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Motivations

m The convex envelopes of graphs of all monomials of degreedZam
an arbitrary box are explicitly known.

» Such a description is unknown, in general, for degree at feas
= Branch-and-Bound based global optimization methods,ie@pb for-

mulations involving multivariate polynomials, rely on $uconvex en-
velopes.

Bx
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Background and Motivations
(- Existing convex envelopes

Existing convex envelopes

» Thebilinear termxx is replaced by a new variabkg and the following
linear inequalities are added to the problem relaxation:

X > X5 — X

X = xR =K

X <O — X

X < X =%
(McCormick’s envelope)
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Existing convex envelopes

» Thetrilinear termx;xx, is replaced by a variabbe, and linear inequalities are
added to the problem relaxation depending on the signs dfabeds on vari-
ables(Meyer & Floudas, 2004)

e.g. case" >0,y >0, < 0,2 >0: (x,y,zpermutation ok, X, Xn)
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Existing convex envelopes

» The concave univariate functiof(x;) is replaced by a variable and
two inequalities are added to the problem relaxation:
N < f0g)
fOYY) — f(x-
x> fed)+ O"X; — Xjfx‘ ) (5 = %)-

o>
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Existing convex envelopes

» The concave univariate functiof(x;) is replaced by a variable and
two inequalities are added to the problem relaxation:

X < f(x)

fOYY) — f(x-
)

X > f(!‘)—f—
TS

» Theconvex univariate functiof(x;) is replaced by a variable and two
inequalities are added to the problem relaxation:

o) - 1)
1)+ 5 )

Xi

Xi

\Y

().

For concave (convexj(x), the first (second) constraint is a nonlinear over
(under)-estimator which is usually replaced by a pre-deitged number of tan-
gents tdf at various given points. .ﬂ*
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» The termx‘-2k for anyk € N is replaced by a variabbe and treated as a
convex univariate function.
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Existing convex envelopes

» The termxj2k for anyk € N is replaced by a variabbe and treated as a
convex univariate function.

» The termxj2k+l for anyk € N is replaced by a variabbg. If the range

of x; does not include 0, the function is convex or concave. Otlserw
the convex/concave envelope is giverliierti & Pantelides, 2003)- a tight
linear relaxation is:

X (14R (2 —1) ) <x< o [14R (5 -1
X]L )] X]U

U 2K, U\ 2k+1 Ly 2k Ly 2k+1

(&+ D)% — 2KOEH*F < < (2k+1)(x) %N — 2K,
k k

2K+1 1 -0.5000000000 6 -0.7721416355

I'k 1 2 -0.6058295862 7 -0.7921778546

Rk = Tk—l 3 -0.6703320476 8 -0.8086048979

4 -0.7145377272 9 -0.8223534102
5 -0.7470540749 10

-0.8340533676 ﬂ
s %
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Obtaining convex relaxations

Basic idea: given a sufficiently rich set of “elementary” convex enysis,
compose convex relaxations (albeit not envelopes) of cexjpinctions rel-
atively easily.
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Obtaining convex relaxations

Basic idea: given a sufficiently rich set of “elementary” convex enysis,
compose convex relaxations (albeit not envelopes) of cexjpinctions rel-
atively easily.
Example: givenf(x), g(x) with known convex/concave envelopes, in order
to obtain a convex relaxation fé(x)g(x):
- apply the bilinear convex envelope to the produgiv,,
- replace the necessary “defining constraints”:
wp = f(x)
we = g(x)

by the convex/concave enveloped of.
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Obtaining convex relaxations

Basic idea: given a sufficiently rich set of “elementary” convex enysis,
compose convex relaxations (albeit not envelopes) of cexjpinctions rel-
atively easily.
Example: givenf(x), g(x) with known convex/concave envelopes, in order
to obtain a convex relaxation fé(x)g(x):
- apply the bilinear convex envelope to the produgiv,,
- replace the necessary “defining constraints”:
wp = f(x)
we = g(x)

by the convex/concave enveloped of.

