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Motivations

The convex envelopes of graphs of all monomials of degree 2 and 3 on
an arbitrary box are explicitly known.

Such a description is unknown, in general, for degree at least 4.

Branch-and-Bound based global optimization methods, applied to for-
mulations involving multivariate polynomials, rely on such convex en-
velopes.
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◮ Thebilinear termxjxk is replaced by a new variablexi, and the following
linear inequalities are added to the problem relaxation:

xi ≥ xL
j xk + xL

k xj − xL
j xL

k

xi ≥ xU
j xk + xU

k xj − xU
j xU

k

xi ≤ xL
j xk + xU

k xj − xL
j xU

k

xi ≤ xU
j xk + xL

k xj − xU
j xL

k

(McCormick’s envelope)
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Existing convex envelopes
◮ The trilinear termxjxkxh is replaced by a variablexi, and linear inequalities are

added to the problem relaxation depending on the signs of thebounds on vari-
ables(Meyer & Floudas, 2004).
e.g. casexL ≥ 0, yL ≥ 0, zL ≤ 0, zU ≥ 0: (x, y, z permutation ofxj, xk, xh)

xi ≤ yU zU x + xU zU y + xU yU z − 2xU yU zU

xi ≤ yU zLx + xLzU y + xLyU z − xLyU zL
− xLyU zU

xi ≤ yU zLx + xLzLy + xLyLz − xLyU zL
− xLyLzL

xi ≤ yLzU x + xU zLy + xU yLz − xU yLzU
− xU yLzL

xi ≤ yLzLx + xU zLy + xLyLz − xU yLzL
− xLyLzL

xi ≤ yLzU x + xLzU y + (θ/(zU
− zL

))z + (−(θzL
)/(zU

− zL
) − xLyU zU

− xU yLzU
+ xU yU zL

)

xi ≥ yU zLx + xU zLy + xU yU z − 2xU yU zL

xi ≥ yLzLx + xU zU y − xU yLz − xU yLzU
− xU yLzL

xi ≥ yU zU x + xLzU y + xLyLz − xLyU zU
− xLyLzU

xi ≥ yU zU x + xLzLy + xLyU z − xLyU zU
− xLyU zL

xi ≥ yLzU x + xU zU y + xLyLz − xU yLzU
− xLyLzU

xi ≥ yLzLx + xLzLy + (θ̄/(zL
− zU

))z + (−(θ̄zU
)/(zL

− zU
) − xU yLzL

− xLyU zL
+ xU yU zU

),

θ := xLyU zU − xU yU zL − xLyLzU + xU yLzU , θ̄ := xU yLzL − xU yU zU − xLyLzL + xLyU zL .
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◮ The concave univariate functionf (xj) is replaced by a variablexi and
two inequalities are added to the problem relaxation:

xi ≤ f (xj)

xi ≥ f (xL
j ) +

f (xU
j ) − f (xL

j )

xU
j − xL

j

(xj − xL
j ).

◮ Theconvex univariate functionf (xj) is replaced by a variablexi and two
inequalities are added to the problem relaxation:

xi ≤ f (xL
j ) +

f (xU
j ) − f (xL

j )

xU
j − xL

j

(xj − xL
j )

xi ≥ f (xj).

For concave (convex)f (xj), the first (second) constraint is a nonlinear over
(under)-estimator which is usually replaced by a pre-determined number of tan-
gents tof at various given points.
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◮ The termx2k
j for anyk ∈ N is replaced by a variablexi and treated as a

convex univariate function.

◮ The termx2k+1
j for anyk ∈ N is replaced by a variablexi. If the range

of xj does not include 0, the function is convex or concave. Otherwise,
the convex/concave envelope is given in(Liberti & Pantelides, 2003)– a tight
linear relaxation is:

(xL
j )

2k+1

 

1 + Rk

 

xj

xL
j

− 1

!!

