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Abstract The Buckminsterfullerene is an inorganic molecule consisting of 60 car-
bon atoms in the shape of a soccer ball. It was used in [15] to showcase algorithms
that find the correct shape of a protein from limited data (length of inter-atomic dis-
tances) without any further chemical experiment: in that case, by means of a compli-
cated constructive heuristic based on genetic algorithms. In this paper we show that
we can reconstruct the Buckminsterfullerene structure by means of mathematical
programming, standard solver software, and little else.
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1 Introduction

The authors of [15] state that “ab initio structure solution of nanostructured materi-
als [that cannot be solved using crystallographic methods] is feasible using diffrac-
tion data in combination with distance geometry methods”. They then proceed to
find the structure of Buckminsterfullerene (a highly symmetric molecule consisting
of 60 carbon atoms [25]) using a heuristic method, called LIGA, that employs dis-
tance values in order to construct small rigid polytopes which are then combined
into larger structures. The combination is achieved by means of a genetic algorithm
approach that involve tournaments for selection of the fittest. Some backtracking
also occurs.
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The input to LIGA (number of atoms and list of all inter-atomic distance values)
is obtained from powder diffraction data: we note that the graph underlying the
distance values is not a part of the input. The experiment in [15, Fig. 2c-d] suggests
that the algorithmic reconstruction process yields some errors; but that it suffices
to increase the multiplicities of the distance values in the list to obtain the correct
shape.

In this paper we show, using Mathematical Programming (MP) methods, that a
correct structure of the Buckminsterfullerene can be obtained from the original dis-
tance list, without having to add multiple copies of each distance value, and without
having to create a new algorithm. Most of the work is carried out on one of two MP
formulations involved in the reconstruction problem, as explained below. The only
algorithmic contribution is given by a “vanilla” MultiStart (MS) approach.

Our interest in the Buckminsterfullerene only extends so far as it constitutes a
well-known and interesting instance of the Unassigned Distance Geometry Problem
(UDGP), defined below. Many people have managed to reconstruct the shape of
the Buckminsterfullerene: most of them have used heuristic optimization methods
to find “good” minima of an energy formula derived from the partial differential
equations that define the atomic force field [22, 10, 6]. We follow a different path,
namely that of [15], which takes as input the values of the inter-atomic distances of
the molecule.

1.1 Two problems in distance geometry

We now introduce the Distance Geometry Problem (DGP) and its “unassigned” vari-
ant, the UDGP. The input of the DGP is an integer K and a simple edge-weighted
undirected graph G = (V,E,d) where d : E → R+. The DGP asks whether there
exists a realization x : V → RK of G in RK satisfying

∀{i, j} ∈ E ∥xi − x j∥2
2 = d2

i j. (1)

In other words, the DGP asks us to draw the graph G in K dimensions such that
edges are drawn as segments having length equal to the weight [19]. The DGP is
NP-hard [24], it is in NP if K = 1 but it is unknown whether it is in NP for K > 1 [3].
It has applications in designing time synchronization protocols in wireless networks,
in the localization of mobile sensors, in the determination of protein structure from
Nuclear Magnetic Resonance (NMR) experiments, and in many other fields. See
[20, 9] for more information about the DGP.

The UDGP removes the adjacency information from the graph edges: its input is
a pair of integers K,n and a list δ of m positive scalars. It asks whether there exists
an assignment α mapping [m] = {1, . . . ,m} to the set Ē = {{i, j} | i, j ∈ [n]}, and a
realization x : [n]→ RK such that

∀ℓ≤ m with α(ℓ) = {i, j} ∥xi − x j∥2
2 = δ

2
ℓ . (2)
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Although the UDGP is not as well known as the DGP, in many applications it is the
problem that is actually closest to the experiments leading to the use of the DGP. For
example, the determination of protein structures from distances involves the solution
of a DGP, but the actual raw input from the NMR experiments is closer to a list of
values δ than to a graph G. In fact, G is inferred from δ because the assignment α is
computed first, together with a very imprecise realization [26], see Sect. 3.1 below.

