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Abstract

Ev3 is a callable C++ library for performing symbolic computation (calculation of symbolic
derivatives and various expression simplification). The purpose of this library is to furnish a fast
means to use symbolic derivatives to third-party scientific software (e.g. nonlinear optimization,
solution of nonlinear equations). It is small, easy to interface, even reasonably easy to change; it
is written in C++ and the source code is available. One feature that makes Ev3 very efficient in
algebraic manipulation is that the data structures are based on n-ary trees.

1 Introduction

Computer Algebra Systems (CAS) have helped mathematicians, physicists, engineers and other scientists
enormously since their appearance. CASes are extremely useful in performing complex symbolic calcu-
lations quickly. They do not generally require particular programming skills, yet they manage to carry
out numerical analysis, symbolic manipulation and graph plotting in 2 and 3 dimensions. The range of
existing CASes is impressive, both commercially available (e.g. Mathematica, Maple, Matlab, Mathcad,
Reduce, Mupad etc.) and as free software (e.g. Maxima, GAP, yacas, Singular, GiNaC etc.); however
most of them (with the notable exception of GiNaC, see below) fall short on the external Application
Programming Interface (API), i.e. it is difficult, or impossible in many cases, to create a program in
a compiled language, say in C/C++ or Fortran, which can use the external CAS facilities. This is a
serious hindrance for user applications with programming requirements that go beyond those offered by
the CAS proprietary language, or for those applications that need to be coded in a compiled language
for efficiency, but would still benefit from the CAS facilities. The need for CAS-type libraries designed to
be used from an API arises as the complexity or the commercial viability of the application gets higher.
Thus, having experienced the benefits of CASes from the command line, so to speak, users now want to
incorporate these functionalities in their own programs.

This paper presents Ev3, a callable C++ library designed to perform simple symbolic manipulation.
“Simple” in this context means symbolic differentiation and various expression simplifications. Thus,
Ev3 is very useful for those scientific applications that need to compute derivatives, like for example
continuous nonlinear programming or nonlinear equation solving. The reason why we have chosen to keep
Ev3 “simple”, i.e. to limit the range of symbolic algorithms included in Ev3, is that we expect advanced
users to take the source code and modify it to suit their own needs. For example, if an application needs
a symbolic integration routine, Ev3’s data structures and basic methods can be used as a starting point.
We did our best in keeping Ev3’s source code small, readable, well structured and easily extendable. Ev3
can be downloaded from http://www.lix.polytechnique.fr/ liberti/Ev3-1.0.tar.gz.

Ev3 records mathematical expressions in a tree-like data structure (called n-ary tree) where each
node has an arbitrary number of direct subnodes. Monomials of all degrees (including constants) are
represented by the leaf nodes of the tree, and mathematical operators by the intermediate nodes. Entire
subexpressions can be easily changed, substituted or deleted. New expressions can be formed in a



number of different ways. A “standard form” for expressions is defined in order to make simplification
more effective.

These are some of Ev3’s features:

• based on n-ary trees;

• every node in a tree can have a numeric multiplicative coefficient;

• every leaf node in a tree can have a numeric exponent;

• basic form of garbage collection via reference counter;

• basic parser transforms strings in n-ary trees;

• basic functionality: function evaluation, expression simplification, symbolic differentiation.

The rest of this paper is organized as follows. In section 2 we review the current situation as regards
some existing CASes and their ability to be used as a callable library for external applications. In section
3 we describe the most common data structures used for symbolic computation (namely, lists and binary
and n-ary trees). In section 4 we describe Ev3’s object-oriented software architecture and implementation
of the abstract data structure describing the n-ary tree. Finally, section 5 is a tutorial on the use of Ev3.

2 Review of Current Situation

As has been mentioned in the introduction, it is difficult, or impossible in many cases, to use CAS
functionality within a C++ program. In this section we describe the current situation with some existing
symbolic computation packages.

2.1 Commercial CASes

This list encompasses some of the most widespread commercial CASes. Although some of these CASes
are distributed for free for non-commercial purposes (e.g. MuPad), they appear in this list because they
do not abide by the “free software” rules involving distribution of the source code and copyrighting via
the GNU Public License (GPL).

• Mathematica. Mathematica offers some support for external programs wanting to use its features
via the MathLink [Mathematica(2001)] mechanism. However, a kernel needs to be running on the
local machine in order to use it. This has a number of disadvantages:

– the produced executables are not portable, for they need to find a running Mathematica kernel
in order to run;

– there is some computational overhead involved in runtime linking with a running Mathematica
kernel;

– there is no significant computational speed to be gained from this exercise, as all the Mathe-
matica instructions are carried out by the Mathematica kernel, not by the user executable.

• Maple. Maple [Maple(2001)] is capable of translating its procedures and functions in C or Fortran,
however it is not possible to export symbolic manipulation code, and there is no way to call a Maple
library from C/C++/Fortran.
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• Mathlab. Strictly speaking, MatLab does not do symbolic computation. However there are some
symbolic computation extensions available for MatLab [Matlab(2001)] so it makes sense to include
it in this list. MatLab external API works in much the same was as Mathematica’s does: on
initialization, the external C/C++/Fortran program spawns a running MatLab process on the
local machine, and sets up input/output pipes from it to the program [Matlab API(2001)]. The
same comments given above for Mathematica also apply here.

