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Abstract 

 
Let G=(V,E) be a bi-connected graph with non-negative weights on its m edges. Let n be the number of 
vertices of G. With respect to any spanning tree T of G we have a fundamental cycle basis of G formed by the 
m-n+1 fundamental cycles, each one corresponding to one of the co-tree edges. The problem of determining 
one such basis minimising the sum of the length of its cycles (MinFCB) is known to be NP-hard. Applications 
exist in organic chemistry, periodic scheduling, and electrical networks. A recent result proves that no 
polynomial time approximation scheme can exist for MinFCB unless P=NP.  The problem of determining a 
tree with respect to which the longest fundamental cycle is minimum is also NP-hard. When fundamentality 
is not required, that is when one looks for a basis of the cycle space of the graph, both problems are solvable 
in polynomial time. Constructive heuristics have been proposed in the literature, which are fast and an 
obvious first choice for very large instances. However they tend to produce solutions which are far from 
optimal. We report  about on-going research on Local Search approaches for MinFCB. A  formulation  as 
Mixed Integer Programming problem is presented and proved effective  for obtaining bounds. Preliminary 
computational results are reported. The final part of this work outlines some future research directions. 
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1. Introduction 
 
Let G = (V,E) be a simple, undirected, bi-connected graph with n nodes and m edges. A set of cycles in the 
graph is a cycle basis if it is a basis in the cycle vector space of the graph. When each edge e of G is given a 
cost c(e), the cost of a cycle is the sum of the costs of its edges. The problem of finding a minimum cost 
cycle basis of a graph can be solved in O( m3 + mn2log n) time [6].  
Given any spanning tree T of G, the edges in G\T (the co-tree) are called chords of G  w.r.t. T. Any chord 
uniquely identifies a cycle consisting of the chord itself and the unique path in T joining the two vertices 
incident on the chord. These m – n + 1 cycles are called fundamental cycles; they form a cycle basis which is 

called fundamental cycle basis (FCB) of G with respect to T. The set of fundamental cycles always 
constitutes a basis of the cycle space, whereas the opposite is not true, as shown in the figure above. A 
minimum fundamental cycle basis is a FCB having minimum cost. Finding a minimum FCB is referred to as 
problem MinFCB. Minimum FCBs arise in a variety of application fields, such as VLSI design [1], and 
periodic timetable planning [7], as well as being an interesting combinatorial optimisation problem in itself. 
Other applications are listed in [3].  
 
MinFCB is NP-hard [2] even when the graph is uniformly weighted. Moreover, it is proved in [5] that the 
weighted version cannot have a PTAS unless P=NP. In the same work, a 2O(�(log n log log n))  approximation 
algorithm is presented. Several heuristics have been proposed for MinFCB [2,3], all based on a “spanning 
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tree growth” strategy: a spanning tree is constructed iteratively adding vertices and edges of G in the order 
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that is likely to give a FCB having least cost. Such approaches are fast (and thus the solution methods of 
choice for extremely large graphs), but tend to provide solutions far more costly than the optimum one.  
Looking instead for a FCB which minimises the cost of its most costly cycle we have the Min-max FCB 

he situation summarised above motivated the interest in studying the application of Local Search methods 

2. Local Search approaches 
 

et T be a spanning tree of G. Removing any edge e of T naturally partitions T in two connected components 

he move can be implemented in three steps: calculating FCB costs, choosing the minimum FCB cost over a 

et � = (e,f) with e in T and f in te. The following properties hold: 

1.for any edge h in T,  ��changes th if and only if f is in th as well; 

e h in T, �(th) is the symmetric difference of the edge sets th and te . 
 

or all chords k of G with respect to T let ck be the fundamental cycle in G defined by k. The following hold: 

4.for any edge h which is not in te, ��fixes ch; 
difference of the edge sets ch and cf . 

 
y using the above properties on fundamental cuts and cycles, we can efficiently update the set of 

e have so far experimented with: (a) a simple Local Search (LS) algorithm incorporating the move 

problem: this problem is also NP-hard as proved in [4].  
 