The UDGP has applications in the study of DNA [17, 8], where it is known as the
turnpike or beltway or partial digest problem. It is the natural modelling framework
for the study of nanostructures [4] such as the Buckminsterfullerene. It also arises in
the context of protein structure [26], but in this setting |δ | (the length of the sequence
δ ) is much smaller than the number of atom pairs N = n(n−1)/2, which yields very
imprecise assignment functions α . Conversely, it is often the case that all (or almost
all) pairwise distances can be measured by NMR interaction in molecules that are
much smaller than proteins (e.g. the Buckminsterfullerene) [15]. In turn, this yields
much more precise assignments. The UDGP is NP-hard even if m = N [17].

Both DGP and UDGP can be defined for any K, and there exist many applications
for K ∈ {1,2,3}, as well as some for larger values of K. In this paper we fix K = 3,
since the Buckminsterfullerene is realized in 3D space.

1.2 Goal of this paper

In this paper we solve the UDGP instance known as “Buckminsterfullerene” [16] by
means of MP, a formal language for specifying and solving optimization problems.
We recall an existing Mixed-Integer Nonlinear Programming (MINLP) formulation
of the UDGP, and propose a new Mixed-Integer Quadratically Constrained Pro-
gramming (MIQCP) formulation. These can only be solved for tiny inputs much
smaller than the Buckminsterfullerene. We therefore decompose the decision on the
assignment α and the realization x: we construct an approximate Mixed-Integer
Linear Programming (MILP) formulation of the UDGP which can be solved to
larger sizes. We obtain an approximate assignment α ′ and an approximate realiza-
tion, which we discard. We then use α ′ to define an edge-weighted graph Gα ′ , and
obtain a more precise realization by solving the DGP on Gα ′ . Finally, we show the
perfectly reconstructed shape of the Buckminsterfullerene from a distance list δ of
size N.

2 MINLP formulations for the UDGP

The UDGP aims at finding an assignment α : [m]→ Ē and a realization x consistent
with each other. We note that realizations are defined as functions from V to RK

that satisfy the distance equations (1). Therefore x can be represented by an n×K
matrix, where n = |V |: every row xi of x is a vector in RK for i ∈V . We can encode
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the assignment α by means of binary decision variables yi jℓ such that yi jℓ = 1 iff
α(ℓ) = {i, j}. The assignment α satisfies the following constraints: each distance
value δℓ for ℓ ≤ m is assigned to exactly one edge {i, j}, and each pair {i, j} is
assigned to at most one ℓ (some pairs may remain unassigned).

2.1 Exact MINLP formulations

These considerations yield the following “natural” MP formulation for the UDGP,
proposed in [11]:

min
x,y

∑
i< j≤n

∑
ℓ≤m

yi jℓ(∥xi − x j∥2
2 − δ 2

ℓ )
2

∀ℓ≤ m ∑
i< j≤n

yi jℓ = 1

∀i < j ≤ n ∑
ℓ≤m

yi jℓ ≤ 1

x ∈ RnK ∧ y ∈ {0,1}Nm


(3)

Since Eq. (3) has nonlinear terms and integer variables, it is a MINLP formulation
with a quintic polynomial as objective.

We propose a new MIQCP formulation. It decreases the polynomial degree of
Eq. (3) from five to two.

min
x,y,z

∑
i< j≤n

∑
ℓ≤m

(z+i jℓ + z−i jℓ)

∀i < j ≤ n, ℓ≤ m −z−i jℓ−M(1−yi jℓ) ≤ ∥xi − x j∥2
2 −δ 2

ℓ ≤ z+i jℓ+M(1−yi jℓ)

∀ℓ≤ m ∑
i< j≤n

yi jℓ = 1

∀i < j ≤ n ∑
ℓ≤m

yi jℓ ≤ 1

x ∈ RnK ∧ y ∈ {0,1}Nm ∧ z ≥ 0,


(4)

where M = (∑ℓ≤m δℓ)
2 (see [5, Prop. 2.2]). “Sandwiching” the distance constraints

allows constraint activity whenever α(ℓ) = {i, j}, and trivialize the constraint oth-
erwise. The slack variables z−,z+ allow the solver to find an approximately feasible
solution with imprecise distances.

