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1. INTRODUCTION11

Multi-modal transportation networks include roads, public transportation, bicycle12

lanes, etc. Shortest paths in such networks must satisfy some additional constraints:13

passengers may want to exclude some transportation modes, e.g., the bicycle when it is14

raining or the car at moments of heavy traffic. Furthermore, they may wish to pass by15

a particular location (e.g., a grocery shop), or limit the number of changes when using16

different modes of transportation. Feasibility also has to be assured: private cars or17

bicycles can only be used when they are available.18

The regular language constrained shortest path problem (RegLCSP) deals with this19

kind of problem. It uses an appropriately labeled graph and a regular language to20

model constraints. A valid shortest path minimizes some cost function (distance, time,21

etc.) and, in addition, the word produced by concatenating the labels on the arcs along22

the shortest path must form an element of the regular language. In [Barrett et al.23

2000], a systematic theoretical study of the more general formal language constrained24

shortest path problem can be found. It proposes a generalization of Dijkstra’s algorithm25

(DRegLC) to solve RegLCSP.26

In recent years many scholars have worked on speed-up techniques for Dijkstra’s27

algorithm [Dijkstra 1959] and shortest paths on continental-sized road networks can28

now be found in a few milliseconds [Delling et al. 2009b]. The DRegLC algorithm has29

received less attention. First attempts to adapt speed-up techniques of Dijkstra’s algo-30

rithm to DRegLC are described in [Barrett et al. 2008].31

Our Contribution. In this work, we adapt the ALT algorithm [Goldberg and Harrel-32

son 2005] to DRegLC to speed up its performance. The ALT algorithm uses pre-processed33

data to guide Dijkstra’s algorithm toward the target more efficiently. The idea is to34

adapt ALT to DRegLC by transferring some information on the regular language of the35

RegLCSP instance (which is known beforehand) to a preprocessing phase. So for each36

regular language, we produce specific preprocessed data which guide DRegLC. We call37

this algorithm State Dependent ALT (SDALT) and we present uni-directional and bi-38
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directional versions. We also show how to apply approximation. We provide experimen-39

tal results on two realistic multi-modal transportation networks, of the French region40

Ile-de-France (which includes Paris and its suburbs) and of New York City. For both41

graphs we consider various transportation modes: walking, private car, private bike,42

and public transportation. For the network of Ile-de-France we also include rental bi-43

cycles, rental cars, and changing traffic conditions over the day. The experiments show44

that our algorithm performs better than DRegLC, especially in cases where all modes of45

transportations have the same speed, or, more generally, that the constraints cause a46

major detour on the non-constrained shortest path. We observed speed-ups of a factor47

of 1.5 to 40 (up to a factor of 60 with approximation), in respect to DRegLC.48

2. RELATED WORK49

Early works on the use of regular languages in the context of shortest path problems50

with applications to database queries include [Romeuf 1988; Mendelzon and Wood51

1995; Yannakakis 1990]. In [Lozano and Storchi 2001] a regular language represented52

as a finite state automaton is used to model path constraints (called path viability) for53

the bi-objective multi-modal shortest path problem on a multi-modal transportation54

network.55

Algorithmic and complexity-theoretical results on the use of various types of lan-56

guages for the formal language constrained shortest path problem can be found in57

[Barrett et al. 2000]. The authors prove that the problem is solvable in deterministic58

polynomial time when regular languages are used and they provide a generalization59

of Dijkstra’s algorithm (DRegLC). Experimental data on networks including traffic infor-60

mation (modelled as time-dependent arc costs) can be found in [Barrett et al. 2002].61

Another application on multi-modal time-dependent transportation networks can be62

found in [Sherali et al. 2003], [Sherali et al. 2006] introduces turn penalties.63

Recently, much effort has been put into accelerating algorithms to solve the uni-64

modal shortest path problem on large road networks, see [Delling et al. 2009b] for65

a comprehensive overview. It identifies three basic concepts common to most modern66
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speed-up techniques: bi-directional search, goal-directed search, and contraction. It67

includes dynamic time-dependent graphs, which are used to model and elaborate real-68

time traffic conditions. The authors of [Delling et al. 2011] propose a highly flexible69

and fast algorithm supporting arbitrary cost functions and turn costs.70

The ALT algorithm [Goldberg and Harrelson 2005] is a bi-directional, goal directed71

search technique based on the A∗ search algorithm [Hart et al. 1968]. It uses lower72

bounds on the distance to the target to guide Dijkstra’s algorithm. UniALT is the uni-73

directional version of the ALT algorithm. Efficient implementations of uniALT and ALT74

as well as experimental data on continental size road networks with time-dependent75

arc costs are given in [Nannicini et al. 2008].76

An advantage of A∗ and ALT is that they can easily be adapted to dynamic networks,77

such as road networks that are periodically updated with real time traffic information.78

Efficient algorithms including contractions and experimental results can be found in79

[Nannicini et al. 2008; Delling and Nannicini 2008].80

In [Barrett et al. 2008], various basic speed-up techniques and their combinations81

including bi-directional and goal-directed search have been applied to DRegLC on rail and82

road networks (static arc costs, no time-dependency). The performance of the proposed83

algorithms depends on the network properties and on the restrictivity of the regular84

language.85

An advantage of using regular languages is their flexibility: it is quite simple to86

forbid unfeasible types of paths, e.g., bicycle followed by metro followed by car, to as-87

sure that paths do not exceed a maximum number of transfers, or to exclude modes of88

transportation or certain types of road, e.g., toll roads. Unfortunately, it is not trivial89

to apply speed-up techniques for algorithms to solve uni-modal shortest path problems90

to DRegLC. Therefore, some recent works isolate the public transportation network from91

road networks so that they can be treated individually and limit a priori the range of92

allowed types of paths [Delling et al. 2009a; Dibbelt et al. 2012].93

The authors of [Delling et al. 2009a] assume that the road network is used only at94

the beginning and at the end of a path and public transportation is used in between.95
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They apply Transit Node Routing to the road network and an adaption of Dijkstra96

to the public transportation network. In [Dibbelt et al. 2012], contraction has been97

applied only to arcs belonging to the road network of a multi-modal transportation98

network consisting of roads, public transport, and flight data. The sequence of modes99

of transportation can be chosen freely and is modeled by a regular language; no update100

of preprocessed data is needed for different regular languages. The authors report on101

speed-ups of over 3 orders of magnitude compared to DRegLC.102

The authors of [Rice and Tsotras 2010] use contraction on a continental size road103

network where roads are labeled according to their road type. A subclass of the regular104

languages, the Kleene languages, is used to constrain the shortest path. It can be105

used to exclude certain road types. Kleene Languages are less expressive than regular106

languages but contraction proves to be very efficient in such a scenario. The authors107

report on speed-ups of over 3 orders of magnitude compared to DRegLC.108

Overview. This paper is organized as follows. Section 3 defines the graph we are us-109

ing to model the transportation network and gives more details about RegLCSP, A∗,110

and ALT. Section 4 presents our new algorithm SDALT. Different versions of it are pre-111

sented in Sections 5, 6, and 7. Its application to a realistic multi-modal transportation112

network and computational results are presented in Section 8.113

3. PRELIMINARIES114

Consider a labeled, directed graph G = (V,A,Σ) consisting of a set of nodes v ∈ V , a115

set of labels l ∈ Σ, and a set of arcs (i, j) ∈ A ⊆ V × V . The labels are used to mark116

arcs as, e.g., foot paths (label f ), bicycle lanes (label b), bus networks (label pb), etc.117

Function Label(i, j) : A → Σ gives the label of an arc (i, j). Arc costs represent travel118

times. They are positive and time-dependent: c : A → (R+ → R+), i.e., cij(τ) gives the119

travel times from node i to node j at time τ ≥ 0. We only use functions which satisfy120

the FIFO property as the time-dependent shortest path problem in FIFO networks121

is polynomially solvable [Kaufman and Smith 1993], whereas it is NP-hard in non-122
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Fig. 1: Example of an automaton (left) and its backward automaton (right). Shortest
paths start either by walking (label f ) or by taking a private bicycle: transfer to private
bicycle (tb) and moving on bicycle network (b). Once the private bicycle is discarded (s1),
the path can be continued by walking or by taking public transportation (p). The trip
may then be continued by using bicycle rental, by transferring at bicycle rental station
to the bicycle network (tv) or by walking.

