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Abstract
Nonconvex programs involving bilinear terms often appear more nonlinear than they really are. By
a simple symbolic reformulation we can substitute some of the bilinear terms with linear constraints.

This has a dramatically improving effect on the efficiency of local or global optimization software
acting on the problem.
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1 Introduction

This paper is concerned with programming problems of the form:

min, z7Qz+cfz + f(z)
Az = b
g(z) = 0 (1)
hiz) < 0
b < o <2V

where @ = (gi;) is an n x n matrix, z,c,z”,zY € R", A = (a;;) is an m x n matrix having rank m,
beR™, f:R* - R, g:R* - R™  h:R* — R™. Notice f,g,h are completely arbitrary functions;
notice also that we assume m < n otherwise the feasible region may be empty and the problem have
no solution. Such a formulation is very general and encompasses many instances of problems arising
from mathematical modelling of real life processes. Notice that although the main point of this paper
is the reformulation of continuous NLPs, in section 8 we also explore an application of this research to
mixed-integer nonlinear programming problems (MINLPs).

Because the theory developed herein will enable us to substitute some of the bilinear terms with linear
constraints, we can restrict our attention to a more standard formulation of bilinear problems:

min, z7Qz + 'z
Ax = b
Hx < d (2)
zl < z < wU,

where H is a m’ xn matrix and d € R™ . The results which we shall obtain, however, can then be applied,
with minor modifications, to the more general formulation (1). In formulation (2) we assume without
loss of generality that A is upper triangular with nonzero entries along the main diagonal ai1,...,amm
(we use the term “upper triangular” with a slight abuse of notation since A is not a square matrix; what
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we mean is that the leftmost m x m submatrix of A is upper triangular). Since this can be obtained
from any m x n matrix or rank m by a simple application of Gaussian elimination and (possibly) column
permutation, it does not restrict the generality of the results. The reason behind this assumption is that
the notation in the proofs becomes greatly simplified.

Solving such problems to global optimality using a deterministic approach very often involves the
use of Branch-and-Bound (BB) procedures [ADFN98, RS95, SP99, VEH96, KB00, EP97]. In BB-type
algorithms, at each iteration upper and lower bound to the objective function are calculated relative to
the current region. The overall efficiency of such algorithms depends very much on the quality of the
lower bound, which is usually found by locally solving a convex relaxation of the problem relative to the
current region: the tighter the relaxation, the better the lower bound is. The present work may be used
as a way to improve the tightness of the convex relaxation. Notice that the methods we propose can
be introduced as a pre-processing step in a BB framework, and therefore do not add significantly to the
computational cost of the BB run.

In this paper we explain the theoretical reasons why some bilinear terms in certain linearly constrained
problems can be replaced by newly formed linear constraints. In order to ease our theoretical explanations
we shall assume that the bilinear problems (1) we tackle are “dense”. In other words we require that
most of the possible bilinear terms in the problem variables be present in the problem formulation: the
matrix @ is assumed dense. We wish to emphasize here that this theory does not require () to be dense:
none of the theoretical results herein becomes false when (@) is not dense. Rather, it becomes unlikely that
a straightforward application of our methods will yield useful results. Because in a significant proportion
of real-life cases requiring a dense () is an unfair assumption, we address this issue in section 11, and we
suggest how to circumvent the problems arising from the sparsity of Q.

There have been a lot of papers in the literature devoted to bilinear problems (2), e.g. [McC76,
AKF83, SA92]. In particular the RLT (Reformulation-Linearization Technique) for bilinear problems,
proposed in [SA92], can potentially produce the same results as the method explained herein (as will
be shown in section 6 below), because the basic ideas are very similar, and in fact the basic idea which
forms the basis of this paper, that of multiplying a linear constraint by a variable, has been borrowed
from the RLT. The method explained herein contains precise mathematical conditions of when and how
to carry out the procedures. The RLT is also a theoretically precise method. However, most practical
implementation have to take into account the fact that multiplying all linear constraints by all variables
is overkill. To limit this computational explosion many limiting devices have been described, some precise
and some heuristic.

Throughout this paper, we shall implicitly make use of the following elementary facts, which we state
here without proofs.

1. The sum of all integers from 1 to n is sn(n + 1).

2. Given a system Ax = b, if we permute the columns of A and the r.h.s. vector b accordingly, we end
up with a permuted solution vector x.

3. Given a system Az = b, there may be more than one possible set of basic variables of the system.

4. Given a system Az = b where A is m x n, upper-triangular with nonzero entries along the main
diagonal, and has rank m, the set {z1,...,2,} is a set of basic variables and {Zp41,...,Z,} iS a
set of nonbasic variables of the system.

2 Problem Reformulation

We reformulate the problem so that all bilinear terms in the objective function are replaced by newly
defined variables w, and we add the definition of these variables in terms of the bilinear products in the
list of problem constraints.
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For each problem variable xy, let

wh = 2px = (TpTy, TpTo, -, Ty e, TRTy) (3)
so that w® = zyx; for all i < n. Let W = {w} | i,j < n}. Notice that w} = w! for all i,j < n, which
implies that |W| = 1n(n + 1). The equivalence relation (i, j) ~ (j, i) on index pairs induces equivalence
classes [i,7] = {(3,4),(j, %)} on the set of all index pairs. Let w be the vector derived by ordering the
elements of W in the natural way (i.e. w} < wf & i <kV (i = kA j <I)). This ordering induces a
bijection x between the equivalence classes [i,j] and a single index h = k([4, j]) such that 1 < h < |W|.
We can then reformulate problem (2) as follows:

min,, plw + 'z
Ar = b
S ()
w; = zig;Vi<j<n
el < g <2V
wl < w <Y,

where p = (p1,...,pw|) With pr = pe(ij)) = ¢ + gji for all b < [W].

2.1 Definition
The equality constraints w; = x;x;, for all i,j < n, are called w-defining constraints.

The vectors wl, wY € RW! are the w variable bounds (which can be calculated by means of interval
analysis on the w-defining constraints).

This reformulation effectively isolates the bilinear terms in the constraints. Notice that it is in fact
more general than formulation (2): given any bilinear problem, where the bilinear terms can be either
in the objective function (as in (2)) or in the constraints, a reformulation (4) of the problem is possible.
We shall see in the next sections how some of these simple bilinear constraints can be replaced by linear
constraints in both w and z variables.

3 Reduction Constraints

Consider one of the linear equation constraints E?:l aijx; = b; present in problem (4), for some i < m.
If we multiply this constraint by z (with & < n) we get Z?:l a;jrrr; = bizy, and since wf = Tpxj, We
obtain a linear relationship

n
z ajwy — biwg =0 (5)
j=1

between zj and the w* variables. Eqn. (5) is a valid problem constraint, in the sense that adding it to
the problem formulation leaves the feasible region unchanged.

3.1 Definition
The linear equation (5) is called a reduction constraint. Problem variable xy, is called the multiplier
variable.

Consider now the whole linear system Ax = b. For each variable z; we can derive a reduction
constraint system by multiplying the system by xzy:

b wi

—b

Awk —zpb=| 4 :k =0 (6)
-b Wy,

Tk
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If we assume A to be upper triangular, then system (6) is also upper-triangular. Notice also that the
rows of system (6) are (a1, ..., ain, —b;) for all ¢ < m. Since the rows of A are linearly independent, the
rows of system (6) are also linearly independent. Thus system (6) also has rank m.

We now restrict our interest to the following set,
Cr = {(w*,z) | Ax =bAVj Sn(w;c = xpT;)} (7
which forms a superset of the feasible region of problem (4), and we prove that it is equal to the set
R ={(w*,z) | Az =bA Aw* —zpbAVYj € {m+1,...,n} (w;c = zx;)}. (8)

Notice that C}, is defined by m linear constraints and n bilinear constraints, whereas Ry is defined by
2m linear constraints and only n — m bilinear constraints. In other words, a reduction constraint system
of rank m can replace m of the n bilinear constraints. More precisely, as shown in lemma 3.3 below,
it replaces all the bilinear terms x,z; where z; is a basic variable of the system Az = b; since we are
assuming that A is in upper triangular form with nonzero entries along the main diagonal, the basic
variables are 1,...,Zm,.

3.2 Definition
Given a reduction constraint system AwF — z3b = 0 for some k < n, we introduce the reduction
k

companion system Az* = 0, where for all j,k < n we define zf =wj — zxx; (and b= (2F, ... 20)).

Note that the definitions of reduction constraint systems and their corresponding reduction companion
systems also apply to subsystems of Az = b. We shall make use of this fact in the generalization to sparse
systems in section 11.2.

3.3 Lemma
For all k < n, we have Cy, = Ry,.

Proof. The fact that Cy C Ry is easy to prove: the system Az = b implies the reduction constraint
system, and deleting some of the w-defining constraints just makes the set Ry, bigger than Cj. We now
show that Ry C Cj. In the reduction constraint system Aw* — zyb = 0, replace b by Az (since the

relation Az = b holds) to get Aw* — z Az = 0, which implies A(w* — z,x) = 0, i.e. (after substitution

with the z variables) the reduction companion system Az* = 0. By definition of Ry, we have wf = T} ,

and hence zf = 0, for all j such that m < j < n. Thus we can delete the last n — m columns from the

system Az¥ = 0 to obtain an m x m system of full rank m having right hand side equal to zero. Such
a system has a unique solution zf = 0 for all j < m, and hence wf = zpx; for all 7 < m. The result
follows. O

By applying the above lemma to problem (4), we see that we can readily substitute some bilinear
w-defining constraints with reduction constraint systems.

