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Abstract The alternating current optimal power flow problem is a fundamental
problem in the management of smart grids. In this paper we consider a variant
which includes activation/deactivation of generators at some of the grid sites. We
formulate the problem as a mathematical program, prove its NP-hardness w.r.t. ac-
tivation/deactivation, and derive two perspective reformulations.

1 Introduction

The Alternating Current Optimal Power Flow (ACOPF) problem is one of the most
important problems arising in the energy industry. It models the propagation of
power flows in electrical grids. It is often used as second-level subproblem in bilevel
problems modelling the decision of electricity prices subject to production and de-
mands [14]. Multilevel problems with ACOPF at different time-scales are also con-
sidered [1]. The ACOPF received a lot of attention over the years, and specifically
after smart grids were introduced [2].

The ACOPF asks for the best power flow over an electrical network modelled by
a digraph D =(N ,L ), where N is the set of buses and L the set of lines. It is well
known that the natural formulation can be simplified using only voltage variables
[10]. The ACOPF is usually cast as a Mathematical Programming (MP) problem
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over the complex numbers (which make their appearance due to the cyclic nature
of alternating currents). The standard ACOPF can be reformulated as a (larger) MP
over the reals, by separating real and complex parts [17].

While the standard version of the ACOPF only has continuous variables, more
realistic variants include binary variables which activate/deactivate various electri-
cal components. In this paper we consider the possibility of activating/deactivating
electrical generation at some of the buses. This defines an ACOPF variant which we
call ACOPF with Generators (ACOPFG) [15].

Note that the ACOPF is NP-hard even without binary variables, as shown in [13].
Experimentally, however, it was found that many standard benchmarks, as well as
randomly generated instances, can be solved efficiently. It is shown in [12] that
this happens whenever the duality gap is zero. One might then question whether
the ACOPFG is NP-hard simply because of the addition of the binary activation
variables. The first contribution of this paper is to prove that this is indeed the case.

While ACOPF objective functions vary in the literature, it is common to consider
quadratic objectives with respect to voltage. In this paper, however, we focus on a
more general objective function, quadratic with respect to active power and quartic
(without cubic terms) w.r.t. voltage [10]. The second contribution of this paper is the
application of two perspective reformulations (PR) to the ACOPFG with the more
general (quartic) objective [8, 6].

2 MP formulation

We consider the network digraph D mentioned in Sect. 1. Let n = |N | and `= |L |.
We identify a subset G of generator buses, and let n′ = |G |. We note that, in modern
“smart grids”, generators may produce and consume electricity. Because we are
dealing with alternating currents, power is represented by a complex number. The
real part is the active power while the complex part is reactive.

Notationwise, we use [α,α] to denote lower/upper bounds to a quantity, and α∗

to denote complex conjugate.
The parameters of our problem are as follows:

• ∀b ∈N Sb ∈ C is the power demand at bus b;
• ∀g ∈ G Sg = [Sg,Sg] is the (complex) interval where g can generate power if

active;
• ∀b ∈N vb = [vb,vb] is the (real) interval where the voltage magnitude at bus b

can range;
• ∀(a,b) ∈L ıab is the maximum current which can flow through the line (a,b);
• Y is a complex n× n bus admittance matrix (it plays a role analoguous to the

reciprocal of resistance in Ohm’s law);
• Y 0,Y 1 are complex `×n line admittance matrices (they “encode” some electrical

properties of the lines).

The decision variables are:
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• ∀g ∈ G sg ∈ C is the power generated at g;
• ∀g ∈ G zg ∈ {0,1} denotes the deactivation (0) or activation (1) of generator g;
• ∀b ∈N vb ∈ C is the voltage at bus b;
• ∀(a,b) ∈L iab ∈ C is the current on the line (a,b).

