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Abstract We discuss the problem of optimally designing a power transportation
network with respect to line activity. We model this problem as an alternating current
optimal power flow with on/off variables on lines. We formulate this problem as
a nonconvex MINLP in complex numbers, then we propose two convex MINLP
relaxations. We test our formulations on some small-scale standard instances.
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1 Introduction

Every network routing problem naturally yields a design counterpart which opti-
mally decides some part of the network topology. Network routing problems based
on multicommodity flows yield design problems where arcs, nodes and/or other fea-
tures are installed/removed according to flow cost and demand. Such optimization
problems often arise in telecommunication networks [1], supply chain [2], logistics,
and more. They are usually solved using a mixture of Mathematical Programming
(MP) formulations of the mixed-integer sort, decomposition strategies, combinato-
rial algorithms, and heuristics. On the other hand, the first approach —which we
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follow in this paper— is always the deployment of off-the-shelf MP solvers on such
problems.

Power networks are used to transport and distribute electricity. The transporta-
tion occurs at very high voltage levels (hundreds of thousands of volts), while distri-
bution occurs at lower voltage levels (hundreds of volts). Typically, such networks
are reasonably sparse, but have some cycles for redundancy-based protection. More-
over, these networks route Alternating Current (AC) rather than Direct Current (DC)
[3]. The typical network routing problem for current is known as Optimal Power
Flow (OPF). It is well known that the OPF for DC can be well approximated by a
Linear Program (LP) (see [4, §1.2.4], [5, Eq. (5.48)]). On the other hand, the OPF
for AC, commonly known as ACOPF, is the object of intense research [4, 5] because
of its difficulty and importance.

We shall see in the following that the ACOPF can be naturally formulated in
MP in many ways, e.g. Quadratically Constrained Quadratic Programming (QCQP),
Polynomial Programming (PP), and general Nonlinear Programming (NLP), all of
which involve nonconvexities [4]. Common relaxations are LP, Second-Order Cone
Programs (SOCP), Semidefinite Programs (SDP) [5]. The variables (voltage, cur-
rent, power) are naturally defined on continuous domains. A very interesting feature
of the ACOPF is that its variables range in complex numbers. While a separation
in real and imaginary parts is always possible, matrix formulations and relaxations
generally take up twice the amount of storage w.r.t. working directly in complex
numbers [6].

Network design problems defined on the OPF in DC can be readily formulated
as Mixed-Integer Linear Programs (MILP) [7, 8]. This is also done for problems
arising in grid robustness analysis [9, 10], where binary variables model attacks and
vulnerabilities [4, Ch. 3]. Binary variables in the ACOPF have also been used to
discretize continuous variables arising in nonconvex constraints, so as to obtain an
approximate reformulation turning nonconvexities into a finite set of binary choices
[5, §4.3.5-4.3.6], which can be dealt with using standard Mixed-Integer Program-
ming (MIP) solvers.

To the best of our knowledge, the first paper exhibiting computational results for
the ACOPF with binary variables used for design (rather than approximation) pur-
poses is [11], where binary variables are used to switch generators and shunts on and
off: a local NLP solver is deployed on a well-known continuous NLP reformulation
of the corresponding nonconvex MINLP. A perspective cut based relaxation of an
ACOPF formulation with binary variables for switching generators on and off was
proposed in [12]. Another possible approach for working with ACOPF involving
binary variables is to apply network design modeling techniques involving binary
variables to an LP or SOCP relaxation of the ACOPF. This was done in [13], which
proposed inner and outer mixed-integer Diagonally Dominant Programming (DDP)
formulations. DDP [14] is a MP technique to approximate the Semidefinite (PSD)
cone using LP. The ACOPF is NP-hard [15], and remains hard even when the goal
is to minimize the number of active generators [12].

In this paper we move a step towards solving a “network design ACOPF” by in-
tegrating binary variables that control whether a line is active or not. Our objective



Power network design with line activity 3

is to decrease the number of active lines while still satisfying demand. While this
is similar to the optimal switching problem [16], here we start from the ACOPF
formulation rather than its DC counterpart. We shall present a (nonconvex) MINLP
formulation of the network design problem derived from the ACOPF, and two con-
vex MINLP relaxations. While there is little hope of solving even the tiniest ACOPF
instances with the nonconvex MINLP, we show that some results for small ACOPF
instances can be obtained using convex MINLPs.

The rest of this paper is organized as follows. We present the ACOPF formulation
and a nonconvex MINLP formulation for the corresponding network design problem
in Sect. 2. We then propose some new mixed-integer SOCP (MISOCP) relaxations
in Sect. 3. We test our formulations with some standard instances in Sect. 4.