FIFO networks [Orda and Rom 1990]. FIFO means that cij(x) + x ≤ cij(y) + y for all123

x, y ∈ R+, x ≤ y, (i, j) ∈ A or, in other words, that for any arc (i, j), leaving node i earlier124

guarantees that one will not arrive later at node j (also called the non-overtaking125

property).126

A path p in G is a sequence of nodes (v1, . . . , vk) such that (vi−1, vi) ∈ A for127

all 1 < i ≤ k. The cost of the path in a time-independent scenario is given by128

c(p) =
∑k
i=2 cvi−1vi . In time-dependent scenarios, the cost or travel time γ(p, τ) of a129

path p departing from v1 at time τ is recursively given by γ((v1, v2), τ) = cv1v2(τ) and130

γ((v1, . . . , vj), τ) = γ((v1, vj−1), τ) + cvj−1,vj (γ((v1, vj−1), τ) + τ).131

3.1. Solving the RegLCSP132

The regular language constrained shortest path problem (RegLCSP) consists in finding133

a shortest path from a source node r to a target node t with starting time τstart on134

the labeled graph G by minimizing some cost function (in our case, travel time) and,135

in addition, the concatenated labels along the shortest path must form a word of a136

given regular language L0. The regular language is used to model the constraints on137

the sequence of labels (e.g., exclusion of labels, predefined order of labels, etc.). Any138
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r t r t

Fig. 2: Schematic search-space Dijkstra (left) and uniALT (right)

regular language L0 can be described by a non-deterministic finite state automaton139

A0 = (S,Σ, δ, s0, F ), consisting of a set of states S, a set of labels Σ, a transition function140

δ : Σ × S → 2S , an initial state s0, and a set of final states F (for examples, see141

Figures 1a and 6a).142

To efficiently solve RegLCSP, a generalization of Dijkstra’s algorithm (which we de-143

note by DRegLC throughout this paper) has first been proposed in [Barrett et al. 2000].144

The DRegLC algorithm can be seen as the application of Dijkstra’s algorithm [Dijkstra145

1959] to the product graph G× = G × S with tuples (v, s) as nodes for each v ∈ V146

and s ∈ S such that there is an arc ((v, s)(w, s′)) between (v, s) and (w, s′) if there is147

an arc (i, j) ∈ A with label l = Label(i, j) and a transition such that s′ ∈ δ(l, s). To148

reduce storage space, DRegLC works on the implicit product graph G× by generating all149

the neighbors which have to be explored only when necessary. Similarly to Dijkstra’s150

algorithm, DRegLC can easily be adapted to the time-dependent scenario as shown in151

[Barrett et al. 2002].152

Note some further notation we use throughout this paper:
←→
S (s,A) and

←→
Σ (s,A) re-153

turn all states and labels reachable on an automaton A by starting at state s, back-154

ward and forward, respectively. E.g., in Figure 1a,
←−
S (s2,A0) = {s0, s1, s3},

−→
Σ (s3,A0) =155

{b, f, tp, tv, p}. The backward automaton of A0 is produced by reversing all arcs of A0,156

final states become initial states and initial states become final states (see Figure 1b).157

Furthermore, the concatenation of two regular languages L1 and L2 is the regular lan-158

guage L3 = L1 ◦ L2 = {v ◦ w|(v, w) ∈ L1 × L2}. E.g., if L1 = {a, b} and L1 = {c, d} then159

L1 ◦ L2 = L3 = {ac, ad, bc, bd}.160
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3.2. A∗ and ALT algorithm161

The A∗ algorithm [Hart et al. 1968] is a goal directed search used to find the shortest162

path from a source node r to a target node t on a directed graph G = (V,A) with time-163

independent, non-negative arc costs (without labels on arcs). A∗ is similar to Dijkstra’s164

algorithm [Dijkstra 1959], which we shall denote by Dijkstra throughout this paper.165

The difference lies in the order of selection of the next node v to be settled. A∗ employs a166

key k(v) = d̃(v)+π(v) where the potential function π : V → R gives an under-estimation167

of the distance from v to t and d̃(v) is the tentative distance from the source node r to168

node v. Note also that we denote by d(r, t) the cost of the shortest path between nodes169

r and t. At every iteration, the algorithm selects the node v with the smallest key k(v).170

Intuitively, this means that it first explores nodes which lie on the shortest estimated171

path from r to t. So the closer π(v) is to the actual remaining distance, the faster the172

algorithm finds the target. Note that in the case where π(v) gives an exact estimate,173

A∗ scans only nodes on shortest paths to t. In contrast, Dijkstra explores nodes in174

increasing distance from the source node r (see Figure 2).175

In [Ikeda et al. 1994], it is shown that A∗ is equivalent to Dijkstra on a graph with176

reduced arc costs cπvw = cvw−π(v)+π(w). Dijkstra works well only for non-negative arc177

costs, so not all potential functions can be used. We call a potential function π feasible,178

if cπvw is positive for all (v, w) ∈ A. π(v) can be considered a lower bound on the distance179

from v to t, if π is feasible and the potential π(t) of the target is zero. Furthermore, if π′180

and π′′ are feasible potential functions, then max(π′, π′′) is a feasible potential function181

[Goldberg and Harrelson 2005].182

On a road network, the Euclidean distance or air distance from node v to node t can183

be used to compute π(v) (if distance is to be minimized π(v) is equal to the air distance184

and if travel time is to be minimized then π(v) is equal to the air distance divided185

by the maximal travel speed). A significant improvement can be achieved by using186

landmarks and the triangle inequality [Goldberg and Harrelson 2005]. The main idea187

is to select a small set of nodes ` ∈ L ⊂ V , spread appropriately over the network,188

and precompute all distances of shortest paths d(`, v) and d(v, `) between these nodes189
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Fig. 3: Landmark distances for uniALT.

(also called landmarks) and any other node v ∈ V , by using Dijkstra. By using these190

landmark distances and the triangle inequality, d(`, v) + d(v, t) ≥ d(`, t) and d(v, t) +191

d(t, `) ≥ d(v, `), lower bounds on the distances between any two nodes v and t can be192

derived (see Figure 3). The potential function193

π(v) = max
`∈L

(d(v, `)− d(t, `), d(`, t)− d(`, v)) (1)

provides a lower bound for the distance d(v, t) and is feasible. The A∗ algorithm based194

on this potential function is called ALT [Goldberg and Harrelson 2005]. The authors195

propose a uni-directional and bi-directional variant of ALT.196

As observed in [Delling and Wagner 2009], potentials stay feasible as long as197

arc weights only increase and do not drop below a minimal value. Based on this,198

the ALT algorithm can be adapted to the time-dependent scenario by selecting land-199

marks and calculating landmark distances by using the minimum weight cost function200

cmin
ij = minτ cij(τ). A crucial point is the quality of landmarks. Finding good landmarks201

is difficult and several heuristics exist [Goldberg and Harrelson 2005; Goldberg and202

Werneck 2005].203

4. STATE DEPENDENT ALT204

To speed up DRegLC, [Barrett et al. 2008] employs among other techniques goal directed205

search (A∗ search) and bi-directional search on a labeled graph with constant cost func-206

tion. We go a step further and extend uni- and bi-directional ALT to speed-up DRegLC.207

Note that we consider labeled graphs with time-dependent arc costs. Furthermore, we208

enhance the potential function by integrating information about the constraints which209
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Fig. 4: Comparison uniALT and SDALT.

are modeled by the regular language L0 (the corresponding automaton is marked as210

A0 = (S,Σ, δ, s0, F )), in a pre-processing phase. E.g., consider a transportation network;211

in case L0 excludes a certain mode of transportation, say buses, we can anticipate this212

constraint by ignoring the bus network during the landmark distance calculation. We213

will show how to anticipate more complex constraints during the pre-processing phase214

and we will prove that our approach is correct and yields considerable speed-ups of215

DRegLC in many scenarios. We will see that one difficulty is to assure feasibility of the216

potential function. Therefore, we will present two versions of SDALT: lsSDALT, which217

works with feasible potential functions; and lcSDALT, which also works in cases where218

the potential function is not always feasible. Furthermore, we will discuss three bi-219

directional versions of SDALT.220

Let us first look at the general structure of the algorithm. The algorithm SDALT,221

similar to ALT, consists of a preprocessing phase and a query phase (see Figure 4). The222

main differences consist in the way landmark distances are calculated and on SDALT223

being based on DRegLC and not on Dijkstra. Potentials depend on the pair (v, s).224

Query phase. The query phase deploys a DRegLC algorithm enhanced by the char-225

acteristics of the ALT algorithm. As priority queue Q we use a binary heap. The226

pseudo code in Algorithm 1 works as follows: the algorithm maintains, for every vis-227

ited node (v, s) in the product graph G×, a tentative distance label d̃(v, s) (between228

source node (r, s0) and node (v, s)) and a parent node p(v, s). It starts by computing229

the key k(r, s0) = π(r, s0) for the source node (r, s0) and by inserting it into Q (line 3).230

At every iteration, the algorithm extracts the node (v, s) in Q with the smallest key231
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(it is settled) and relaxes all outgoing arcs (line 9), i.e., it checks and possibly updates232

the key and tentative distance label for every node (w, s′), where s′ ∈ δ(Label(v, w), s).233

More precisely, a new temporary distance label d̃tmp = d̃(v, s) + cvw(τstart + d̃(v, s)) is234

compared to the currently assigned tentative distance label (line 10). If it is smaller,235

it either calculates the key k(w, s′) = π(r, s0) + d̃tmp and inserts (w, s′) into the priority236

queue or decreases its key (line 14, 18). Note that it is necessary to calculate the po-237

tential of the node (w, s′) only the first time it is visited. The cost of arc (v, w) might238

be time-dependent and thus has to be evaluated for time τstart + d̃(v, s). The algorithm239

terminates when a node (t, s′) with s′ ∈ F is settled. The resulting shortest path can240

be produced by following the parent nodes backward starting from (t, s′).241

Algorithm 1 Pseudo-code SDALT.
Input: labeled graphG = (V,A,Σ), source r, target t, start time τstart, regular language

L0 ⊆ Σ∗ represented as automaton A0

1 function SDALT(G, r, t, τstart, L0)
2 d̃(v, s)←∞, p(v, s)← −1, πv,s ← 0, ∀(v, s) ∈ V × S
3 pathFound← false, d̃(r, s0)← 0, k(r, s0)← π(r, s0), p(r, s0)← −1
4 insert (r, s0) in priority queue Q
5 while Q is not empty do
6 extract (v, s) with smallest key k from Q
7 if v == t and s ∈ F0 then
8 pathFound← true
9 break

10 for each (w, s′) s.t. (v, w) ∈ A0 ∧ s′ ∈ δ(Label(v, w), s) do
11 d̃tmp ← d̃(v, s) + cvw(τstart + d̃(v, s)) . time-dependency
12 if d̃tmp < d̃(w, s′) then
13 p(w, s′)← (v, s)

14 d̃(w, s′)← d̃tmp
15 if (w, s′) not in Q then . insert
16 πw,s′ ← π(w, s′)

17 k(w, s′)← d̃(w, s′) + πw,s′
18 insert (w, s′) in Q
19 else . decrease
20 k(w, s′)← d̃(w, s′) + πw,s′
21 decreaseKey (w, s′) in Q

Preprocessing phase. Preprocessed distance data is used to guide the search algo-242

rithm. This data is produced as follows. First, as done for ALT, a set of landmarks243

` ∈ L ⊂ V is selected by using the avoid heuristic [Goldberg and Harrelson 2005]244
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Fig. 5: Landmark distances for SDALT, Li→js represents the regular language which
constrains the shortest paths from (i, s) to (j, s′), s′ ∈ F .