Note: this strategy may yields non-unique ways of combining &(due to
the associativity of the product). Il
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Quadrilinear term: 3 convex relaxations

Given aquadrilinear term

we consider the following three types of term grouping:

((X1X2)X3)Xa
(X1%2) (XaXa)
(X1X2X3) X4

and derive three corresponding linear convex relaxationg; koxzx,.
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Quadrilinear term: 3 convex relaxations

Let us consider:

S = {(xw) eR*xR[x € [, %], W1 = XX, Wo = WiXa, Ws = WaXa}
S = {(xw) eR* xR¥|x € X, %], Wi = X1Xp, Wo = XaXa, W3 = Wi\ }
S = {(xw) e R* x R?|x € [, X’], Wi = X1XpXa, Wp = WiXe}
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Convex relaxations fax) xp X3 x4
L Investigated convex relaxations

Quadrilinear term: 3 convex relaxations

Let us consider:

S = {(xw) eR*xR[x € [, %], W1 = XX, Wo = WiXa, Ws = WaXa}
S = {(xw) eR* xR¥|x € X, %], Wi = X1Xp, Wo = XaXa, W3 = Wi\ }
S = {(xw) e R* x R?|x € [, X’], Wi = X1XpXa, Wp = WiXe}

S : bilinear envel ope exploited thrice
S : bilinear envel ope exploited thrice
S; : bilinear envelope + trilinear envelope

Which one yields the tightest bounds?
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(- Computational assessment

Test instances

» 80 test instances generated varying signs of the boundsdaaterval
widths.

» 20 combinations by varying the signs of bounds on the 4 vegab
(missing cases are equivalent to covered cases by simpleeatrgnconsidera-
tions).

» same initial width of the bound intervals for all variabl@hen progres-
sively, fori = 1, 2, 3, the width of the bound interval of is reduced.

This simulates the exploration of a single branch of a ty@&B search tree,
whose nodes have decreasing range widths.

Hy
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Comparison of relaxations

The comparison among the considered relaxations is madarmstof the
volume of the corresponding enveloping polytopes.

Exploiting envelopes for bilinear and trilinear terms lsad an increased
number of variables=- the obtained polytopes belonglkd andR®.

= Projection of the polytopes onto the space(@ff (x) := X;XXsX4) € R5.
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(- Computational assessment

Comparison of relaxations

The comparison among the considered relaxations is madarnmstof the
volume of the corresponding enveloping polytopes.

Exploiting envelopes for bilinear and trilinear terms lsad an increased
number of variables=- the obtained polytopes belongkd andR®.

= Projection of the polytopes onto the space(@ff (x) := x;XoX3Xs) € R5.

= Computation of the projections:dd software (Fukuda, 2008)

= Computation of the volume of the projected polytopess software
(Avis, 2006)

All the results are computed in exact arithmetic.
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Results

Inst. 2 X 3 %4 (Cgx)xa)x | (%) (XaXg) (X1 XpX3)%g
1] son JT-1] son [T s [I-1[ son I

