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Abstract

We describe the structure of the group of all invertible CA transformations acting on 1-dimensional
finite-length cellular automata defined on a finite states set. It turns out that the group is a direct product
of semidirect products of cyclic and symmetric groups. The analysis of this group has been carried out by
means of an isomorphic image of the invertible CA transformations group, which was easier to handle. A
presentation of the group by generators and relations is also supplied. Most of the results obtained can also
be applied to analyse the automorphism group of any finite one-to-one dynamical system.
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1 Introduction

Normally research about CAs is performed with a special mind to computation; that is, all sorts of “brute
force” and statistical approaches to the problems are tried. Finite States Machines, and in particular Cellular
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Automata, are often considered as a Computer Scientist’s rather than a Mathematician’s tools. In most cases
where a mathematical approach is employed, attention is normally limited to linear CAs, i.e. to all those CA
transformations which can be represented as n X n matrices acting on automata of length n. As n gets larger,
this means that the near totality of CAs are ignored. This is excessively restrictive, if we keep in mind that the
most useful CA transformations (for cryptography, for example) are in fact the nonlinear ones. On the other
hand, it is this author’s opinion that a systematic algebraic study of CAs should not restrict itself to a certain
class of CAs, but should from the beginning try to aim to generality, even at the expense of immediate practical
applications. This is the reason why throughout this paper a general algebraic approach has been tried, rather
than a specific computational one.

A 1-dimensional finite cellular automaton is a shift-commuting, 1-dimensional, finite discrete dynamical
system. More precisely, it is a couple (v, o) consisting of a finite sequence v of length n defined on a (finite or
infinite) states set R together with a transformation o : R — R™ such that o commutes with the shift. The
shift is a function R™ — R™ that moves every sequence in R™ one step towards the left with “wrap-around”
effect on the contour, i.e.

(U13U23- . 7Un) a = (U27U37" . 7Un7U1)

Notice that throughout this paper we shall use the “right hand side” notation when applying a function to a
sequence or to a vector, i.e. v a and not a(v). We can also picture the shift as the effect of the permutation
(12...n) on the indices of the components of the sequences. We will limit our discussion to those cellular
automata (CA) defined on finite states sets R.

The most fundamental properties of CAs (indeed the reason why they are useful) is that their associated
transformation can be localized. To every shift-commuting CA transformation o : R™ — R™ there corresponds
a function ¢ : R™ — R where m < n. ¢ is applied to v componentwise, in the following fashion: let v} be
the i-th component of v at timestep ¢, and let V (v}) be the neighbourhood of m components to the left of and
including the i-th position (the shape of the neighbourhood is entirely arbitrary; it is possible to choose any
neighbourhood of length m, but to each neighbourhood there corresponds a different ¢). Then

vt = ¢(V ()
The difference between the action of o and of ¢ is shown graphically in the picture below. Localization makes

it very easy to compute the evolution of a CA: it is sufficient to make fast calculations in parallel for each cell
of the CA.

o o)
i 1
oo o

Cellular automata are often used in gas simulations. We know from thermodynamics that the transformations
involved are microscopically reversible but macroscopically irreversible. In order to simulate gas behaviour with
CAs, we must find appropriate reversible transformations and then apply them to the automaton grid for a
number of times. We therefore focus the attention on two fundamental topics: reversible transformations, which
we shall also call invertible transformations, and the concept of applying many times the same transformation
to a cellular automaton. To this end we need to introduce a product * of transformations defined by the
composition of transformations: for all v in R™ and for CA transformations o and 7

v(o*7)=((Lo)7)

Let A"(R) be the set of all CA transformations o acting on R"™. By shift commutativity it is easy to
show that the algebraic structure (A™(R),*) has an identity and is closed and associative. In short, it is a
monoid. We are now interested in finding out what the structure of the group G"(R) contained in A™(R) and
consisting of all invertible CA transformations is like. Notice that the inverse of a CA transformation is still a



CA transformation:

aoc = o
clac = «
c'la = ac’!

hence 0~! commutes with the shift, therefore it is a CA transformation.