2.2 An approximate MILP formulation

The only nonlinear part of Eq. (4) is the Euclidean distance term ∥xi − x j∥2 in the
middle member of the distance constraints. We have:

∥xi − x j∥2 = ∥xi∥2 +∥x j∥2 −2⟨xi,x j⟩= ⟨xi,xi⟩+ ⟨x j,x j⟩−⟨xi,x j⟩.

Now we linearize the nonlinear (inner product) terms: we create an n× n variable
matrix X , and we replace each term ⟨xi,x j⟩ by Xi j (which, by commutativity, yields a
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symmetric matrix X). For all i< j and ℓ, we obtain the linearized distance constraint

−z−i jℓ−M(1− yi jℓ)≤ Xii +X j j −2Xi j −δ
2
ℓ ≤ z+i jℓ+M(1− yi jℓ).

So far, this is the usual first step in the construction of the Semidefinite Programming
(SDP) relaxation for MP formulations with quadratic terms. However, instead of
imposing the positive semidefinite (PSD) constraint X ⪰ 0, we restrict our attention
to a polyhedral inner approximation thereof, that of Diagonally Dominant (DD)
matrices. An n×n matrix is DD if it satisfies:

∀i ≤ n Xii ≥ ∑
j ̸=i

|Xi j|. (5)

By Gershgorin’s Circle Theorem [13], every eigenvalue λi of a matrix A is contained
in an interval [Aii −∑ j ̸=i |Ai j| , Aii +∑ j ̸=i |Ai j|]. By the definition of DD matrices
(Eq. (5)), if X is DD, then the lower interval bound Xii −∑ j ̸=i |Xi j| is non-negative,
which implies that every eigenvalue of X is non-negative, which means that X is
PSD. We note that the converse need not hold: many PSD matrices are not DD.

The DD cone is polyhedral: its extreme rays are given by the rank-one matrices
eie⊤i and (ei±e j)(ei ± e j)

⊤ [2]. We therefore proceed to linearize the absolute value
term in Eq. (5) by means of an additional n×n matrix variable T , obtaining the linear
reformulation [1, Thm. 3.9]:

∀i ≤ n Xii ≥ ∑
j ̸=i

Ti j ∧ −T ≤ X ≤ T.

We remark that linear programming over the DD cone is also known as DD Pro-
gramming (DDP).

We now put everything back together to yield the following MIDDP formulation:

min
X ,T,y,z

∑
i< j≤n

∑
ℓ≤m

(z+i jℓ + z−i jℓ)

∀i < j ≤ n, ℓ≤ m −z−i jℓ−M(1−yi jℓ) ≤ Xii+X j j−2Xi j−d2
ℓ ≤z+i jℓ+M(1−yi jℓ)

∀ℓ≤ m ∑
i< j≤n

yi jℓ = 1

∀i < j ≤ n ∑
ℓ≤m

yi jℓ ≤ 1

∀i ≤ n Xii ≥ ∑
j≤n: j ̸=i

Ti j

−T ≤ X ≤ T
X ,T ∈ Rn×n ∧ y ∈ {0,1}Nm ∧ z ≥ 0.


(6)

We note that Eq. (6) is a MILP, for which there exist technically viable solvers even
for relatively large sizes [14]. We also remark that, although this reformulation may
not immediately appear simple, it is based on a set of well-known building blocks.

Since not every PSD matrix is DD, a DDP is an inner approximation of the
corresponding SDP, which means that, potentially, the DDP might be infeasible
even if the SDP is not. This is not an issue for the MIDDP formulation in Eq. (6)
since it is always feasible: it suffices to satisfy the DD constraints first, and then
choose large enough slack variables z+,z− to accommodate the error.
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In practice, solving Eq. (6) yields an n×n matrix X . There are two ways to obtain
an n×K (approximate) realization of δ .