(Note that we calculated the landmarks on the walking network, as all our paths be-245

gin and end by walking). Then the costs of the shortest paths between all v ∈ V and246

each landmark ` are determined. Here lies one of the major differences between SDALT247

and ALT: different from ALT, SDALT uses DRegLC instead of Dijkstra to determine land-248

mark distances and works on G×, instead of G. This way, it is possible to constrain249

the cost calculation by some regular languages which we derive from L0. We refer to250

the travel time of the shortest path from (i, s) to (j, s′), s′ ∈ F , which is constrained251

by the regular language Li→js , as constrained distance d′s(i, j) and to the constrained252

distances calculated during the preprocessing phase between nodes and landmarks253

as constrained landmark distances. Li→js represents the regular language which con-254

strains the shortest paths from (i, s) to (j, s′), for some s′ ∈ F and which has distance255

d′s(i, j). The constrained landmark distances are used to calculate the potential func-256

tion π(v, s) and to provide a lower bound on the distance d′s(v, t):257

π(v, s) = max
`∈L

(d′s(`, t)− d′s(`, v), d′s(v, `)− d′s(t, `)) (2)

Note that d′s(v, t) is constrained by Lv→ts = Ls0. Ls0 is the regular expression of As0258

which is equal to A0 except that the initial state s0 is replaced by s. Intuitively, Lv→ts259

represents the remaining constraints to be considered for the shortest path from an260

arbitrary node (v, s) to the target. In the next section, we provide different methods on261

how to choose L`→ts , L`→vs , Lv→`s , and Lt→`s used to constrain the calculation of d′s(`, t),262

d′s(`, v), d′s(v, `), and d′s(t, `), for all s ∈ S (see Figure 5).263
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Constrained landmark distances. The only open question now is how to produce good264

bounds to guide SDALT efficiently toward the target. This means, more formally, how265

to choose the regular languages L`→ts , L`→vs , Lv→`s , and Lt→`s used to constrain the266

calculation of d′s(`, t), d′s(`, v), d′s(v, `), and d′s(t, `) in order that d′s(`, t) − d′s(`, v) and267

d′s(v, `) − d′s(t, `) are valid lower bounds for d′s(v, t) (see Figure 5 and Equation 2). A268

first answer gives Proposition 4.1:269

PROPOSITION 4.1. For all s ∈ S, if the concatenation of L`→vs and Lv→ts is included270

in L`→ts , then d′s(`, t) − d′s(`, v) is a lower bound for the distance d′s(v, t). Similar, if271

Lv→ts ◦ Lt→`s ⊆ Lv→`s then d′s(v, `)− d′s(t, `) is a lower bound for d′s(v, t).272

PROOF. (i) Suppose that d′s(`, t)−d′s(`, v) is not a lower bound for the distance d′s(v, t)273

for some s ∈ S and L`→vs ◦ Lv→ts ⊆ L`→ts . We have d′s(`, t) − d′s(`, v) > d′s(v, t). Let w1 ∈274

L`→vs and w2 ∈ Lv→ts be the words produced by concatenating the labels on the arcs275

of the shortest path with cost d′s(`, v) and d′s(v, t), respectively. The fact that d′s(`, t) −276

d′s(`, v) is greater than d′s(v, t) or d′s(`, v) + d′s(v, t) is smaller than d′s(`, t) means that277

the word w1 ◦ w2 is not included in L`→ts because d′s(`, t) is the cost of a shortest path.278

But this means L`→vs ◦ Lv→ts 6⊆ L`→ts . (ii) The same can be proven in a similar way for279

d′s(v, `)− d′s(t, `).280

Proposition 4.1 is based on the observation that the distance of the shortest path from281

` to t (v to `) must not be greater than the distance of the shortest path from ` to v to282

t (v to t to `). We now give three procedures to determine the regular languages L`→ts ,283

L`→vs , Lv→`s , Lt→`s , which satisfy Proposition 4.1, in order to gain valid distance bounds284

for a generic node (v, s) of G× (see also Table I):285

Procedure 1. The language produced by Procedure 1 allows every combination of286

labels in Σ.287

Procedure 2. The language produced by Procedure 2 depends on the state s of the288

node (v, s). It allows every combination of labels in Σ except those labels for which289

there is no longer any transition between states which are reachable from state s.290
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Table I: With reference to a generic RegLCSP where the shortest path is constrained
by regular language L0 (A0 = (S,Σ, δ, s0, F )) the table shows three procedures to de-
termine the regular language to constrain the distance calculation for a generic node
(v, s) of the product graph G×.

Procedure and regular language and/or NFA

1 Lv→`s = Lt→`s = L`→vs = L`→ts = Lproc1 = {Σ∗}
Lproc1 : Aproc1 = ({s},Σ, δ : {s} × Σ→ {s}, s, {s})

2 Lv→`s = Lt→`s = L`→vs = L`→ts = Lproc2,s = {
−→
Σ (s,A0)∗}

Lproc2,s : Aproc2,s = ({s},
−→
Σ (s,A0), δ : {s} ×

−→
Σ (s,A0)→ {s}, s, {s})

3 a) L`→vs : A`→vs = (S,Σ, δ, s0, s)

b) L`→ts : A`→ts = (S,Σ, δ, s0, F ∩
←−
S (s,A0))

c) Lv→`s : Av→`s = (S,Σ, δ, s, F )

d) Lt→`s : At→`s = (S,Σ, δ, F ∩
←−
S (s,A0), F ∩

←−
S (s,A0))

f) [Optional] Clean A`→vs ,A`→ts ,Av→`s ,At→`s from all transitions and states
which are not reachable.

Procedure 3. The language produced by Procedure 3 produces four distinct lan-291

guages for a node (v, s) of Gx. To compute the bound d′s(`, t) − d′s(`, v) the distance292

calculation of d′s(`, t) is limited by all constraints of A0, i.e., it is constrained by A0,293

and that of d′s(`, v) is constrained by the part of the constraints on A0 occurring294

before state s. Similar, to compute the bound d′s(v, `) − d′s(t, `), the distance calcula-295

tion of d′s(v, `) is limited by all constraints on A0 occurring after state s, and that of296

d′s(t, `) may only use labels on self-loops on final states. We modify the initial and297

final states and then remove from the automaton all transitions and states that are298

no longer reachable. If constrained shortest paths cannot be found because land-299

marks are not reachable from r or t, then it suffices to relax L0 into a new language300

L′0, e.g., by adding self-loops, and then apply Procedure 3 to L′0.301

Consider, e.g., a transportation network offering different modes of transportation.302

Procedures 1 and 2 are based on the intuition that modes of transportation that are303

excluded by L0 (Procedure 1), or are excluded from a certain state s onward (Proce-304

dure 2), should not be used to compute the bounds. Procedure 3 goes a step further305

with the aim to incorporate into the preprocessed data not only the exclusion of modes306
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of transportation but also specific information from L0, i.e., having to maintain a cer-307

tain sequence of modes of transportation, or limitations on the number of changes of308

modes of transportation which can be made during the trip.309

5. LABEL SETTING SDALT310

One condition that the A∗ and ALT algorithm work correctly is that reduced costs are311

positive, i.e., the potential function is feasible. In this section, we present three meth-312

ods on how to produce feasible potential functions for SDALT. We call the version of313

SDALT which uses such potential functions Label Setting SDALT (lsSDALT) as it guar-314

anties that when a node (v, s) is extracted from the priority queue (the node is settled),315

then it will not be visited again. Note that here label refers to the distance label of the316

algorithm and not to the labels on arcs, which indicate the mode of transportation.317

Feasible potential functions. We present three methods on how to produce potential318

functions which are feasible: a basic method (bas), an advanced method (adv), and a319

specific method (spe). The basic method (bas) applies Procedure 1 to determine the320

constrained distance calculation. All nodes (v, s), s ∈ S have the same lower bound on321

the distance to the target node. The advanced method (adv) applies Procedure 2 and322

thus produces different constrained landmark distances and consequently different323

lower bounds for nodes (v, s) with different states s ∈ S. Feasibility is guaranteed by324

using a slightly modified potential function:325

πadv(v, s) = max{π(v, sx)|sx ∈
←−
S (s,A0)}.