2 Inner Structure of an Invertible CA Transformation

A CA transformation belongs to the group G"(R) if and only if it is invertible; since R has a finite number of
elements we can say that a CA transformation is invertible if and only if it permutes the elements of R". In
order to determine whether a given CA transformation is a permutation we need to know its effect over all the
elements of R". The way a CA transformation acts on the sequences of R" is intimately linked to the way «
(the shift transformation) partitions R™ into orbits. Let o be a CA transformation. Since for all j

(va)o = (vo)dd
it follows that is sufficient to calculate the effect of o on a representative (say v) of the orbit
O() ={va | j € Zn}

in order to know the effect of o over all elements of O(v). This implies that it is sufficient to know what the
restriction of o to a set of representatives of the orbits looks like in order to describe o completely.

We shall see that if o is an invertible CA transformation its effect can be viewed as being split in two definite
parts: the permutation of the orbits of R™ under the shift and the shifting of the successions of R™.

2.1 Orbits

We need to introduce some definitions. Let G be any group. We call a set X a G-set if there is a product
between the elements of G and the elements of X such that for all z € X and being 1 the identity of G we have
zl = x and such that for all g,h € G and for all z € X we have z(gh) = (xzg)h. For each element z in X we
define the orbit of z as 2G = {zg | g € G}. We call |G| the length or period of the orbit.

We now consider the cyclic group C,, = {a® | i < n} of order n acting on the set R™.

2.1 Proposition
For each v € R™ we have that |vC)| divides n.

Proof. We define a product x on the orbit v(C), such that
(va') x (vod) = va't
The product x is obviously closed, v1 is the identity and for each ¢ we have
(va’) x (va™ ") = vl
hence (vCp, X) is a group. We now define the map ¢ : C,, = vC, given by a‘¢p = va'. ¢ is clearly a surjective
group homomorphism, therefore Im¢ = v(C), is isomorphic to a subgroup of C),. By Lagrange’s theorem we then

have that |vC,| divides |C},| and hence

Vv € R" (|uCp| | m)



The converse is also true.

2.2 Proposition
If|R| > 2, for each divisor d of n there is an orbit of length d.

Proof. Let a,b € R such that a #b. Then

vy = (a,b,...,b,...,a,b,...,b)

—————r ——
d d
is clearly such that vya? = v, and vya® # v, for each i in the range 0 < i < d. |

Hence for each divisor d of n there are orbits of length n and those are the only lengths orbits of R™ can
have. We indicate with d(n) the number of divisors of n. It is easy to show that if n = p{* ---p}" is the unique

prime factorization of n, then
l

5(n) = [J(es + 1)

i=1
We are now interested in how many orbits of length d there are in R™. We define two functions:
Qgr(d) = number of sequences in R™ of period d
wr(d) = number of orbits in R™ of period d

Notice that wr(d) = & Qgr(d) because in R" there are Qg (d) sequences having period d partitioned in disjoint
orbits of length d.

2.3 Proposition
For each integer n and for each d|n,

1 d
wr(d) = 2> u(d)|R|*
tld
where p is the Mo6bius arithmetic function defined as
1 ifm=1

p(m) = ¢ (=1)%  if m is a product of k distinct primes
0 otherwise

Proof.? First of all observe that R? is composed by all sequences belonging to orbits of period ¢ for all divisors
t of d. We can write this with
[RI" =" Qr(t) =) twr()
tld t|d
By the Mdbius inversion formula we then have
d
don(d) = 3~ p(t)|R]’
tld

and hence

onld) = 3 3 IR/

td

2The proof to proposition (2.3) was suggested by Prof. Umberto Cerruti, of the Dept. of Mathematics of University of Turin.



Now we take into account a CA transformation 7 € A"(R) and given an orbit vC),, we examine the length
of the orbit (vr)C,,.

2.4 Proposition
For each 7 € A™(R) and each v € R"™ the length of the orbit (v7)C,, divides the length of the orbit vC,,.