1. Principal Component Analysis (PCA). Let X = PΛP⊤ be a spectral decomposi-
tion of X . The diagonal matrix Λ is non-negative because X is DD and therefore
PSD, so that

√
Λ is a real matrix. Let Λ K be the matrix obtained by Λ by zero-

ing all of the diagonal entries aside from the K largest. Then x̂ = P
√

Λ K has the
property that X̄ = x̂x̂⊤ = PΛ KP⊤ is a best rank-K approximation of X .

2. Barvinok’s “naive algorithm” generalized to K dimensions [21]. Proceeding as
for PCA, consider the factor F = P

√
Λ of X , then sample (componentwise) an

n×K matrix Z ∼Normal(0,1/
√

K). The n×K matrix x̌ = FZ has good proxim-
ity properties with the constraints ∥xi −x j∥2 = ȳi jℓδℓ with arbitrarily high proba-
bility (here ȳ are the assignment variables for α having value 1 after solving the
MIDDP: they simply select the correct ℓ to match to the {i, j}).

Either of these two ways would allow us to retrieve an approximate realization x
from the DD matrix X , but experiments in this yielded very wrong realizations.

3 A matheuristic for the UDGP

Matheuristics are heuristic algorithms based on MP formulations [23]. Our matheuris-
tic decomposes the decision on the assignment α and the realization x.

3.1 The way of proteins and their scale

This decomposition idea is not new: the DGP application to protein conformation
derives the distance values from NMR experiments, which in fact yield an ambigu-
ous assignment. This assignment is disambiguated in two phases. The first rests
on chemical considerations. The second phase is based on a metaheuristic (usually
simulated annealing) which returns an assignment together with a poor quality real-
ization, which is discarded. This assignment, however, is used to define a weighted
graph that becomes the input of a DGP. The solution of this DGP provides the real-
ization of interest, and the shape of the protein.

There are two technical differences with the Buckminsterfullerene: powder diffrac-
tion data does not yield any assignment (not even an ambiguous one), and the first
disambiguation phase does not apply because of the atomic uniformity of the Buck-
minsterfullerene: it consists entirely of carbon atoms.

The main difference w.r.t. methodologies for computing the shape of proteins
and of inorganic molecules such as the Buckminsterfullerene, however, is one of
scale. Proteins are much larger than the range of distances that can be measured
using NMR, which is around 5.5Å. As a consequence, only very few distances can



Distance geometry and the Buckminsterfullerene 7

be obtained. The protein graphs that provide the DGP input by means of which we
compute realizations are very sparse.

The Buckminsterfullerene — and similar molecules — are much smaller than
proteins. As a consequence, we can often obtain lists δ of distance values that have
length comparable with the total number N of index pairs. Measurements are never
free from errors, so having “complete” lists of distances does not mean that the list is
correct. The authors of [15] imply that a source of error is that δ may contain more
distances than needed: for each given distance value, its number of occurrences in
δ may be overestimated. We do not simulate this type of error here, but we do look
at how the structure reconstruction changes as |δ | grows to reach N.

3.2 The algorithm

For the above reasons, we propose a different methodology, based on MP, to imple-
ment the decomposition between α and x.

The matheuristic we propose is as follows:

1. compute an assignment α and an approximate realization x′ using the MIDDP
(MILP) formulation Eq. (6);

2. discard the realization x′

3. construct the weighted graph G from α

4. define a DGP instance on G and solve it, to obtain a realization x∗

5. return x∗.

3.2.1 Solving the MIDDP

Even if MILP solvers are technically very advanced, the MIDDP formulation in
Eq. (6) is very challenging to solve at the instance scale yielded by the Buckminster-
fullerene. We therefore solve it “locally”, which, for a MILP solver, means setting
a resource limit (either number of Branch-and-Bound nodes, or time). The solution
returned by the solver is an approximate assignment.