ThstT 2 +.F | 2] =.F | 2| —F | 2| =+ 5282/45 474715 T508117/8640
i nst2 2 4+ 2| 4 2| -4 | 2| - - 10922/45 298793/1215 |  1928777/8640
inst3 2 4+ 2| -+ 2| -+ 2| -+ 2080/27 2080/27 3136/45
inst4 2 4+ 2| -+ 2| -+ |2]| - - 3424/27 3056/15 4576/45
insts 2| -+ 2| -+ 2| -+ |2]| -+ 416/15 416/15 416/15
inst6 2| -+ 2| -+ 2| -+ |2]| - - 736/15 2080/27 736/15
inst7 2 | +,+ | 2 2| - =] 2] -+ 1664/9 3056/15 4736/27
inst8 2| 4.+ | 2 A 2| - = 2| - - 73613 298793/1215 6032/27
insto 2| -4+ | 2| - = | 2| -, 2 | -+ 1664/9 3056/15 4736127
inst10 || 2 | — 4+ |2 | == | 2| == | 2| - - 73613 298793/1215 6032/27
inst11 || 2 | — 4+ |2 | -+ | 2| == | 2| -+ 3136/45 2080/27 3728145
inst12 || 2 | — 4+ [ 2| -+ | 2| == | 2| - - 4576145 1474/15 6608/45
inst13 || 2 | .+ |2 | +.+ | 2| +.+ | 2| -+ 40166/195 298793/1215 38288/195
instia || 2 | +,+ [ 2| .+ | 2| ++ | 2| - - 53686/195 359936/1215 48683/195
inst1s || 2 | +,+ [ 2| +.+ | 2| - = | 2| -+ 40166/195 298793/1215 38288/195
inst16 || 2 | +,+ [ 2| .+ | 2| - = | 2| - - 53686/195 359936/1215 48683/195
inst17 || 2 | 4.+ |2 | - = | 2| == | 2| -+ 40166/195 298793/1215 38288/195
inst18 || 2 | +,+ [ 2| - = | 2| - = | 2| - - 53686/195 359936/1215 48683/195
inst1o || 2 | —, = | 2 . 2 | -, 2 | -+ 40166/195 298793/1215 | 4983841/44928
inst20 || 2 | -, — |2 | - — | 2| - — | 2| - — 53686/195 359936/1215 486881195

Hy
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Results

Inst. X1 Xo X3 X4 ((x1X%0)X3)%4. (x1%0) (X3%4), (X1 X0%3)Xgq
T _son [T 1] son -1 son 1] so
inst21 1 +, + 2 +.,+ 2 -, + 2 -+ 48958/675 1886/45 47746613/691200
inst22 1 +, + 2 +,+ 2 -, + 2 -, - 63358/675 21847/225 59852213/691200
inst23 1 +,+ 2 — + 2 — + 2 , + 11368/375 11368/375 2128/75
inst24 1 +,+ 2 — + 2 — + 2 -, = 6056/125 781148/10125 3128/75
inst25 1 -+ 2 — + 2 — + 2 -+ 104/15 104/15 104/15
inst26 1 -+ 2 — + 2 — + 2 -, = 184/15 520/27 184/15
inst27 1 +,+ 2 , + 2 - - 2 -+ 81008/1125 781148/10125 15584/225
inst28 1 +, + 2 , + 2 - - 2 -, - 104408/1125 7503097/81000 19484/225
i nst 29 1 -+ 2 - 2 -, 2 -+ 416/9 764/15 1184/27
i nst 30 1 -+ 2 - 2 [ 2 - = 184/3 298793/4860 1508/27
i nst31 1 -+ 2 -+ 2 -, 2 -+ 784/45 520/27 932/45
i nst 32 1 -+ 2 -+ 2 -, 2 i 1144/45 737/30 1652/45
inst33 1 +,+ 2 +,+ 2 +,+ 2 -+ 8842/105 21847/225 30404/315
inst34 1 +,+ 2 +,+ 2 +,+ 2 -, = 11362/105 695674/6075 50144/315
inst35 1 +,+ 2 +,+ 2 - - 2 -+ 8842/105 21847/225 25364/315
inst36 1 +,+ 2 +,+ 2 - - 2 -, = 11362/105 695674/6075 31244/315
inst37 1 +,+ 2 - — 2 - - 2 -+ 8842/105 21847/225 25364/315
inst38 1 +,+ 2 - — 2 - - 2 -, = 11362/105 695674/6075 31244/315
inst39 1 - - 2 N 2 - - 2 e 8842/105 21847/225 458469/5600
i nst 40 1 -, = 2 -, = 2 -, = 2 -, — 11362/105 695674/6075 50144/315
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Results