Finally, the third method, the specific method (spe), applies Procedure 3. Potentials are326

feasible as proven by Proposition 5.1.327

PROPOSITION 5.1. By using the regular languages produced by applying Proce-328

dure 3 (see Table I) for the constrained landmark distance calculation for all nodes329

(v, s), the potential function π(v, s) in Equation 2 is feasible.330
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PROOF.331

If π(v, s) is feasible, then the reduced cost cπij is non-negative for all arcs of graph G×.332

(i) Let us look at the potential function π1(v, s) = d′s(`, t) − d′s(`, v) first. In reference333

to the two arbitrary nodes (f, sf ) and (g, sg) and arc (f, g), let us suppose π(v, s) is334

not feasible and that the reduced cost is cfg(τ) − π(f, sf ) + π(g, sg) < 0. We have that335

cfg(τ) + (d′sg (`, t)− d′sg (`, g)) < (d′sf (`, t)− d′sf (`, f)). Let us consider two cases.336

(1) (case 1) If sf = sg = s, then cfg(τ) + d′s(`, f) < d′s(`, g). But as d′s(`, g) is a shortest337

path and s ∈ δ(l, s), this is a contradiction.338

(2) (case 2) If sg 6= sf then as for (3b), A`→tsf
includes A`→tsg we have d′sf (`, t) ≤ d′sg (`, t).339

So we have that cfg(τ) + d′sf (`, f) < d′sg (`, g). But as, for rules (3a), A`→gsg includes340

all states and transitions of A`→fsf
plus the transition δ(l, sf ) = sg, and as d′sg (`, g)341

is a shortest path, this is again a contradiction.342

(ii) Let us now look at the potential function π2(v, s) = d′s(v, `) − d′s(t, `). In reference343

to the two arbitrary nodes (f, sf ) and (g, sg) and arc a = ((f, sf )(g, sg)) let us suppose344

π(v, s) is not feasible and that cfg(τ) − π(f, sf ) + π(g, sg) < 0. We have that cfg(τ) +345

(d′sg (g, `)− d′sg (t, `)) < (d′sf (f, `)− d′sf (t, `)). Let us consider two cases.346

(1) (case 1) If sf = sg = s, then cfg(τ) + d′s(g, `) < d′s(f, `). But as d′s(f, `) is a shortest347

path and s ∈ δ(l, s), this is a contradiction.348

(2) (case 2) If sg 6= sf then as for 3c and 3d,At→`sf
is included inAt→`sg we have d′sf (t, `) ≥349

d′sg (t, `). Thus cfg(τ) + d′sg (`, g) < d′sf (`, f). But as, for (3c), Af→`sf
includes all states350

and transitions ofAg→`sg plus the transition δ(l, sf ) = sg, and as d′sf (f, `) is a shortest351

path, this again is a contradiction.352

Thus π1(v, s) = d′s(`, t) − d′s(`, v) is feasible and π2(v, s) = d′s(v, `) − d′s(t, `) is feasible.353

Hence, π(v, s) = max`∈L(d′s(`, t)− d′s(`, v), d′s(v, `)− d′s(t, `)) is feasible.354

For an example of how these three methods are applied, see Figure 6. We call the355

versions of lsSDALT which apply these three methods bas ls, adv ls, and spe ls. We356

introduce a fourth standard version called std to evaluate lsSDALT. It does not con-357
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strain the landmark distance calculation by any regular language and can be seen as358

the application of plain uniALT to DRegLC.359

Correctness. In the case the potential function π(v, s) is feasible, all characteristics360

that we discussed for uniALT also hold for SDALT, which can be seen as an A∗ search361

on the product graph G× which uses the potential function π(v, s). Hence, lsSDALT is362

correct and always terminates with the correct constrained shortest path.363

PROPOSITION 5.2. If solutions exist, lsSDALT finds a shortest path.364

Complexity and memory requirements . Complexity of lsSDALT is equal to the com-365

plexity of DRegLC, which is equal to the complexity of Dijkstra on the product graph G×:366

O(m log n); m = |A||S|2 and n = |V ||S| are the number of arcs and nodes of G×. The367

amount of memory needed to hold the distance data computed during the preprocess-368

ing phase varies in function of the chosen method. Memory requirements for std and369

bas ls are proportional to |L| × |V |. They are up to an additional factor |S| and 4× |S|370

higher for adv ls and spe ls, respectively.371

Calculation of potential function. Note that the calculation of the potential func-372

tion introduces a strong algorithmic overhead for lsSDALT. The number of calculated373

bounds to compute the potential function π(v, s) varies in function of the chosen374

method. The number of calculated bounds grows linearly to the number of relaxed375

arcs for bas ls and spe ls. For adv ls, the number of calculated bounds in worse case376

scenario is an additional factor |S| higher.377

6. LABEL CORRECTING SDALT378

The algorithm lsSDALT works correctly only if reduced arc costs are non-negative. It379

turns out, however, that by violating this condition often tighter lower bounds can be380

produced and required memory space can be reduced. At least in our scenario, this381

compensates the additional computational effort required to remedy the disturbing382

effects of the use of negative reduced costs on the underlying Dijkstra algorithm and383
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in addition results in shorter query times and lower memory requirements. This is384

why we propose a version of SDALT, which can handle negative reduced costs. The385

major impact of this is that settled nodes may be re-inserted into the priority queue386

for re-examination (correction). In our setting, the number of arcs with non-negative387

reduced arc costs is limited and we can prove that the algorithm may stop once the388

target node is extracted from the priority queue. Note that in our scenario there are389

no negative cycles as arc costs are always non-negative. We name the new algorithm390

Label Correcting SDALT or shortly lcSDALT.391

Query. The algorithm lcSDALT is similar to lsSDALT with the difference being that it392

allows re-insertion of a node (v, s) into the priority queue Q. Note that it is necessary393

to calculate the potential of a node (v, s) only the first time it is inserted in Q (see394

Algorithm 2, the missing lines are the same as in Algorithm 1).395

Algorithm 2 Pseudo-code lcSDALT

15 if (w, s′) not in Q and never visited then . insert
16 πw,s′ ← π(w, s′)

17 k(w, s′)← d̃(w, s′) + πw,s′
18 insert (w, s′) in Q
19 else if (w, s′) not in Q then . re-insert
20 k(w, s′)← d̃(w, s′) + πw,s′
21 insert (w, s′) in Q
22 else . decrease
23 k(w, s′)← d̃(w, s′) + πw,s′
24 decreaseKey (w, s′) in Q

Correctness. The algorithm lcSDALT is based on DRegLC and uniALT. It suffices to prove396

that the algorithm may stop as soon as the target node (t, s′), s′ ∈ F is extracted from397

the priority queue (see Lemma 6.1 and Proposition 6.2). Note that π(t, s′) = 0, s′ ∈ F ,398

that d∗(v, s) is the distance of the shortest path from (r, s0) to (v, s), and that there are399

no negative cycles as arc costs are always non-negative.400

LEMMA 6.1. The priority queue always contains a node (i, s′) with key k(i, s′) =401

d∗(i, s′) + π(i, s′) which belongs to the shortest path from (r, s0) to (t, s′′) where s′′ ∈402

F, s′ ∈ S.403
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PROOF. Let q∗ = (p1 = (r, s0), . . . , pm = (t, s′′)) be the shortest path from (r, s0) to404

(t, s′′) on G× (constrained by L0). At the first step of the algorithm, node p1 = (r, s0) is405

inserted in the priority queue with key k(r, s) = d∗(r, s) + π(r, s) = π(r, s). When node406

pn with k(i, s) = d∗(i, s) + π(i, s) for some n ∈ {1, . . . ,m} is extracted from the priority407

queue, at least one new node pn+1 = (j, s′) with d̃(j, s′) = d∗(j, s′) = d∗(i, s)+c(i,s)(j,s′)(τ)408

is inserted in the queue by lines 18, 21, 24.409

PROPOSITION 6.2. If solutions exist, lcSDALT finds a shortest path.410

PROOF. Let us suppose that a node (t, s), where s ∈ F , is extracted from the priority411

queue but its distance label is not optimal, so d̃(t, s) 6= d∗(t, s). Node (t, s) has key412

k(t, sf ) = d̃(t, sf ) + π(t, s) 6= d∗(t, s). By Lemma 6.1, this means that there exists some413

node (i, s′) in the priority queue on the shortest path from (r, s0) to (t, s) which has not414

been settled because its key k(i, s′) > k(t, s). This means k(i, s′) = d∗(i, s′) + π(i, s′) >415

d̃(t, s) + π(t, s) = k(t, s), which is a contradiction.416

Constrained landmark distances. The methods (bas), (adv), and (spe) may be used417

with lcSDALT. However, lcSDALT produces a slight overhead in respect to lsSDALT as it418

unnecessarily checks if newly inserted nodes in Q have previously been extracted from419

the priority queue (line 18). Now we present two new methods which can only be used420

with lcSDALT, as reduced costs may be negative: an adapted version of (adv) which we421

call (advlc) and an adapted version of (spe) which we call (spelc). We name the versions422

of lcSDALT which apply these two methods adv lc and spe lc.423

(advlc). Equal to (adv), this method applies Procedure 2 to all nodes (v, s) of G×.424

Different to (adv) it uses Equation 2 as potential function and thereby considerably425

reduces the number of potentials to be calculated.426

(spelc). The method (spe) applies the regular languages constructed by applying427

Procedure 3 for each state of L0. This is space-consuming and bounds for nodes with428

certain states may be worse than those produced by Procedure 2. This is why we429

introduce a more flexible new method (spelc) which provides the possibility to freely430
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choose for each state between the application of Procedure 2 and Procedure 3. This431

also provides a trade-off between memory requirements and performance improve-432

ment as Procedure 2 consumes less space than Procedure 3. The right calibration433

for a given L0 and the choice of whether to use Procedure 2 or 3 is determined434

experimentally. See Figure 6 for an example.435

Complexity and memory requirements. Complexity of lcSDALT when a feasible poten-436

tial function is used is equal to the complexity of lsSDALT. If the potential function is437

non-feasible the key of a node extracted from the priority queue could not be minimal,438

hence already extracted nodes might have to be re-inserted into the priority queue at439

a later point and re-examined (corrected). The algorithm lcSDALT can handle this but440

in this case its complexity is similar to the complexity of the Bellman-Ford algorithm441

(plus the time needed to manage the priority queue): O(mn log n); m = |A||S|2 and442

n = |V ||S| are the number of arcs and nodes of G×. The amount of memory needed to443

hold the distance data computed during the preprocessing phase for spe lc and adv ls444

in worse case is equal to spe ls and adv ls, respectively.445

7. BI-DIRECTIONAL SDALT446

In this section, we discuss the bi-directional version of the SDALT algorithm. We intro-447

duce the approaches for bi-directional search for Dijkstra and ALT described in [Pohl448

1971; Nannicini et al. 2008; Goldberg and Harrelson 2005] and we describe how we449

adapted them to SDALT.450

Query. In general, bi-directional SDALT (biSDALT) works as follows. It alternates be-451

tween running a lsSDALT query from source (r, s0) to target (t, s′), s′ ∈ F (forward452

search) and a second lsSDALT query from all (t, s′), s′ ∈ F to (r, s0) (backward search).453

Note that the backward search works on the backward automaton (see Figure 1 for an454

example).455

The potential function for the backward search, πB (see Figure 7), is a slight modifi-456

cation of the potential function for the forward search, πF (equal to Equation 2):457
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s0 s2s1
tb tb

f b f

(a) A0: Automaton allows walking (label f ) and bik-
ing (label b), transitions with label tb model the trans-
fer between walking and biking. Once the bike is dis-
carded (state s2) it may not be used again. Automaton
has states S = {s0, s1, s2}, initial state s0, final states
F = {s0, s2}, and labels Σ = {f, b, tb}.