Proof. We use the product x defined in the previous proposition (2.1), where we also proved that (vC,,, X) is
a group. We now define a function 6 : vC,, — (v7)C), such that (yai)H‘: (va?)T. 0 is well-defined because 7 is.
Furthermore, 6 is a group homomorphism: given elements va® and va? in vC), we have

((va)f) x (va?) = va™t’ = (va')r

Since 7 € A"(R) it commutes with all powers of the shift transformation, i.e. with o/ for all j, hence

(va™)7 = (ur)a™ = ((u7)a’) x ((vr)a?)
Again by shift commutation this equals

((va’)7) x ((va?)7) = ((va")8) x ((va?)8)
We now check inverses. For each i,

(100 = (wa~)7 = (er)a” = ((er)a’) ™ = (a')r) ™" = (va))p~"
Furthermore 6 is surjective: let u € (v7)Cy,; then for some ¢
u = (vr)af = (va')T = (va')d

Hence the image of € is (v7)C,,, which implies that (v7)C), is isomorphic to a subgroup of vC,,. By Lagrange’s
theorem the result follows. O

Now we restrict the attention to 7 € G"(R), i.e. let 7 be invertible.

2.5 Proposition
Let 7 € A®(R). If 7 is invertible then for each v € R™ we have

|(vT)Cn| = [Ch

Proof. Let 0 : vC,, — (v7)C,, given by (va?)d = (val)T for each i. We have shown in the proof of proposition
(2.4) that 8 is a group homomorphism. Since 7 is invertible we conclude that 6 is an isomorphism. This
concludes the proof. O

2.2 Permutative Effect

We are now in the position to start investigating the effect of an invertible CA transformation ¢ on the orbits
of R™ under the shift. For simplicity of notation let’s agree to set k = §(n), the number of divisors of n, and
z; = wr(d;), the number of orbits of length d; in R™, where d; is the i-th divisor of n in ascending order. Let
O™ be the set of orbits of R", i.e.

o" ={vC, | v € R"}

Now define the restriction ¢ of o to O™:
(wCr)o = (vo)Chy



Basically all this restriction does is concentrate on the action ¢ has on the orbits, rather than on single succes-
sions. The restriction is well-defined because all CA transformations commute with the shift.

We have shown in proposition (2.5) that if ¢ is invertible, ¢ necessarily sends every orbit into an orbit of
the same period. So for all ¢ < k and for all j < 2z; we have

(v;,;Cn)0 = 0; 5,(j)Cn

for some function &; (which clearly depends on &) defined on the set {1,...,2;}. Hence & can be described by
a k-tuple (&1,...,0,,) where each of the G; specifies the effect of & within each class of orbits having the same
period.

2.6 Proposition
The restriction & is invertible if and only if, for each i such that 1 < i < k, ; is a permutation of the set
{1,...,2},ie. 6, €S,,.

Proof. (<): every permutation in S, is also a function {1,...,2;} = {1,...,2}.
(=): In order for & to be invertible, each of the &; must be invertible, hence the &; are permutations defined
on the set {1,..., %}, i.e. elements of the symmetric group S,. |

2.3 Shifting Effect

We now extend ¢ back to the function o : R — R™ by adding back the structure relative to the shifts. Let S
be a double-indexed list of representatives of the orbits

S= {Ql,la"' ICAITEERR ICV SRR ’Qk,zk}

such that v; ; is a representative of the j-th orbit having period d;. For each v; ; we need to specify what power
of the shift we should apply to it:

Li 0 = Vi ()@ O
Notice that 0 < e;,; < d; as the vector v; ; belongs to an orbit with period d;.

Hence we can completely describe o by means of the k permutations ; € S,, and the powers of the shift
€ij € Lg; where1 <i<kand 1<j<z. Le, toeach o € G"(R) we can associate a k-tuple of the form

(((61,1, s ael,zl)aa'l)a s a((ek,la s aek,zk)a6k)) (2)

where e; ; € Zg4; and 0; € S;;. It is evident that given such a k-tuple we can find the invertible CA transformation
that corresponds to it, so this is a bijection.

For each 4, let G; = Z} x S.,. We have constructed a special bijection between G"(R) and the set Hle G;.
In the next section we shall show that this bijection is really a group ismorphism.

