: the Molecular Distance Geometry Problem with Distance Bounds. In this problem, lower
and upper bounds to atomic distances are known, rather than the exact atomic distances. Since these are
usually estimated through NMR techniques, it is realistic to assume that there is an experimental error
in the measurements (our approach does not consider this issue yet). Secondly, dgsol needs to make
no assumption whatsoever about the distances of triplets and quadruplets of consecutive atoms being
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known. Thirdly, dgsol is based on a continuous smoothing of the original problem to a form which has
fewer local minima. An ordinary NLP optimization method is then applied to the modified problem, and
the optimum is traced back to the original problem. This is a fully continuous optimization algorithm,
whereas BP is a discrete method.

It turns out that the main advantages of BP over dgsol are:

1. tractability of larger instances;

2. higher solution accuracy;

3. BP can potentially find all feasible solutions, not just one.

By contrast, the main advantages of dgsol over BP are:

1. it targets a larger class of problems;

2. its running time seems to increase very slowly (and regularly) as a function of the number of atoms
in the molecule, at least when the set of given distances is comparatively small;

3. the amount of memory needed to complete the search is negligible.

The BP algorithm behaves very unpredictably with respect to the amount of needed memory, some-
times requiring over 1GB RAM for relatively small molecules (40 atoms), sometimes solving 1000-atoms
instances in a few seconds and very little memory.

4.2 Lavor instances

These instances, described in [7], are based on the model proposed by [10], whereby a molecule is rep-
resented as a linear chain of atoms. Bond lengths and angles are kept fixed, and a set of likely torsion
angles is generated randomly. Depending on the initial choice of bond lengths and angles, the Lavor
instances give rather more realistic models of proteins than other randomly generated instances do (see
for example the instances described in [9]). Fig. 5 gives an example of a Lavor instance. In the numerical
tables, we labelled the Lavor instances by lavorn-m, where n is the number of atoms in the molecule and
m is an instance ID (since there is a random element of choice in the generation of the Lavor instances,
many different instances can be generated having the same atomic size).

We generated 10 different Lavor instances for each size n = 10, . . . , 70 (“small set”), and 4 different
Lavor instances for each size n in {100i|1 ≤ i ≤ 10} (“large set”).

4.3 Hardware and memory considerations

All tests have been carried out on an Intel Pentium IV 2.66GHz with 1GB RAM, running Linux. The
code implementing the BP algorithm has been compiled by the GNU C++ compiler v.3.2 with the -O2

flag. As mentioned above, BP can be very memory-demanding. We deliberately took the choice of
employing a low-end PC with just 1GB RAM to show just how powerful this technique can be even with
modest hardware.

The BP algorithm is in general very fast, since all it does is testing feasibility with the known distances
at each branched node. However, exploring the search space may require a lot of memory, especially if no
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pruning occurs early in the run. Consequently, when the physical RAM of the test machine is exhausted,
and the operating system starts swapping to disk, the total CPU elapsed time size becomes unmanageable.
Thus, it was decided to kill all jobs requiring more than 1 GB RAM. In particular, we solved almost all
the Lavor instances in the “small set” and found one solution for each of the Lavor instances in the “large
set”.

4.4 Comparative results

The full results table for the complete test suite includes 655 instances and spans 14 pages: thus, only
a sample will be presented in detail. The averages, however, are taken with respect to the whole suite.
The ε parameter of Algorithm 1 was set to 1× 10−3 for all tests.

Table 1 contains detailed results for the sample. The instances are described by their name, their
atomic size n and the number of given distances |S|. Note that in order to use dgsol, the lower and
upper bounds to these distances were set to ±5× 10−4. Other than this, dgsol was used with all default
parameter values. The results refer to three methods: dgsol, BP stopped after the first solution was
found (BP-One), and BP run to completion (BP-All). For dgsol and BP-One, the user CPU time (in
seconds) was reported, as well as the Largest Distance Error (LDE), defined as

LDE =
1

|S|

∑

(i,j)∈S

| ||xi − xj || − dij |

dij

,

employed as a measure of solution accuracy (the lower, the better). For the (BP-All) method, we reported
the user CPU time and the number of solutions found (#Sol). Missing values are due to excessive memory
requirements (over 1GB RAM).