Inst. X X2 X3 %4 (O [ (%) Og¥a) (X1XpX3)%4
1 son [T-1] s [T-1] son -1 s
Thstal || I | -+ | 2| &+ | 2| —+F | 2 | — F | 335651/12000 BA53/480 T61590649/6144000
insta2 || 1| +,+ | 1 4+ | 2| =4+ | 2| =, = | 42165012000 | 874021/24000 196456649/6144000
insta3 || 1| 4+ | 2| -+ | 2| -+ | 2| -+ 2842/375 2842/375 532/75
instaa || 1| 4+ | 2| -+ | 2| -+ | 2| - - 1514/125 195287/10125 782/75
instas || 1| —+ | 2| -+ | 2| -+ | 2| -+ 26/15 26/15 26/15
instae || 1| -+ | 2| -+ | 2| -+ | 2| - - 46/15 130/27 46/15
insta7 || 1 | +,+ | 2| -+ | 2 = 2| -+ 20252/1125 195287/10125 3896/225
instas || 1 | 4.+ | 2| —+ | 2 = 2] - = 26102/1125 | 7503097/324000 4871/225
instao || 1| -+ | 2| - = | 2| - = | 2| -+ 20252/1125 195287/10125 3896/225
instso || 1| — 4+ | 2| == | 2| - = | 2| - - 26102/1125 | 7503097/324000 4871/225
insts1 || 1| — 4+ | 1| -+ | 2| — = | 2| -+ 196/45 130127 233/45
insts2 || 1| — 4+ | 1| -4 | 2| — = | 2| - - 286/45 7371120 413/45
insts3 || 1| +,+ | 2| ++ | 2| ++ | 2| -+ 4792111440 874021/24000 3961/99
instsa || 1| 4+ | 2| ++ | 2| ++ | 2| - - 50201/1440 56957/1350 6568/99
instss || 1| +,+ | 2| ++ | 2| — = | 2| -+ 47921/1440 874021/24000 15757/495
instsé || 1| 4,4+ | 1| ++ | 2 -l 2| - - 59201/1440 56957/1350 18727/495
insts7 || 1| 4+ | 2| — = | 2| — = | 2| -+ 47921/1440 874021/24000 |  969001783/35371875
instsg || 1 | 4,4+ | 12| —, 2| — - | 2| - - 59201/1440 56957/1350 368725761/11790625
instsg || 1| — = | 1| —, 2 =2 -+ 47921/1440 874021/24000 | 3307195027/243302400
insteo || 1| —— | 1| —— | 2| ——|2]| - = 50201/1440 56957/1350 6568/99