3.2.2 Solving the DGP

The DGP consists in finding a realization x satisfying Eq. (1). Many different for-
mulations of the DGP have been discussed in the literature [20, 18]. In this case we
use the quartic formulation:

min
x∈RnK ∑

{i, j}∈E
(∥xi − x j∥2

2 −d2
i j)

2. (7)
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It is unconstrained and nonconvex in the x variables. As for the MIDDP, solving
Eq. (7) exactly is out of the technological reach of global optimization solvers, at
least at the scale of the Buckminsterfullerene. We therefore use a simple MS heuris-
tic: at each iteration we sample a random starting point, then call the local optimiza-
tion solver IPOPT [7] to identify a close local minimum, choosing the best over the
allowed iterations.

4 Finding the shape of the Buckminsterfullerene

We implemented our formulation using AMPL [12]. We used a smaller M value in
solving the MIDDP than the one mentioned in [5, Prop. 2.2], since it is far from
being tight. We set M = ∑ℓ δ 2

ℓ in our computational experiments.
We solved the MIDDP formulation using CPLEX 22.1 [14]. The local solver

deployed on Eq. (7) is IPOPT 3.4.12. All experiments were carried out on an Ap-
ple M1 Max with 64GB RAM running MacOS Ventura 13.6.4. All software was
natively compiled for the ARM64 architecture.

CPLEX was given a time limit of 360s (six minutes — extending to one hour
yielded no appreciable difference). The MS algorithm used to solve the DGP in
Eq. (7) was allowed to run for 10 iterations. IPOPT was given no time limit.

The Buckminsterfullerene has n = 60 vertices and N = 1770 distance values,
many of them with multiplicities, given its molecular symmetry. We computed
the exact realization according to [25] and extracted a complete list δ of its inter-
atomic distances. From this instance we also generated instances with smaller |δ |
through a probabilistic Erdős-Rényi edge removal choice. We examined instances
with |δ | ∈ [0.1N,1.0N], with 1.0N corresponding to the complete list. The original
realization of the Buckminsterfullerene is given in Fig. 1 (left). We also show a real-
ization for |δ |= 0.5N (Fig. 1 center), which is rather typical of the whole range of
probabilistically generated instances. Lastly, the perfectly reconstructed molecule
corresponding to |δ | = 1770 is shown in Fig. 1 (right). It may not appear identical
because it is a rotation of the original: but the error returned by the solver was zero.

Fig. 1 Left: the Buckminsterfullerene molecule with a spiral order on the vertices. Center: wrong
realizations obtained for |δ |= 0.5N. Right: the realization for |δ |= N yields a perfect reconstruc-
tion (rotated).
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By trial-and-error we narrowed down an interval of interest for |δ |, i.e. when the
resulting shape is not completely wrong but not yet correct, to |δ | ∈ [0.995N,0.999N].
For this range we present numerical experiments based on the Mean Distance Er-
ror (MDE), i.e. (1/|E|)∑{i, j}∈E |∥xi − x j∥2 − di j | computed on the reconstructed
weighted graph.

density 0.995 0.996 0.997 0.998 0.999
MDE 0.722 1.057 0.778 0.552 0.603

The realizations corresponding to above densities are shown in Fig. 2. As one can
see, the realizations have the correct overall shape with some local errors.

Fig. 2 Slightly wrong realizations for |δ | ∈ [0.995N,0.999N].

We report the mean errors (1/N)∥Adj(G′)− Adj(G∗)∥1 of the reconstructed
graphs G′ w.r.t. the correct Buckminsterfullerene graph G∗, where Adj(G) is the
upper triangular part of weighted adjacency matrix of G.

density 0.995 0.996 0.997 0.998 0.999
mean error 1.043 1.291 1.129 0.851 0.720

Finally, the CPU time taken for each instance to be solved was between 1000s
and 1200s.

5 Conclusion

The proposed methodology, simpler than that of [15], allowed us to reconstruct the
Buckminsterfullerene perfectly from the list of all its distances. It also allowed us
to reconstruct locally wrong realizations with very few missing distances. This is in
constrast to [15], which required more than N distances (same distance values but
with higher multiplicities) in order to reconstruct the molecule perfectly.
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