≤ xi ≤ (xU
j )2k+1

 

1 + Rk

 

xj

xU
j

− 1

!!

(2k + 1)(xU
j )2kxj − 2k(xU

j )2k+1 ≤ xj ≤ (2k + 1)(xL
j )

2kxj − 2k(xL
j )

2k+1
,

Rk =
r2k+1
k −1

rk−1

k rk k rk
1 -0.5000000000 6 -0.7721416355
2 -0.6058295862 7 -0.7921778546
3 -0.6703320476 8 -0.8086048979
4 -0.7145377272 9 -0.8223534102
5 -0.7470540749 10 -0.8340533676
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Obtaining convex relaxations

Basic idea: given a sufficiently rich set of “elementary” convex envelopes,
compose convex relaxations (albeit not envelopes) of complex functions rel-
atively easily.

Example: given f (x), g(x) with known convex/concave envelopes, in order
to obtain a convex relaxation forf (x)g(x):

- apply the bilinear convex envelope to the productw1w2,

- replace the necessary “defining constraints”:

w1 = f (x)

w2 = g(x)

by the convex/concave envelopes off , g.

Note: this strategy may yields non-unique ways of combining terms (due to
the associativity of the product).
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Quadrilinear term: 3 convex relaxations

Given aquadrilinear term

x1x2x3x4

we consider the following three types of term grouping:

((x1x2)x3)x4

(x1x2)(x3x4)

(x1x2x3)x4

and derive three corresponding linear convex relaxations for x1x2x3x4.
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Quadrilinear term: 3 convex relaxations

Let us consider:

S1 = {(x, w) ∈ R
4 × R

3 | xi ∈ [xL
i , xU

i ], w1 = x1x2, w2 = w1x3, w3 = w2x4}

S2 = {(x, w) ∈ R
4 × R

3 | xi ∈ [xL
i , xU

i ], w1 = x1x2, w2 = x3x4, w3 = w1w2}

S3 = {(x, w) ∈ R
4 × R

2 | xi ∈ [xL
i , xU

i ], w1 = x1x2x3, w2 = w1x4}

S1 : bilinear envelope exploited thrice

S2 : bilinear envelope exploited thrice

S3 : bilinear envelope + trilinear envelope

Which one yields the tightest bounds?
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Convex relaxations forx1x2x3x4
Computational assessment

Test instances

◮ 80 test instances generated varying signs of the bounds/bound interval
widths.

◮ 20 combinations by varying the signs of bounds on the 4 variables
(missing cases are equivalent to covered cases by simple symmetry considera-
tions).

◮ same initial width of the bound intervals for all variables.Then progres-
sively, for i = 1, 2, 3, the width of the bound interval ofxi is reduced.

This simulates the exploration of a single branch of a typical sBB search tree,
whose nodes have decreasing range widths.
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Comparison of relaxations

The comparison among the considered relaxations is made in terms of the
volume of the corresponding enveloping polytopes.

Exploiting envelopes for bilinear and trilinear terms leads to an increased
number of variables=⇒ the obtained polytopes belong toR

7 andR
6.

=⇒ Projection of the polytopes onto the space of(x, f (x) := x1x2x3x4) ∈ R
5.

Computation of the projections:cdd software (Fukuda, 2008).

Computation of the volume of the projected polytopes:lrs software
(Avis, 2006).