Next, we will consider the system of all reduction constraint systems,
Vi <n (Aw* — z1b = 0), 9)
from which we can also derive the companion system in the z variables
Vk <n (A2F =0), (10)
the superset C of the feasible region of (4), given by
C={(w,z) | Az =bAVk,j<n (w;c =zRz;)}, (11)
and the set defined by Az = b and system (9)
R={(w,z) | Az = bAVEk < n (Aw* — z4b)}. (12)
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3.4 Proposition
Assume that the rank of system (10) is n(n + 1). Then C = R.

Proof. As in the proof of lemma (3.3), the fact that C' C R is obvious. We show that R C C. From
system (9), by substituting b = Az and 2§ = w¥ — zx;, we get the companion system (10), which has
mn equations in in(n + 1) variables (because the relation z¥ = z] holds for all k,j < n). This system

2
has rank %n(n + 1) by hypothesis, so it has the unique solution zf =0, i.e. w;-“ = z1x;, for all k,j < n.
O

By proposition (3.4), as long as the rank of system (10) is 1n(n+1), we can substitute all the bilinear
terms in problem (2) with system (9) without changing the feasible region. In other words, such a bilinear
problem can be reformulated precisely as a linear problem.

Unfortunately, however, numerical experiments in this sense seem to point out that the rank of system

(10) may only be equal to $n(n + 1) when m = n, which implies that the feasible region of the original
problem has at most one point, i.e. when the optimization problem is trivial. In most cases, however, a

significant, if not total, reduction in the number of w-defining constraints is possible.

Conjecture
Let r(m,n) be the maximum possible rank of system (10). Then r(m,n) = ym(m + 1) + (n — m)m.

As a corollary to this conjecture, we have that m > n is a necessary (but not sufficient) condition for
r(m,n) > in(n + 1), showing that only trivial optimization problems having n as the rank of A may be
reformulated as completely linear.

Although we are not able to establish, at the present state of affairs, whether prop. (3.4) is ever
actually useful in practice, it nonetheless unearths a crucial relationship between the number of bilinear
w-defining constraints that can be disposed of via the introduction of reduction constraints, and the set
of basic variables of the companion system (10).

3.5 Theorem

Given a bilinear program (4), if t is the rank of the companion system Vk < n(Az ), exactly t
of the %n(n + 1) bilinear w-defining constraints are replaced by the reduction constraint systems Vk <
n (Aw* — z1b = 0). More precisely, given a set of basic variables z for the companion system (10), the
corresponding w-defining constraints are replaced by the reduction constraint systems (9).

k:

Proof. By adding the reduction constraint systems (9) to the formulation of problem (4) we do not restrict
its feasible region, as reduction constraints are obtained by multiplying an existing problem variable by
an existing problem constraint (and the feasible region is geometrically closed under such an operation).
As in the proofs of lemma (3.3) and prop. (3.4), system (10) can be derived from system (9); notice that
the two systems are equivalent, in the sense that one implies the other and vice versa. Let I be a set
of index pairs (7, ), where i < j < n, such that ' = {z; | (¢,7) € I} is a set of basic variables for the
companion system (10). If the w-defining constraints wj. = z;z;, for (i,j) ¢ I, are present in problem
(4), then z;'- = 0 for all nonbasic variables z;'- of the companion system (10). Thus, by elementary linear
algebra, system (10) has a unique solution z;'- = 0 for all 4,5 < m. This implies that formulation (4)
need only contain the w-defining constraints corresponding to a set of nonbasic variables of system (10),
whereas all the other bilinear constraints are implied in reduction constraint systems (9). Furthermore,
because |I'| =t for any set of basic variables I' (i.e. the number of basic variables of a system is equal
to the rank of the system), we conclude that we can substitute ¢ out of %n(n + 1) possible w-defining
constraints. O

Thus, in order to reduce the number of bilinear constraints in a programming problem (4), we need
to find a set of basic variables of system (10). For notational convenience, we refer to system (10) either
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as Vk < n(AzF = 0) or in the more compact way Bz = 0 where B is an mn x $n(n + 1) matrix and
2= (2}, 28,28, .. .,22,28,...,23,...,2"). The problem is now to determine what B looks like, what
is its rank and how to find a set of basic variables for the system Bz = 0. Prop. (3.4) supplies the answer
in case B is equivalent to a square matrix. So what happens when the rank of B is less than %n(n +1)?
From lemma (3.3), one might think that we should be able to eliminate mn bilinear terms; but in fact,
this is an upper bound to the best case. The actual answer depends on the properties of the matrix A
and its companion matrix B. It is always possible to reduce matrix B to row echelon form via Gaussian
elimination and immediately calculate its rank and a set of basic and nonbasic variables: we then have to
keep the bilinear relations corresponding to the nonbasic z variables, whereas we can discard those that
stem from the basic z variables. However, if the size of A is big, the size of B may be prohibitively huge.
Therefore, it would be desirable to be able to find out which bilinear constraints we can eliminate just
by looking at the matrix A.

Before carrying on, we need some notation. For any matrix A, let A be the matrix A without the
first row, and A~ be the matrix A without the first column. Similarly, for any vector v, let v~ be the
vector v without the first element.

Consider system (10). As we have seen in the proofs of the theorems above, this system corresponds
to (9). We start with k = 1, i.e. with the system Az! = 0. This will allow us to eliminate constraints
w! = z1z; for all § < m. However, when k = 2, i.e. Az? = 0, we notice that in the first equation of the
system, namely aq127 + - - - +a1,22 = 0, the leading variable is 22, which is by definition equal to z3. But
in the case k = 1 we had already derived the relation 23 = 0, which implies 27 = 0. Thus for k¥ = 2 we
can eliminate the first column of the system Az? = 0, which is equivalent to solving the system

A= (5~ =0. (13)

This has m equations but only n — 1 variables. Furthermore, because the rank of A is m, the rank of A~
can only be m or m — 1. If the rank of A~ is m, we need only keep n — m — 1 bilinear equations (those
corresponding to the nonbasic variables of system (13)) in the definition of the feasible region of problem
(4) in order to reduce system (13) to a square m X m system of rank m (which then has a unique solution
of 22 = 0, thus implying the rest of the bilinear constraints). Conversely, if the rank of A~ is m — 1, we
need to keep n —m bilinear constraints (those corresponding to the nonbasic variables of system (13) in
order to make system (13) square and of full rank. Thus, according as to whether matrix A conserves
its rank whilst discarding its first ¢ columns, we need only keep a number of bilinear constraints varying
between n—m (in the worst case) and n—m —1 (in the best case). The process of discarding the leftmost
column of the matrix (and keeping the appropriate set of bilinear constraints) goes on until its rank is
equal to the number of its columns. From then on the system determines a unique solution z* = 0 which
allows us to replace all the remaining bilinear constraints.

By following the reasoning above, we can replace from a minimum of %m(m+ 1) to a maximum of mn
bilinear terms with reduction constraints. The algorithm presented in section 4.2 is a precise description
of the process explained above, and will identify the bilinear constraints in the problem that must be
kept and some of those which the reduction constraint systems can replace. Although this procedure may
find a set of bilinear constraints to keep which has the same size as the set of nonbasic variables of the
companion system, there are cases when this is not true. So whereas finding the nonbasic variables of
the companion system will identify the minimal set of bilinear constraints to keep, the procedure above
might result in a slightly larger set.

To see why this limitation holds, let {2 be the set of constraints in the companion system: for each
A C Q let £(A) be the set of nonbasic variables of the system of constraints in A, assuming this system
transformed so that it is in upper-triangular form with nonzero entries along the main diagonal.

3.6 Lemma
Let A € N and {A; | i < A} be any covering of 2, such that U?:l = (), having size A (where the A; may

or may not be pairwise disjoint). Then |£(Q2)| < Ej‘zl |E(AS)]-



4 FINDING NONBASIC VARIABLES OF THE COMPANION SYSTEM 7

In other words, the number of nonbasic variables of Q is less then or equal to the sum of the numbers
of nonbasic variables in each subsystem of the covering. The proof of the above lemma is an exercise in
linear algebra; it basically rests on the fact that when one adds equations to a linear system the number
of nonbasic variables of the system decreases.

Because of lemma 3.6, finding the nonbasic variables of each of the AzF = 0 systems in the companion
system (10), even whilst imposing the condition z; = z] for all ¢, j < n during the process, will gather, in
general, a higher number of variables than if we just looked for the nonbasic variables of the companion
system (10) straight away.