It is immediately noticeable that whereas dgsol always finds a solution, BP sometimes fails to find
one within 1 GB RAM. It is instructive, however, to look at the solution accuracy (taken over the whole
test suite): whereas dgsol ranges from 4.5 × 10−7 to 0.875 (excepting a couple of out-of-scale values
clearly due to some numerical instability), BP scores a rather more impressive 4.74 × 10−11 to 5.62−6.
On average, the solution accuracy obtained by dgsol is 9.55 × 10−2 whereas BP averages 4.56 × 10−8.
Furthermore, all the instances in the Lavor “large set” are solved by dgsol to a solution accuracy of
order 10−1: given that in BP pruning often occurs for feasibility differences of order 10−1 and even 10−2,
such a slack solution accuracy may mean that dgsol is not actually finding the correct solution.

Table 2 reports the averages of the same parameters as in Table 1 taken over 10 Lavor instances in
a sample of the “small set” and over 4 Lavor instances in a sample of the “large set”. It appears clear
from these data that BP’s strong points are indeed speed and accuracy. A graphical representation of
the averages taken over the whole Lavor test set is shown in Fig. 6 (user CPU average taken to solve the
instances in function of the molecular size by dgsol and BP-One) and Fig. 7 (average accuracy of the
solution attained by dgsol and BP-One). We chose not to show the curves in the same plot because the
huge scale difference on the ordinate axis “pushed” the BP-One performance towards zero.

5 Final Remarks

In this paper we presented a new discrete formulation for a particular subclass of the Molecular Distance
Geometry Problem. We proposed a Branch-and-Prune algorithm and tested it against dgsol, an existing
software for the MDGP. It appears that our method is faster and more accurate than dgsol by several
orders of magnitude, albeit less predictable as concerns the running time and way more memory-hungry.
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Instance dgsol BP-One BP-All
Name n |S| CPU LDE CPU LDE CPU #Sol

lavor10 0 10 33 0.02 1.57E-5 0.00 5.36E-10 0.00 4
lavor15 0 15 57 0.10 4.04E-5 0.00 2.84E-09 0.00 16
lavor20 0 20 105 0.14 2.77E-5 0.00 6.13E-09 0.00 8
lavor25 0 25 131 0.84 1.18E-4 0.00 1.38E-09 0.00 8
lavor30 0 30 169 0.40 1.75E-5 0.00 1.23E-09 0.00 2
lavor35 0 35 171 0.81 9.33E-5 0.00 1.52E-09 0.00 64
lavor40 0 40 295 2.84 0.096 0.00 2.87E-09 0.00 2
lavor45 0 45 239 3.33 0.170 0.00 6.92E-09 0.00 2
lavor50 0 50 271 3.45 0.696 0.00 3.96E-08 0.46 4096
lavor55 0 55 551 5.80 0.257 0.00 2.66E-09 0.00 64
lavor60 0 60 377 5.15 0.049 0.00 3.51E-09 0.00 64
lavor65 0 65 267 2.61 0.065 0.00 7.76E-10 – –
lavor70 0 70 431 8.73 0.107 0.02 1.64E-09 – –
lavor100 2 100 605 6.95 0.167 2.26 4.01E-09 – –
lavor200 2 200 1844 63.52 0.395 0.00 5.66E-08 – –
lavor300 2 300 2505 100.99 0.261 0.03 1.56E-08 – –
lavor400 2 400 2600 182.21 0.767 0.01 3.35E-09 – –
lavor500 2 500 4577 329.29 0.830 0.27 4.69E-07 – –
lavor600 2 600 5473 299.76 0.700 0.01 4.94E-08 – –
lavor700 2 700 4188 281.34 0.569 0.16 1.83E-06 – –
lavor800 2 800 6850 570.20 0.528 3.34 3.37E-06 – –
lavor900 2 900 7965 550.26 0.549 3.08 5.62E-06 – –
lavor1000 2 1000 8229 844.52 0.695 0.81 2.04E-06 – –

Table 1: Computational results for a sample of small and large Lavor instances. Missing values are due
to excessive memory requirements (> 1GB RAM).
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Figure 6: Average user CPU time (plotted against molecular size) taken by dgsol (top) and BP-One
(bottom).
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Figure 7: Average accuracy (plotted against molecular size) attained by dgsol (top) and BP-One (bot-
tom).
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