Hy
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(- Computational results

Results

Inst. 2 X X3 ((xq%2)x3)%g (%) (x3%4) (1 Xo%3)%g
[ sen JT-1] sen [T son 1] son
Thstél || T | .+ | T | -+ | T | —+ | 2 | — F | 335651/48000 8531920 T61500649/24576000
inste2 || 1 | 4,4+ | 1| 4.+ | 2| —.+ | 2| —.— | 421651/48000 874021/96000 196456649/24576000
inste3 || 1| 4+ |1 | -+ | 2| -+ | 2| -+ 1421/750 1421/750 133/75
instea || 1| 4,4+ [ 1| -+ | 2| -+ | 2| - - 757/250 195287/40500 301/150
instes || 1| —+ |1 | -+ | 2| -+ | 2| -+ 13/30 13/30 13/30
inste || 1| — 4+ [ 1| -+ | 2| -+ | 2| - - 23/30 65/54 23/30
inste7 || 1| +,+ |1 1 - =] 2] -+ 12851/1875 1733/240 20/3
instes || 1| 4.+ |1 Al = 2| - - 10609/1250 3203327/360000 97/12
inste || 1 | —+ [ 2| - = | 2| -, 2 | -+ 12851/1875 1733/240 203
inst7o || 1| — 4+ [ 1| - = | 2| == | 2| - - 10609/1250 3203327/360000 97/12
inst7 || 1| — 4+ | 1| -+ | 2| == | 2| -+ 133/75 1421/750 641/300
inst72 || 1| — 4+ [ 1| -+ | 2| == | 2| - - 391/150 943/360 1141/300
inst73 || 1| 4,4+ | 1| 4.+ | 1| +.+ | 2 | — + | 116228394080 | 1673383477/129600000 34879/2940
inst7a || 1| +,+ [ 1| +,+ | 2| +,+ | 2| — — | 137788394080  24832097/1620000 39779/2940
inst7s || 1| 4,4+ | 1| 4.+ | 2| — = | 2| — + | 116228394080 | 1673383477/129600000 34879/2940
inst7e || 1| +,+ [ 1| 4.+ | 2| = — | 2| — — | 137788394080 |  24832097/1620000 39779/2940
inst77 || 1| 4,4+ | 1| == | 1| = — | 2| — + | 1162283/94080 | 1673383477/129600000 34879/2940
inst78 || 1| +,+ [ 1| —.— | 1| = — | 2| — — | 137788394080 |  24832097/1620000 39779/2940
inst7e || 1| — = |1 . P 2 | —,+ | 1162283/94080 | 1673383477/129600000 45232093/516096000
insteo || 1 | —,— | 1| —,— | 1| —,— | 2| —,— | 1377883/94080 |  24832097/1620000 39779/2940

Hy
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L MDGP and HFP problems

Molecular Distance Geometry Problem

» The MDGP is the problem of finding an embeddindifof a weighted
graphG = (V, E) such that all Euclidean distances between points in
the embedding are the same as the corresponding edge wigights
graph.

Themain applicationis to find the 3-dimensional structure of a molecule
given a subset of the atomic distances.
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Applications to known problems
L MDGP and HFP problems

Molecular Distance Geometry Problem

» The MDGP is the problem of finding an embeddingifhof a weighted
graphG = (V, E) such that all Euclidean distances between points in
the embedding are the same as the corresponding edge wigights
graph.

Themain applicationis to find the 3-dimensional structure of a molecule
given a subset of the atomic distances.

» Given a seV of natoms, a setE of inter-atomic distances di; = d({i,j})
for {i,j} € E, a NLP formulation of the MDGP is:

miny f ()
Fo) = > (Ix —x7 — df)2.
{i,j}cE
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L MDGP and HFP problems

Molecular Distance Geometry Problem

A typical term(||x — xj||* — d#)? expanded is:
(each 3-vectok; has components, Xiz, Xi3))

(b =% = d)? = = 4xax2x — 4%1%1X; — 4%1 %1%, — 4X1 %15 + 4%1 %1 6
- 4X|-21X12X52—4Xj21X12ij—4X|-22X13X13—4X11X51X,-23—4Xj21><13><13
4Xi2 %2 dﬁ - 4X12X52X,'23 +4X4‘3stdﬁ - 4>§?2>Q3>Q3 — 4% X3 %3
8Xi1 X1 %2 X2 + 8%1 X1 X3 43 + 8X2 X2 X3 Xz + X + X + X
Xz 3 3 — 4% X1 + 6X1 X1 + 2 %5 + 2% X
2Xi21Xi23 + 2Xi21)§'23 - 2Xi21 di? - 4Xilxj31 + 2Xj21Xi22 + 2’?'21)?22
2)‘1'21)‘1'23+2)‘1'21><1'23_2)‘1'21d§_4)@32)‘1'2"'6)‘1'22)‘1'22'*'2)("22)("23
2)‘1'22)‘1'23_2X|'22d§—4X4‘2)§'32+2Xj22xi23+2xj22xj23_2xj22d5

- 4X|'33Xi3 + Gxizsszs - 2"1'23 di? - 4)03)8'33 - ijzsdi? + di‘jl'

+ o+ o+ o+ o+ o+

many quartic terms! I!
X
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trons in a closed-shell atomic system.
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Hartree-Fock Problem

It is a known problem in quantum chemistry: finding spatidditals of elec-
trons in a closed-shell atomic system.