• Mathcad. Unfortunately, publically available documentation about MathCad is scarce. MathCad
can link to Microsoft-compliant dynamic link libraries (DLL) at runtime, and it would seem like
it is also possible to do the reverse, i.e. use an external C++ driver program to use MathCad
facilities; however the exact mechanism by which this is implemented seems to be a proprietary
piece of information, and hence we cannot comment on it.

• Reduce. The commercial distribution of Reduce includes the full source code (in standard Lisp),
so it would seem feasible to try to compile the Lisp source code to an object file that would then
be linked against a C/C++/Fortran driver program; however, this would fall into a “hacking trick”
category more than into established use; moreover, this is true for each CAS that comes with source
code. In practice, Reduce has no native mechanism for allowing easy linking with C/C++/Fortran
programs, although it does have a facility for writing out its functions/procedure to C/Fortran code
(with no symbolic computation).

• MuPad. MuPad allows linking of external compiled binary modules via an API, however it is not
possible to do the reverse, i.e. use MuPad’s facilities within an external C/C++/Fortran driver pro-
gram [MuPad(2001), MuPad Documentation(2001)]. MuPad can export its functions/procedures
to C/Fortran code (with no symbolic computation).

2.2 Free Software CASes

This list comprises some of the most widespread general-purpose “free software” CASes. In all cases, the
source code is available. Packages like GAP [GAP(2001)] or Singular [Singular(2001)] do not appear here
because they are too specific in nature. SciLab [SciLab(2001)] does not appear because although it offers
some runtime dynamic linking from C/C++/Fortran compiled code, its symbolic capabilities are only
present when interfacing through Maple, i.e. symbolic computation within SciLab is actually carried out
by Maple. Octave [Octave(2001)], like SciLab, does not have built-in symbolic computation facilities,
although it does have a library that external program can link against.

• Maxima. Maxima [Maxima(2001)] is a version of the MIT-developed MACSYMA system, modifed
to run under GNU Common LISP. It is a wholly interactive system, and it has no support for
external linking.

• JACAL. JACAL [JACAL(2001)] is a symbolic mathematics system for the simplification and
manipulation of equations and single and multiple valued algebraic expressions, written in Scheme.
It has no support for external linking.

• yacas. Yacas (Yet Another CAS, [yacas(2001)]) is a small computer algebra system based on a lisp
interpreter. It can run in “web server mode”, so that any client can connect remotely and perform
calculations. Data are passed back and forth via the http protocol. In this sense, it would be
possible to implement a C/C++/Fortran client code. However, no local binary linking is possible.

• GiNaC. The acronym stands for GiNaC is Not a CAS [GiNaC(2001)], and indeed this package
keeps its promise. It is a library for doing symbolic computation (see [BFK01]); it is coded in
C++ and designed to be used from C++. Symbolic computation performed by GiNaC extends to
symbolic manipulation and symbolic differentiation, but it does not include symbolic integration
or an algorithm for automatic simplification of symbolic expression (the authors argue that there
is no such thing as a “standard for simplifying expressions”, so the way to carry it out is best left
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to the user). GiNaC is not limited to symbolic computation, as it is based on the CLN library for
arbitrary size numerical computation. Furthermore, matrices, vectors, tensors can all be formed as
arrays of symbolic expressions indexed by virtually any type of object, be it numeric or symbolic
(it is even possible to index arrays by symbolic expressions, although the authors warn that it may
be of little use).

As has been shown in the last two sections, embedding symbolic computation in a compiled language
(C++) is only possible using GiNaC. However, as has been said, Ev3 only implements symbolic differ-
entiation and simplification routines and is easy to extend; GiNaC, on the other hand, implements a lot
of algorithms (not all of these of a symbolic computational nature) except for expression simplification
ones, and, consisting of a large source code base, is difficult to extend and adapt. In other words, GiNaC
is more useful as a finished product than as a starting point for new symbolic algorithms. Whereas Ev3
only consists of 7 source files for a total of around 6000 lines of code (including comments and headers),
against GiNaC’s nearly 37000 lines of code shared in over 90 source files.

3 Data Structures for Symbolic Computation

Symbolic computation relies on a machine representation of mathematical operations on some numbers
or literal symbols (constants, variables, or expressions involving constants and variables). Usually, one of
the following techniques is employed to represent these operations:

• binary trees;

• lists;

• n-ary trees.

3.1 Binary Trees

Binary trees have been proposed as a way of representing mathematical expressions by Knuth (see
[Knu81]) and made their way in computational engineering and other fields of scientific computing (just
to cite an example, see [BP88]). This representation is based on the idea that operators, variables
and constants are nodes of a digraph; binary operators have two outcoming edges and unary operators
have only one; leaf nodes have no outcoming edge (for graph-related terminology and definitions, see
[Har71], [KV00]). One disadvantage is that binary tree representation makes it cumbersome to implement
associativity. For example, the expression y + x + 2x + 3x is represented as (((y + x) + 2x) + 3x), so
it would require three recursive steps to lower tree ranks to find out that it is possible to write it as
(y + 6x). Another disadvantage is that different parsers may have different representations for the same
expressions. With the example above, a “left-hand-side-first” parser would create (y + (x + (2x + 3x)))
instead of the “right-hand-side-first” (((y + x) + 2x) + 3x).