Although the theoretical considerations drawn in this section were inferred from problem formulation
(2), they actually apply to the more general formulation (1): given any problem (1), in fact, it is easy to
isolate the bilinear terms in w-defining constraints of the kind considered above. For example, given a
constraint sin(z1zs) < 0 in problem (1) we can add the w-defining constraint wi = z;z» and reformulate
the constraint as sin(w}). The application of the theory is then straightforward.

4 Finding Nonbasic Variables of the Companion System

In this section we shall explain how to determine the set of nonbasic variables of the companion system
(10), which in turn leads to the set of bilinear terms that is necessary to keep in the problem formulation.
We will present two methods, one of which is optimal (i.e. it finds a set consisting precisely of all nonbasic
variables) but makes use of an mn x $n(n + 1) matrix, which can be prohibitively large if m,n are large.
The second method finds a set of variables containing a complete set of nonbasics, but which may also
include some basic variables. The second method, however, has the advantage of only requiring the m xn
matrix A.

System (9) (which consists of all possible reduction constraints systems) has a special structure. It
can be described as a system R(w;z) = 0 where R = (B|R') is an mn x n(n + 3) matrix such that:

ail a2 ai1s . A1n 0
Aml Gm2 Qm3 --- Qmp 0O
ajy 0 ... 0 a2 ais . a1n 0
ama 0 ... 0 ame2 amsz ... Gmn 0o ...
B = ajl 0 0 aio 0 0 ais a1n 0
am1 0 0 am?2 0 0 am3 ... Qmn 0
aii a12 a3 Qa1in

am1 Am?2 am3 Gmn
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—b 0 0
by O .. 0
—b 0 0
—bm 0 0
R = —by 0 0
—b, O 0

—by

—b,,

and (w;z) = (wi,...,wl,w3,..., w2, ..., wt x1,...,2,). Notice that A = (a;;) does not need to be in

upper-triangular form for this to hold.

The matrix B corresponds to system (10) and can be obtained from the matrix R above just by
discarding the rightmost n columns involving the b;’s. Matrix B has a very special shape: in each of its
n contiguous sets of m rows it contains a copy of the matrix A, in what amounts to an almost block-
diagonal form. If we did not consider the relation w; = w] the resulting matrix would be completely block
diagonal, with A in each diagonal block. Instead, almost all columns of B, apart from those corresponding
to the “pure quadratic” wj = z? variables, contain two columns of A. More precisely, the column of B
corresponding to wj contains the two columns of A where a;; and a;; are located.

4.1 Lemma
For any i,j < n let u(i,j) = (j — 1)m + i and v(j) = j(2n — j + 1). The entry of B corresponding to
row (i, j) and column v(j) is a;;. Furthermore, all the other entries of column v(j) are zeroes.

Proof. Tt is easy to see that for each j < m, rows (j — 1)m + 1 to jm are a contiguous block of m
rows containing a copy of A “laid out” on various columns. In particular, the entries of row u(i,j) are
@it; . .-, in (in this order). Column v(j) corresponds to to the variable wj: ordering the w variables in
their natural order

1

_ 1,2 2
W= (Wy,...,Wy,Ws,...,W

n—1 n—1
na"'iwn—lﬂw an)a

n

we see that wg occurs at then + (n—1)+...+ (n — (j — 1))-th position. This means E{Zl(n —l+1

)
2i(2n — j + 1) = v(j). Hence, because the v(j) column corresponds to a “pure quadratic” variable w
it only contains one column of A: the column where a;; is located. The result follows.

R

o=l

4.1 Explicit Construction of the Companion System

The following algorithm will construct the matrix B = (b;;) from the matrix A (which does not need to
be in upper-triangular form in the following algorithm).
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initialize B = 0;
fori=1ton {
forj=1tom {

=1

k =1;

s=(i—1)m+j;

bsr, < aji;

l+<1+1;

fort=1toi—1{
k+k+n—t
bsk, + aji;
l<1+1;

}

fort=1ton{
k+k+1;
bsk, < ajy;

}

Constructing matrix B from A is useful because by theorem (3.5), finding the nonbasic variables of
matrix B will immediately identify the minimal set of w-defining constraints to keep in the formulation
of the problem.

4.2 Implicit Search of Nonbasics of the Companion System

The algorithm presented below identifies a set of variables in the companion system (10) which contains
a complete set of nonbasic variables of (10). This algorithm follows the theoretical discussion in section
3 (p. 6) and has the limitation explained in lemma 3.6.

For any matrix A let g(A) be the application of Gaussian elimination to A (i.e. g(A) is A reduced to
row echelon form, with a possible column permutation to ensure the main diagonal entries are nonzero),
let rk(A) be the rank of A and cols(A) the set of column vectors of A. For a system Az = 0 let
nonbasic(A, z) be the set of nonbasic variables of the system. Notice that this algorithm does not apply
to the particular case where A is such that m = n.

keep relations from nonbasic(4, z1);

r = 0;
I = rk(A);
for k=2ton {
h=r1k(A™);
if h = |cols(A)| —11
stop;
}
ifth=1{
A+ g(A7);
r<r+1;
keep relations from nonbasic(A4, z¥); (1)
Yelseif h=1-1{
A+ AZ;
keep relations from nonbasic(4, z¥); (ii)
l+1-1;
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The instruction “keep relations from nonbasic(A, z*)” means that the bilinear constraints w;? = I
deriving from setting the nonbasic variables z;-“ to zero should be kept in the formulation of the problem.
Notice that the counter r is not used directly in the algorithm above; however, it makes it possible to keep
track of the number of bilinear constraints that have to remain in the formulation. In step i) n — k —r

bilinear constraints have to be kept; in step (ii) n — k — r + 1 have to be kept.

At each iteration, this algorithm takes away the leftmost column of A (i.e. the column corresponding
to variables zj’c where k > j, which had appeared in earlier steps as zj). If the matrix preserves its rank,
Gaussian elimination (with a possible column permutation) is performed on it so that the matrix becomes
upper-triangular again, and the nonbasic variables of the system can be identified (and the w-defining
constraints deriving from setting the nonbasic variables to zero kept in the problem formulation). If the
rank of the matrix decreases, it means that the first row is linearly dependent on all the other rows, so
by removing the first row we obtain a linearly independent system of rank m — 1 which is already in
upper-triangular form (because the matrix was in upper-triangular form before removing the first column
and the first row). Hence we can immediately identify the nonbasic variables of the system and keep the
deriving w-defining constraints in the problem formulation. The algorithm terminates when the system
is square, as we need to keep no more w-defining constraints after that.

Let O, be the complexity of the algorithm for calculating the rank of a matrix, and let O, be the
complexity of the algorithm for performing Gaussian elimination. The complexity of the above algorithm
is then O(n0,0y). Typically, O, and O, are polynomial in the sizes of the matrices they operate on, so
the whole algorithm is a polynomial time algorithm.

5 Convex Relaxation

Having replaced as many as possible of the bilinear constraints in problem (4) with linear reduction
constraints, we obtain a problem in the following form:

ming ,, pfw + Tz )
Ax = b
Hx < d
IxIJCNV(G,j)elx] wh = mmy (14)
VE<n AwF—2b = 0
2l < 2 <2V
wh < w <Y, |

where the set I x J is empty if the rank of system (10) is in(n + 1) and is determined by the nonbasic
variables of the companion system otherwise. Supposing I x J is non-empty, problem (14) is nonconvex.
Because in many global optimization techniques (like e.g. Branch-and-Bound) we need a convex relaxation
of the problem, we can provide that by replacing the bilinear constraints with their respective tightest

convex relaxations.

A linear relaxation for bilinear terms wj. = z;z; was introduced in [McC76], and later proved to be
the convex envelope for such bilinear terms [AKF83]. This envelope is widely used by the community
(e.g. [Smi96, SP99, Adj98]). It consists of the following planar inequalities:

wj- > :ciL:Uj +xfx,- —:Uifo,
w; > m?mj + mgjmz — :L'? ;J,
w; < ﬂ'}lU.Tj + xfwz - xf]:cf,
w; < a:iL:cj +w§-]a:i — fxgj

Furthermore, it is clear from Euclidean plane geometry that a linear convex relaxation for the term
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w} = 27 can be obtained by employing the secant and the tangents at the interval endpoints:

wi < (af +2f )z — afal,

wi > 2xiwi— (z))?, (15)
wi > 2zfz; — (af)

w!: > 0.

k3

The above elementary relaxation is known as the “secant” relaxation for quadratic terms. This relaxation
can be further tightened by considering inequalities (z; — a)? > 0 for a € (2%, 2Y), i.e.
i 2

w; > 2axr;—a”.

All these inequalities tighten the relaxation, and in fact if one considers the set of all such inequalities,
as a spans the interval [zl zV], they define the same set as the inequality w! > z2.

By applying the method of reduction constraints together with McCormick’s and secant relaxations
for the possibly remaining bilinear terms, we end up with a convex relaxation of the original bilinear
problem (2). For notational convenience when we carry out the discussion of the RLT, we shall refer
to the conjunction of these methods (reduction constraints, McCormick and secant relaxations) as the
RCMS method.