L0 : f∗|(f∗tbb∗tbf∗)
(b) A0 expressed as a regular expression. The

vertical bar | represents the boolean or and the
asterisk ∗ indicates that there are zero or more
of the preceding element.

methods: (bas) (adv)/(advlc) (spelc) (spe)

L`→v
s0

s0

f

f∗

L`→t
s0

s0

ftbb

(b|f |tb)∗
s0 s2s1

tb tb

f b f

f∗|(f∗tbb∗tbf∗)

L`→v
s1

s0 s1
tb

f b

f∗tbb
∗

L`→t
s1

L`→v
s2

= L`→t
s2

s0

f

f∗
s0 s1 s2

tb tb

f b f

f∗tbb
∗tbf

∗

Fig. 6: Example of a regular language L0 and its representation as an automaton (Fig-
ure 6a) and regular expression (Figure 6b). The table lists the languages used to con-
strain the landmark distance calculation for the different methods. E.g., for (bas) all
(b|f |t)∗, for (adv): L`→vs0 = L`→ts0 = L`→vs1 = L`→ts1 : (b|f |t)∗, L`→vs2 = L`→ts2 : f∗.

πF (v, s) = max
`∈L

(d′s(`, t)− d′s(`, v), d′s(v, `)− d′s(t, `)) (3)

πB(v, s) = max
`∈L

(d′s(`, v)− d′s(`, r), d′s(r, `)− d′s(v, `)) (4)
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r

ℓ

v
d′s(ℓ, r), L

ℓ→r
s

d′s(ℓ, v), L
ℓ→v
s

d′s(r, v), L
r→v
s

r

ℓ

v

d′s(r, ℓ), L
r→ℓ
s

d′s(v, ℓ), L
v→ℓ
s

d′s(r, v), L
r→v
s

Fig. 7: Landmark distances for backward search.

As πF and πB are not consistent (i.e., πF + πB 6= const.), we have no guarantee that458

the shortest path is found when the two searches first meet [Goldberg and Harrelson459

2005]. We discuss the non time-dependent and the time-dependent case below.460

Non time-dependent case. For networks without time-dependent arc costs, the au-461

thors of [Pohl 1971] propose a symmetric lower bounding algorithm. When applied to462

the product graph G×, it works as follows. Every time the forward or backward search463

relaxes a node (v, s) which has already been relaxed by the opposite search, it checks464

whether the cost of the path (r, s0) − (v, s) − (t, sf ) is smaller than that of the best465

shortest path (whose cost is µ) found so far. If this is the case, we update µ. The search466

stops when one of the searches is about to settle a node (v, s) with key k(v, s) ≥ µ, or467

when the priority queues of both searches are empty. The authors of [Goldberg and468

Harrelson 2005] enhance this algorithm further: when either of the searches relaxes a469

node (v, s) which has been settled by the opposite search, then the search does nothing470

with (v, s) (pruning).471

Time-dependent case. For networks with time-dependent arc costs, the algorithm472

becomes more complicated. The symmetric lower bounding algorithm may stop as soon473

as a node (v, s) with k(v, s) ≥ µ is found, because for every settled node the backward474

search produces correct shortest path distances to the target. In the time-dependent475

scenario, arc costs depend on the arrival time at the arc. But for the backward search476

the exact starting time from the target is not known. The authors of [Nannicini et al.477

2008] propose to use the minimum weight arc cost for the backward search and to478

use the backward query only to restrict the search space of the forward query. Their479

algorithm is similar to the symmetric lower bounding algorithm. Again µ is checked480
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and recorded at every iteration, µ is the sum of the costs of paths (r, s0)−(v, s) (forward481

search) and (v, s) − (t, s′), s′ ∈ F (backward search). Note that the cost of path (v, s) −482

(t, s′), is re-evaluated by considering the correct time-dependent arc costs. When either483

search settles a node (v, s) with key k(v, s) ≥ µ then only the backward search stops.484

The forward search continues but only visits nodes already settled by the backward485

search. Pruning applies only to the backward search. The authors of [Nannicini et al.486

2008] prove correctness and propose the following two improvements:487

Approximation. The algorithm produces approximate shortest paths of factor K if488

the backward search is stopped as soon as a node (v, s) with k(v, s) ≤ K ·µ is found.489

Tight Potential Function. In order to enhance the potential function of the back-490

ward search, information from the forward search is used. The potential function491

for the backward search becomes492

π∗B(w, s) = max{πB(w, s), d̃(v′, s′) + πF (v′, s′)− πB(w, s)}.493

At predefined checkpoints, i.e., whenever the current distance exceeds K·πF (r,s0)
10 ,494

k ∈ {1, . . . , 10}, the node (v′, s′), s′ ∈ S, v′ ∈ V , that was settled most recently by495

the forward search is memorized. At the checkpoints the backward queue is flushed496

and all the keys are recalculated. This guarantees feasibility.497

We include these improvements in our algorithm and call this new version of SDALT498

biv0. As time-dependent arcs are limited in our scenario, depending on the regular499

language L0, we propose a first variation of biv0 that combines the symmetric lower-500

bounding algorithm with the time-dependent version. To do this, we set a flag on nodes501

visited by the backward search indicating that the node has been reached exclusively502

by using time-independent arcs. If a node with flag=1 is reached by the forward search503

the termination condition of the symmetric lower-bound algorithm applies. We call504

this version of the algorithm biv1. Note that the bi-directional algorithm only works505

correctly (pruning of backward search, approximation, tight potential function) if both506

πB and πF are feasible. However, whenever a node already settled by the backward507

search is visited by the forward search, the potential function πF can be enhanced by508
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using the distance already calculated by the backward search. In the second variation509

of biv0, which we call biv2, as soon as the backward search stops we switch to lcSDALT510

for the forward search and use the potential πF (v, s) = d̃(v, s) for every visited node;511

d̃(v, s) is the distance label for node (v, s) of the backward search. This improves poten-512

tials and prevents the computation of bounds. However, this new potential function is513

not feasible and therefore the forward search has to switch lo lcSDALT.514

Constrained landmark distances and potential function. The potential function for515

the backward search is constructed semi-symmetrically to the potential function of516

the forward search. We want to choose the regular languages for L`→vs , L`→rs , Lr→`s ,517

Lv→`s used to constrain the calculation of d′s(`, v), d′s(`, r), d′s(r, `), d′s(v, `) in order that518

d′s(`, v)−d′s(`, r), d′s(r, `)−d′s(v, `) be valid lower bounds for d′s(r, v) (see Figure 7). Similar519

to Proposition 4.1, the following Proposition 7.1 gives first indications.520

PROPOSITION 7.1. For all s ∈ S, if the concatenation of L`→rs and Lr→vs is included521

in L`→vs (L`→rs ◦ Lr→vs ⊆ L`→vs ), then d′s(`, v) − d′s(`, r) is a lower bound for the distance522

d′s(r, v). Similarly, if Lr→vs ◦ Lv→`s ⊆ Lr→`s then d′s(r, `) − d′s(v, `) is a lower bound for523

d′s(v, t).524

Table II summarizes three procedures on how to determine L`→vs , L`→rs , Lr→`s , Lv→`s for525

the backward search. The basic method (basB) applies Procedure 1B to determine the526

constrained distance calculation and is equal to Procedure 1. The advanced method527

(advB) applies procedure 2B and thus produces different constrained landmark dis-528

tances for nodes with different states. Feasibility is again guaranteed by using a529

slightly modified potential function:530

πadv B(v, s) = max{π(v, sx)|sx ∈
←−
S (s,A0)}

Finally, the specific method (speB) applies procedure 3B.531

Note that when using any of the methods, (bas), (adv), or (spe), for the forward532

search, any of the methods defined for the backward search, (basB), (advB), or (speB)533
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Table II: With reference to a generic RegLCSP where the shortest path is constrained
by regular language L0 (A0 = (S,Σ, δ, s0, F )) the table shows three procedures to de-
termine the regular language to constrain the distance calculation for a generic node
(v, s) of the product graph G× for the backward query.

proc. regular language and/or NFA
1B equal to Procedure 1

2B L`→vs = L`→rs = Lr→`s = Lv→`s = Lproc2,s = {
←−
Σ (s,A0)∗}

Lproc2,s : Aproc2,s = ({s},
←−
Σ (s,A0), δ : {s} ×

←−
Σ (s,A0)→ {s}, s, {s})