Octave’s internal algebraic parser is based on binary trees, as can be seen in the file pt-exp.h, inside
the src subdirectory of the octave source distribution directory. One reason for this is that Octave has
no symbolic manipulation abilities, thus its trees are mostly used for fast evaluation of mathematical
expressions.

Where symbolic manipulation is only desired to compute symbolic derivatives and performing little
or no symbolic manipulation, this approach may be the best, as it is simpler to implement than the other
techniques and generally performs very efficiently ([Pan88], [LTKP01]).
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3.2 Lists

The representation of algebraic expressions by lists dates back to the AI-type languages Prolog and Lisp.
Lisp, in particular, was so successful at the task that a lot of CASes, today, are still based on Lisp’s list
manipulation abilities (e.g. Maxima, JACAL, yacas, see above). Prolog has some interesting features in
conjunction with symbolic computation, in particular the “computation-reversing” ability, by which if you
compute a symbolic derivative and do not bother to simplify it, Prolog lets you integrate it simbolically
performing virtually no calculation at all.

Any CAS library written in Prolog/Lisp faces the hard problem of implementing an API which can be
used by procedural languages like Fortran, C or C++. Whilst technically not impossible, the architectures
and OSes offering stable and compatible Lisp and C/C++ compilers are few. GNU/Linux actually has
object-compatible Lisp and C/C++ compilers; however, the GNU Lisp compiler uses an array of internal
data structures which are very difficult to read from a C/C++ program, making data interchange between
the different modules very hard to implement.

There are two other problems faced by Prolog/Lisp programs: portability (many Prolog/Lisp compil-
ers implement different dialects of the languages) and a reduced user base.

3.3 n-ary Trees

Expression representation by n-ary trees can be seen as a combination of the previous two techniques.
Both GiNaC and Ev3 make use of this representation, albeit in slightly different ways. In order to
characterize this representation formally, we need some definitions.

An operator is a node in a directed tree-like graph. Let L be the set

{+,−,×, /, ^, (−1)×, log, exp, sin, cos, tan, cot,VAR,CONST}

of operator labels. An operator with label VAR is a variable, an operator with label CONST is a constant.
Operator nodes may generally have any number of outcoming edges; variables and constants have no
outcoming edges and are called leaf nodes. A variable is also characterized by a non-negative integer
index i, and a constant by a value which is an element of a number field F . We shall assume F = R (or
at least, a machine representation of R) in what follows, but this can vary (e.g. because GiNaC is based
on the CLN library, it can implement complex numbers as well). Let V be the set of all variable-type
operator nodes. Let T0 = V ∪ R. This is the set of the terminal (or leaf) nodes, i.e. the variables and
constants. Now for each positive integer i, define recursively Ti = L× (Ti−1 ∪ T0)

<ω. Elements of Ti are
operator nodes having rank i. Basically, an element of Ti is made up of an operator label l ∈ L and a
finite number of subnodes. A subnode s of n is a node s in the digraph so that there is an edge leaving
node n and entering s.

The biggest advantage of n-ary tree representation is that it makes it very fast and easy to perform
expression simplification. Another advantage is that expression evaluation on n-ary trees is faster than
that obtained with a binary tree structure [Lib03].

4 Ev3 Architecture

Ev3 software architecture is based on 5 classes. Two of them, Tree and Pointer, are generic templates
that provide the basic tree structure and a no-frills garbage collection based on reference count. Each
object has a reference counter which increases every time a reference of that object is taken; the object
destructor decreases the counter while it is positive, only actually deleting the object when the counter
reaches zero. This type of garbage collecting is due to Collins, 1960 (see [Kal00]). Other two classes,
Operand and BasicExpression, implement the actual semantics of an algebraic expression. The last
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class, ExpressionParser, implements a simple parser (based on the ideas given in [Str99]) which reads
in a string containing a valid mathematical expression and produces the corresponding n-ary tree.

Notice that Ev3 uses some of the STL generic container classes (like, e.g., vector).

4.1 The Pointer Class

This is a template class defined as

template<class NodeType> class Pointer {

NodeType* node;

int* ncount;

// methods

};

The constructor of this class allocates a new integer for the reference counter ncount and a new NodeType

object, and the copy constructor increases the counter. The destructor deletes the reference counter and
invokes the delete method on the NodeType object. In order to access the data and methods of the
NodeType object pointed to by node, the -> operator in the Pointer class is overloaded to return node.

A mathematical expression, in Ev3, is defined as a pointer to a BasicExpression object (see below
for the definition of a BasicExpression object):

typedef Pointer<BasicExpression> Expression;

4.2 The Tree Class

This is a template class defined as

template<class NodeType> class Tree {

vector<Pointer<NodeType> > nodes;

// methods

};

This is the class implementing the n-ary tree (subnodes are contained in the nodes vector). Notice
that, being a template, the whole implementation is kept independent of the semantics of a NodeType.
Notice also that because pointers to objects are pushed on the vector, algebraic substitution is very
easy: just replace one pointer with another one. This differs from the implementation of GiNaC
([GiNaC Group(2001)], p. 36) where it appears that algebraic substitution is a more convoluted op-
eration.