6 Comparison with RLT

In order to form a linear convex relaxation of problem (2), the RLT (Reformulation-Linearization Tech-
nique, [SA92]) applied to bilinear problems considers the following sets:

e the bound factor set Br = {z; —zF | i <n}U{zV —=; | i <n};

e the constraint factor set Cr = {3_7_, ajz; —b; | i <m}.
Note that for each b € Bp the constraint b > 0 is a valid problem constraint, and so is ¢ = 0 for all
ce Cp.

The RLT procedure for forming the convex relaxation consists in creating new linear valid constraints
(reformulation step) by multiplying together bound factors and constraint factors as follows:

1. for all by, by € B, bibs > 0 is a valid constraint (generation via bound factors);

2. for all b € Br and for all ¢ € Cr, bc = 0 is a valid constraint (mixed generation);

3. for all ¢1,¢y € Cr, ¢1c2 = 0 is a valid constraint (generation via constraint factors).

Having created all these new constraints, we define new variables w§ = z;x; for all ¢, j between 1 and n,
and we substitute them whenever a bilinear product appears in problem (2) or in the newly generated
constraints (linearization step). Assuming there are ¢ bilinear terms in the problem with the newly added
constraints, we end up with a linear relaxation whose variable vector (z,w) is in R**!. Let Sr be the

region defined by the newly generated constraints. The linear convex relaxation of (2) is as follows:

!
+
!

min, c¢c'z prw
Ax = b
Hx < d
(x,w) € SF (16)
2l < z <2V
wl< w <wY
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where w’, wY € R are the variable bounds on the w variables (obtained by simple interval arithmetic

on the bounds of the z variables via the defining relations w} = x;x;).

We claim that the convex relaxations obtained with RCMS and with RLT as described above are
identical, in the sense that their feasible regions are exactly the same; however, the RLT procedure
generates too many constraints, i.e. it generates all possible factor products without discerning where it
could be beneficial and where in fact it is not useful. As Epperly put it, “The difficulty with [the RLT]
is that the LP size grows exponentially with the number of constraints. If supplemented by a method to
determine which constraints are necessary, this technique would be much more useful” ([Epp95], p. 23).

In order to show that the two methods generate relaxations having identical feasible regions, we
show that each constraint generated by the RLT is either also generated by the RCMS or it is a linear
combination of constraints generated by the RCMS, and vice versa.

Consider the RLT generation via bound factors. For given problem variables x;, x;, with ¢ # j, we
can derive the following constraints:

(w; — i) (zj —zj) > 0
(wi —27)(2f —2;) > 0
(@f —@i)(wj —af) 2 0
(@ =)z —z;) > 0,
which are equivalent to:
Tir; > xiL:cJ+:cf:U,—sz:vf
zir; < :UZ-L;U]-+;U§-]:U,-—;U{‘ gj
rir; < a:Z[-ij —}—xfwi—w?wf
Tir; > arzl-]xj +a:§-].7:i— zUa:y,

which in fact are exactly the McCormick relaxation inequalities for the term z;z;. Notice that in the
RCMS method we generate such inequalities for all bilinear terms left in the problem after the reduction
constraints reformulation procedure, whereas in the RLT this limitation (i.e. generate such constraints
only when the term x;x; is present in the problem) is not explicitly stated. Thus the RLT generates more
bound factor products than is really necessary.

Whenever ¢ = j we can derive the following constraints:

(@i —af) (& —2;) > 0
(@i —2)? > 0
(IE? _wi)z Z 07
which are equivalent to:
2 > ks — by
g > 2a]wi— ()

which, together with the (obvious) constraint z? > 0, form exactly the secant relaxation for quadratic
terms, which is considered in the RCMS. Again, the RLT potentially generates more of these constraints
than is generally necessary.
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Consider now the RLT mixed generation (multiplying one bound factor by one constraint factor). For
any variable index [ and constraint index ¢ we can derive the following constraints:

n
(@ —27)(D_aijzj—bi) = 0
i=1
n
(z = ﬂfl)(z aijr; —b;) = 0,
i=1
which, on substituting wé = x;x;, are equivalent to:
n n
(Z aijwj- - bi.’ll'l) - .’ITIL(Z QijTj — b,’) = 0
j=1 j=1
n n
(Z agw§ — bim) — sz(Z aijzj —b;) = 0.
Jj=1 Jj=1

Now, the constraint E?:l aijwj- —b;z; = 01is a reduction constraint in the RCMS method, and the RCMS
theory requires that all such constraints be generated. Obviously, the constraint 2?21 a;;z; —b; =01is
already part of the set of linear constraints, so subtracting a multiple of it from a reduction constraint
does not add new information to the problem. In short, whenever this kind of constraints are generated
by the RLT, they are a linear combination of constraints which the RCMS creates.

Lastly, consider the RLT constraint factor generation: for constraint indices i,k we can derive the
following constraint:

(Z aija:j — b,)(z arixr; — bk) = 0,
j=1 =1

which is equivalent to:

(Z aij:cj(z apix; — bk)) - b’(z apix; — bk) =0.
j=1 =1 =1

Because the reduction constraints of the form :Uj(zl":l apx; — by) = 0 are created by the RCMS, the
constraint above does not add new information to the relaxation.

The reasoning above has shown that the relaxation obtained via the RLT is no better than that
obtained via the RCMS. By using the same algebraic relations above, we can also show the converse:
each reduction constraint, McCormick relaxation and secant relaxation can be obtained by combining
bound and constraint factors. However, because of the mathematical theory behind the creation of
reduction constraints, the RCMS only creates those constraints which serve the purpose of reducing the
number of nonlinear terms in the problem. The RLT on the other hand, if not used with some common-
sense rule of thumb, creates all possible combinations of the bound and constraint factors, which is useless
in most instances.

7 Reduction Constraints from Systems of Inequalities

In this section we shall explore some of the possibilities of using an inequality system Hz < d present in
formulation (2) in order to create some more reduction constraints. Most of the material in this section
is not analysed in great detail: it should be seen as a collection of ideas for further research.



7 REDUCTION CONSTRAINTS FROM SYSTEMS OF INEQUALITIES 14

7.1 Reduction Inequality Constraints

The first possibility is to create reduction inequality constraints. Since for each k& < n, the translated
variable z — z£ (where z¥ is the lower bound of ;) is always nonnegative, by multiplying Hz < d and
Tr—zF we get a valid system of relations (zy—zE)Hz < (zp—zF)d, that is oy Hr—xd— (vt Hr—2td) < 0.
In terms of the w variables, this means

Huw* — 24d — of (Hz — d) < 0. (17)
The same can be done with the multiplicative factor mkU — x, as it is always nonnegative. These are
generally valid cuts for the convex relaxation of the problem obtained by substituting each of the w-
defining constraints with their convex relaxations. Thus, they can be kept in the formulation of the
convex relaxation of the problem. The RLT also generates systems like (17) from linear inequalities in
the problem. It is an open problem whether some theoretical criterion for the generation of all useful (as
opposed to just “all”) inequality reduction constraints exists: at the present state of the matter this type
of generation of reduction inequality constraints is still in the realm of heuristics (although some work
with special reference to 0-1 mixed-integer programs has been carried out [SSA00]).

7.2 Deriving Equations from Inequalities

There are other ways to treat the inequality constraint system Hz < d. A natural observation is that
any inequality can be transformed into an equation via the introduction of slack variables. Let s =
(s1,---,8mr), where s; > 0 for all ¢ < m'. Recall from formulation (2) that m/' is the number of rows and
the rank of matrix H = (h;;), and the number of components of the right hand side vector d. We can
then write Hx < d as a system of equations

Hr+s=d, (18)

together with the bounds Vi < m' (s; > 0) on the s variables. First of all notice that since the i-th
equation in system (18) depends on a variable s; and none of the other equations in the system depend
on it (and obviously none of the equations in the system Az = b depend on it either), the combined
system Az = bA Hx + s = d is a linearly independent system with m + m' equations in n + m' variables.
Unfortunately just simply deriving reduction constraints directly from system (18) via multiplication of
system (18) by each of the problem variables z would not work: we would end up with m'n new w-defining
constraints involving the s and x variables (all bilinear products xgs; with k < n,i < m’') and a system
of m'n new reduction constraints (each of the n problem variables x multiplies system (18) which has m/
equations). This new reduction constraint system would have a rank r < m'n, as we have seen in other
sections of this paper. Thus we would not be able to eliminate more bilinear terms, with this method,
than the ones we would need to create in order to carry it out.

7.3 Eliminating Slack Variables

If we managed to reduce the number of slack variables required to make Hx < d into a system of
equations, we might still be able to carry out the normal reduction constraints creation procedure and
find we can substitute a greater number of bilinear terms than we need to create. To this purpose, observe
that given a point x* satisfying Hz* < d, the slack variables s can be seen as a distance between z* and
the hyperplanes P, ..., P, defined by Hx = d. Let T be the linear hypersurface defined by Az = b. We
can define the distance s; = pr(z, P;) between T and P; at a point z € T as the length of the shortest
segment perpendicular to 7" at the point z and delimited by the hyperplane P;.