At each generator g ∈ G , the injected complex power sg− Sg = vg ∑(g,a)∈L i∗ga,
and at each non-generator bus b ∈ N r G , we have −Sb = vb ∑(b,a)∈L i∗ba. Kir-
choff’s law and a generalized form of Ohm’s law allow us to derive i = Y v, which
implies that the RHS of the above equations can be reformulated to vb(Y ∗v∗)b =

∑(a,b)∈L vbv∗aY ∗ab for each b ∈N [17]. This allows us to express current in function
of voltage and power. We obtain the following constraints:

∀g ∈ G ∑
(g,a)∈L

Y ∗gavgv∗a = sgzg−Sg (1)

∀b ∈N rG ∑
(b,a)∈L

Y ∗bavbv∗a = −Sb (2)

∀(a,b) ∈L ,ω ∈ {0,1} ∑
h6=k∈N

(Y ω
abh)

∗(Y ω
abk)

∗v∗hvk ≤ ıab (3)

∀g ∈ G sg ∈ Sg (4)
∀b ∈N |vb| ∈ vb (5)
∀g ∈ G zg ∈ {0,1}. (6)

We remark that complex power variables s only appear in Eq. (1) and (4). We can
eliminate them by replacing Eq. (1) and (4) with the following inequalities:

∀g ∈ G Sgzg ≤ ∑
(g,a)∈L

Y ∗gavgv∗a +Sg ≤ Sgzg. (7)

Moreover, if we define z over all of N and fix zb = 0 for all b 6∈G , Eq. (7) quantified
on N can also replace Eq. (2).

In the ACOPF literature [12, 11, 4, 15] we consider the following generation cost
function, to be minimized:

f (s,z) = ∑
g∈G

zg(cg2(Re(sg))
2 + cg1Re(sg)+ cg0). (8)

Again we can replace s by v using Eq. (1) and removing constant terms in order to
express Eq. (8) as a function of voltage: essentially, we obtain f (v,z) from Eq. (8)
by replacing sg with ∑(g,a)∈L Y ∗gavgv∗a +Sg.

Let F be the feasible subset of Cn defined by Eq. (2)-(6) and (7). We call
ACOPFGC the formulation min(v,z)∈F f (v,z).

Finally, we can obtain a real formulation as follows:

1. replace each quadratic constraint vHMv ♦ α + jβ (where ♦ ∈ {=,≤,≥} and
j =
√
−1) by the pair of constraints

vHM+v ♦ α + jβ ∧ vHM−v ♦ α + jβ ,
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where M+ = 1
2 (M+MH) and M− = 1

2 (M−MH);

2. replace each complex matrix M by the real matrix
(
Re(M) −Im(M)
Im(M) Re(M)

)
;

3. replace each complex vector v by the real vector (Re(v) Im(v))>.

We call this reformulation ACOPFGR.

3 Complexity

Assume cg2 = 0 for all g ∈ G in Eq. (8). By ignoring activation variables we ob-
tain the ACOPF, which is a Quadratically Constrained Quadratic Program (QCQP).
Since the ACOPF is NP-hard [3], it follows by inclusion that the ACOPFG is also
NP-hard. On the other hand, it was shown in [12] that many practical ACOPF in-
stances turn out to be easy rather than hard. We remark that “easy”, in this setting,
does not necessarily mean “in P”, since the decision version of the QCQP is not
known to be in NP (unless there are no quadratic constraints, in which case the
problem class is known to be in NP [19]). The meaning of “easy” in this context is
that global optima can be obtained by means of a local, rather than global, optimiza-
tion procedure.

The question we answer in this section is whether the addition of the binary
activation variables constitute an actual additional difficulty. To show that this need
not necessarily be the case, we consider a linear system

Ax ≤ b
x ≤ 1
x ∈ Rn

+,

 (9)

where A is totally unimodular. Finding a feasible solution can obviously be done
in polynomial time by the, say, interior point algorithm (irrespective of total uni-
modularity), and so this formulation is in P. If we add n additional binary activation
variables y1, . . . ,yn ∈ {0,1} and n additional activation/deactivation constraints

∀ j ≤ n x j ≤ y j, (10)

then the new system has a constraint matrix: A 0
In 0
In −In

 ,

which is easily seen to also be totally unimodular [20]. Therefore this new Mixed-
Integer Linear Programming (MILP) formulation is in P. This provides an example
where adding boolean activation variables does not make the underlying problem
more difficult.
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Having established that the question makes sense, we present a reduction of the
weakly NP-complete SUBSET-SUM problem to a subclass of ACOPFG. Given an
instance (σ1, . . . ,σn,S0) of SUBSET-SUM, we must decide whether there is a subset
I ⊆ {1, . . . ,n} such that

∑
i∈I

σi = S0. (11)

This is equivalent to asking whether the following linear diophantine equation has a
solution x ∈ {0,1}n:

∑
i≤n

σixi = S0. (12)

We now show that we can naturally express Eq. (12) using the ACOPFG formula-
tion of Sect. 2. We consider a simple network D with G = {1, . . . ,n} generators with
demand Sg = 0 for g≤ n and a single non-generator bus (indexed by 0) with demand
S0 (so that N = {0, . . . ,n}). The set L of lines is {(g,0) | 1≤ g≤ n}, namely each
generator is linked to the only non-generator bus. Each generator g ∈ G has gen-
eration interval SG = [σg,σg], i.e. each generator can either be inactive, or else, if
active, must produce exactly σg. Then Eq. (7) becomes:

∀g≤ n Y ∗g0vgv∗0 = σgzg. (13)

Since we know σg is real and positive, we arrange Y ∗ so that the complex part of the
LHS of Eq. (13) is zero; in particular, we arrange Y ∗g0v∗0 to yield a j2 =−1 coefficient
(this can be easily done when we derive ACOPFGR). So we get:

∀g≤ n Re(Y ∗g0vgv∗0) =−σgzg. (14)

Furthermore, Eq. (2) is:
∑

(g0)∈L
Y ∗g0v0v∗g =−S0,

whence, by Eq. (14), we have:

∑
g≤n

(−σgzg) =−S0,

which is exactly Eq. (12).

4 Perspective reformulation

The objective function Eq. (8) can be restated using additional variables pg =
Re(vg ∑(g,a)∈L v∗aY ∗ga +Sg). In practice use the convex constraints

∀g ∈ G s.t. cg2 > 0 pg ≥ Re(vg ∑
(g,a)∈L

v∗aY ∗ga +Sg), (15)
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which are justified by the objective function direction. We now reformulate Eq. (8)
using these new variables:

f (p,z) = ∑
g∈G

(cg2 p2
g + cg1 pg + cg0zg). (16)

The reformulations proposed below can all be carried out on a per-generator basis.
In the rest of this paper, we assume they are only applied to generators g ∈ G for
which cg2 > 0.

The power pg is subject to the following activation constraints:

pg ≤ Pgzg ∧ pg ≥ Pgzg (17)

where Pg = Re(Sg) and Pg = Re(Sg). The PR reformulation [8] can be applied
to (16) as follows:

f̂ (p,z) = ∑
g∈G

(
cg2

p2
g

zg
+ cg1 pg + cg0zg

)
. (18)

The function (18) can be optimized using the perspective cuts (PC) method [8],
which works as follows: (i) first we add new variables tg representing the nonlinear
part of the cost in (18) by considering the following constraints

tg ≥ cg2
p2

g

zg
, (19)

and replacing (18) with f̃ (t, p,z)=∑g∈G (tg+cg1 pg+cg0zg); (ii) then constraints (19)
can be replaced by PCs:

tg ≥ cg2(2 p̌g pg− p̌2
gzg), (20)

where p̌g are fixed values of the real power pg varying in the feasible interval
Pg ≤ p̌g ≤ P̌g when zg = 1. The addition of PCs does not add further difficulties
in the problem formulation except for the condition that they should be generated
iteratively as their number is not finite.

We can alternatively apply the AP2R technique [6, 7], which works in two
phases. The first phase is a projection where the optimal value of zg for the con-
tinuous relaxation of Eq. (18) subject to Eq. (17) is found depending on pg. The
second phase is a lifting where the variables zg are lifted back. The resulting prob-
lem can be solved using an off-the-shelf MIP solver. This is equivalent to replacing
(18) and (17) with:

min ∑
g∈G

(
zg(pint

g )2 + f̌g(πg + pintg )− f̌g(pint
g )+ cg1 pg + cg0zg

)
∀g ∈ G (Pg− pintg )zg ≤ πg ≤ (Pg− pintg )zg
∀g ∈ G πg = pg− pintg zg,

 (21)

where f̌g(x) = cg2x2 and pint
g is
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pint
g = max(Pg,min(

√
cg0/cg2,Pg)). (22)

The final AP2R reformulation consists in Eq. (21), Eq. (2)-(6), the complex part of
Eq. (7), and Eq. (15).