4.3 The Operand Class

This class holds the information relative to each expression term, be they constants, variables or operators.

class Operand {

int oplabel; // operator label

double value; // if constant, value of constant

long varindex; // if variable, the variable index
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string varname; // if variable, the variable name

double coefficient; // terms can be multiplied by a number

double exponent; // leaf terms can be raised to a number

// methods

};

Notice that:

• oplabel can be one of the following labels (the meaning of which should be clear):

enum OperatorType {

SUM, DIFFERENCE, PRODUCT, FRACTION, POWER,

PLUS, MINUS, LOG, EXP, SIN,

COS, TAN, COT, SINH, COSH,

TANH, COTH, SQRT, VAR, CONST,

ERROR

};

• value, the value of a constant numeric term, only has meaning if oplabel is CONST;

• varindex, the variable index, only has meaning if oplabel is VAR;

• every term, (variables, constants and operators), can be multiplied by a numeric coefficient. This
makes it easy to perform symbolic manipulation on like terms (e.g. x + 2x = 3x).

• every leaf term (variables and constants) can be raised to a numeric power. This makes it easy to
perform symbolic manipulation of polynomials.

Introducing numeric coefficients and exponents is a choice that has advantages as well as disadvantages.
GiNaC, for example, does not explicitely account for numeric coefficients. The advantages are obvious:
it makes symbolic manipulation very efficient for certain classes of basic operations (operations on like
terms). The disadvantage is that the programmer has to explicitely account for the case where terms
are assigned coefficients: whereas with a pure tree structure recursive algorithms can be formulated as
“for each node, do something”, this becomes more complex when numeric coefficients are introduced.
Checks for non-zero or non-identity have to be performed prior to carrying out certain operations, as well
as having to manually account for cases where coefficients have to be used. However, by setting both
multiplicative and exponent coefficients to 1, the mechanism can to a certain extent be ignored and a
pure tree structure can be recovered.

4.4 The BasicExpression Class

This class is defined as follows:

class BasicExpression :

public Operand, public Tree<BasicExpression> {

// methods

};

It includes no data of its own, but it inherits its semantic data from class Operand and its tree structure
from template class Tree with itself (BasicExpression) as a base type. This gives BasicExpression an
n-ary tree structure.

Note that an object of class BasicExpression is not a Pointer, only its subnodes (if any) are stored
as Pointers to other BasicExpressions. This is the reason why the client code should never explicitely
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use BasicExpression; instead, it should use objects Expression, which are defined as Pointer<Basic-
Expression>. This allows the automatic garbage collector embedded in Pointer to work.

4.5 The ExpressionParser Class

This parser originates from the example parser found in [Str99]. The original code has been extensively
modified to support:

• exponentiation;

• unary functions in the form f(x);

• creation of n-ary trees of type Expression.

For an example of usage, see section 5 below.

4.6 Application Programming Interface

The Ev3 API consists in a number of internal methods (i.e., methods belonging to classes) and external

methods (functions whose declaration is outside the classes). Objects of type class Expression can
be built from strings containing infix-format expressions (like, e.g. "log(2*x*y)+sin(z)") by using the
built-in parser. However, they may also be built from scratch using the supplied construction methods
(see section 5 for examples).

Since the fundamental type Expression is an alias for Pointer<BasicExpression>, and Basic-

Expression is in turn a mix of different classes (including a Tree with itself as a template type), calling
internal methods of an Expression object may be confusing. Thus, for each class name involved in the
definition of Expression, we have listed the calling procedure explicitly.

For further explanations about these methods, consult the Ev3 source files.

Class Operand. Call: ret = (Expression e)->MethodName(args).
Method name Purpose

int GetOpType(void) returns the operator label
double GetValue(void) returns the value of the constant leaf (takes

multiplicative coefficient and exponent
into account)

double GetSimpleValue(void) returns the value (takes no notice of
coefficient and exponent)

long GetVarIndex(void) returns the variable index of the variable leaf
string GetVarName(void) returns the name of the variable leaf
double GetCoeff(void) returns the value of the multiplicative coefficient
double GetExponent(void) returns the value of the exponent (for leaves)
void SetOpType(int) sets the operator label
void SetValue(double) sets the numeric value of the constant leaf
void SetVarIndex(long) sets the variable index of the variable leaf
void SetVarName(string) sets the name of the variable leaf
void SetExponent(double) sets the exponent (for leaves)
void SetCoeff(double) sets the multiplicative coefficient
bool IsConstant(void) is the node a constant?
bool IsVariable(void) is the node a variable?
bool IsLeaf(void) is the node a leaf?
bool HasValue(double v) is the node a constant with value v?
bool IsLessThan(double v) is the node a constant with value ≤ v?
void ConsolidateValue(void) set value to coeff*value*exponent

and set coeff to 1 and exponent to 1
void SubstituteVariableWithConstant(long int varindex, double c) substitute a variable with a constant c
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Template Class Pointer<NodeType>. Call: ret = (Expression e).MethodName(args).

Method name Purpose

Pointer<NodeType> Copy(void) returns a copy of this node
void SetTo(Pointer<NodeType>& t) this is a reference of t
void SetToCopyOf(Pointer<NodeType>& t) this is a copy of t
Pointer<NodeType>
operator=(Pointer<NodeType> t) assigns a reference of t to this

void Destroy(void) destroys the node (collects garbage)

Template Class Tree<NodeType>. Call: ret = (Expression e)->MethodName(args).