Because feasible points of problem (2) cannot be at just any distance from Hz = d, but are constrained
to belong to the hypersurface T defined by Az = b, it is possible, in theory, to find relations between the
s variables that could help reduce their number.
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7.4 Equidistant Hyperplanes

Suppose there is a subsystem
Hz<d (19)

of Hx < d, having m" < m' inequalities, such that the hyperplanes defined by
Hgz=d (20)

lie at the same distance s’ from the hypersurface T defined by Az = b. In that case s’ would be the only
required slack variable to make the subsystem (19) a system of equations, for the solution to problem (2)
would necessarily be equidistant from each of the hyperplanes in system (20). Thus, from system

Hz+s =4d, (21)

where H' = (hj;), d' = (di,...,d,,») and s' > 0, we can potentially derive more reduction constraints
than we need to create new bilinear w-defining constraints between the z variables and s (whether
we actually can or not depends, as in the sections above, largely on the structure of H'). There is a
caveat, however. Although system (21) is linearly independent (because the original system Hx < d
was supposed by hypothesis to be defined by linearly independent hyperplanes, and adding a column
to a linearly independent system preserves the linear independence), the combined system of equations
Az = bA H'z + s' = d might not be linearly independent. If we eliminate s’ from system (21) via
elementary row operations we might end up with some nonzero rows in the x variables which are linearly
dependent on Ax = b.

Carrying on with the argument, we need to find a maximal set P of hyperplanes in system (20) having
the following property:
VP,Q € PVz €T (pr(z,P) = pr(z,Q)).

Notice that there may be more than one such maximal sets, and in fact we are interested in finding them
all as long as they contain at least two planes, as from each of these sets we can obtain a subsystem
like (21) (obviously each of these subsystem would have a separate slack variable). Fig. 1 shows the
geometrical interpretation in three dimensions of what we are trying to achieve: P, () are planes which
are equidistant from line T' (the z coordinate axis). D and D’ are shortest segments perpendicular to T
and delimited by P and @ respectively. Notice P and @ are such that /(D) = [(D') (where [(-) indicates
the length of the segment) for whatever x € T' we choose as a common segment delimiter.

Constructing an algorithm based on this idea is outside of the scope of this paper. However, as the
material explained in this section rests on nothing more than linear n-dimensional Euclidean geometry,
such an algorithm should not be exceedingly hard to devise.

8 Application to Mixed-Integer Programming

We have shown in this paper how to substitute bilinear terms with linear constraints: this implies that
the convex relaxation of the problem is much tighter, since there are less nonconvex terms to relax. This,
in turn, suggests an application of this theory to mixed-integer programming. It is a well-known fact
that in the field of global optimization of mixed-integer nonlinear programs (MINLPSs), a continuous
reformulation of the MINLP can be obtained by relaxing 0-1 integer variables z to continuous variables
0 < Z <1 and by including the nonconvex constraint

z2—-22=0 (22)

in the formulation. Smith noted ([Smi96], p.209-210; [SP97]) that the “secant” convex relaxation (15) of
the quadratic term in constraint (22) is such that the integrality requirements of z would be completely lost
when solving the convex relaxation of the problem. Thus, whereas this kind of continuous reformulation
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yx 1
Figure 1: Hyperplanes P, @ are equidistant from 7' (D, D' have the same length).
for MINLPs works well when performing NLP local optimization, it might not perform so efficiently in
global optimization with Branch-and-Bound techniques which require a convex relaxation of the problem.

By reformulating constraint (22) to

z—w = 0

= 22

g

we get a w-defining constraint for the quadratic term z?. Supposing the hypotheses of prop. (3.4) were
satisfied, and we managed to substitute all bilinear terms with reduction constraints, then the convex
relaxation of the MINLP would embed the vital information about the integrality of z, and the MINLP
could thus be solved to global optimality via straightforward LP or NLP techniques. But even in the
case where we cannot substitute all bilinear terms with reduction constraints, we might at least be able
to substitute the quadratic term 22 with a reduction constraint. If that happens, the convex relaxation
would have a higher chance to be solved to integrality of Z than it would otherwise, since the relaxation
is much tighter.

This concept can be generalized to any kind of integer variable. Supposing z can take the integer
values ai, ..., a,, we can reformulate 2 to a continuous variable z such that min;<, o; < 7 < max;<, o,
and include the following nonconvex constraint:

(=) (Z—an) =0 (23)
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in the formulation of the problem. By reformulating this constraint to

Wp-1 = Z—Qp

117)”,1 (2 - anfl)

S

3

w
[

1,1_)1(2—0[1) = 0

we end up with n — 1 bilinear products w;z for all i < n — 1. Again depending on the structure of
the problem we might be able to eliminate such bilinear terms, thus making sure that the integrality
requirements of z have more chances of being carried over to the convex relaxation of the MINLP.

9 Examples

In this section we shall present three worked-out examples which illustrate the applicability and usefulness
of the methods explained in the paper.

ExAMPLE 1. Consider the problem

min, -z?+ 22— 1122 + 371 — T2
x1 +x9 = 1.

The reformulation is
ming , —w}+ w3 —wl + 3z — 29
1 +x9=1

wi = 22
w} = 1179
w3 = 3.

By multiplying the linear constraint z; + x5 = 1 by ;1 and then by x5 we get the reduction constraint
systems (having only one equation each) wi +wi—z; = 0 and wi+wZ—z> = 0. From these, by substituting
71 = 2 +7122 and T2 = T1T2+ 73, we get (wi —z?)+ (wl —z122) = 0 and (w3 —z172) + (w3 —73) = 0. The
corresponding “companion” system in the z variables (cf. eqn. (10), where 2] = w} — 22, 21 = wl — ;25
and 22 = w3 — z2) is

2+ 23

0
#n+23 = 0. } (24)

First of all notice that system (24) corresponds to Bz = 0 where

110
5=(01 1)

and z = (21, 21,22), which clearly has rank 2, and nonbasic variable z2. We should therefore keep the
relation w2 = z2 and discard the rest. For the sake of a complete explanation, however, let us follow
the algorithm of section 4.2 as well. We first tackle the system 2} + 23 = 0. This has rank 1 and is
already in upper-triangular form. We impose the nonbasic variable z3 = 0 and keep the resulting relation
w} = z125 in the formulation of the problem. Now we consider the second system, namely 23 + 22 = 0.
We remove the first column: the system is now reduced to z2 = 0, which is a square system having rank
1; thus the algorithm terminates. Hence all we need to keep, in the formulation of the problem, is the
relation w} = ;7. Notice that this is a different answer to that obtained by looking at system (24).
This is not a mistake, however. It is easy to see, from system (24), that we may impose either 2§ = 0
or z2 = 0 (or, for that matter, also z1 = 0) to determine a square system of rank 2 with the unique zero
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solution for the remaining z variables. Notice also that in this case the algorithm in section 4.2 gives a
set of bilinear constraints to keep that has minimal size.

The problem can now be expressed in form (14) as

ming , —wi+wj —wl + 3z — 2o
$1+.’E2=1
w} +wy—x, =0
wy + w3 — x5 =0
wi = z129.

This is a big step forward, because a problem with three bilinear terms has been reduced to a problem
with only one bilinear term. We can now replace the bilinear w-defining constraint w% = x122 with its
McCormick convex relaxation to obtain a convex relaxation of the whole problem.

ExamMpLE 2. Consider the problem
min, 2? + 23+ 2% — T122 — —
x 1 2 3 1T2 — T2T3 — I3
xr1 +x9+223=1
T, + 229 + 23 = 1.

After the reformulation, this becomes

ming, wi+wi +wi —wl —wl —z3 )
1+ 22+ 223=1
Ty 4+ 23+ 23 =1
w} = x?
w%zwlmg
w3 = z?
wngﬂg.’ﬂg
wi = z2. )

Notice that the bilinear constraint w% = z1x3 is missing from the formulation, but we shall need it when
considering the reduction constraint systems. The linear constraints of this problem correspond to the

system Ax = b, where
1 1 2
4= ( 1 21 ) (25)

z = (x1,22,23), and b = (1,1). Multiplying this by z1,z2, z3 we get the reduction constraint systems

1 1 1
wy +wy + 2wz — 1

1 1 1
wi + 2w; +wz — T

1 2 2
wy +wy + 2w — T

o o o o oo

1 2 2

wy + 2w; + w3 — T2
1 2 3

w3 + w3z + 2wz —x3 =

1 2
wh 4+ 2w3 +wh —z3 =

If we let
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the reduction constraint systems above correspond to the companion system Bz = 0, where

o

OO OO -
OO =N -
-0 O =N
SO NHOO
N = = NOO
N O OO

and z = (z{,23,21,22,22 23). This matrix has row echelon form (obtained without row or column
permutations)

11 2 0 0 O
01 -1 0 0 O
00 1 1 2 0
00 0 1 -1 0
00 0 0 2 =2
00 0 0 0 O

and thus rank 5. This means that the reduction constraint systems can replace 5 out of 6 w-defining
constraints. In particular, we should keep the one that corresponds to the nonbasic variable z3, i.e.

wi = 23.