5 Computational results

We tested PRs with 4 cuts and AP2R (implemented using AMPL [5]): both on
the ACOPFG formulation ACOPFGR in Sect. 2 (Table 1) and on the dual Diag-
onally Dominant Programming (DDP) outer-approximation proposed in [18] (Ta-
ble 2) solved using CPLEX [9]. We compared these results with local optima of
the ACOPF (all active generators) obtained by MatPower [21] and by solving the
ACOPFGR using Baron [16] to global optimality (within a limited CPU time of 1h).
The test set includes small to medium scale instances taken from MatPower; results
on one larger-scale instance are reported in Table 2. All results were obtained on an
Intel i7 dual-core CPU at 2.1GHz with 16GB RAM.

Perspective reformulation (ACOPFGR) AP2R (ACOPFGR) MATPOWER Mi-Quartic Solution’s distances
Instance it time first value last value % active real value time %active value real value value time %active best value Persp/Mi-Quartic AP2R/Mi-Quartic

WB2 2 24 878.182 878.182 100 878.182 13 100 878.18 878.182 877.78 13 100 878.182 0 0
WB3 2 169 417.244 417.244 100 417.244 109 100 417.244 417.244 417.25 108 100 417.244 0 0
WB5 2 3600 947.056 947.056 100 947.056 2269 100 947.056 947.056 1082.33 2454 100 947.056 0 0
6ww 1 3600 2913.58 2913.58 x 2881.28 3600 100 10948.7 3135.18 3134.35 3600 100 3135.18 0.1584 0
case9 2 3600 2062.65 5115.72 100 5430.38 3600 66.7 10948.74 7335.42 5296.69 3600 100 5296.69 0.2561 0.6234
case14 1 3600 5250.22 5250.22 x 5375.94 3600 80 6589.72 5287.72 8081.53 3600 60 5476.90 0.1370 0.8304
case30 1 3600 430.906 430.906 x 536.307 3600 66.7 503.508 503.508 576.89 3600 83.3 515.807 0.4234 0.3503

Table 1 Results on ACOPFGR (‘x’: solution not found within time limit).

In the “Perspective reformulation” columns we show: number of iterations, CPU
seconds (limited to 1h), PR objective value obtained on 1st iteration and final value,
original objective function value at optimum, percentage of active generators at op-
timum. In the “AP2R” and “Mi-Quartic” columns we show CPU time, objective
function value and percentage of active generators. In “Solution’s distances” we re-
port a scaled distance of the optima found by PR/AP2R w.r.t. Mi-Quartic, namely
‖pω−pMI-Quartic‖1

‖pω‖1
, ω ∈ {PR, AP2R}.

Perspective reformulation (dual DDP salgado3) AP2R (dual DDP salgado3) MATPOWER Mi-Quartic Solution’s distances
Instance it time first value last value % active real value time %active value real value value time %active best value Persp/Mi-Quartic AP2R/Mi-Quartic

WB2 2 0.001 876.923 876.923 100 876.923 0.001 100 876.923 876.923 877.78 13 100 878.182 0.0014 0.0014
WB3 2 0.002 398.443 398.443 100 398.443 0.001 100 398.443 398.443 417.25 108 100 417.244 0.0472 0.0472
WB5 2 0.005 677.688 677.688 100 677.688 0.008 100 677.688 677.688 1082.33 1200 100 947.056 0.3563 0.3992
6ww 4 0.02 2760.751 2838.693 66.7 2844.44 0.008 66.7 57287.6 2841.61 3134.35 1200 100 3135.177 0.6108 0.6108
case9 2 0.03 2012.135 5034.028 100 5430.38 0.031 66.7 10810.8 7197.45 5296.69 1200 100 5296.686 0.2422 0.8423
case14 3 0.15 5091.340 5390.800 60 5406.53 1200 80 4746.99 4746.99 8081.53 1200 60 5476.905 0.0572 0.0325
case30 2 3.28 398.427 509.554 83.3 518.42 21 66.7 492.232 492.232 576.89 1200 83.3 515.807 0.6031 0.4068

case89pegase 2 297.33 5730.152 5730.152 100 5730.15 286.484 100 5730.15 5730.15 5817.60 x x x x x

Table 2 Results on dual DDP [18] (‘x’: solution not found within time limit).

While it is clear that the tests with ACOPFGR are inconclusive, those on the dual
DDP approximation give very tight bounds in relatively little time.
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