All the results are computed in exact arithmetic.
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Convex relaxations forx1x2x3x4
Computational results

Results

Inst. x1 x2 x3 x4 ((x1x2)x3)x4 (x1x2)(x3x4) (x1x2x3)x4
|| · || sign || · || sign || · || sign || · || sign

inst1 2 +, + 2 +, + 2 −, + 2 −, + 8282/45 1474/15 1508117/8640
inst2 2 +, + 2 +, + 2 −, + 2 −, − 10922/45 298793/1215 1928777/8640
inst3 2 +, + 2 −, + 2 −, + 2 −, + 2080/27 2080/27 3136/45
inst4 2 +, + 2 −, + 2 −, + 2 −, − 3424/27 3056/15 4576/45
inst5 2 −, + 2 −, + 2 −, + 2 −, + 416/15 416/15 416/15
inst6 2 −, + 2 −, + 2 −, + 2 −, − 736/15 2080/27 736/15
inst7 2 +, + 2 −, + 2 −, − 2 −, + 1664/9 3056/15 4736/27
inst8 2 +, + 2 −, + 2 −, − 2 −, − 736/3 298793/1215 6032/27
inst9 2 −, + 2 −, − 2 −, − 2 −, + 1664/9 3056/15 4736/27
inst10 2 −, + 2 −, − 2 −, − 2 −, − 736/3 298793/1215 6032/27
inst11 2 −, + 2 −, + 2 −, − 2 −, + 3136/45 2080/27 3728/45
inst12 2 −, + 2 −, + 2 −, − 2 −, − 4576/45 1474/15 6608/45
inst13 2 +, + 2 +, + 2 +, + 2 −, + 40166/195 298793/1215 38288/195
inst14 2 +, + 2 +, + 2 +, + 2 −, − 53686/195 359936/1215 48688/195
inst15 2 +, + 2 +, + 2 −, − 2 −, + 40166/195 298793/1215 38288/195
inst16 2 +, + 2 +, + 2 −, − 2 −, − 53686/195 359936/1215 48688/195
inst17 2 +, + 2 −, − 2 −, − 2 −, + 40166/195 298793/1215 38288/195
inst18 2 +, + 2 −, − 2 −, − 2 −, − 53686/195 359936/1215 48688/195
inst19 2 −, − 2 −, − 2 −, − 2 −, + 40166/195 298793/1215 4983841/44928
inst20 2 −, − 2 −, − 2 −, − 2 −, − 53686/195 359936/1215 48688/195
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Results

Inst. x1 x2 x3 x4 ((x1x2)x3)x4 (x1x2)(x3x4) (x1x2x3)x4
|| · || sign || · || sign || · || sign || · || sign

inst21 1 +, + 2 +, + 2 −, + 2 −, + 48958/675 1886/45 47746613/691200
inst22 1 +, + 2 +, + 2 −, + 2 −, − 63358/675 21847/225 59852213/691200
inst23 1 +, + 2 −, + 2 −, + 2 −, + 11368/375 11368/375 2128/75
inst24 1 +, + 2 −, + 2 −, + 2 −, − 6056/125 781148/10125 3128/75
inst25 1 −, + 2 −, + 2 −, + 2 −, + 104/15 104/15 104/15
inst26 1 −, + 2 −, + 2 −, + 2 −, − 184/15 520/27 184/15
inst27 1 +, + 2 −, + 2 −, − 2 −, + 81008/1125 781148/10125 15584/225
inst28 1 +, + 2 −, + 2 −, − 2 −, − 104408/1125 7503097/81000 19484/225
inst29 1 −, + 2 −, − 2 −, − 2 −, + 416/9 764/15 1184/27
inst30 1 −, + 2 −, − 2 −, − 2 −, − 184/3 298793/4860 1508/27
inst31 1 −, + 2 −, + 2 −, − 2 −, + 784/45 520/27 932/45
inst32 1 −, + 2 −, + 2 −, − 2 −, − 1144/45 737/30 1652/45
inst33 1 +, + 2 +, + 2 +, + 2 −, + 8842/105 21847/225 30404/315
inst34 1 +, + 2 +, + 2 +, + 2 −, − 11362/105 695674/6075 50144/315
inst35 1 +, + 2 +, + 2 −, − 2 −, + 8842/105 21847/225 25364/315
inst36 1 +, + 2 +, + 2 −, − 2 −, − 11362/105 695674/6075 31244/315
inst37 1 +, + 2 −, − 2 −, − 2 −, + 8842/105 21847/225 25364/315
inst38 1 +, + 2 −, − 2 −, − 2 −, − 11362/105 695674/6075 31244/315
inst39 1 −, − 2 −, − 2 −, − 2 −, + 8842/105 21847/225 458469/5600
inst40 1 −, − 2 −, − 2 −, − 2 −, − 11362/105 695674/6075 50144/315
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Results