Let us now turn to the algorithm of section 4.2 applied to the matrix A in eq. (25). Writing A in row

echelon form, we have
1 1 2
A=<0 ! _1), (26)

so tk(A) = 2 and nonbasic(4, 2!) = {z3}. A~ (i.e. A without the first column) clearly has rank 2 and all
variables are basic, so we can stop. So it is sufficient to keep the relation w} = z1z3 in the formulation
of the problem to recover all the other w-defining constraints through the reduction constraints. Again,
the choice of the w-defining constraint to keep is not unique; and again the algorithm in section 4.2 gives
a set of bilinear constraints to keep that has minimal size.

ExampLE 3. This is a more complex problem, expressed in formulation (1), which will illustrate most of
the techniques described in this paper. Notice that in this example we tackle a MINLP, as z5 is a binary
variable.

ming a:% + 2129 — X123 — 2T1T4 + a:% + 3x0x4 — Toxs + T3T4 + 3$i + 2z4z5— )
—X1 — X4 — Xg + 77273
T1+22—23+za+25=1
To — Ty — Ty = —1
T1 + 225 — 223 >0
221 + Txo — 23 <0
e"3% —log(xg) — waxe < 1
Vi <4 z; €[0,10]
Ts € {0, ].}
Tg € [1,2]
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The reformulated problem is:

2
i - 3
ming ., wi+wl —wi — 2w} + w? + 3w — w2 + wi +3wi + 2wk — 2 — x4 — 36+ Vs

T1+xo—T3+Ta+a5=1
1'2—33'4—275:—1

1 + 2x5 — 223 >0

2xy + Txg — 23 <0

et — log(ze) —wg < 1
5 —wi =0

w} = z?
’U)% =T1T2
wi = 173
wi = 174
w2 = 22
w? = zom3 (
w3 = xomy
wi = 25
wE = Ty
wi = x314
wi = 7
wi = 4T3
wi = z?

Vi < 4 (z; € [0,10])

z5,wi € [0,1]

Tg € [1,2]

wg, ws € [0,10]

w? € [0,20]

Vi< j < 4 (w} € [0,100) J

We have derived the bounds on the w variables by means of interval arithmetic on the bilinear products
in the x variables. Notice the formulation is missing bilinear terms

Wy = T12s5
wj = o3
3

wy = T3Ts,

which we shall need to include in order to recover a full set of w variables. Notice also that only one of
the possible bilinear terms involving zg (namely, w?) is present: however, we shall not add all the missing
w-defining constraints involving xg in the formulation: since the linear constraints do not depend on zg,
no reduction constraint could eliminate the bilinear terms in 4. In order to obtain a convex relaxation for
this problem, the bilinear constraint w3 = zoxs will just have to be replaced by its McCormick envelope.

By multiplying the two linear equation constraints in the problem

T1+To—x3+Ts+T5 = 1 } (27)

To— T4 —2Ts = —1
by each variable z; for i < 5 we can derive a set of ten reduction constraints. The companion system is

a 10 x 15 matrix with rank 9, which would mean that we only need to include six bilinear terms out of a
possible fifteen.

Now notice that summing the two linear equations (27) together we get the equation x1 +2z2 —xz3 = 0,
which describes a linear 5-dimensional hypersurface T in RS. Notice also that the two linear inequality
constraints only involve variables 1, 22, 23: thus we can consider T' as a linear 2D surface (i.e., a plane)
in relation to the planes in R® described by the equations derived by the inequality system

T1+ 29 —22x3 = 0
201+ T2 —23 = 0
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In this case it is not difficult to see that the plane T', defined by 1 + 225 — z3 = 0, has the same distance
from the two planes above, for T is a bisecting plane for the angle between the other two planes. To see
this, notice that the projections of the planes onto the z1,x3 axes are given by the lines z3 = %xl and
3 = 2x1, and the projection of T onto the same axes is 3 = x1; furthermore, the projections of the
planes onto the x5, 3 axes are given by the lines 3 = x2 and x3 = 72, and the projection of T onto
the same axes is 3 = 2. In both cases, the projections of T bisect the angle between the projections

of the other two planes (this is an easy argument in elementary geometry).

Thus, we can reformulate the two linear inequality constraints as two linear constraints involving
T1,%2,x3 and a slack variable s > 0. Because of the observations made in section 7.4, we can use s as a
slack variable for both constraints. Thus the inequality constraints become:

21+ 209 — 225 — 5 = 0}

2¢1 + T2 —x3+s = 0 (28)

In order to generate some more reduction constraints from the above equations, we need to create the
following w-defining bilinear constraints:

wl = s
w? = 198
w? = 38
wh = x4s
w? = 58
w = s?;

We get additional reduction constraints by multiplying s by the two linear equations in (27) and by
multiplying the eqns. in (28) by x1,...,x5,8. Thus, for each i < 5 we get a reduction constraint system
Aw* — z;b = 0 plus the added system Aw® — sb = 0, where

11 -1 1 1

1 -1 -1
A= 1 2 =2 -1 ’
2 7 -1 1
wt = (wi,...,wiwl), w® = (wf,...,w,ws) and b= (1,—1,0,0). The corresponding companion system
Bz = 0is such that z = (2f,...,28,20,22,...,22,22,...,28,22,2¢), B is a 24 x 21 matrix with rank

18 and nonbasic variables z2,23,2%. This means that we only need to keep the three corresponding

w-defining constraints in the formulation: adding the reduction constraints will recover the rest of the
bilinear terms. Unfortunately, the constraint corresponding to z2 is crucial for the definition of z5 as a
binary variable: leaving it in the formulation implies that forming the convex relaxation of the whole
problem would replace that term with its corresponding convex relaxation (15), and lose the definition
of integrality of x5 (see section 8). To avoid this situation we need to choose another nonbasic variable
set from the companion system. We apply a permutation to the variable set {z;, %2, z3, 24,25}, like for
example the cycle (2 5) (which interchanges z2 and z5), which will cause the the vector z to become

_ 1.1 .1 .1 .1 1

2 = (z17z57z37z4az27zsa
5 .5 .5 .5 5
R5923:%4,%27 %5

3 .3 .3 .3
R39%43%2y Ry
4 4 4
ZpyR9,%¢,
2 2
R332

4

The companion system then has rank 18 and nonbasic variables z§, 2%, 25. Thus we only need to keep

the bilinear relations stemming from these three variables in order to recover the rest.
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For the sake of completeness, we carry out the algorithm of section (4.2). Applying Gaussian elimi-
nation to A, we get a 6 x 4 matrix having rank 4:

11 -1 1 1

1 -1 -1
-1 -1

3 3

Following the algorithm, this has nonbasic variables z}, zl. We eliminate the first column and find that
the rank of the matrix thus obtained is still 4. We re-apply Gaussian elimination, and permute columns
4 and 5 (corresponding to variables z2 and 22) to find the matrix

1 -1 1 1
1 -2 2
-2 -1 -2

which has rank 4 and nonbasic variable z2 (the nonbasic variable corresponds to the last column, but
keep in mind that 2Z and 22 have been permuted, so the last column is actually z2). If we remove the
first column we find that the rank decreases to 3, so we remove the first row as well and end up with

1 -2 2
-2 -1 =2
_3
2
which has rank 3 and nonbasic variable zZ. Again, removing the first column we find that the rank
decreases to 2, so we remove the first row to get

-2 -1 -2
_3 ’
2

which has rank 2 and nonbasic variable z&. Removing the first column now produces a matrix with rank
2, so the algorithm terminates. Thus, the algorithm identifies the set {z3, 21,22, 22,22} of 2 variables
whose corresponding bilinear constraints we should keep in the formulation. Notice that the size of this
set is not minimal (as the companion matrix produces sets of size 3), but it does not include the bilinear
term 2¢ (crucial for the integrality of z5) and it is still smaller than the set of bilinear terms that we

should have kept had we not considered deriving reduction constraints from inequalities.

So, finally, at the end of the reduction constraint creation process we obtain the following reformulated
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problem:

ming 4,

. ENCIEN
wl +wl —wl — 2w} + w3 + 3w} — w? + wi + 3wi + 2wl — 1 — T4 — 76 + V5

T1+ 2o —23+ T4 +25=1
1’2—334—275:—1

1+ 222 — 223 —5=0

21 + T2 —23+s=0

e — log(zg) —wg < 1

5 —ws =0

wi +wl —wl +wl+wl—2,=0
wi —w} —wt+31 =0

wy +wi —wi +wi +wi -z =0
wi —wi—wi+z2=0

wi + w3 —wi +wi +w—z3=0
w3 —wi —wi +z3=0

wy +wi —wi +wi +wi —z4=0
w2 —wi —wi+14=0

wi + w2 —wd +wi +wi —z5=0
w2 —wi —wd + x5 =0

wi +w? —wd+wl+wl-—z,=0
w2 —wt—wd+z,=0

wi + 2wl — 2wl —w! =0

2wi + Twl —wi +w! =0

wl + 2w3 — 2w —w? =0

2w3 + Tw3 — w3 +w? =0

wi + 2w? — 2w —w? =0

2wi + Tw} —wi + w2 =0

wi +2w? — 2w —w? =0

2wy + Tw? —wi +wi=0

wi + 2w — 2w —wd =0

2wl + Tw2 —wi +wd =0

wl +2w? — 2w? —ws =0

2wl + Tw? —wd +ws =0
wE = T276

wi = 22

wh =245

wi = s?