2 The ACOPF formulation

Modeling the ACOPF can be daunting. Most of the literature refers to Matlab-style
modeling: painstakingly filling the correct components of a huge constraint matrix
with the correct values. This is the low-level kind of interface to MP solvers which
produces “flat” formulations that can be read directly by solvers: extremely fast
in execution, but a debugging nightmare. See [4, Eg. 1.2.1] and [17, 18] for some
introductory material.

Today, most MP formulations are presented in “structured” form: index sets
first, then parameters, decision variables, objective function(s), and constraints, all
parametrized by and quantified over the aforementioned indices. Each MP entity
(parameter, variable, objective, constraint) is stored in a multi-dimensional jagged
array, possibly not completely defined. Structured formulations convey the problem
definition much more clearly than flat ones, at least to MP-versed readers. Detailed
formulations can be found in [19]. Modeling tools such as AMPL [20] allow for
fast(er) debugging.

We model the electrical network as a loopless multi-digraph G = (B,L) where
B is the set of nodes and L the set of arcs. In power engineering terminology a
node is called a bus and an arc is called a line or branch. We assume |B| = n and
|L| = m. Parallel arcs occur whenever parallel cables are deployed on connections
that must transport excessive amounts of power for a single cable. The h-th line
`bah joining two buses b and a is represented by a pair of anti-parallel arcs `bah =
{(b,a,h),(a,b,h)}. We assume that L is partitioned in two sets L0,L1 with |L0| =
|L1|: for each pair of antiparallel arcs, one is in L0 and the other in L1, according to
the asymmetry of the branch admittance matrix Ybah matrix below.

Ohm’s law expresses the current Ibah injected on a line `bah in function of the
voltages Vb,Va at the endpoints b and a, and of the physical properties of the line.
The fundamental difference with Ohm’s law in DC is that AC yields an asymmetry.
While in DC we have Ibah =−Iabh, in AC we instead have:

∀(b,a,h) ∈ L0 Ibah = Y ff
bahVb +Y ft

bahVa ∧ Iabh = Y tf
bahVb +Y tt

bahVa. (1)
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The Y constants in the above equations are defined as follows [4, 19]:

Ybah =

(
Y ff

bah Y ft
bah

Y tf
bah Y tt

bah

)
=

(
( 1

rbah+ixbah
+ ibbah

2 )/τ2
bah −

1
(rbah+ixbah)τbahe−iνbah

− 1
(rbah+ixbah)τbaheiνbah

1
rbah+ixbah

+ ibbah
2

)
, (2)

where r,x,b,τ,ν measure some physical properties of the line, and are given as part
of the instance. The suffixes ff, ft, tf, tt to Y stand for “from-from”, “from-to”,
“to-from”, and “to-to”: they are a reminder of the direction of the routed quantities
w.r.t. the line `bah.

We can now introduce sets, parameters and decision variables of the ACOPF.

• Sets: B, L and a set G of generators partitioned as {Gb | b∈B}, where Gb contains
the generators attached to bus b.

• Parameters: power demand (or load) S̃b, shunt admittance Ab; voltage magni-
tude bounds V b,V b at each bus b ∈ B; admittance matrix Ybah; upper bound
S̄bah to injected power magnitude; lower/upper bounds ηbah,ηbah to phase differ-
ence at each line (b,a,h) ∈ L; cost coefficients Cg2,Cg1,Cg0; lower/upper bounds
S g,S g to power generated at g ∈ G ; a reference bus r ∈ B.

• Decision variables: voltage Vb at bus b ∈ B, injected current Ibah, injected power
Sbah at each line (b,a,h) ∈ L, and generated power Sg at each generator g ∈ G .

All variables range in C. Among the parameters, the power magnitude, voltage mag-
nitude, phase difference bounds, cost coefficients are in R; r ranges in the bus set;
the generated power bounds are in C. Limited to this paper we assume that, for
two complex numbers α = α r + iαc and β = β r + iβ c, α ≤ β means α r ≤ β r and
αc ≤ β c. We also recall that |α| =

√
(α r)2 +(αc)2 is the magnitude of α , that

α∗ = α r− iαc is the conjugate of α , and that |α|2 = α α∗.
We present now objective function and constraints of what we call the (S, I,V )-

formulation of the ACOPF.