Method name Purpose

void AddNode(Pointer<NodeType>) pushes a node at the end of the node vector
void AddCopyOfNode(Pointer<NodeType> n) pushes a copy of node n at the end of the node vector
bool DeleteNode(long i) deletes the i-th node,

returns true if successful
void DeleteAllNodes(void) empties the node vector
Pointer<NodeType> GetNode(long i) returns a reference to the

i-th subnode
Pointer<NodeType> ∗ GetNodeRef(long i) returns a pointer to the

i-th subnode
Pointer<NodeType> GetCopyOfNode(long i) returns a copy of the i-th subnode
long GetSize(void) returns the length of the

node vector

Class BasicExpression (inherits from Operand, Tree<BasicExpression>).
Call: ret = (Expression e)->MethodName(args).

Method name Purpose

string ToString(void) returns a string with the expression in infix notation
void Zero(void) sets this to zero
void One(void) sets this to one
bool IsEqualTo(Expression&) is this equal to the argument?
bool IsEqualToNoCoeff(Expression&) [like above, ignoring multiplicative coefficient]
int NumberOfVariables(void) number of variables in the expression
double Eval(double* v, long vsize) evaluate; v[i] contains the value for variable

with index i, v has length vsize

bool DependsOnVariable(long i) does this depend on variable i?
int DependsLinearlyOnVariable(long i) does this depend linearly on variable i?

(0=depends nonlinearly, 1=linearly, 2=no dependency)
void ConsolidateProductCoeffs(void) if node is a product, move product of

all coefficients as coefficient of node
void DistributeCoeffOverSum(void) if coeff. of a sum operand is not 1,

distribute it over the summands
void VariableToConstant(long varindex, double c) substitute a variable with a constant c

void ReplaceVariable(long vi1, long vi2, string vn2) replace occurrences of variable vi1

with variable vi2 having name vn2

string FindVariableName(long vi) find name of variable vi

bool IsLinear(void) is this expression linear?
bool GetLinearInfo(...) returns info about the linear part
Expression Get[Pure]LinearPart(void) returns the linear part
Expression Get[Pure]NonlinearPart(void) returns the nonlinear part
double RemoveAdditiveConstant(void) returns any additive constant and removes it
void Interval(...) performs interval arithmetics on the expression

Class ExpressionParser.

Method name Purpose

void SetVariableID(string x, long i) assign index i to variable x;
var. indices start from 1 and increase by 1

long GetVariableID(string x) return index of variable x

Expression Parse(char* buf, int& errors) parse buf and return an Expression

errors is the number of parsing errors occcurred
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Methods outside classes.
Method name Purpose

Expression operator+(Expression a, Expression b) returns symbolic sum of a, b

Expression operator-(Expression a, Expression b) returns symbolic difference of a, b

Expression operator*(Expression a, Expression b) returns symbolic product of a, b

Expression operator/(Expression a, Expression b) returns symbolic fraction of a, b

Expression operatorˆ(Expression a, Expression b) returns symbolic power of a, b

Expression operator-(Expression a) returns symbolic form of −a

Expression Log(Expression a) returns symbolic log(a)
Expression Exp(Expression a) returns symbolic exp(a)
Expression Sin(Expression a) returns symbolic sin(a)
Expression Cos(Expression a) returns symbolic cos(a)
Expression Tan(Expression a) returns symbolic tan(a)
Expression Sinh(Expression a) returns symbolic sinh(a)
Expression Cosh(Expression a) returns symbolic cosh(a)
Expression Tanh(Expression a) returns symbolic tanh(a)
Expression Coth(Expression a) returns symbolic coth(a)
Expression SumLink(Expression a, Expression b) returns symbolic sum of a, b

Expression DifferenceLink(Expression a, Expression b) returns symbolic difference of a, b

Expression ProductLink(Expression a, Expression b) returns symbolic product of a, b

Expression FractionLink(Expression a, Expression b) returns symbolic fraction of a, b

Expression PowerLink(Expression a, Expression b) returns symbolic power of a, b

Expression MinusLink(Expression a) returns symbolic form of −a

Expression LogLink(Expression a) returns symbolic log(a)
Expression ExpLink(Expression a) returns symbolic exp(a)
Expression SinLink(Expression a) returns symbolic sin(a)
Expression CosLink(Expression a) returns symbolic cos(a)
Expression TanLink(Expression a) returns symbolic tan(a)
Expression SinhLink(Expression a) returns symbolic sinh(a)
Expression CoshLink(Expression a) returns symbolic cosh(a)
Expression TanhLink(Expression a) returns symbolic tanh(a)
Expression CothLink(Expression a) returns symbolic coth(a)
Expression Diff(const Expression& a, long i) returns derivative of a w.r.t variable i

Expression DiffNoSimplify(const Expression& a, long i) returns unsimplified derivative of a w.r.t variable i

bool Simplify(Expression* a) apply all simplification rules
Expression SimplifyCopy(Expression* a, bool& has changed) simplify a copy of the expression
void RecursiveDestroy(Expression* a) destroys the whole tree and all nodes

Notes

• The lists given above only include the most important methods. For the complete lists, see the files
expression.h, tree.cxx, parser.h in the source code distribution.

• There exist a considerable number of different constructors for Expression. See their purpose and
syntax in files expression.h, tree.cxx. See examples of their usage in file expression.cxx.