3 The CA Group Isomorphism

Call T the bijection we have just defined, i.e., for each i < k let G; = ZZZ x S, let X = Hle G; and let
I:G"(R) — X

so that for ¢ € G"(R), ol is the k-tuple described in equation (2). In order to show that T is a group
isomorphism, we define a suitable product in X and then we need only prove that given z,y € X,

(@y)T~" = @I H)(Er™) 3)



3.1 CA Group Product

Recall that X is a direct product of the sets G;. The product on X will be defined quite naturally as the
“cartesian product of the products” on the sets GG;; we shall therefore define the product on the set G;. We
have already seen that the set G; is given by

{((ei,ly" . 7e’i,z,')a7Ti) | VJ €i,j € Zdiaﬂ-i S Sz,-}

Let z;,y; be generic elements in G;:

zi = ((ey1,---,€i,2),0%) (4)
vi = ((fix, oo fiz) Ti) (5)

The product on G; is defined by

ziyi = ((ei1y---5€i2),0:)((fis- oo, firz)s Ti)
((eis-evreiz) + ((firse oo s fi2)0:),0:Ti) = (6)
= ((esn + fizi)>- -+ »€izi + fizi(21))s TiTi)

where the sums are intended mod d;. Notice that this product is a semi-direct product of cyclic and symmetric
groups, i.e.

G; = CF xS,
In practice the product in the second component is an ordinary permutation product, whereas the product in
the first component depends on the second component (the permutation) of the first term. Notice that the
semi-direct product involved depends on the first term only because we agreed to use right function application,
as in zf. If we were using left function application, as in f(x), this would be the second term.

Now let z,y be generic elements of X:

z = (v1,...,Tk) (1)
= (Y1, > Yr) ®)

where each of the x;,y; is defined as in equations (4), (5). We define the product on X by means of the products
on the Gj;, so that

zy = (T1Y1,--- > ThYk)

where each of the z;y; is given by equation (6).

3.2 The Main Theorem

In this section we shall show that the equation (3) holds, which will immediately imply that G"(R) and X are
isomorphic.

3.1 Theorem
For all z,y € X
(zy)D ' = (@I ") (T )

Proof. We have seen in equation (1) that for o € G"(R) and for each representative of the orbits v; ; we have

. = - . 61’-7
Yij9 = Vi ()

where ; is the i-th permutation in S, associated with o. Let z,y € X be defined as in equations (7), (8). We
have

Y = (SClyl, PN ,.Z‘kyk)



where
Tiyi = (€31 + figa()s- - »€ik + figa(k))s GiTi)

so that, for each representative of the orbits v; ; we have

Qi,j((my)ril) = Y7 (j))ae"’i+fi,<‘r,- ) 9)
On the other hand,
Y;.j (mr_l) = Qi,rn(j)aei’j
Qi,j(yr_l) = Qi,ﬂ(j)aﬁ’j
which implies

Qi,j(mr_l)(yr_l) = (Qi,ﬁi(j)ae"’j)(yl"_l)
= (W) @THass

= fi,o:(3) oyCiri
= Yin@u)e o

= v

) i)
Viri(5:(5)

which is the same as (9). This completes the proof. O

3.3 CA Group Generators

We shall now find a minimal set of generators for each of the groups G;; the direct product of these generators
will result in the generators for the group X which is isomorphic to G"(R). We remind the reader that
Gi=C} xS,

It is a well-known fact that the z; — 1 two-cycles (1 2),(1 3),...,(1 z;) are a minimal set of generators for
the symmetric group S,,. Let’s agree to call these two-cycles v1,... ,7v,,—1 (so that v; = (1,7 + 1)) and the
identity of the symmetric group 1. Now notice that given a generic element ((e;1,-.. ,€;z;),T;) in G; where 7;
is a product of two-cycles vj, - - -7;,, the following relation holds:

((ei,la .. >ei,zi)7 7Ti) =
q
=[((1,0,...,0),m*...((0,...,0,1),m)] lH((O,--- ,0),%1)] (10)
=1
(also see paragraph (3.3.1) for a more detailed discussion of this relation). Hence if a; = (12...2;) and
zij = ((1,0,...,0)0a,n) Vj<z
Yi,f = ((0370)5’7f) vaZz—].

we obtain that G; is generated by all x; ;,y; . This set, however, is not minimal. Notice that for each j < z;,
if f is such that the permutation y; moves j,

ysz”y,_} = (11)

= ((0,...,0),7)((1,0,...,0)a,7)((0,... ,0),77) =
= ((1705 70)a‘177f57f)((0) 70)57;1) =
= ((1,0,...,0)avs,n) = i, (5)



and hence, in particular, conjugating one of the g; ;, say g;,1, with all the h; ; whose associated permutation
moves 1, we obtain all the other g; ;. Thus we define

Ti =Ti1 = ((1507 . 50)an)

and we claim that the set
Mi={yiz | 1< f <z —1}U{x;}

is a minimal set of generators for the group Gj;.