• Objective function: min ∑
g∈G

(Cg2(S
r

g )
2 +Cg1S

r
g +Cg0), which is quadratic and

separable in generated power.
• Bound constraints: on voltage magnitude V 2

b ≤ |Vb|2 ≤ V 2
b for each b ∈ B;

on power magnitude |Sbah|2 ≤ S̄2
bah for each (b,a,h) ∈ L; on phase difference

tan(ηbah)(Vb Va
∗)r ≤ (Vb Va

∗)c ≤ tan(ηbah)(Vb Va
∗)r together with (Vb Va

∗)r ≥ 0
for (b,a,h) ∈ L0; on generated power S g ≤ Sg ≤ S g for each g ∈ G . More-
over, we have V c

r = 0 and V r
r ≥ 0 on the reference bus.

• Functional constraints:

– Power flow equations:

∀b ∈ B ∑
(b,a,h)∈L

Sbah + S̃b =−Ab
∗|Vb|2 + ∑

g∈Gb

Sg. (3)

– The relationship between S,V, I:

∀(b,a,h) ∈ L Sbah =Vb Ibah
∗. (4)
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– Ohm’s laws Eq. (1), which we write equivalently as:

∀(b,a,h) ∈ L0 Ibah = Y ff
bahVb +Y ft

bahVa (5)
∀(b,a,h) ∈ L1 Ibah = Y tf

abhVa +Y tt
abhVb. (6)

2.1 The network design ACOPF

We now introduce a binary variable ybah for each (b,a,h) in L. We have ybah = 1 iff
the corresponding line is active, and we must ensure that both antiparallel arcs are
active/inactive at the same time by ybah = yabh. We control activation/deactivation
of a line by vanishing its effect on the power flow equations, and ignoring the power
magnitude bound when the line is inactive:

∀b ∈ B ∑
(b,a,h)∈L

Sbahybah + S̃b =−Ab
∗|Vb|2 + ∑

g∈Gb

Sg, (7)

∀(b,a,h) ∈ L (|Sbah|ybah)
2 ≤ S̄2

bah. (8)

Note that Eq. (7)-(8) does not cut the global optima of the ACOPF: it suffices to
set ybah = 1 for each (b,a,h) ∈ L to see this. Instead, we add an objective function
min∑(b,a,h)∈L0

ybah. We can tackle this bi-objective MINLP either by scalarization or
by adding a constraint ∑(b,a,h)∈L0

ybah ≤ ξ and letting ξ vary in {1, . . . ,m/2}. In this
paper we consider scalarization approach, so that the objective function becomes:

min ∑
g∈G

(Cg2(S
r

g )
2 +Cg1S

r
g +Cg0)+ρ ∑

(b,a,h)∈L0

ybah, (9)

where ρ > 0 is a scalar weight which we set to 1 for testing purposes. We denote
the network design ACOPF problem with binary variables on lines by ACOPFL.

A few preliminary attempts to solve this formulation with the tiniest possible
instance (case5, see Sect. 4 below) showed that it could not be solved in 500s by
the state-of-the-art BARON [21] solver.

3 Linearizing relaxations

The material in this section is motivated by the solution difficulty posed by the
nonconvex MINLP formulation of the ACOPFL. First of all we propose some valid
relaxation for ACOPF problem.

The decision variables I for current can be eliminated from the (S, I,V )-formulation
by replacing them in Eq. (4) with their expressions in Eq. (5)-(6). This yields the
(S,V )-formulation, which is still a nonconvex NLP. In turn, using Eq. (7)-(9), this
NLP yields a nonconvex MINLP formulation for the ACOPFL.
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3.1 (S,V,X)-relaxation

The only nonlinear terms appearing in the nonconvex constraints of the ACOPF
(S,V )-formulation are quadratic in voltage: they are products Vb Va

∗ for some b,a ∈
B. Every such product term can be linearized, i.e. replaced by a new (complex)
variable Xba for b,a ∈ B (we do not include the corresponding defining constraint
Xba =Vb Va

∗). Let us call this the (S,V,X)-relaxation. This turns out to be a convex
QCQP (more specifically a SOCP). The quadratic terms are: S 2

g in the minimizing
objective and |Sbah|2 in the LHS of the power magnitude bound constraints.

3.2 (S,V,X)-SDP

Note that the (S,V,X)-relaxation is an exact reformulation if we enforce X =VV H,
where the apex stands for “hermitian transpose”, i.e. the transpose of the componen-
twise complex conjugate. Accordingly, since X is a PSD rank-one matrix, we get a
stronger relaxation w.r.t. the (S,V,X)-relaxation presented in Sec. 3.1, if we replace
X =VV H by X � 0, which yields a complex SDP relaxation called (S,V,X)-SDP.