3B a) L`→rs : A`→rs = (S,Σ, δ, s0, s0)
b) L`→vs : A`→vs = (S,Σ, δ, s0, s)
c) Lr→`s : Ar→`s = A0

d) Lv→`s : Av→`s = (S,Σ, δ, s, F ∩
←−
S (s,A0))

e) [Optional] Clean A`→rs ,A`→vs ,Ar→`s ,At→`s of all transitions and states
which are not reachable

can be used. We provide experimental data for the combinations (bas)-(basB), (adv)-534

(advB), and (spe)-(speB), and called the algorithms bas-bivx, adv-bivx, and spe-bivx,535

respectively, where x ∈ {1, 2, 3}. Preliminary results for the other combinations did not536

differ greatly, however, it shall be noted that they provide the possibility to further537

balance the trade-off between memory requirements and performance improvement.538

Correctness. The variants of biSDALT are based on the principles outlined in [Nan-539

nicini et al. 2008; Goldberg and Harrelson 2005] and Section 6.540

PROPOSITION 7.2. If solutions exist, the variants of biSDALT find a shortest path.541

Memory requirements. Memory requirements to hold preprocessing data for bas-bivx542

and spe-bivx are equal to memory requirements of bas ls and spe ls, because of sym-543

metry in the calculation of the potential function for forward and backward search. For544

adv-bivx memory requirements in worst case are a factor 2 higher as memory require-545

ments for adv ls.546

8. EXPERIMENTAL RESULTS547

The algorithms are implemented in C++ and compiled with GCC 4.1. A binary heap548

is used as priority queue. Similar to the ALT algorithm presented in [Nannicini et al.549
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2008], periodical additions of landmarks (max. 6 landmark) take place. Experiments550

are run on an Intel Xeon (model W3503), clocked at 2.4 Ghz, with 12 GB RAM.551

For the evaluation of the versions of SDALT two multi-modal transportation networks552

have been used: IDF (Ile-de-France) and NY (New York City). Note that we did not553

consider real time traffic information, perturbations on public transportation, or in-554

formation about available rental cars or bicycles at rental stations. However, SDALT is555

robust to variations in the graph and so this information can be included as long as556

minimum travel times do not change.557

The network IDF is based on road and public transportation data of the French558

region Ile-de-France (which includes the city of Paris and its suburbs). It consists of559

four layers: bicycle, walking, car, and public transportation. Each arc has exactly one560

associated label, e.g., f for arcs representing foot paths, pr for rail tracks, ct for toll561

roads. Each layer is connected to the walking layer through transfer arcs. See the562

schematic representation in Figure 8. The cost of transfer arcs represent the time563

needed to transfer from one layer to another (e.g., the time needed to unchain and564

mount a bicycle). The graph consists of circa 3.9M arcs and 1.2M nodes. Dimensions of565

the graph and a list of all used labels are given in Table III. See [Pyrga et al. 2007] for566

more information about graph models of a multi-modal network and time-dependency.567

Data of the public transportation network has been provided by STIF2. It includes568

geographical information, as well as timetable data on bus lines, tramways, sub-569

ways and regional trains. We use the realistic time-dependent model as presented570

in [Pyrga et al. 2007]. The public transportation layer is reachable from the walking571

layer through transfer arcs (label tp) which connect each public transportation station572

(metro stations, bus stops, etc.) to the nearest node from the walking layer.573

Data for the car layer is based on road and traffic information provided by Mediamo-574

bile3. Arc labels and costs (travel times) are set according to the road type (motorway,575

side street, etc). Circa 15% of the road arcs have a time-dependent cost function to rep-576

2Syndicat des Transports IdF, www.stif.info, data for scientific use (01/12/2010)
3www.v-trafic.fr, www.mediamobile.fr
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Fig. 8: Multi-modal graph.

resent changing traffic conditions throughout the day. Transfers from the car layer to577

the walking layer are possible at uniformly distributed transfers arcs (label tc) between578

close nodes of the two layers (except for nodes belonging to low road classes, i.e., high-579

ways, motorways) or, if a rental car is used, at car rental stations4 (label ta). Car rental580

stations are located in Paris and its surroundings and cars are always assumed to be581

available.582

The walking as well as the bicycle layer are based on road data (walking paths, cycle583

paths, etc.) extracted from geographical data freely available from OpenStreetMap5.584

Arc cost equals walking or biking time (pedestrians 4km/h, bikers 12km/h). Arcs are585

replicated and inserted in each of the layers if both walking and biking are possible.586

Rental bicycle stations are located mostly in the area of Paris6, they serve as connection587

points between the walking layer and the bicycle layer, as rental bicycles have to be588

picked up at and returned to bicycle rental stations (label tv). We suppose that rental589

bicycles are always available. The private bicycle layer is connected to the walking590

layer at common street intersections (label tb).591

4Autolib’, www.autolib.eu
5See www.openstreetmap.org
6Vélib’, www.velib.paris.fr
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Table III: Ile-de-France (IDF) transportation network: sizes

layer nodes arcs labels

walking 275 606 751 144 f (all arcs except 2x20 arcs with labels zf1 and zf2 )
public trans-
portation

109 922 292 113 pb (bus, 72 512 arcs), pm (metro, 1 746), pt (tram, 1 746), pr (train,
8 309), pc (connection between stations, 32 490), pw (walking paths in-
side stations, 176 790 (omitted in automata and regular expressions for
simplicity)), time-dependent 82 833

bicycle 250 206 583 186 b
car 613 972 1 273 170 ct (toll roads, 3 784), cf (fast roads, 16 502), cp (paved roads except toll

and fast roads, 1 212 957), cu (unpaved roads, 27 979), 2x20 arcs with
labels zc1 and zc2 , time-dependent 188 197

transfers - 1 109 922 access to car layer by private car tc (493 601) and by rental car at rental
car stations ta (524), access to bike layer by rental bike tv (1 198) and
by private bike tb (493 601), access to public transportation at stations
tp (38 848)

Tot 1 249 706 3 980 887 time-dependent arcs 271 030 (7 687 204 time points)

Table IV: New York (NY) transportation network: sizes

layer nodes arcs labels

walking 104 737 317 888 f (all arcs except 2x20 arcs with labels zf1 and zf2 )
public trans-
portation

43 856 78 932 pb (bus, 23 784 arcs), pm (metro, 1 702), pt (train, 348), pc (connec-
tion between stations, 142), pw (walking paths inside stations, 52 956
(omitted in automata and RE)), time-dependent arcs 25 834

bicycle 104 737 317 888 b
car 100 529 276 521 all paved roads cp except 2x20 arcs with labels zc1 and zc2 and all

non-time-dependent
transfers - 442 796 access to car layer by private car tc (201 058), access to bike layer by

private bike tv (209 474), access to public transportation at stations tp
(32 264)

Tot 353 859 1 436 141 time-dependent arcs 25 834 (3 572 498 time points)

The NY network is composed of data of the road and public transportation system of592

New York City. It consists of four layers: bicycle, walking, car, and public transporta-593

tion. It is constructed in the same way as the graph of Ile-de-France and we use the594

same labels to mark modes of transportation. We use geographical data from Open-595

StreetMap for the car, walking, and cycling layers. The public transportation layer is596

based on data freely available from the Metropolitan Transportation Authority7. See597

Table IV for detailed information.598

In addition, in both graphs, we introduced two times twenty arcs with labels zf1 and599

zf2 between nodes of the foot layer, and two times twenty arcs with labels zc1 and zc2600

between nodes of the car layer. They represent arcs close to locations of interest, and601

are used to simulate the problem of reaching a target and in addition passing by any602

pharmacy, grocery shop, etc.603

7MTA, www.mta.info/developers (01/08/2012)
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Test instances. To test the performance of the algorithms, we recorded runtimes for604

500 test instances for 26 RegLCSP scenarios. Scenarios have been chosen with the in-605

tention to represent real-world queries, which may arise when looking for constrained606

shortest paths on a multi-modal transportation network. 11 scenarios have simple con-607

straints which only exclude modes of transportation. The remaining 15 scenarios have608

more complex constraints (constraints on number of changes, sequence of modes of609

transportation, e.g., bicycle followed by public transportation followed by rental bicy-610

cles). These scenarios have been derived from six base-automata (I, II, III, IV, V, VI)611

by varying the involved modes of transportation, see Figures 9, 11, 13, 15, 17, and 19.612

The regular expressions of all 26 scenarios can be found in Tables V and VII.613

Source node r, target node t, and start time τstart are picked at random, r and t always614

belong to the walking layer. Thus all paths start and end by walking. For all scenarios615

we use the same 32 landmarks determined by using the avoid heuristic [Goldberg and616

Harrelson 2005]. The determination of the landmarks took approximately 3 minutes in617

our scenario. Landmarks are calculated and placed exclusively on the walking layer as618

all paths of the scenarios start and end by walking. The calculation of the constrained619

landmark distances involves the execution of one backward and one forward DRegLC620

search from each landmark to all other nodes (one-to-all) for each regular language621

determined by the different methods (bas), (adv), (spe), etc. (For (bas) only one regular622

language, for (adv) up to |S| regular languages etc. See Sections 5 and 6.) Preprocessing623

on network IDF takes less than 90s for a single regular language and up to 8m for624

all the regular languages determined by the chosen method (20s and 1m40s for the625

network NY, which is of a smaller size). See Tables VIII and IX for preprocessing times626

and sizes of preprocessed data for all scenarios.627

For each scenario, we compare average runtimes of the different variations of SDALT628

(see Table VI) with DRegLC [Barrett et al. 2000] and std (which is based on the goal629

directed search algorithm go presented in [Barrett et al. 2008]). To the best of our630

knowledge, no other comparable methods on finding constrained shortest paths on631

multi-modal networks exist in the literature. A direct comparison to the methods pre-632
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Table V: Regular expressions of test scenarios for experimental evaluation.

