
ROSE

ROSE:

Reformulation/Optimization Software Engine

Sonia Cafieri

LIX, École Polytechnique

joint work with: Leo Liberti, Fabien Tarissan, LIX

ARS Workshop, Oct 31st 2008

ROSE

Outline

Introduction
ROSE: aim and features

Current status
ROSE current contents
Reformulators
Solvers
Reformulators: some details

Software architecture
Problem & Solver classes
Problem representation

Using ROSE

ROSE

Introduction

ROSE: aim and features

Outline

Introduction
ROSE: aim and features

Current status
ROSE current contents
Reformulators
Solvers
Reformulators: some details

Software architecture
Problem & Solver classes
Problem representation

Using ROSE

ROSE

Introduction

ROSE: aim and features

ROSE: aim and features

ROSE
=

Reformulation/Optimization Software Engine

is a software framework for reformulating and solving Mathematical
Programming problems.

Main aim: to provide reformulations of mathematical programs of various
typesautomatically.

Specific reformulations are carried out in the form of pre-processing steps by LP/MILP
optimization solvers, but there is no software framework able to carry out reformula-
tions in a systematic way.

ROSE

Introduction

ROSE: aim and features

ROSE: aim and features

◮ It implementsreformulation solvers, working towards analysing or chang-
ing a problem structure andnumerical solvers, working towards finding
a solution.
Currently, it is morefocused on reformulationthan optimization.

◮ Mathematical programs can be reformulated according to several algo-
rithms; the result can be used by other optimization codes.

◮ It can parse a mathematical program to a well-defined data structure,
involving trees used to represent mathematical expressions.

◮ A separate library calledEv3 is used to handle expression trees.

◮ A direct user interface and an AMPL interface are available.ROSE can
be used stand-alone as well as an AMPL solver (reformulated problems
can be output in AMPL format).

ROSE

Introduction

ROSE: aim and features

ROSE: aim and features

◮ It implementsreformulation solvers, working towards analysing or chang-
ing a problem structure andnumerical solvers, working towards finding
a solution.
Currently, it is morefocused on reformulationthan optimization.

◮ Mathematical programs can be reformulated according to several algo-
rithms; the result can be used by other optimization codes.

◮ It can parse a mathematical program to a well-defined data structure,
involving trees used to represent mathematical expressions.

◮ A separate library calledEv3 is used to handle expression trees.

◮ A direct user interface and an AMPL interface are available.ROSE can
be used stand-alone as well as an AMPL solver (reformulated problems
can be output in AMPL format).

ROSE

Introduction

ROSE: aim and features

ROSE: aim and features

◮ It implementsreformulation solvers, working towards analysing or chang-
ing a problem structure andnumerical solvers, working towards finding
a solution.
Currently, it is morefocused on reformulationthan optimization.

◮ Mathematical programs can be reformulated according to several algo-
rithms; the result can be used by other optimization codes.

◮ It can parse a mathematical program to a well-defined data structure,
involving trees used to represent mathematical expressions.

◮ A separate library calledEv3 is used to handle expression trees.

◮ A direct user interface and an AMPL interface are available.ROSE can
be used stand-alone as well as an AMPL solver (reformulated problems
can be output in AMPL format).

ROSE

Introduction

ROSE: aim and features

ROSE: aim and features

◮ It implementsreformulation solvers, working towards analysing or chang-
ing a problem structure andnumerical solvers, working towards finding
a solution.
Currently, it is morefocused on reformulationthan optimization.

◮ Mathematical programs can be reformulated according to several algo-
rithms; the result can be used by other optimization codes.

◮ It can parse a mathematical program to a well-defined data structure,
involving trees used to represent mathematical expressions.

◮ A separate library calledEv3 is used to handle expression trees.

◮ A direct user interface and an AMPL interface are available.ROSE can
be used stand-alone as well as an AMPL solver (reformulated problems
can be output in AMPL format).

ROSE

Introduction

ROSE: aim and features

ROSE: aim and features

◮ It implementsreformulation solvers, working towards analysing or chang-
ing a problem structure andnumerical solvers, working towards finding
a solution.
Currently, it is morefocused on reformulationthan optimization.

◮ Mathematical programs can be reformulated according to several algo-
rithms; the result can be used by other optimization codes.

◮ It can parse a mathematical program to a well-defined data structure,
involving trees used to represent mathematical expressions.

◮ A separate library calledEv3 is used to handle expression trees.

◮ A direct user interface and an AMPL interface are available.ROSE can
be used stand-alone as well as an AMPL solver (reformulated problems
can be output in AMPL format).