3.2 Proposition
Provided the length of the automaton, n, is greater than 1, the set T; is a minimal set of generators for the
group G;.

Proof. We have already verified that M; is a set of generators. Now we have to show that it is minimal. Suppose
there is an integer ¢ such that M;\{y; .} is a set of generators. Hence S, is generated by all the two-cycles but
(1 ¢+ 1), which is a contradiction. Now suppose that M;\{z;} is a set of generators: we then have

Gi =(((0,...,0),77) [1< f<zm—-1) =5,
This implies d; = 1, which means that the i-th orbit has period 1; i.e., s = k and n = 1, the trivial case, which,
again, is a contradiction. The result follows. O
A minimal set of generators for X is therefore

M =M x...x M.

3.3.1 Normal Form

It will be useful to see how we can express a generic element of G; in terms of the generators found in the
previous section. We shall call this expression the normal form for an element of G;. This in fact is just a
restatement of equation (10), which bears a deep significance to this issue. Consider a general element of G;,
say ((ei1,.--,€iz),m). This, as we already noted, can be written as follows:

((ei,h s 7ei,2i)7 7]'7;) =

= [((1,0,...,0),m)%*...((0,...,0,1),m)% =] lH((O,... ,0),7]-,)]

=1

(@) Winway; 1) - Wiz 1%iYs,, 1) ] lH yi,f,]

=1

We can write the above equation in a more compact form as

z;i—1 q
(€igse-seiz)m) = o | [] Wi gmiysp)eors lnyi,fz]-
F=1 =1

It is worth noting that the normal form is unique.



3.4 CA Group Relations

We aim to give a presentation of the group G"(R) by means of generators and relations. We found a minimal set
of generators M for X in the previous section; we now find the relations between them. For clarity of notation,
we get rid of the index 4, which only refers to G;. We shall agree to set G = G;, * = z;, yr = y;,5, 2 = 2; and
d = d;. We also set yo = ((0,...,0),n) as the identity of G.

1. Notice first that the y; generate S,. This implies all the relations on y; which define the symmetric group
S.
2. We have observed earlier on (see eqn. (10)) that
((]‘707" - 70)7n)m = ((m707' - 70)7,'7)

for each integer m. Hence,

z¢=1
3. Again from eqn. (10) we have
(nyU) = ((1507-- 50)’Yf77f)
(ypz)* = ((1,0,...,0)+ (1,0,...,0)vs,7)
(yf$)3 = ((1707" 70)+(2707"'70)7f7’7f)
(yrz)* = ((2,0,...,0)+(2,0,...,0)v4,7)
(yrz)* = ((d,0,...,0)+(d,0,...,0)ys,n) =

= ((03 50)+(0a 70)7f;n) = ((05 70);77): 1

4. Since G = (Cf x S, there is a subgroup of G which is isomorphic to Cj]; more precisely, the set
{((e1,...,€ez),m) | e € Zg} under the product defined on G is a subgroup of G which is isomorphic
to C%. Since C7 is abelian, we want to express the fact that the elements of G having n (the identity) as
the permutation in the second position all commute. By equations (10) and (11), noticing that

(yrry; ') = (rmyy yszys ') - (yray; ') = ypaty; !

and recalling that +y; is the 2-cycle (1, f + 1) we can express z. = ((e1,... ,€;),7) as
z—1
ze = [[ysztrryh).
F=0

The relation we want is therefore
Ve,l € 75 (T = mi1T)-

By reducing the relation to the basic “building blocks” z,ys of the group G it suffices to impose the
following;:

Vi<zw<z (yroy; ) Wweyy') = Wury, ) (yroy; ).
5. Let z, = ((e1,--- ,€z),n) as above and y, = ((0,...,0),7). Notice that y,Te = Tr(e)¥Yx:
((0,...,0),m)((ex,--- ,ez),m) = ((ex,-.. ,ex)m,m) =