3.3 (S,V,X)- 1
2 DDP

Given the scarcity of off-the-shelf mixed-integer SDP solvers, we consider a DDP
approximation of the PSD cone [14]: since every Diagonally Dominant (DD) matrix
is also PSD [22], the constraint “X is DD” yields an inner approximation (i.e. a
restriction) of the complex SDP.

Writing the DDP constraints corresponding to X � 0 requires splitting X into real

and imaginary parts, which yields X̄ =

(
X rr X rc

Xcr Xcc

)
∈ R2n×2n, where X rr = (X r

ba),

Xcc = (Xc
ba), X rc linearizes the matrix (V r

bV c
a ), and Xcr linearizes the matrix (V c

b V r
a).

We remark that X rr,Xcc are symmetric matrices, while X rc,Xcr are not; on the other
hand, X rc

ba = Xcr
ab for each b,a ∈ B.

Now the DDP inner approximation of X̄ � 0 states that any diagonal component
of X̄ is greater than or equal to the sum of the absolute values of the components in
the same row. This corresponds to:

∀b ∈ B X rr
bb ≥ ∑

a∈B
a6=b

T rr
ba + ∑

a∈B
T rc

ba (10)

∀b ∈ B Xcc
bb ≥ ∑

a∈B
a6=b

T cc
ba + ∑

a∈B
T cr

ba , (11)

where T̄ =

(
T rr T rc

T cr T cc

)
is a real variable matrix such that −T̄ ≤ X̄ ≤ T̄ [14].
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The issue with inner DDP approximations is that they may be infeasible even if
the corresponding SDP is feasible. Experimentally, this was verified to be the case
in every ACOPF instance we tested. This issue can be addressed algorithmically
[14], but this would require solving a sequence of DDPs, which would in turn take
excessive time. Instead, we chose to only impose Eq. (10), which yielded feasi-
ble “half-DDP” relaxations (which we refer to as (S,V,X)- 1

2 DDP relaxation) of the
tested ACOPF instances. Note that we do not have a general feasibility proof for
1
2 DDP relaxations. So far, we have not found any counterexamples yet, either.

3.4 Jabr relaxation

Another SOCP relaxation of the ACOPF, called “Jabr relaxation”, was proposed
in [23]. It can be constructed from the (S,V )-formulation as follows:

1. transform cartesian coordinates V r,V c to polar coordinates v,θ by replacing V r =
vcosθ and V c = vsinθ : this will result with nonlinear terms in vbva cos(θb−θa)
and vbva sin(θb−θa);

2. define an index set R = {(b,b) | b ∈ B}∪{(b,a) | (b,a,1) ∈ L};
3. linearize (replace) the nonlinear terms with new variables cba = vbva cos(θb−θa)

and sba = vbva sin(θb−θa) for all (b,a)∈R: this also yields cba = cab, sba =−sab,
c2

ba + s2
ba = v2

bv2
a (?) for all (b,a,1) ∈ L0, as well as sbb = 0 and cbb = v2

b (†) for
each b ∈ B;

4. replace v2
b,v

2
a in (?) with cbb,caa by means of (†), and relax (?) to a convex (conic)

constraint c2
ba + s2

ba ≤ cbbcaa;
5. replace |Vb|2 in the voltage magnitude bounds with cbb;
6. remark that Vb Va

∗ = cba + isba, and infer the phase difference bounds as cba ≥ 0
and tan(ηbah)cba ≤ sba ≤ tan(ηbah)cba for each (b,a,h) ∈ L0;

7. the injected power variables Sbah satisfy the linear equations:

∀(b,a,h) ∈ L0 (Sbah)
r = (Y ff

bah)
r
cbb +(Y ft

bah)
r
cba +(Y ft

bah)
c
sba

∀(b,a,h) ∈ L0 (Sbah)
c = −(Y ff

bah)
c
cbb +(Y ft

bah)
r
sba− (Y ft

bah)
c
cba

∀(b,a,h) ∈ L1 (Sbah)
r = (Y tt

abh)
rcbb +(Y tf

abh)
r
cba +(Y tf

abh)
c
sba

∀(b,a,h) ∈ L1 (Sbah)
c = −(Y tt

abh)
ccbb +(Y tf

abh)
r
sba− (Y tf

abh)
c
cba.