• Internal class methods usually return or set atomic information inside the object, or perform limited
symbolic manipulation. Construction and extended manipulation of symbolic expressions have
been confined to external methods. Furthermore, external methods may have any of the following
characteristics:

– they combine references of their arguments;

– they may change their arguments;

– they may change the order of the subnodes where the operations are commutative;

– they may return one of the arguments.

Thus, it is advisable to perform the operations on copies of the arguments when the expression
being built is required to be independent of its subnodes. In particular, all the expression building
functions (e.g. operator+(), . . . , Log(), . . . ) do not change their arguments, whereas their -Link
counterparts do.
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• The built-in parser (ExpressionParser) uses linking and not copying (also see section 4.7) of nodes
when building up the expression.

• The symbolic derivative routine Diff() uses copying and not linking of nodes when building up
the derivative.

• The method BasicExpression::IsEqualToNoCoeff() returns true if two expressions are equal
apart from the multiplicative coefficient of the root node only. I.e., 2(x + y) would be deemed
“equal” to x + y (if 2 is a multiplicative coefficient, not an operand in a product) but x + 2y would
not be deemed “equal” to x + y.

• The Simplify() method applies all simplification rules known to Ev3 to the expression and puts
it in standard form.

• The methods GetLinearInfo(), GetLinearPart(), GetPureLinearPart(), GetNonlinearPart(),
GetPureNonlinearPart() return various types of linear and nonlinear information from the expres-
sion. Details concerning these methods can be found in the Ev3 source code files expression.h,
expression.cxx.

• The method Interval() performs interval arithmetic on the expression. Details concerning this
method can be found in the Ev3 source code files expression.h, expression.cxx.

• Variables are identified by a variable index, but they also know their variable name. Variable indices
are usually assigned within the ExpressionParser object, with the SetVariableID() method. It
is important that variable indices should start from 1 and increase monotonically by 1, as variable
indices are used to index the array of values passed to the Eval() method.

4.7 Copying vs. Linking

One thing that is immediately noticeable is that this architecture gives a very fine-grained control over
the construction of expressions. Subnodes can be copied or “linked” (i.e., a reference to the object is put
in place, instead of a copy of the object — this automatically uses the garbage collection mechanism,
so the client code does not need to worry about these details). Copying an expression tree entails a
set of advantages/disadvantages compared to linking. When an expression is constructed by means of a
copy to some other existing expression tree, the two expressions are thereafter completely independent.
Manipulation one expression does not change the other. This is the required behaviour in many cases.
The symbolic differentiation routine has been designed using copies because a derivative, in general, exists
independently of its integral.

Linking, however, allows for things like “cascaded simplification”, where some symbolic manipulation
on an expression changes all the expressions having the manipulated expression tree as a subnode. This
may be useful but calls for extra care. The built-in parser has been designed using linking because the
“building blocks” of a parsed expression (i.e. its subnodes of all ranks) will not be used independently
outside the parser.

4.8 Simplification Strategy

The routine for simplifying an expression repeatedly calls a set of simplification rules acting on the
expression. These rules are applied to the expression as long as at least one of them manages to further
simplify it.

Simplifications can be horizontal, meaning that they are carried out on the same list of subnodes (like
e.g. x + y + y = x + 2y), or vertical, meaning that the simplification involves changing of node level (like
e.g. application of associativity: ((x + y) + z) = (x + y + z)).
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The order of the simplification rules applied to an object Expression e is the following:

1. e->ConsolidateProductCoeffs(): in a product having n subnodes, collect all multiplicative co-
efficients, multiply them together, and set the result as the multiplicative coefficient of the whole
product:

n
∏

i=1

(cifi) = (

n
∏

i=1

ci)(

n
∏

i=1

fi).

2. e->DistributeCoeffOverSum(): in a sum with n subnodes and a non-unit multiplicative coeffi-
cient, distribute this coefficient over all subnodes in the sum:

c

n
∑

i=1

fi =

n
∑

i=1

cfi.

3. DifferenceToSum(e): replace all differences and unary minus with sums, multiplying the coefficient
of the operands by -1.

4. SimplifyConstant(e): simplify operations on constant terms by replacing the value of the node
with the result of the operation.

5. CompactProducts(e): associate products; e.g. ((xy)z) = (xyz).

6. CompactLinearPart(e): this is a composite simplification consisting of the following routines:

(a) CompactLinearPartRecursive(e): recursively search all sums in the expression and perform
horizontal and vertical simplifications on the coefficients of like terms.

(b) ReorderNodes(e): puts each list of subnodes in an expression in standard form:

constant + monomials in rising degree + complicated operands

(where complicated operands are sublists of subnodes).

7. SimplifyRecursive(e): deals with the most common simplification rules, i.e.:

• try to simplify like terms in fractions where numerator and denominator are both products;

• x ± 0 = 0 + x = x;

• x × 1 = 1 × x = x;

• x × 0 = 0 × x = 0;

• x0 = 1;

• x1 = x;

• 0x = 0;

• 1x = 1.