((ew(l)a'- . 7e7r(z))77r) =
= ((eﬂ'(l)"“ ;ew(z))an)((ou--- 70)57T)'

As before, we reduce the relation so that it only includes the building blocks z,ys. Again recall that vy
is the 2-cycle (1, f + 1). It then suffices to impose

Vi<z,w<z 4rWu 2 Yp") = Grswi)-1 T Y5 w1y 197

10



Let T = (g,hy | 1 < f < z) be the free group generated by g, h1,... ,hs. Let relations Ry, ... Re be defined
so that

e R, is the set of relations given by (hy) = .S..

e R, is given by g7 = 1.

e Rj is the set of relations so that for all f < z we have (hsg)?? = 1.

e R, is the set of relations given by

Vf<zw<z (hpgh;")(hwghy') = (hwghy,")(hsght).

R is the set of relations given by
Vi<zw<z hf(hw g h;l) = (hw(w+1),1 g h’;fl(w-i-l)—l)hf'

Notice that it is consistent to talk about 7 because of relation R; (i.e. by Ry we can rig up an isomorphism
between the group generated by the hy and the group generated by the ~y).

Now let T =T/(R; U Ry U R3 U Ry URs). We claim that G = T. Let ¥ : G — T be given by
dz) =g
19(yf) = hf Vf <z

and extend ¥ to the whole of G' by using the normal form and the fact that (hfghljl)m = (hfgmh;l), ie.

z—1 tr
I(((er,... rez),m) = g% | [[(hra®+n M) | I] b,
f=1 j=1

where m = H;”zl Vs -

We shall prove ¥ is an isomorphism in three steps. First, we shall show that it is a group homomorphism.
Then we shall show that it is injective, and lastly that it is surjective.

3.3 Lemma
¥ is a group homomorphism.

Proof. We have to show that ¥(£1&2) = 9(&1)9(&:) for all &,& € G. Let & = (e,n) and & = (I, p), where
e=(e1,...,e;)and I =(ly,...,l,). Now,

z—1 trp
9((e, ™)L, p)) = I((e + Im,mp)) = g T | [ (hpger+ HruronZ Y| T] bss =
=1 j=1

tr tp
= g% g ® (h1g®hy ") (hag @ hit) - (ham1g® hT ') (haag =@ R T by, T P
j=1

=1

Now we use the commutativity of the terms having the identity permutation (relation Ry).

tr ty
— [gel(hlgCZhl—l) .. (hzflgezh;ll)] [gl«(l)(hlglﬂ(z) hl’l) . (hzflgl"(‘)h;ﬂ)] H hfj H hfj =
i=1 j=1

z—1 z—1 tr tp
= o TL(hsgermnz) | |a= T hgat=ronz*y| TLhs, TL 1
f=1 F=1 =1 j=1

11



Finally we use the partial commutativity of relation Rj.

z—1 z—1
= |9 [T (hyger+tny? H hyy | 9" T] (hrg'r+h ") H hy; | =
=1 =1
=J((e, ™))L p))

as claimed. O
3.4 Corollary
9 is injective.
Proof. This follows because 9 is a group homomorphism and because of uniqueness of the normal form. |

3.5 Corollary
9 is surjective.

Proof. Let t € T. Then t is a product of g, h1,... ,h,—1. Say t = prod(g, h1,...,h,—1). Since by definition of
9 we have 9(x) = g and ¥(ys) = hy for all f < 2z, t = prod(¥(z),¥(y1),... ,H(yz—1)). Now, since ¥ is a group
homomorphism, ¢ = ¥(prod(z,y1,. .. ,y.—1)). Hence 9 is surjective. O

So we have proved the following theorem.
3.6 Theorem

G is isomorphic to T'.

The relations on the group G"(R) are all the relations on each of the groups G; for 1 <4 < k.

3.5 A Simple Example

Let’s now see a worked out example. We shall analyse one of the simplest possible cases: consider the set of
cellular automata defined on Z, having length 3. In our model, this corresponds to sequences of three elements
of Zs, i.e. R =Zs and n = 3. We shall find the structure of the group G*(Zs).