NFA regular expression

Ia f∗|(f∗ta(ct|cf |cp|cu)∗taf∗
Ib f∗|(f∗tc(ct|cf |cp|cu)∗tcf∗
IIa (f |ta|ct|cf |cp|cu)∗z(f |ta|z|ct|cf |cp|cu)∗
IIb (f |tc|ct|cf |cp|cu)∗z(f |tc|z|ct|cf |cp|cu)∗
IIIa (ta|ct|cf |cp|cu)∗zf1(b|f |tb)∗zf2f

∗

IIIb (ta|cp|cu)∗zf1(b|f |tb)∗zf2f
∗

IIIc (tp|pb|pm|pr|pt)∗zf1(b|f |tb)∗zf2f
∗

IIId (tp|pm|pt)∗zf1(b|f |tb)∗zf2f
∗

IVa (tbb
∗tb|f)(f∗|f∗tpptp(b|f |tv)∗

IVb (tbb
∗tb|f)(f∗|f∗tp(pc|p)∗tp(b|f |tv)∗

IVc (tbb
∗tb|f)(f∗|f∗tp(pm|pt)∗tp(b|f |tv)∗

Va (b|f |tb)∗|(b|f |tb)∗((tac∗ta)|(tpp∗tp)|(tpp∗pcp∗tp))(b|f |tv)∗
Vb (b|f |tb)∗|(b|f |tb)∗((tac∗ta)|(tp(pm|pt)∗tp)|(tp(pm|pt)∗pc(pm|pt)∗tp))(b|f |tv)∗
VIa (b|f |pm|pt|tp|tb)∗(zf |(tac∗zc(c|zc)∗ta)(f |pm|pt|tp|zf )∗
VIb (b|f |tb)∗(zf |(tac∗zc(c|zc)∗ta)(f |zf )∗

Table VI: List of the different variants of the SDALT algorithm.

lsSDALT lcSDALT biSDALT

bas ls - bas biv0 bas biv1 bas biv2
adv ls adv lc adv biv0 adv biv1 adv biv2
spe ls spe lc spe biv0 spe biv1 spe biv2

sented in [Rice and Tsotras 2010] and [Dibbelt et al. 2012] is not possible as they do633

not consider time-dependent arc costs on the road network and are only applicable to634

specific scenarios (further discussed in Section 9).635

8.1. Discussion636

Simple constraints. For a preliminary evaluation of the impact of the use of various637

modes of transportation, we first run tests for scenarios with simple regular expres-638

sions which just exclude modes of transportation but do not impose any other con-639

straints. We solely applied bas ls as the automaton has only one state. Average run-640

times are listed in Table VII. Speed-ups in respect to DRegLC range from a speed-up of641

a factor of 1.5 to a factor of 40 (up to a factor of 55 with approximation). We observed642

that bas ls is always faster than DRegLC and std, and that the faster the modes of trans-643

portation which are excluded, the higher the speed-up. Furthermore, time-dependency644

has a negative impact on runtime, especially on bi-directional search. This is probably645

due to the fact that bounds are calculated by using the minimum weight cost function.646
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Table VII: Experimental results for scenarios with simple regular languages: no con-
straints other than exclusion of modes of transportation (average runtimes in millisec-
onds, preprocessing time (pre) in seconds). Size of preprocessed data for scenarios on
IDF and NY is 306 MB and 86 MB, respectively.

regular allowed modes of netb prec DRegLC std bas ls bas biv0 10%a 20%a

expression transportations [s] [ms] [ms] [ms] [ms] [ms] [ms]

(f)∗ only foot IDF 19s 88 117 5 *4 4 4
NY 6s 27 38 *1.6 2.4 1.8 1.8

(b|f |tb)∗ bike IDF 32s 199 248 13 9 *8 8
NY 12s 75 96 5.4 3.2 *2.9 2.9

(c|f |tc)∗ car IDF 57s 356 130 124 261 179 *117
NY 11s 68 96 3.8 2.6 *2.4 2.4

(f |pc|pm|pt|pr| public trans IDF 34s 182 186 *116 291 269 251
pb|tp)∗ NY 9s 63 76 *37 89 69 58

(f |pc|pm|pt|tp)∗ metro/tram IDF 24s 135 175 23 44 24 *22
NY 9s 48 64 *14 30 26 20

(f |pc|pr|tp)∗ trains IDF 29s 166 172 *73 177 162 155
NY 8s 42 57 *17 35 26 23

(f |pb|pc|tp)∗ bus IDF 28s 174 216 *157 431 419 408
NY 9s 61 79 *35 90 89 81

(b|f |tv)∗ rental bike IDF 30s 223 300 10 5 *4 4

(c|f |ta)∗ rental car IDF 51s 509 623 90 96 16 *11

(cf |cp|cu|f |tc)∗ private car, no
toll roads

IDF 57s 347 126 108 219 132 *90

(cp|cu|f |tc)∗ private car, no
toll/fast roads

IDF 55s 340 209 *134 349 251 184

a bas biv0 with approximation factors 10% and 20%, b network, c preprocessing time for bas ls and bas biv0 (in seconds). Preprocessing time for std: 50s.

Bounds are especially bad for public transportation at night time, as connections are647

not served as frequently as during the day.648

Complex constraints. Let us now look at the scenarios with more complex constraints.649

In Figures 10, 12, 14, 16, 18, and 20, we report average runtimes of the different ver-650

sions of SDALT by using methods (bas), (adv), and (spe) applied to 15 scenarios on the651

IDF network. Of those 15 scenarios, we run 5 on the NY network (Figures 21 and 21).652

See Figure 10 for information on how to read these graphs. Note that the conclusions653

which follow apply to both networks, IDF and NY, which proves the applicability of our654

algorithm to different multi-modal transportation networks.655

Let us examine the uni-directional versions of SDALT first. Runtimes of std are al-656

ways the worst, and sometimes even lower than plain DRegLC. This can be explained657

intuitively by the observation that it is likely to guide the search toward arcs with the658
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lowest cost on the shortest un-constrained path to the target. The uni-directional ver-659

sions of SDALT, on the other hand, are able to anticipate the constraints of L0 during the660

pre-processing phase and thus will tend to explore nodes toward low cost arcs which661

are likely to not violate the constraints of L0. Version bas ls works well in situations662

where L0 excludes a priori fast modes of transportation. See Table VII and scenarios663

Ia and IIa, here the fastest mode of transportation, private car, is excluded. Version664

adv ls gives a supplementary speed-up in cases where initially allowed fast modes of665

transportation are excluded from a later state on A0 onward. This can be observed in666

scenarios IV where the use of public transportation is excluded in state s4, and also667

in scenarios V, where, when moving from s0, either public transportation or the use668

of a rental car is excluded. Version spe ls has a positive impact on runtimes for sce-669

narios where the constrained shortest path is very different from the un-constrained670

shortest path. We simulate this by imposing the visit of some infrequent labels, which671

would generally not be part of the un-constrained shortest path. In scenarios II, III,672

and VI an arc with labels zf1 , zf2 , or zc1 has to be visited which is likely to impose a673

detour from the un-constrained shortest path. Other cases where spe ls is likely to674

improve runtimes are scenarios in which the use of fast modes of transportation is675

somehow limited (e.g., in scenario IVa public transportation can be used only once and676

no changes are allowed, in scenarios V exactly one change is allowed). Finally, versions677

adv lc and spe lc prove to be quite efficient. Especially adv lc runs faster than adv ls678

in most scenarios as it substantially reduces the number of calculated potentials, the679

negative effect on the runtime caused by the re-insertion of nodes turns out to be out-680

balanced by the lower number of visited nodes.681

Let us now look at the results of the bi-directional versions. We conclude that time-682

dependent arcs, in general, have a negative impact on runtimes of the bi-directional683

versions of SDALT (scenarios Ib, II, V, and IV). In some cases, bi-directional searches684

which employ approximation run very fast when the number of time-dependent arcs is685

limited (as is the case in Ia, rental cars are available only in a small part of the graph,686

namely Paris and its surroundings, and in IVc where no buses and trains may be687
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used). Bi-directional search performs very well in cases where spe ls also works well.688

These are cases where the constrained shortest path is very different from the un-689

constrained shortest path, e.g., scenarios III and VI. As forward and backward search690

communicate with each other by using the concept of the tight potential function, the691

bi-directional search is able to predict these difficult constraints. Finally, version biv2692

seems to dominate the other two bi-directional versions in most cases. By looking at693

the number of settled nodes for each version, we found that versions biv1 and biv2694

settled constantly fewer nodes than biv0, but runtimes are not always lower as the695

algorithmic overhead is higher.696

9. CONCLUSIONS697

We presented different versions of uni- and bi-directional SDALT which solves the Regu-698

lar Language Constraint Shortest Path Problem. Constrained shortest paths minimize699

costs (e.g., travel time) and in addition must respect constraints like preferences or ex-700

clusions of modes of transportation. In our scenario, a realistic multi-modal transporta-701

tion network, SDALT finds constrained shortest paths 1.5 to 40 (60 with approximation)702

times faster than the standard algorithm, a generalized Dijkstra’s algorithm (DRegLC).703

Recent works on finding constrained shortest paths on multi-modal networks report704

speed-ups of different orders of magnitude. They achieve this by using contraction hier-705

archies. The authors of [Rice and Tsotras 2010] apply contraction to a graph consisting706

of different road types and limit the regular languages which can be used to constrain707

the shortest paths to Kleene languages (road types may only be excluded, for example708

toll roads). We use Kleene languages for the scenarios reported in Table VII. Here,709