Inst. x1 x2 x3 x4 ((x1x2)x3)x4 (x1x2)(x3x4) (x1x2x3)x4
|| · || sign || · || sign || · || sign || · || sign

inst41 1 +, + 1 +, + 2 −, + 2 −, + 335651/12000 8453/480 161590649/6144000
inst42 1 +, + 1 +, + 2 −, + 2 −, − 421651/12000 874021/24000 196456649/6144000
inst43 1 +, + 1 −, + 2 −, + 2 −, + 2842/375 2842/375 532/75
inst44 1 +, + 1 −, + 2 −, + 2 −, − 1514/125 195287/10125 782/75
inst45 1 −, + 1 −, + 2 −, + 2 −, + 26/15 26/15 26/15
inst46 1 −, + 1 −, + 2 −, + 2 −, − 46/15 130/27 46/15
inst47 1 +, + 1 −, + 2 −, − 2 −, + 20252/1125 195287/10125 3896/225
inst48 1 +, + 1 −, + 2 −, − 2 −, − 26102/1125 7503097/324000 4871/225
inst49 1 −, + 1 −, − 2 −, − 2 −, + 20252/1125 195287/10125 3896/225
inst50 1 −, + 1 −, − 2 −, − 2 −, − 26102/1125 7503097/324000 4871/225
inst51 1 −, + 1 −, + 2 −, − 2 −, + 196/45 130/27 233/45
inst52 1 −, + 1 −, + 2 −, − 2 −, − 286/45 737/120 413/45
inst53 1 +, + 1 +, + 2 +, + 2 −, + 47921/1440 874021/24000 3961/99
inst54 1 +, + 1 +, + 2 +, + 2 −, − 59201/1440 56957/1350 6568/99
inst55 1 +, + 1 +, + 2 −, − 2 −, + 47921/1440 874021/24000 15757/495
inst56 1 +, + 1 +, + 2 −, − 2 −, − 59201/1440 56957/1350 18727/495
inst57 1 +, + 1 −, − 2 −, − 2 −, + 47921/1440 874021/24000 969001783/35371875
inst58 1 +, + 1 −, − 2 −, − 2 −, − 59201/1440 56957/1350 368725761/11790625
inst59 1 −, − 1 −, − 2 −, − 2 −, + 47921/1440 874021/24000 3307195027/243302400
inst60 1 −, − 1 −, − 2 −, − 2 −, − 59201/1440 56957/1350 6568/99
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Results

Inst. x1 x2 x3 x4 ((x1x2)x3)x4 (x1x2)(x3x4) (x1x2x3)x4
|| · || sign || · || sign || · || sign || · || sign