ROSE

Introduction

ROSE: aim and features

ROSE: people

People working on ROSE:

◮ Leo Liberti (LIX)
◮ Sonia Cafieri (LIX)
◮ Fabien Tarissan (LIX)
◮ Jordan Ninin (ENSEEIHT, Toulouse)
◮ Pete Janes (Australian National University)

ROSE

Current status

ROSE current contents

Outline

Introduction
ROSE: aim and features

Current status
ROSE current contents
Reformulators
Solvers
Reformulators: some details

Software architecture
Problem & Solver classes
Problem representation

Using ROSE

ROSE

Current status

ROSE current contents

What is currently implemented in ROSE?

Reformulators

◮ convexification/approximation/...
◮ data analysis/copy/print
◮ data format translation

Numerical Solvers
◮ native solvers
◮ wrappers to external solvers

ROSE

Current status

Reformulators

Outline

Introduction
ROSE: aim and features

Current status
ROSE current contents
Reformulators
Solvers
Reformulators: some details

Software architecture
Problem & Solver classes
Problem representation

Using ROSE

ROSE

Current status

Reformulators

Current status – Reformulators

◮ solver_Rprodbincont product of binary and continuous variables refor-
mulator

◮ solver_Rsmith Smith standard form reformulator

◮ solver_Rconvexifier Smith convexifier

◮ solver_RQuarticConvex convexifier for quartic terms

◮ solver_Rsymmgroup MINLP to DAG reformulator, computes the colours
to be given to nodes

◮ solver_Rcopy copier (for later reformulations)

◮ solver_Rprint printer (identity reformulation)

◮ solver_Rprintmod printer in AMPL flat form

◮ solver_Rprintdat printer of AMPL files .mod and .dat for LP

◮ solver_Rcdd translator to the input format for CDD software

◮ solver_Rporta translator to the input format for PORTA software

◮ solver_Rvinci translator to the input format for VINCI software

ROSE

Current status

Solvers

Outline

Introduction
ROSE: aim and features

Current status
ROSE current contents
Reformulators
Solvers
Reformulators: some details

Software architecture
Problem & Solver classes
Problem representation

Using ROSE

ROSE

Current status

Solvers

Current status – Numerical Solvers

◮ solver_vns VNS solver for nonconvex NLPs
◮ solver_glpk wrapper for GLPK solver for LPs
◮ solver_snopt6 wrapper for SNOPT solver for NLPs
◮ solver_ipopt wrapper for IPOPT solver for NLPs (work in progress)

◮ solver_limitedbranch branch and bound without bound for
MINLPs (it solves an NLP at each node, then picks an integer variablewith
fractional value, branches by fixing, and loops.)

◮ solver_localbranch uses vns as a local solver, settingk = kmax

at each iteration
◮ solver_tabu inserts a nonconvex spherical constraint around each

local solution

ROSE

Current status

Reformulators: some details

Outline

Introduction
ROSE: aim and features

Current status
ROSE current contents
Reformulators
Solvers
Reformulators: some details

Software architecture
Problem & Solver classes
Problem representation

Using ROSE

ROSE

Current status

Reformulators: some details

A closer look at some reformulator

ProdBinCont

Given:vivj , vi binary variable andvj continuous variable withLj ≤ vj ≤ Uj .
Basic symbolic reformulation algorithm:

- add a continuous variablewij

- replacevivj by wij

- add the constraints:

wij ≤ Ujvi

wij ≥ Ljvi

wij ≤ vj − (1− vi)Lj

wij ≥ vj − (1− vi)Uj

.

ROSE

Current status

Reformulators: some details

A closer look at some reformulator

Convexifier

Basic symbolic reformulation algorithm:

- replace each nonlinear term by an added variablew

- add a defining constraint “w = nonlinear term” to the problem

- replace each defining constraint by a convex relaxation.

Nonlinear terms:

xixj ,

x2k
j for anyk ∈ N,

x2k+1
j for anyk ∈ N,

xi/xj .

ROSE

Current status

Reformulators: some details

A closer look at some reformulator

Convexifier

Example: bilinear termxixj

- replacexixj by wij

- add a defining constraintwij = xixj to the problem

- replace the defining constraint by McCormick’s envelope:

wij ≥ xL
i xj + xL

j xi − xL
i xL

j

wij ≥ xU
i xj + xU

j xi − xU
i xU

j

wij ≤ xL
i xj + xU

j xi − xL
i xU

j

wij ≤ xU
i xj + xL

j xi − xU
i xL

j .

ROSE

Current status

Reformulators: some details

A closer look at some reformulator

Quartic Convexifier

The same algorithm as for the convexifier, specialized for quartic terms:

x1x2x3x4, x1x2x2
3, x1x3

2, x2
1x2

2.