1. Calculate k, i.e. the number of divisors of 3. In this case k is obviously equal to 2. Hence G3 (Z2) = Gy xGa.

2. For each ¢ < 2, find the structure of G;. First we have to calculate the parameters d; (the i-th divisor)
and z; (the number of orbits having period d;).

e We have d; =1 and z; = 2. Consequently

G = {((61,1,61,2),7r,~) | €1,1,€1,2 € Z1,m; € 52}
{((0,0),m; | m; € Sz} 2 S, = Cy

e We have dy = 3 and z; = 2. Consequently
Gy = {((e2,1,€2,2),mi) | €2,1,€2.2 € Zz,m; € S2} 2 C5 x S,
with presentation
Gy = {g,h|g®=h*>=(gh)° =1,(gh)* = (hg)®)

where g = ((1,0),n) and h = ((0,0),n) with m# = (1 2). The structure of this group is not so simple,
as one can verify from the following multiplication tables.
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* ((0,0),m) ((0,0),m) ((0,1),m) ((0,1),m) ((9,2),m) ((0,2),=) ((1,0),m) ((1,0),=) ((1,1),m)
((0,0),m) | ((0,0),m)  ((0,0), =) ((0,1),n) ((0,1),m) ((0,2),n) ((0,2), =) ((1,0),n) ((1,0),w) ((1,1),7)
((0,0), ™) | ((0,0), )  ((0,0),m)  ((0,1), =)  ((0,1),m)  ((0,2), ) ((0,2),m) ((1,0), =) ((1,0),m) ((1,1),m)
((0,1),m) | ((0,1),m)  ((1,0), =)  ((0,2),m)  ((1,1), =) ((0,0),m) ((1,2), =) ((1,1),m) ((2,0), =) ((1,2),m)
(0, 1), m) | ((0,1), =)  ((1,0),m)  ((0,2), =)  ((1,1),m) ((0,0), =) ((1,2),n) ((1,1),m) ((2,0),m) ((1,2),m)
((0,2),m) | ((0,2),m)  ((2,0), =)  ((0,0),m)  ((2,1), =) ((0,1),m) ((2,2), =) ((1,2),m) ((0,0), =) ((1,0),m)
((0,2),m) | ((0,2), )  ((2,0),m) ((0,0), =)  ((2,1),m) ((0,1), =) ((2,2),n) ((1,2), ) ((0,0),m) ((1,0),m)
((1,0),m) | ((1,0),m)  ((0,1),m)  ((1,1),m) ((0,2),m) ((1,2),m) ((0,0),m) ((2,0),n) ((1,1),w) ((2,1),7)
((1,0), ) | ((1,0),m)  ((0,1),m) ((1,1),w) ((0,2),m) ((1,2),=) ((0,0),n) ((2,0),=) ((1,1),m) ((2,1), )
((1,1),m) | ((1,1),n) ((1,1),=) ((1,2),n) ((1,2),m) ((1,0),m) ((1,0),m) ((2,1),n) ((2,1),w) ((2,2),7)
((1,1),m) | ((1,1),m) ((1,1),m) ((1,2),=) ((1,2),m) ((1,0),=) ((1,0),n) ((2,1),=) ((2,1),m) ((2,2), )
((1,2),m) | ((1,2),m) ((2,1),w) ((1,0),m) ((2,2),m) ((1,1),m) ((2,0),m) ((2,2),n) ((0,1),m) ((2,0),7)
((1,2), ) | ((1,2),m) ((2,1),m) ((1,0),=) ((2,2),n) ((1,1),=) ((2,0),m) ((2,2), ) ((0,1),n) ((2,0),m)
((2,0),m) | ((2,0),m) ((0,2), ) ((2,1),n) ((0,0),m) ((2,2),m) ((0,1),m) ((0,0),n) ((1,2),m) ((0,1),7)
((2,0), ™) | ((2,0),m) ((0,2),m) ((2,1),w) ((0,0),n) ((2,2),=) ((0,1),n) ((0,0), =) ((1,2),m) ((0,1),m)
(2,1),m) | ((2,1),7) ((1,2), =) ((2,2),n) ((1,0),m) ((2,0),n) ((1,1),m) ((0,1),n) ((2,2),m) ((0,2),n)
((2,1),m) | ((2,1),m) ((1,2),m) ((2,2),w) ((1,0),m) ((2,0),~) ((1,1),n) ((0,1),~) ((2,2),n) ((0,2),m)
(2,2),m) | ((2,2),7) ((2,2), ) ((2,0),n) ((2,0),m) ((2,1),n) ((2,1),7) ((0,2),n) ((0,2),w) ((0,0),n)
((2,2), ) | ((2,2),7) ((2,2),m) ((2,0),m) ((2,0),m) ((2,1),=) ((2,1),m) ((0,2),w) ((0,2),m) ((0,0),m)