inst61 1 +, + 1 +, + 1 −, + 2 −, + 335651/48000 8453/1920 161590649/24576000
inst62 1 +, + 1 +, + 1 −, + 2 −, − 421651/48000 874021/96000 196456649/24576000
inst63 1 +, + 1 −, + 1 −, + 2 −, + 1421/750 1421/750 133/75
inst64 1 +, + 1 −, + 1 −, + 2 −, − 757/250 195287/40500 391/150
inst65 1 −, + 1 −, + 1 −, + 2 −, + 13/30 13/30 13/30
inst66 1 −, + 1 −, + 1 −, + 2 −, − 23/30 65/54 23/30
inst67 1 +, + 1 −, + 1 −, − 2 −, + 12851/1875 1733/240 20/3
inst68 1 +, + 1 −, + 1 −, − 2 −, − 10609/1250 3203327/360000 97/12
inst69 1 −, + 1 −, − 1 −, − 2 −, + 12851/1875 1733/240 20/3
inst70 1 −, + 1 −, − 1 −, − 2 −, − 10609/1250 3203327/360000 97/12
inst71 1 −, + 1 −, + 1 −, − 2 −, + 133/75 1421/750 641/300
inst72 1 −, + 1 −, + 1 −, − 2 −, − 391/150 943/360 1141/300
inst73 1 +, + 1 +, + 1 +, + 2 −, + 1162283/94080 1673383477/129600000 34879/2940
inst74 1 +, + 1 +, + 1 +, + 2 −, − 1377883/94080 24832097/1620000 39779/2940
inst75 1 +, + 1 +, + 1 −, − 2 −, + 1162283/94080 1673383477/129600000 34879/2940
inst76 1 +, + 1 +, + 1 −, − 2 −, − 1377883/94080 24832097/1620000 39779/2940
inst77 1 +, + 1 −, − 1 −, − 2 −, + 1162283/94080 1673383477/129600000 34879/2940
inst78 1 +, + 1 −, − 1 −, − 2 −, − 1377883/94080 24832097/1620000 39779/2940
inst79 1 −, − 1 −, − 1 −, − 2 −, + 1162283/94080 1673383477/129600000 45232093/516096000
inst80 1 −, − 1 −, − 1 −, − 2 −, − 1377883/94080 24832097/1620000 39779/2940
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Applications to known problems

MDGP and HFP problems

Molecular Distance Geometry Problem

◮ The MDGP is the problem of finding an embedding inR
3 of a weighted

graphG = (V, E) such that all Euclidean distances between points in
the embedding are the same as the corresponding edge weightsin the
graph.

Themain application is to find the 3-dimensional structure of a molecule
given a subset of the atomic distances.

◮ Given a setV of n atoms, a setE of inter-atomic distances dij = d({i, j})
for {i, j} ∈ E, a NLP formulation of the MDGP is:

minx f (x)

f (x) =
∑

{i,j}∈E

(||xi − xj||
2 − d2

ij)
2.
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MDGP and HFP problems

Molecular Distance Geometry Problem

A typical term(||xi − xj||
2 − d2

ij)
2 expanded is:

(each 3-vectorxi has components(xi1, xi2, xi3))

(||xi − xj||
2 − d2

ij)
2 = − 4 xi2 xj2 x2

i3 − 4 xi1 xj1 x2
i2 − 4 xi1 xj1 x2

j2 − 4 xi1 xj1 x2
i3 + 4 xi1 xj1 d2

ij

− 4 x2
i1 xi2 xj2 − 4 x2

j1 xi2 xj2 − 4 x2
i2 xi3 xj3 − 4 xi1 xj1 x2

j3 − 4 x2
j1 xi3 xj3

+ 4 xi2 xj2 d2
ij − 4 xi2 xj2 x2

j3 + 4 xi3 xj3 d2
ij − 4 x2

j2 xi3 xj3 − 4 x2
i1 xi3 xj3

+ 8 xi1 xj1 xi2 xj2 + 8 xi1 xj1 xi3 xj3 + 8 xi2 xj2 xi3 xj3 + x4
i1 + x4

j1 + x4
i2

+ x4
j2 + x4

i3 + x4
j3 − 4 x3

i1 xj1 + 6 x2
i1 x2

j1 + 2 x2
i1 x2

i2 + 2 x2
i1 x2

j2

+ 2 x2
i1 x2

i3 + 2 x2
i1 x2

j3 − 2 x2
i1 d2

ij − 4 xi1 x3
j1 + 2 x2

j1 x2
i2 + 2 x2

j1 x2
j2

+ 2 x2
j1 x2

i3 + 2 x2
j1 x2

j3 − 2 x2
j1 d2

ij − 4 x3
i2 xj2 + 6 x2

i2 x2
j2 + 2 x2

i2 x2
i3

+ 2 x2
i2 x2

j3 − 2 x2
i2 d2

ij − 4 xi2 x3
j2 + 2 x2

j2 x2
i3 + 2 x2

j2 x2
j3 − 2 x2

j2 d2
ij

− 4 x3
i3 xj3 + 6 x2

i3 x2
j3 − 2 x2

i3 d2
ij − 4 xi3 x3

j3 − 2 x2
j3 d2

ij + d4
ij.