Vi < 4 (z; € [0,10])
z5,ws € [0,1]

.’1,'66[].,2]

wi € [0,20]

Vi< j <4 (w el0,100))
s>0

Vi < 4 (wi € [0,10])

Vi <5 (wi > 0)

[

Tt s

wi >0 J

23

which only contains three of the possible 21 bilinear terms in the x1, ..., x5,z variables, plus the bilinear

term zoxg.-
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10 Numerical Results

The methods and algorithms described above were implemented in a software framework for global
optimization called 00OPS, i.e. object-oriented Optimization System [LTKPO01]. Within this framework,
using an implementation of the spatial Branch-and-Bound algorithm [SP99] as the global solution module,
and SNOPT [Gil99] as the local solution module, all the ideas proposed in this paper were put to test, by
solving the three examples of section (9). The tests have been carried out on a Pentium III class machine
running at 850MHz with 384MB RAM.

Table 1 shows the results of these tests. By “reformulated problem” we mean the full reformulation,
taking into account reduction constraints and the removal of unnecessary bilinear terms. “Iterations” is
the number of main iterations taken by the Branch-and-Bound procedure to arrive at the global solution
(the same as the number of explored regions). The CPU time is just the user time (as opposed to the
total CPU time, i.e. the sum of user and system time). |V| is the number of problem variables and |B|
is the number of bilinear terms in the problem.

Original Problem Reformulated problem
Iterations | CPU Time | |V]| | |B| || Iterations | CPU Time | |V| | |B|
Example 1 63 0.1s 2 3 1 0.02s 5 1
Example 2 15 0.13s 3 ) 7 0.14 s 9 1
Example 3 35 15.13 s 6 12 1 3.56 s 28 | 4

Table 1: Numerical results.

In all cases the main results were confirmed:

e the reformulation is correct: the global solution arrived at by solving the original problem was the
same as the solution reached by solving the reformulated problem;

o the reformulation is advantageous: the Branch-and-Bound procedure took less iterations to arrive
at the global solution.

Notice that in example 3 — a MINLP with a binary variable — we found the global solution at
the first iteration. This means that the solution of the convex relaxation was feasible in the original
problem: and this, in turn, means that the integrality of the binary variable had not been lost in the
convex relaxation, as explained in section 8. Furthermore, example 3 is the only one in the test set to
include some of the novel techniques mentioned in section 7 for the generation of reduction constraints
from inequality systems. It is also worth pointing out that in examples 1 and 3 there were substantial
CPU time savings (of about 80% of the total time taken to solve the original problem). This result is all
the more significant as example 3 is the largest and most complicated of the test set.

This investigation seems to point out that methods which act on the formulation of the problem are
extremely effective in cutting computational costs when compared to heuristic decisions in the Branch-
and-Bound algorithm (like e.g. the choice of branching rule). One of the reasons for this is surely
that reformulation methods are usually a pre-processing step, and thus only add a fixed amount of
computational time to the algorithm (which is not proportional to the number of iterations). Furthermore,
when a reformulation is based on theoretical concepts rather than heuristic ideas, it is easier to understand
its implications and to be able to forecast what kind of computational time saving it might involve.
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11 Applicability to Sparse Problems

As noted in section 1, although the theory always holds true, the methods derived in this paper rest on
the assumption that the matrix @, in problem formulation (1), is dense. In this section we shall endeavour
to explain why this is the case and how the problems arising from this assumption can be tackled.

The technique we proposed to replace bilinear terms with reduction constraints involves muliplying
all existing linear constraints by all the problem variables. The number of bilinear terms deleted is equal
to the rank ¢ of the companion system (10). The companion system has mn rows and %n(n +1) columns,
where we have assumed m < n. On the basis of the conjecture of section 3, it is extremely likely that the
companion system has a rank ¢ which is strictly less than the number of its columns. We have shown in
theorem 3.5 that in that case we need to keep precisely r = %n(n%— 1) —t bilinear terms in the formulation
of the problem, i.e. those bilinear terms that correspond to a set of nonbasic variables of the companion

system.

The problem we face, when @) is a sparse matrix, is that the number of bilinear terms in the original
problem formulation (1) might be less than r. And even if it is not, it might happen that each set of
nonbasic variables of the companion system involves bilinear terms which are not present in the original
problem formulation. In short, when () is sparse it is very likely that after the reformulation we shall end
up with a bigger set of bilinear terms in the problem.

Haverly’s pooling problem, as formulated in [ATS99], provides an example of this occurrence:

min 6z, + 1625 + 10z3 — 9z4 — 1525 — 926 — 1527 )
st. 1 +x9—xT4—2x5=0

T3 —xg —T7 =0

Ty+ x5 —x9 =0

T4 + x5 < 100

x5 + 7 < 200

—3x1 —xo + 2329 =0 > (29)
—§($4 + 1'6) + 2z + 314 <0

—5(1}5 + 1'7) + 2x7 + zg25 < 0
0< z1,29 <300

0 < 22,23,24,76 < 100

0 S Is5, L7 S 200

0< 25 <10

7

In this formulation, Haverly’s pooling problem has 3 linear equality constraints, 9 problem variables and
3 bilinear terms. The resulting companion system (10) has 27 rows, 45 columns and rank 24. Therefore
r = 45 — 24 = 21: at the end of the reformulation process we go from three bilinear terms to 21. We
might conclude that this problem is not susceptible of reformulation via reduction constraints: but this is
false. In fact, it is easy to notice that multiplying constraint x4 + x5 — z9 = 0 by zg produces a reduction
constraint wg + w§ + w§ = 0 (where w} = z;x; for all 4, j < n) which could allow us to eliminate one of
the three bilinear terms.

This should not be seen as a counter-example to the theory and methods derived in this paper. It
simply shows that, if the problem is sparse, we need to identify subsets of the original problem where we
can apply this theory profitably. By “subset of a problem” here we mean a subset of problem variables
and constraints where we can successfully apply the ideas of section 3. Supposing we were able a priori
to restrict our attention to the constraint subset {4 + x5 — z9 = 0} with the multiplier variable zg, the
conclusions drawn by the theory would still hold.
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11.1 Eliminating Zero Column Variables

By using the “trick” described in this section it is sometimes possible to discard some bilinear terms
corresponding to nonbasic variables in the companion system. This is useful to reduce the number of
bilinear terms required to apply the reduction constraints theory, and it is particularly significant when
sparse problems are considered. Let z (for ¥ < n) be a problem variable whose corresponding column
in the matrix A is zero. Assume

aii cee Q1,1 0 a1,k+1 ... Qin
A= . .

apl  --- Qpk—1 0 Ank+1  --- QOnn

How does this reflect on the matrix B (see p. 7) of the companion system (10)? Because of lemma 4.1,
if we let v(k) = 2k(2n — k + 1), the v(k)-th column of B is a zero column. In other words the rest of
the z variables are independent of z¥. From this we can conclude that the w-defining constraint w¥ = 2?2
is not necessary to enforce the validity of the other w-defining constraints. Thus, we only need to keep
z; if it is present in the original problem fomulation. If it is not, we shall not need to include it, even

though it corresponds to a nonbasic variable of the companion system.

Suppose now that matrix A has more than one zero column: say columns kq, ..., k, where u < n are
all zero columns. It follows that for all j < u bilinear terms :L'ij are not needed in the formulation to infer
the validity of any of the other w-defining constraints. But it is also easy to show that in this case there
are other columns, in B, that only have zero entries. By the characterization of matrix B in section 4 we
can see that columns of B corresponding to variables wﬁj for all 7 < j < u are also zero. Thus, we shall
only need to keep the bilinear terms zy,zy; if they are present in the original formulation, but we shall
not need to include them otherwise, even though they correspond to nonbasic variables of the companion

system.

11.2 Modelling an Optimal Procedure for Reduction Constraint Creation

In this section we will rigorously formulate the problem of building the largest possible set of reduction
constraints whilst keeping the number of needed bilinear terms at a minimum. To this end, we want
to identify all maximal subsets of linear constraints and problem variables so that forming reduction
constraints from them will minimize the number of bilinear constraints needed to apply the theory of
reduction constraints. We require these subsets to be maximal in the sense that adding elements to them
will cease to make the application of the theory successful. In what follows, we shall refer to the rank of
a set of linear constraints: by that we mean the rank of the linear system of equations composed by the
linear constraints in the set.