T
to MinFCB. The Local Search approaches experimented so far are presented in Section 2. A lower bounding 
method is described in Section 3. Preliminary computational results are reported in Section 4, and Section 5 
outlines current lines of research.  
 

L
T1,T2. The cut te consisting of e and all the edges of G having one vertex in  V(T1) and the other in V(T2) is 
called the fundamental cut of e with respect to T in G. Let e,f be edges of G such that e is in T and f is in E\T, 
and let � = (e,f) be an edge exchange, called edge swap. We can define the action of ��on the set�T �of all 
spanning trees of G by setting �T = T' where T' is the spanning tree derived from T where e has been 
replaced by f. Note that � is well-defined on T  if and only if f is in the fundamental cut te. Since any 
spanning tree of G gives rise to an FCB, we can define a mapping m between T  and the set F  of all FCBs of 
G. It turns out [8] that this mapping is surjective but not injective: if  te = {e,f} and � = (e,f) then  m(T) = 
m(�T). In other words, edge swaps in fundamental cuts of cardinality 2 induce different spanning trees but 
the same FCB. Let T be an initial spanning tree, and P = {(e,f) | e in T and f in te s.t. |te| > 2, f ��e}. For all � 
in P let d� be the cost of m(�T). Choose � in P such that d� is minimum and replace T with �T. This move is 
inserted first into a simple local search algorithm that terminates when � is the identity. For the choice of the 
initial spanning tree T  any of the existing fast heuristics in [2, 3] can be used.  
 
T
finite set, and finding fundamental cuts. The complexity of a straightforward implementation of the whole 
move is  O(m2 n2). This is too heavy in settings which require repeated applications of the move like in any 
Local Search framework. It is easy to note that at each repeated application we end up with a tree �T which 
differs from the initial tree T only by an edge swap. This suggests looking for a differential calculation of the 
set of fundamental cuts and FCB costs with respect to the chosen exchange �. In order to do so we use some 
results from graph theory (presented without proofs due to the size limitation of this paper) which allow us to 
calculate fundamental cuts and FCB costs for each ��more efficiently. 
 
L
 

2.�(te) =  tf ; 
3.for any edg

F
 

5.for any chord h in te , �(ch) is the symmetric 

B
fundamental cuts and compute the FCB cost. 
 
W
described above, (b) a Variable Neighbourhood Search (VNS) algorithm, and (c) a Tabu Search (TS) 
approach in which a VNS diversification strategy is adopted when the search is not giving good enough 
results. LS has been in some case incorporated into a multi-start (MS) approach.  
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3. Lower bounds 
 

btaining lower bounds for MinFCB is a difficult task. When the graph exhibits some regularities and is 

et G° be the directed graph obtained from G by substituting each edge with two arcs in opposite directions 

�j�F(k) xkj
kl - � j�B(k) xjk

kl= 1 � �k,l�� E 

�j�F(k) xij
kl - � j�B(k) x kl= 0 � i � k,l 

The link between the two sets of variables is ensured by imposing that 

xij
kl � wij  and  xji

kl 
� wij � �k,l�,�i,j�� E 

These together with the following simple constraint etermine a connected graph with n vertices and n-1 

��i,j�� E wij = n -1 
 

inFCB then corresponds to the problem of minimising with all the constraints above the following 

z = ��k,l��E �(i,j)�ADij xij
kl - ��i,j�� E wijdij + ��i,j�� E (1-wij)dij 

or equivalently 

��k,l��E �(i,j)�ADij xij
kl - 2��i,j�� E wijdij 

 
his formulation was solved using CPLEX stopped before the first branching iteration. The results were 

4. Some computational results 
 

e have carried out extensive computational experiments with a square mesh graphs with side N. Each such 

O
uniformly weighted it is often the case that a fairly good lower bound can be obtained by some algebraic 
formula: an example is the bound  4(n – 1)2 for the n-square mesh graph, derived from the number of “small 
squares” in the mesh. For weighted cases one needs formulating the problem as an Integer Programming (IP) 
or Mixed IP problem. Several such formulations have been tested for MinFCB. From the point of view of 
getting good bounds using powerful yet standard codes like CPLEX, the following has given the best results 
so far.  
 