many quartic terms!
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MDGP and HFP problems

Hartree-Fock Problem
It is a known problem in quantum chemistry: finding spatial orbitals of elec-
trons in a closed-shell atomic system.

◮ Non-relativistic time-independent Schrödinger equation: HΨn = EΨn

(H = Hamiltonian operator of the system, representing the total energy).
◮ HF model: the electrons in atoms and molecules move independently

of each other, the motion of each one of the electrons being determined
by the attractive electrostatic potential of the nuclei andby a repulsive
average field due to all the other electrons of the system.

◮ The approximate solutionsΦn of the Schrödinger equation are products
of orbitals {ϕi}, which are solutions of the HF equations.

◮ Orbitals approximated by suitable bases{χs | s ≤ b}:

ϕ̄i :=
∑

s≤b

csiχs

ϕ̄i approximations ofϕi.
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Applications to known problems

MDGP and HFP problems

Hartree-Fock Problem

◮ HFP: finding a set of coefficientscsi such that thēϕi are the best possible
approximations of the spatial orbitals.

◮ NLP problem: minimize a suitable energy function (quality of the ap-
proximation) s.t.{ϕ̄i} is an orthonormal set:

min E(c)

s.t.

〈

∑

s≤b

csiχs ,
∑

s≤b

csjχs

〉

= δij ∀i ≤ j ≤ n

cL ≤ c ≤ cU .

orthonormality constraints are quadratic in the decision variablesc .
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Applications to known problems

A bound evaluation algorithm

Bound evaluation algorithm

The natural application of tight lower bounds computed through a con-
vex relaxation is within the sBB algorithm.

Our alternative: asimplifiedpartial sBB algorithm.
At each branching step, the algorithm only records the most promising
node and discards the other, thusexploring a single branch up to a leaf.

A very simple branching strategy (the variable indexi maximizing|x∗i −
x̄i|); termination: either on iteration limit or on reaching a node that is
infeasible or that contains the global optimum.
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Applications to known problems

A bound evaluation algorithm

Constructing the convex relaxation

solver_RQuarticConvex within ROSE

- Step1: replace each nonlinear term by an added variable

- Step2: add a defining constraint “added variable= nonlinear term” to
the problem

- Step 3: replace each defining constraint by a convex relaxation.

Note: The 3 different convex relaxations yielded by the different
defining constraints due to the different associativity precedences in

((x1x2)x3)x4 (x1x2)(x3x4) (x1x2x3)x4

are implemented.
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Computational results

Instance ((x1x2)x3)x4 (x1x2)(x3x4) (x1x2x3)x4

lavor5 -1580.81 -1758.4 -683.82
lavor6 -2652.05 -2746.92 -1117.05
lavor7 -3427.96 -3411.96 -2378.53
beryllium -22.6887 -21.8208 -17.988
neon -1292.64 -1306.4 -1342.71



Convex relaxations for quadrilinear terms

Summary

Conclusions

◮ We proposed a computational approach to determine the best among
three convex relaxations for quadrilinear terms.

◮ The results suggest that a strategy taking into account widths and signs of
the input bounds could be used in a sBB solver in order to automatically
select the best relaxation procedure.

Future work
◮ Computational experiences on large scale instances.

◮ Implementation of a full sBB.

◮ Theoretical study on the relaxation strenght of quadrilinear terms.
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