For quadrilinear terms, different ways of combining terms

((x1x2)x3)x4, (x1x2)(x3x4), (x1x2x3)x4

due to the associativity of the product, are considered and in turn different
convex relaxations (exploiting the biliner envelopes thrice or the bilinear and
the trilinear envelopes).

ROSE

Software architecture

Problem & Solver classes

Outline

Introduction
ROSE: aim and features

Current status
ROSE current contents
Reformulators
Solvers
Reformulators: some details

Software architecture
Problem & Solver classes
Problem representation

Using ROSE

ROSE

Software architecture

Problem & Solver classes

Problem & Solver classes

The architecture is mainly based on two classes:Problem andSolver.

◮ TheProblem class has methods for reading in a problem,
access/modify the problem description, perform various reformulations
to do with adding/deleting variables and constraints, evaluate the prob-
lem expressions and their first and second derivatives at a given point,
and test for feasibility of a given point in the problem.

◮ TheSolver class is a virtual class that serves as interface for various
solvers.
Implementations of this class may benumerical solversor reformulation
solvers.

ROSE

Software architecture

Problem representation

Outline

Introduction
ROSE: aim and features

Current status
ROSE current contents
Reformulators
Solvers
Reformulators: some details

Software architecture
Problem & Solver classes
Problem representation

Using ROSE

ROSE

Software architecture

Problem representation

Problem representation

ROSE represents optimization problems in theirflat formrepresentation: vari-
ables, objective functions and constraints are arranged insimple linear lists.

◮ struct Variable, storing informations on decision variables (ID,
name, lower and upper bound,...)

◮ struct Objective, storing informations on objective functions (ID,
expression tree, expression tree of the nonlinear part, optdirection, prime
and second order partial derivatives, ...)

◮ struct Constraint, storing informations on constraints (ID, ex-
pression tree, expression tree of the nonlinear part, lowerand upper
bound, prime and second order partial derivatives, ...)

ROSE

Using ROSE

Input problem example

variables = -1 < x < 1,
-2 < y < 3;

objfun = [x*y + 2*x^2];
constraints = [2 < x + y < PlusInfinity];
startingpoint = 0, 0;

ROSE

Using ROSE

Reformulator selection

Choose the convexifier reformulator

Run ROSE:

rose -s Rconvexifier input/bilin-convex.ros

ROSE

Using ROSE

Output
output file Rconvexifier_out.ros:

ROSE problem: bilin-convex
Problem has 5 variables and 12 constraints
Variables:

variables = -1 < x < 1 / Continuous,
-2 < y < 3 / Continuous,
0 < w3 < 1 / Continuous,
-3 < w4 < 3 / Continuous,
-3 < w5 < 5 / Continuous;

Objective Function:
objfun = min [w_5];

Constraints:
constraints = [2 < (x_1)+(y_2) < 1e+30],
[0 < (2*w_3)+(w_4)+(-1*w5_5) < 0],
[-1 < (2*x_1)+(w3_3) < 1e+30],
[-1 < (-2*x_1)+(w3_3) < 1e+30],
[-0.25 < (x_1)+(w3_3) < 1e+30],
[-0.25 < (-1*x_1)+(w3_3) < 1e+30],
[-0 < w3_3 < 1e+30],
[-1e+30 < w3_3 < 1],
[-2 < (2*x_1)+(y_2)+(w4_4) < 1e+30],
[-3 < (-3*x_1)+(-1*y_2)+(w4_4) < 1e+30],
[-1e+30 < (-3*x_1)+(y_2)+(w4_4) < 3],
[-1e+30 < (2*x_1)+(-1*y_2)+(w4_4) < 2];

Starting Point:
startingpoint = 0, 0, 0, 0, 0;

end of problem bilin-convex

ROSE

Summary

Future perspective

◮ Adding new reformulators.

◮ Unifying the convexifiers.

◮ Extensive testing.

◮ Contributions to the further development are welcome!

ROSE

Summary

Future perspective

◮ Adding new reformulators.

◮ Unifying the convexifiers.

◮ Extensive testing.

◮ Contributions to the further development are welcome!

ROSE

Summary

Future perspective

◮ Adding new reformulators.

◮ Unifying the convexifiers.

◮ Extensive testing.

◮ Contributions to the further development are welcome!

ROSE

Summary

Future perspective

◮ Adding new reformulators.

◮ Unifying the convexifiers.

◮ Extensive testing.

◮ Contributions to the further development are welcome!

ROSE

Summary

Future perspective

◮ Adding new reformulators.

◮ Unifying the convexifiers.

◮ Extensive testing.

◮ Contributions to the further development are welcome!

	Introduction
	ROSE: aim and features

	Current status
	ROSE current contents
	Reformulators
	Solvers
	Reformulators: some details

	Software architecture
	Problem & Solver classes
	Problem representation

	Using ROSE
	Summary