SDALT provides maximum speed-ups of about factor 20. However, besides limiting the710

range of applicable regular languages, [Rice and Tsotras 2010] do not consider public711

transportation nor traffic information (time-dependent arc cost functions) which are712

important components of multi-modal route planning. The authors of [Dibbelt et al.713

2012] apply contraction only to the road network of a multi-modal transportation net-714

work consisting of foot, car, and public transportation. Their scenario is comparable to715
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scenarios IV. Here, SDALT provides maximum speed-ups of about factor 3 to 10. How-716

ever, the authors do not consider traffic information nor different road classes. SDALT717

considers and incorporates both.718

SDALT is a general method to speed-up DRegLC for all regular languages and for719

all types of labeled graphs and which can be applied to networks including time-720

dependent arc costs. We discussed under which conditions SDALT should provide good721

speed-ups. Another advantage of SDALT, although not explicitly discussed in this work,722

is that the original graph is not modified by the preprocessing process, as it is based on723

ALT. Because of that, real time information can be incorporated easily (changing traffic724

information, closures of roads, etc.), without recalculating preprocessed data (under725

mild conditions).726

The objective of future research on constrained shortest path calculation is to fur-727

ther increase speed-ups. The combination of SDALT and contraction is a viable option,728

although handling time-dependency and considering the labels on arcs during the con-729

traction process is not straightforward. A further area of future research is to study730

the multi-criteria scenario, where not only travel time but also, e.g., travel cost or the731

number of changes are minimized.732

ACM Journal of Experimental Algorithmics, Vol. V, No. N, Article A, Publication date: January YYYY.



Efficient Computation of Shortest Paths in Time-Dependent Multi-Modal Networks A:35

s0 s2s1
ty ty

f x f

Ia: rental car ty = ta, x = ctcf cpcu
Ib: car ty = tc, x = ctcf cpcu

Fig. 9: Scenarios I: a path starts and ends by walking. A car (scenario Ia) or rental car
(scenario Ib) may be used once.
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● Ia: rental car
Ib: private car
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Fig. 10: Experimental results for scenarios I. The different line-types indicate aver-
age runtimes (in milliseconds [ms]) of the different SDALT variants when varying the
allowed modes of transportation. In this example, the continuous blue and dashed
red lines indicate average runtimes for the different SDALT variants for scenarios Ia
and Ib. We provide average runtimes for DRegLC, std, bas ls, bas bivx, adv ls, adv lc,
adv bivx, spe ls, spe lc, and spe bivx (abbreviated in this order on the graph). For all
bi-directional versions of the algorithms we also report average runtimes for an ap-
proximation factor of 10% and of 20% (in the graph indicated for scenario Ib). For sce-
nario Ia average runtimes for DRegLC are about 530ms. Applying std results in a speed-
down (680ms). Instead, bas ls works very well (100ms) and applying bi-directional
search with approximation even more so (10ms). Note that results for an approxima-
tion of 10% and 20% for this scenario coincide. For scenario Ib, average runtimes for
DRegLC are about 360ms. std and bas ls provide a speed-up of about factor 3. The other
algorithms do not provide better results.
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s0 s1
zc1

bfx bfx

IIa: rental car x = tactcf cpcu
IIb: private car x = tcctcf cpcu

Fig. 11: Scenarios II: Walking, rental car (scenario IIa), or private car (scenario IIb)
may be used to reach the target. One arc with label zc1 has to be visited.
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For adv same results as for bas

Fig. 12: Experimental results for scenarios II. For scenario IIa std is slower than
DRegLC. bas ls and bas bivx provide a speed-up of about factor 2. spe ls runs slightly
faster. The bi-directional algorithms spe bivx work very well and provide average run-
time of about 60ms (speed-up factor of about 20). For scenario IIa, std and bas ls
perform equally, the different versions of spe provide slightly better results.
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s0 s1 s2
zf1 zf2

x bftb f

IIIa: private car x = tafctcf cpcu
IIIb: private car, no fast roads x = tafcpcu
IIIc: public trans x = tpfpbpmprpt
IIId: metro/tram x = tpfpmpt

Fig. 13: Scenarios III: the path begins with private car (scenarios IIIa and IIIb) or
public transportation (scenarios IIIc and IIId). After visiting an arc with label zf1,
the path may be continued by rental bicycle and/or by walking. Before reaching the
target by walking, an arc with label zf2 has to be visited.
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IIId: metro/tram
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Fig. 14: Experimental results for scenarios III. For all scenarios the algorithms std,
bas ls, adv ls, and adv ls are not very efficient. Instead, spe ls and spe lc and the
bi-directional versions work very well. They provide a speed-up of a factor of 10 to 15.
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s0

s2

s1

s3

s4

tb

f

tb

tp

x

tp

f

b bftv
IVa: public trans, no changing x = pbpmprpt
IVb: public trans x = pbpmprptpc
IVc: metro/tram, no changing x = ptpm

Fig. 15: Scenarios IV: the path begins either by walking or private bicycle. Once the pri-
vate bicycle is discarded, the path may be continued by walking. Public transportation
may be used (all public transportation without changing (scenario IVa), with changing
(scenario IVb), or only metro/tram without changing (scenario IVc)). Finally, the target
may be reached by walking or by using a rental bicycle.
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Fig. 16: Experimental results for scenarios IV. The bi-directional versions of the algo-
rithm and std are not efficient. Instead, bas ls, adv ls, and spe ls provide speed-ups
of a factor between 2 and 10.
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s0

s1 s2

s3 s4

bftb tp

ta

pc

tp
tp

ta

x x

y bftv
Va: public trans y = ctcf cpcu, x = pbpmprpt
Vb: metro/tram y = ctcf cpcu, x = pmpt

Fig. 17: Scenarios V: a path begins by walking or by using a private bicycle. Then either
a rental car or public transportation may be used (one or two changes). At the end a
rental bicycle or walking may be used to reach the target. In scenario Va all public
transportation may be used, in scenario Vb only metro and tram.

ru
nt

im
e 

[m
s]

   
   

   
   

   
   

   
   

   
   

   
   

   
  

● ●

●

●
●

●

●
●

● ●

●
●

●

● ●
●

● ●
●●

● ●

● ●

●

●
●

●

● ● ●● ● ●

D
R

eg
Lc

st
d ls

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2 ls lc

bi
v0

bi
v1

bi
v2

0

230

460

690

920

1150

bas adv spe

−  nfa V, IDF  −

● Va: public trans
Vb: metro/tram

Fig. 18: Experimental results for scenarios V. Bi-directional search does not work well
if public transportation can be used (scenario Va). Instead, if public transportation is
restricted (scenario Vb) bi-directional search is very fast. For scenario Vb, bi-directional
search with approximation of 20% provides a speed-up of about a factor of 60, spe ls
of a factor of 15.
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s0 s1

s2 s3

zf1

zc1

ta ta

bfxtv fxzf1

y yzc1

VIa: metro/tram y = ctcf cpcu, x = pmpt
VIb: no public trans y = ctcf cpcu, no x

Fig. 19: Scenarios VI: Walking, rental bicycle, and rental car may be used, but either
an arc with label zf1 or zc1 has to be visited (scenario VIb). In scenario VIb also metro
and tram may be used.
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Fig. 20: Experimental results for scenarios VI.
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Fig. 21: Experimental results for scenarios III on network NY.
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Fig. 22: Experimental results for scenarios IV on network NY.
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Table VIII: Preprocessing times (in minutes and seconds). (For std: 50s.)

Scenarios bas ls adv ls bi-advvx spe lc spe ls
bi-basvx adv lc bi-spevx

Ile-de-France, IDF

Ia 51s 1m11s 1m11s 2m54s 2m54s
Ib 58s 1m16s 1m11s 3m6s 3m6s
IIa 52s - - 3m23s 2m32s
IIb 57s - - 3m56s 2m58s
IIIa 1m19s 2m17s 4m37s 5m02s 4m39s
IIIb 1m11s 2m2s 4m8s 4m58s 4m20s
IIIc 50s 1m48s 3m10s 4m01s 3m33s
IIId 37s 1m31s 2m32s 3m35 2m59s
IVa 48s 2m10s 3m31s 2m49s 5m41s
IVb 48s 2m0s 3m18s 2m43s 5m32s
IVc 37s 1m42s 2m52s 2m30s 5m6s
Va 1m28s 4m41s 8m08s 6m01 6m12s
Vb 1m14s 4m0s 6m54s 5m29 5m39s
VIa 1m15s 2m35s 5m41s 5m26s 5m27s
VIb 1m8s 2m19s 5m07s 4m52s 4m52s

New York, NY

IIIb 17s 34s 1m01s 1m28s 1m10s
IIIc 16s 33s 58s 1m23s 1m8s
IIId 14s 31s 53s 1m20s 1m6s
IVb 15s 32s 59s 45s 1m38s
IVc 13s 29s 54s 44s 1m34s

Table IX: Size of preprocessed data (in MB).

Scenarios std ls adv ls bi-advvx spe lc spe ls
bas ls, bi-basvx adv lc bi-spevx

Ile-de-France, IDF

Ia, Ib 306 612 612 1224 1224
IIa, IIb 306 - - 918 612
IIIa, IIIb, IIIc, IIId 306 918 1530 1530 1224
IVa, IVb, IVc 306 918 1530 1224 1836
Va, Vb 306 1530 2754 1836 1836
VIa, VIb 306 918 1836 1224 1224

New York, NY

IIIa, IIIb, IIIc, IIId 86 258 430 430 344
IVa, IVb, IVc 86 258 430 344 516
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