* (@,1), =) ((1,2),m) ((1,2),w) ((2,0),m) ((2,0)7) ((2,1),m) ((2,1),7) ((2,2),n7) ((2,2),m)
((0,0),m) | ((1,1),m)  ((1,2),m) ((1,2),w) ((2,0),m) ((2,0), =) ((2,1),n) ((2,1),m) ((2,2),m) ((2,2),n)
((0,0), =) | ((1,1),7) ((1,2), =) ((1,2),7) ((2,0),m) ((2,0),n) ((2,1), =) ((2,1),n) ((2,2),7) ((2,2),n)
((0,1),m) | ((2,1), =) ((1,0),m) ((2,2),w) ((2,1),m) ((0,0),=) ((2,2),n) ((0,1),=) ((2,0),m) ((0,2), )
((0,1),m) | ((2,1),7) ((1,0),m) ((2,2),7) ((2,1),m) ((0,0),m) ((2,2), ) ((0,1),n) ((2,0),w) ((0,2),n)
((0,2),m) | ((0,1), =) ((1,1),m) ((0,2),w) ((2,2),m) ((1,0),=) ((2,0),n) ((1,1),=) ((2,1),m) ((1,2),m)
((0,2), ) | ((0,1),7)  ((1,1), =) ((0,2),m) ((2,2),w) ((1,0),m) ((2,0),m) ((1,1),n) ((2,1),w) ((1,2),n)
((1,0),m) | ((1,2),m) ((2,2),m) ((1,0),=) ((0,0),n) ((2,1),=) ((0,1),n) ((2,2),=) ((0,2),m) ((2,0),m)
((1,0), ™) | ((1,2),n)  ((2,2),7) ((1,0),m) ((0,0), =) ((2,1),m) ((0,1), =)  ((2,2),m) ((0,2), ) ((2,0),m)
(1, 1),m) | ((2,2),7)  ((2,0),m) ((2,0), =) ((0,1),m) ((0,1), )  ((0,2),m) ((0,2), =) ((0,0),m) ((0,0),m)
((1,1),m) | ((2,2),m)  ((2,0),7)  ((2,0),m) ((0,1), =)  ((0,1),m)  ((0,2), =)  ((0,2),m) ((0,0), =) ((0,0),m)

((2,20.m) | (0 0)im) (0 1)m) (01w  ((1.2nm)  ((1.2).m)  ((1,0)m) (Lo} m) ((1.inm) ((1.1),m)
((22),7) | ((0,0),m (0,17 (0,1 (1,27 (1,21 (10" ((1,0,m (1,1}, ((1,1),n)

where {n,7} = Sy = Cy. Notice also that since we’re using right function application, when calcu-
lating a product ab one would have to look for a on the top row and for b on the leftmost column.

3. Hence we conclude that
G*(Z2) = Cy x (C3 x Cs)

4 Conclusion

Although a practical application of the concepts exposed herein may seem far-fetched, an algorithm for CA
transformation product was designed and implemented; the tables above are a direct application of the program.
Although the code has (for the present) only been used as an aid to theoretical research, the way it deals with
CAs may offer good insight to very specific problems about CAs, like for example estimating the length of the
period of a particular CA transformation (this can be used to investigate convergence).

One possible way forward in this research would be to find convenient faithful representations of this group
and devise a way to build its character table. This should offer a deeper knowledge of the group structure and
the way elements interact with each other.

It is also worth pointing out that the analysis carried out in this paper is actually applicable to other finite
dynamical systems, not just cellular automata. The CA behaviour of the dynamical system is only used at the
beginning to analyse the numbers of orbits of different lengths under the shift. Most of the work about the
CA transformation group only takes orbit lengths into account, hence the results obtained and the techniques
developed here may also be employed in the study of the automorphism group of any finite one-to-one dynamical
system.
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