4.9 Differentiation

Derivative rules are the usual ones; the rule for multiplication is expressed in a way that allows for n-ary
trees to be derived correctly:

∂

∂x

n
∏

i=1

fi =

n
∑

i=1





∂fi

∂x

∏

j 6=i

fj



 .
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4.10 Files Organization

Ev3 is organized in seven source files:

• expression.h: main header file; it contains the declaration for classes Operand and Basic-

Expression, and for all the external symbolic manipulation functions;

• auxiliary.h: header file containing declarations for a few auxiliary functions;

• expression.cxx: main source file: it contains the definition of all methods (internal and exter-
nal) relative to classes Operand and BasicExpression, as well as the definitions of the auxiliary
functions;

• tree.cxx: source file containing declarations and definitions for class templates Pointer and Tree.
This file, although it has a .cxx extension, is included in expression.h;

• parser.h: header file for the string to n-ary tree expression parser;

• parser.cxx: source file for the string to n-ary tree expression parser.

New user-defined symbolic manipulation functions should be added in files expression.h (declaration)
and expression.cxx (definition).

4.11 Improvements to Ev3

The possible improvements to Ev3 are countless. Besides adding more functionality to the library, which
would be useful in a way but would otherwise make it more complicated for people to adapt it to their
needs, the following issues need to be addressed.

1. Testing. However much one tests a software, it is always likely that bugs will crop up.

2. A consistent error reporting mechanism based on exceptions. Some work is under way in this sense.

3. Linking with some arbitrary-length arithmetic library.

5 Tutorial

The example in this section explains the usage of the methods which represent the core, high-level func-
tionality of Ev3: fast evaluation, symbolic simplification and differentiation of mathematical expressions.

The following C++ code is a simple driver program that uses the Ev3 library. Its instructions should
be self-explanatory. First, we create a “parser object” of type ExpressionParser. We then set the
mapping variable names / variable indices, and we parse a string containing the mathematical expression
log(2xy) + sin(z). We print the expression, evaluate it at the point (2, 3, 1), and finally calculate its
symbolic derivatives w.r.t. x, y, z, and print them.

#include "expression.h"

#include "parser.h"

int main(int argc, char** argv) {

ExpressionParser p; // create the parser object

p.SetVariableID("x", 1) // map between symbols and variable indices

p.SetVariableID("y", 2) // x --> 0, y --> 1, z --> 2

p.SetVariableID("z", 3)
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int parsererrors = 0; // number of parser errors

/* call the parser’s Parse method, which returns an Expression

which is then used to initialize Expression e */

Expression e(p.Parse("log(2*x*y)+sin(z)", parsererrors));

cout << "parsing errors: " << parsererrors << endl;

cout << "f = " << e->ToString() << endl; // print the expression

double val[3] = {2, 3, 1};

cout << "eval(2,3,1): " << e->Eval(val, 3) << endl; // evaluate the expr.

cout << "numeric check: " << ::log(2*2*3)+::sin(1) << endl; // check result

// test diff

Expression de1 = Diff(e, 1); // calculate derivative w.r.t. x

cout << "df/dx = " << de1->ToString() << endl; // print derivative

Expression de2 = Diff(e, 2); // calculate derivative w.r.t. y

cout << "df/dy = " << de2->ToString() << endl; // print derivative

Expression de3 = Diff(e, 3); // calculate derivative w.r.t. z

cout << "df/dz = " << de3->ToString() << endl; // print derivative

return 0;

}

The corresponding output is

parsing errors: 0

f = (log((2*x)*(y)))+(sin(z))

eval(2,3,1): 3.32638

numeric check: 3.32638

df/dx = (1)/(x)

df/dy = (1)/(y)

df/dz = cos(z)

Notes

• In order to evaluate a mathematical expression f(x1, x2, . . . , xn), where xi are the variables and i
are the variable indices (starting from 1 and increasing by 1), we use the Eval() internal method,
whose complete declaration is as follows:

double Expression::Eval(double* varvalues, int size) const;

The array of doubles varvalues contains size real constants, where size >= n. The vari-
able indices are used to address this array (the value assigned to xi during the evaluation is
varvalues[i-1]), so it is important that the order of the constants in varvalues reflects the
order of the variables. This method does not change the expression object being evaluated.

• The core simplification method is an external method with declaration

bool Simplify(Expression* e);

It consists of a number of different simplifications, as explained in section 4.8. It takes a pointer to
Expression as an argument, and it returns true if some simplification has taken place, and false

otherwise. This method changes its input argument.

• The symbolic differentiation procedure is an external method:

Expression Diff(const Expression& e, int varindex);

It returns a simplified expression which is the derivative of the expression in the argument with
respect to variable varindex. This method does not change its input arguments.
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• External class methods take Expressions as their arguments. According as to whether they need
to change their input argument or not, the Expression is passed by value, by reference, or as a
pointer. This may be a little confusing at first, especially when using the overloaded -> operator
on Expression objects. Consider an Expression e object and a pointer Expression* ePtr = &e.
The following calls are possibile:

– e->MethodName(args); (*ePtr)->MethodName(args);

Call a method in the BasicExpression, Operand or Tree<> classes.

– e.MethodName(args); (*ePtr).MethodName(args); ePtr->MethodName(args);

Call a method in the Pointer<> class.

In particular, care must be taken between the two forms e->MethodName() and ePtr->MethodName()

as they are syntactically very similar but semantically very different.

5.1 Algorithms on n-ary Trees

We store mathematical expressions in a tree structure so that we can apply recursive algorithms to them.
Most of these algorithms are based on the following model.

if expression is a leaf node

do something

else

recurse on all subnodes

do something else

end if

In particular, when using Ev3, the most common methods used in the design of recursive algorithms
are the following:

• IsLeaf(): is the node a leaf node (variable or constant)?