3.5 ACOPFL relaxations

We derive ACOPFL relaxations from the (S,V,X)-relaxation, the (S,V,X)- 1
2 DDP

and Jabr relaxations of the ACOPF, by employing the binary variables y as in
Sect. 2.1, i.e. by imposing Eq. (7)-(8) and minimizing Eq. (9). We linearize the bi-
linear terms Sbahybah in the (S,V,X)-relaxation and the (S,V,X)- 1

2 DDP relaxation,
by means of McCormick inequalities [24], introducing a new variable zbah for each
Sbahybah together with some new linear constraints involving zbah,Sbah, and ybah,
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as well as their bounds. The same is done for Jabr relaxation of the ACOPFL, by
defining new variables related to each bilinear term cbbybah, cbaybah, and sbaybah
respectively. A few preliminary results showed that the active lines do not form a
connected set at the optimum. In order to enforce connectivity, we therefore also
added a set of multicommodity flow constraints on added variables f ba

deh, defined for
each distinct pair b,a ∈ B and line (d,e,h) ∈ L:

∀b < a ∈ B ∑
(b,d,h)∈L

f ba
bdh− ∑

(d,b,h)∈L
f ba
dbh = 1 (12)

∀b < a ∈ B ∑
(d,a,h)∈L

f ba
dah− ∑

(a,d,h)∈L
f ba
adh = 1 (13)

∀b < a ∈ B,d ∈ Br{b,a} ∑
(e,d,h)∈L

f ba
edh− ∑

(d,e,h)∈L
f ba
deh = 0, (14)

as well as the linking constraints

∀b < a ∈ B,(d,e,h) ∈ L f ba
deh ≤ ydeh. (15)

In Table 1, we shall refer to the ACOPFL relaxations from (S,V,X)- 1
2 DDP, and

Jabr as “ddp”, and “Jabr” respectively.

4 Computational experiments

The standard reference testbed for computational assessments in ACOPF is the
PGLib library [25], which also includes “case files” from MATPOWER [18]. We
compare performances of the two convex MINLP relaxations of the ACOPFL (ddp
and Jabr) on the small case instances casei for i ∈ {5,9,14,18,22,24,30}. Our
implementation is carried out in AMPL [20]. We solve both formulations, which
are of the Mixed-Integer SOCP sort, with CPLEX 12.9 [26], which is given 300s as
maximum CPU time. Only instance “case5” is solved using Baron, because AMPL
failed to successfully pass it to Cplex.

The results in Table 1 are obtained on a a 2.53GHz Intel(R) Xeon(R) CPU with
49.4 GB RAM. They show that 300s are only sufficient to obtain meaningful results
for small instances.

An encouraging feature of the results in Table 1 is that the slacker ddp relaxation
takes less time to solve than Jabr, provides a worst bound, but still identifies a valid
connectivity for active lines for most of the instances. In Fig. 1, e.g., we report two
solutions found by solving the ddp relaxation, which appear to be the same found
by Jabr relaxation.

In Table 2 we report results from the (S,V,X)-relaxation of ACOPFL on slightly
larger instances, solved using CPLEX limited to 7200s. When solutions are found
atypically quickly (e.g. case69, case85), it is because the networks have no cycles.
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name lines known mod1 mod2 opt1 opt2 act1 act2 stat1 stat2 cpu1 cpu2
case5 6 17551.89 ddp Jabr 0.00 14999.70 0 6 infeas limit 29.67 300
case9 9 5296.67 ddp Jabr 2244.81 5296.66 9 9 solved solved 12.90 33.18
case14 20 8081.52 ddp Jabr 0.00 8076.60 1 17 infeas solved 0.10 55.76
case18 17 11.85 ddp Jabr 0.00 11.85 17 17 solved solved 0.25 0.34
case22 21 0.068 ddp Jabr 0.00 0.068 21 21 solved solved 0.34 0.37
case24 38 63352.20 ddp Jabr 47359.8 63344.75 38 38 limit limit 300 300
case30 41 576.89 ddp Jabr 0.00 573.79 29 41 limit limit 300 300

Table 1 Numerical results limited to 300s using a single CPU processor. We report instance name,
number of lines, known optimal value; then, for each relaxation type (mod1,mod2), we report
obtained optimal value, number of active lines, solver status, CPU time. Best results are in boldface,
invalid results are grayed (the solver could not find any feasible solution in the allotted time).

case9 (ddp & Jabr) case24 (ddp & Jabr)

Fig. 1 Two solutions from results in Table 1. Buses in circles, generators in parallelograms (buses
with generators are colored, reference bus is colored differently); active lines are thick and colored.

name lines known opt act stat cpu
case24 38 63352.20 47272.28 34 limit 7200
case30 41 576.89 0.00 29 limit 7200
case39 46 41864.17 27417.26 46 limit 7200
case69 68 0.39 0.00 68 solved 8.26
case85 84 0.00 0.00 84 solved 18.75

Table 2 Computational results on the (S,V,X)-relaxation limited to 7200s (left). Nontrivial solu-
tion for case30 (right).
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