» Non-relativistic time-independent Schrédinger equatieiid,, = EV,
(H = Hamiltonian operator of the system, representing thé éotargy)

» HF model: the electrons in atoms and molecules move indereiyd
of each other, the motion of each one of the electrons beitegmaed
by the attractive electrostatic potential of the nuclei agda repulsive
average field due to all the other electrons of the system.
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L MDGP and HFP problems

Hartree-Fock Problem

It is a known problem in quantum chemistry: finding spatiditals of elec-
trons in a closed-shell atomic system.

» Non-relativistic time-independent Schrédinger equatieiid,, = EV,
(H = Hamiltonian operator of the system, representing thé éotargy)

» HF model: the electrons in atoms and molecules move indereiyd
of each other, the motion of each one of the electrons beitegmaed
by the attractive electrostatic potential of the nuclei agda repulsive
average field due to all the other electrons of the system.

» The approximate solutionB, of the Schrédinger equation are products
of orbitals {(; }, which are solutions of the HF equations.

» Orbitals approximated by suitable bagesg | s < b}:
i = Z CsiXs
s<b

@i approximations of;. Il‘
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Hartree-Fock Problem

» HFP: finding a set of coefficientg such that thep; are the best possible
approximations of the spatial orbitals.
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Hartree-Fock Problem

» HFP: finding a set of coefficientg such that thep; are the best possible
approximations of the spatial orbitals.

» NLP problem: minimize a suitable energy function (qualifyttee ap-
proximation) s.t{i} is an orthonormal set:

min  E(c)
s<b s<b
ct<ec<cY.

orthonormality constraints are quadratic in the decisiarablesc .

Bx
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Bound evaluation algorithm

» The natural application of tight lower bounds computed tigtoa con-
vex relaxation is within the sBB algorithm.
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Bound evaluation algorithm

» The natural application of tight lower bounds computed tigtoa con-
vex relaxation is within the sBB algorithm.

» Our alternative: aimplifiedpartial sBB algorithm
At each branching step, the algorithm only records the masnsing
node and discards the other, trexploring a single branch up to a leaf.

= Avery simple branching strategy (the variable indexaximizing|x* —
%i|); termination: either on iteration limit or on reaching adeathat is
infeasible or that contains the global optimum.
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Constructing the convex relaxation

sol ver _RQuarti cConvex within ROSE

- Stepl: replace each nonlinear term by an added variable

- Step2: add a defining constraint “added variabtenonlinear term” to
the problem

- Step 3: replace each defining constraint by a convex relaxation.

Note: The 3 different convex relaxations yielded by the different
defining constraints due to the different associativitycpaences in

((X1X2)X3)Xa (X1X2)(XaXa) (X1X2X3)X4

are implemented.
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Computational results

Instance ((xaX2)X3)Xa | (XaX2)(XaXa) | (X1XoX3)X4
 avor5 -1580.81 -1758.4 -683.82
| avor 6 -2652.05 -2746.92 -1117.05
l avor 7 -3427.96 -3411.96 | -2378.53
beryllium -22.6887 -21.8208 -17.988
neon -1292.64 -1306.4 -1342.71
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(- Summary

Conclusions

» We proposed a computational approach to determine the besmtga
three convex relaxations for quadrilinear terms.

» The results suggest that a strategy taking into accounh&aid signs of
the input bounds could be used in a sBB solver in order to aaticaily
select the best relaxation procedure.

Future work
» Computational experiences on large scale instances.

» Implementation of a full sBB.

» Theoretical study on the relaxation strenght of quadrdirterms.
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