For all i < m, let ¢; = Z?:l ai;jz; — b;. Then for each ¢ < m we have that ¢; = 0 is a constraint
of the system Az = b. For each k¥ € N let Ci,V}, be index subsets such that Cy, C {1,...,m} and
Vi C{1,...,n}. Let F = {(Ck, V&) | k € N} and F be the family of all such sets F. For each F € F, we
define T}, to be the set of reduction constraints obtained by multiplying each constraint ¢; (for i € Cj)
by each variable z; (for j € V}) and substituting each bilinear term z;z; appearing in the products z;c¢;
with its corresponding wlj variable; we define Zj, to be the set of constraints (in the z variables) in each
of the reduction companion systems (see defn. 3.2) of T; and we define Uy, to be the set of bilinear terms
appearing in the w-defining constraints (see defn. 2.1) needed to create the reduction constraints in T}.
Let Z = UpenZks T = Upen Tk U = Upen Uk, and let ¢ be the rank of system Z. Let Up be the set of
bilinear terms already present in the original problem (1). Finally let 7(F) = |U U Up| — t be the number
of bilinear terms needed in the problem after the reduction constraint creation process. We look for a set
F € F that satisfies the following discrete optimization problem:

min T(F)
< ) (30)
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that is, we require that the number of bilinear terms present in the problem after the reduction constraint
creation process be minimal, and in particular strictly less than the number of bilinear terms present in
the original problem. Notice that in the discussion above, although it was not made explicit, the set
Up does not depend on the choice of F', whereas the sets Ty, Zy, Uy, T, Z,U do, as does t. Let F be a
solution of (30) and K = |F|. Notice that since the Zy, Ty and Uy are in general not disjoint systems
of sets, we have |R| < Yp, [Tel, 12| < Y, |Zel, [U U U,| < [Uo] + Ypy [Ukl and ¢ < Y, tk(Zy).
This emphasizes the interdependencies of the maximal subset pairs (Cj, V%) for different k’s and further
complicates an already difficult problem.

Any procedure for finding a global solution F' of problem (30) will be an optimal creation process for
reduction constraints with respect to any given original problem (1): by keeping 7(F') globally minimal,
we make sure that there is no better choice of the sets Ck, Vi; and by requiring that 7(F) < |Up| we
keep the number of needed bilinear terms strictly less than the number of bilinear terms in the original
problem.

A direct procedure for the global minimization of 7(F') over all the possible choices of F' € F would
involve the use of a discrete Branch-and-Bound algorithm for the intelligent enumeration of all such
families F'. The solution of such a problem may or may not be an acceptable idea, depending on the size
of the problem and the amount of time given for pre-processing the original problem (1). The discussion
of such an algorithm is outside of the scope of this paper, but it should not be too hard to implement,
given the amount of literature on discrete Branch-and-Bound algorithms [Wol98, AHU83, KV00].

A possible simplification of problem (30), which would still gather a useful result, is to find a feasible
solution F' rather than an optimal one.

11.3 Algorithm for Reduction Constraint Creation in Sparse Problems

The algorithm presented in this section identifies a subset of reduction constraints the creation of which is
convenient in terms of added bilinear terms, although the result is, in general, not optimal in the sense of
problem (30). This algorithm is based on an analysis of the companion matrix B (see section 4). Recall
that the companion system is Bz = 0, where 2z = (2{,...,2.,22,...,22,...,27) is such that each column
of B corresponds to a bilinear term in the problem variables z. In particular, column z;'- corresponds to
the bilinear term z;x; for all ¢ < j < n. In this algorithm we shall use some of the terminology of section
11.2.

1. Construct the companion system Bz = 0 in the usual way as explained in section 4, and let
R(w;z) = 0 be the corresponding reduction constraint system.

2. Reduce B to row echelon form with nonzero entries along the diagonal, and replicate the same row
operations on system R(w;x) = 0. Delete from B any row with no nonzero entries, and delete
the corresponding rows from the system R(w;z) = 0. Let p(i) be the reduction constraint in
R(w;z) = 0 that corresponds to the i-th equation of the companion system Bz = 0.

3. Mark the columns of B corresponding to the z variables defined by the original problem bilinear
terms in Uj.

4. Find the subsystem B’z' = 0 consisting of all the rows of B which have a nonzero entry in the
marked columns; discard from B’ all the columns consisting only of zeroes (and adjust the variable
vector 2’ accordingly, so that system B’z' = 0 now has no nonzero columns). Let m' be the number
of rows and n' be the number of columns of of B’. For all i < m' let 6(i) be the index in B of the
i-th row of B'.

5. For each ¢ < m/, let w(i) be the set of column indices corresponding to nonzero entries in the i-th
row; let ((¢) be the number of columns in w(i) which have been marked in step 3. Associate a cost
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¢(i) with the i-th row in B’: let ¢(i) be initially the number of nonzero entries of row 4, and then

set (i) + (i) — ¢(0).

6. For each j < n' let ¢(j) be the set I of row indices such that for all 4 € I the i-th row has a nonzero
entry in the j-th column of B'.

7. Order the columns of B’ so that column j; is less than column jy if [¢(41)] > |¥(j2)| (columns
such that [¢(j1)| = |¥(j2)| can retain their natural order). To this ordering there corresponds a
permutation 7 of the columns acting on the set {1,...,n'}.

8. Initialize k=1and I' = {1,...,m'}.

9. Find j such that w(j) = k. For all ¢ € ¢(j) NT set ¢(2) + ¢(i) — 1, and I + T" \ ¢(j) (i-e., discard
from T all indices in 9 (j)).

10. If k =n' or if T’ = () then go to step 12.
11. Set k + k+ 1 and go back to step 9.

12. Discard from B’ all the rows whose associated cost ¢ is strictly positive. Update the map & which
relates the indices of B’ to the original indices in B, and the number of rows m' of B’.

13. Discard from B’ all the columns with no nonzero entries, and update z’ accordingly, so that B'z' =0
is a system with no nonzero columns.

14. Let R'(w;x) be the set of equations of system R(w;z) = 0 indexed by the set {d(:) | i < m'}.
Discard from R’ all columns, among the first £n(n + 1), containing no nonzero entries, to obtain
the reduced reduction constraint system R'(w';z) = 0.

The system R'(w’; z) = 0is a set of reduction constraints such that the w'-defining constraints needed
to define it, minus the rank of B’, is less than |Up|. The crux of this algorithm is the loop in steps 8-11,
where the cost of reduction constraints that have common bilinear terms is decreased. The algorithm
works because in step 12 we discard all reduction constraints with a positive cost. The remaining reduction
constraint system is such that any added bilinear term is counterbalanced by a reduction constraint, and
no other bilinear term is added to the problem.

This algorithm has been tested on Haverly’s pooling problem in formulation (29) and has correctly
identified the reduction constraint stemming from multiplying constraint x4 + x5 — 29 = 0 by variable zg.

Another attempt to construct an efficient (in terms in the number of reduction constraints versus the
number of needed bilinear terms) and fast algorithm for the creation of reduction constraints, based on
graph theory, is currently under way [LP02].

12 Conclusion

In this paper we have shown how certain nonconvex problems can be easily reformulated to exhibit more
linearity than what is apparent at a first glance; more precisely, some of the bilinear terms present in the
original problem can be substituted by special linear constraints called reduction constraints. We have
provided a theory describing the properties of these reduction constraints and their realm of applicability,
and derived algorithms to make their construction process automatic. By combining reduction constraints
with existing convex relaxation methods for bilinear terms we derived a convex relaxation for the original
bilinear problem. We showed that this convex relaxation is equivalent to that obtained by the RLT
(Reformulation-Linearization Technique), thus demonstrating that the concepts on which the RLT is
based can give rise to a method which is not heuristic but precise (because it explains why and when a
bilinear term can be replaced by a reduction constraint and it shows exactly which reduction constraints
need to be created). We then explored some of the ideas that can be used in deriving reduction constraints
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from systems of inequalities; and we explained how reduction constraints can be beneficial in the solution
of mixed-integer nonlinear programming problems (MINLPs). We gave three worked-out examples of the
usefulness of reduction constraints, and some numerical results of tests which confirm the conclusions
drawn by the theory. Finally, we explained how to apply the methods derived in this paper to sparse
bilinear problems.

12.1 Future Work

As a concluding remark, we would like to point out directions for future work.

1. In most cases, applying a permutation to the original set of variables {z1,...,z,} gives rise to a
different set of resulting nonbasic variables in the companion system, and in turn to a different
choice of the set of bilinear constraints to keep in the formulation. It would be a significant step
forward in this research to have a theory which, given a permutation, could tell us directly what
the resulting set of nonbasic variables of the companion system is. This would involve tracking
the action of the permutation through the construction of the companion system and also through
the application of Gaussian elimination: it does not seem like a straightforward piece of work.
Nonetheless, with such a theory it would be possible to choose a priori which bilinear constraints to
keep and which to discard: in view of the application to MINLPs (section 8), this is very important.

2. Stratos’ idea (applicable to problems in form (2): choose a set of nonbasic variables of the companion
system such that the substituted bilinear terms are only those which are nonconvex (might be left
with a totally convex objective function, which can then be solved to global optimality by a local
optimization software).

3. All the paragraphs in section 7 need deeper analysis and understanding; particularly the method
in subsection 7.1, which is still at “heuristic” stage.

4. The algorithm modelled in section 11.2 needs an implementation: and there is no proof that an
optimal reduction constraint creation process actually has to have exponential complexity.

5. Relations involving higher degree monomials in R[z] can be obtained from system Az = b by
multiplying it by polynomials M (z) € R[z]. How can this fact be used in extending reduction
constraints to polynomial problems?
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