• GetSize(): find the number of subnodes of any given node.

• GetOpType(): return the type of operator node.

• GetNode(int i): return the i-th subnode of this node (nodes are numbered starting from 0).

• DeleteNode(int i): delete the i-th subnode of this node (care must be taken to deal with cases
where all the subnodes have been deleted — Ev3 allows the creation of operators with 0 subnodes,
although this is very likely to lead to subsequent errors, as it has no mathematical meaning).

• Use of the operators for manipulation of nodes: supposing Expression e, f contain valid mathematical
expressions, the following are all valid expressions (the new expressions are created using copies of
the old ones).

Expression e1 = e + f;

Expression e2 = e * Log(Sqrt(e^2 - f^2));

Expression e3 = e + f - f; // this is automatically by simplified to e

See section 5.2 for an example of usage of the methods above. Furthermore, most algorithms in the source
code file expression.cxx are recursive algorithms, and good examples of usage for these methods.
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5.2 Extending the Library: A Trigonometric Simplification

In order to illustrate how to extend Ev3’s capabilities, we are going to add a method, TrigSimp(), that
simplifies the term sin2(f) + cos2(f) to 1, where f is an expression node1.

Because we want to change an expression node, we want to make sure we operate on an Expression,
not on a BasicExpression; i.e. we want the garbage collection to be active. Thus, we shall not add a
method to the BasicExpression class, but our method TrigSimp will live outside the class definitions.
Hence we add its prototype to the end of the header file expression.h.

long TrigSimp(Expression a);

The method will return the number of simplifications it has managed to carry out.

In the definition of the method (to be appended to the file expression.cxx), we recursively test all
nodes in the n-ary tree; if any node is equal to sin2(f) + cos2(g), where f and g are identical sub-trees,
we replace that node with 1, and we see whether some further simplification involving the new constant
node is possible.

long TrigSimp(Expression a) {

long i = 0;

long ret = 0;

for(i = 0; i < a->GetSize(); i++) {

// recurse over subnodes of a

ret += TrigSimp(a->GetNode(i));

}

// now try simplification on a

if (a->GetOpType() == SUM && a->GetSize() > 1) {

// try to look for a sin^2 and a cos^2

long sinpos = -1;

long cospos = -1;

for (i = 0; i < a->GetSize(); i++) {

// cycle over subnodes

if (a->GetNode(i)->GetOpType() == POWER) {

if (a->GetNode(i)->GetNode(0)->GetOpType() == SIN &&

a->GetNode(i)->GetNode(1)->HasValue(2))

// found sin^2

sinpos = i;

}

if (a->GetNode(i)->GetOpType() == POWER) {

if (a->GetNode(i)->GetNode(0)->GetOpType() == COS &&

a->GetNode(i)->GetNode(1)->HasValue(2))

// found cos^2

cospos = i;

}

}

if (sinpos != -1 && cospos != -1) {

// found both, check their arguments

if (a->GetNode(sinpos)->GetNode(0)->GetNode(0)->IsEqualTo

(a->GetNode(cospos)->GetNode(0)->GetNode(0))) {

ret++; // augment simplification counter

// arguments are equal, can simplify

long f = sinpos < cospos ? sinpos : cospos; // first to delete

long l = sinpos > cospos ? sinpos : cospos; // last to delete

a->DeleteNode(f); // delete first subnode - this makes all

1In fact, the TrigSimp() method has been implemented and is present in the current Ev3 distribution.
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a->DeleteNode(l - 1); // subsequent subnodes be indexed at -1

// verify that there are still some nodes left

if (a->GetSize() == 0) {

// there aren’t any, set a to one

a->One();

} else {

// there are some, check whether there is a constant part

// we can add the 1 to

bool addflag = false;

for (i = 0; i < a->GetSize(); i++) {

if (a->GetNode(i)->IsConstant) {

// yes there is

a->GetNode(i)->SetValue(a->GetNode(i)->GetSimpleValue() + 1);

addflag = true;

break;

}

}

if (!addflag) {

// no there wasn’t, add it as a symbolic node

Expression one(1.0);

a->AddNode(one);

}

// check that there is more than just one node

if (a->GetSize() == 1) {

// only one node, shift everything one rank level up

a = a->GetNode(0);

}

}

}

}

}

return ret;

}

5.3 Source Code Building Instructions

The distribution can be unpacked in any directory. Building the source should be straightforward, by
typing “make” at the shell prompt. Ev3 has been written for and tested on the GNU C++ compiler v. 3.2;
there might be some glitches in porting it to a different compiler, but it should be mostly straightforward.
Be warned that Ev3 uses some advanced C++ and STL features, so very old compilers might not be up
to the task.

6 Conclusion

We have reviewed current options to perform symbolic computation within a C++ environment. We
have presented Ev3, a C++ library for symbolic computation. We have analysed the Ev3 system archi-
tecture and shown how to expand the library functionalities by describing a trigonometric simplification
method. Ev3 has very fast evaluation routines, and can do symbolic differentiation and simplification of
mathematical expressions. It is well suited for integration into a third-party scientific software package
that needs to perform a substantial number of derivative evaluations.
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