L
between the same pair of nodes, and weight the arcs of G°  setting Dij= Dji= dij for all edges �i,j� of E (i < j). 
Let A be the set of arcs of G°. We need two sets of variables: wij is a binary variable associated to edge �i,j� 
and equal to 1 whenever the edge is in the spanning tree; xij

kl is a non-negative variable giving the amount of 
flow from node k to node l in arc (i,j) of A. Let F(k) and B(k) be, respectively, the set of arcs leaving and 
entering node k in G°. We impose a flow of 1 from node k to node l for each edge  �k,l� of G by the 
following constraints: 
 

 
ji
 

 

 
d

edges, that is a spanning tree: 
 

M
objective function: 
 

 

 

T
unsatisfactory (as expected) for mesh graphs with unit edge costs (between 30% and 150% lower than the 
best result obtained by Local Search). The situation is much better for randomly generated weighted graphs, 
for which on average we have a value of the bound off by about 8%. This however is still unsatisfactory for 
use in a Branch-and-Bound approach. 
 

W
graph has N2  vertices and 2N(N – 1) edges. We have found these graphs to be a hard challenge for MinFCB. 
Table 1 lists N, the FCB cost found by the simple Local Search for the corresponding N-square mesh graph, 
and the computational time required to perform the computation. By comparison, we have also listed the 
computational result of our own implementation of the NT heuristic for MinFCB described in [3], as well as 
the results obtained with the metaheuristics VNS and TS. All the tests have been carried out on a Pentium 4 
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2.66 GHz machine with 1GB RAM running Linux. The source code, in C++, has been compiled with gcc v. 
3.0. The results reported in Table 1 show that LS obtains much better solutions than its tree-growth based 
counterpart, albeit at the price of a much higher computation time.  
 
In order to test the heuristics with weighted graphs, we have generated some simple, bi-connected graphs 

s already mentioned in the introduction, one of the applications of the FCB problem is periodic timetabling 

e have been given a test instance by C. Liebchen (called the liebchen1 instance henceforth). The liebchen1 

cost 4 5 6 51 52 53 54 57 58 59 

where the edge costs are given by the Euclidean distance between the vertices, positioned randomly on the 
plane.  Each edge is randomly generated with probability p. For each n in {10+10k | k=0,...,4} we have tested 
a random graph of size n for each probability p from 0.2 to 0.8 in increasing steps of 0.2. Table 2 reports the 
results of the edge-swapping heuristic on these random graphs.  For each n and p we can find cost and CPU 
time for the LS heuristic, for computing a lower bound by partially solving the MILP formulation of section 
3, for the VNS heuristic, and for the TS heuristic. For some of the smaller instances, the MILP solution 
procedure has been allowed to terminate, thus obtaining the optimal solution (these are the bound values 
marked with a † in the table). Entries marked with * indicate that this is the best value found. Obvious 
observations are: the bound is heavy to compute and not as tight as hoped; VNS gives good results, but with 
high computing times; LS is fast, but not so good; TS strikes the best compromise between time and solution 
value. 
  
A
of transportation systems. In particular, Liebchen [7] has worked with Berlin Underground to use 
optimisation techniques in designing the timetables of the underground system.  The model is based on the 
Periodic Event Scheduling Problem (PESP). It has been shown that the number of integer variables in the 
model can be minimized by identifying an FCB of a suitable graph G. Furthermore, the number of discrete 
values that each integer variable can take is proportional to the total FCB cost.  In short, good models for the 
PESP problem can be obtained by solving the MINFCB problem.   
 
W
instance has 88 vertices and 316 edges.  The costs on the edges are rather uniformly distributed:  the values 
are:  4, 5, 6, 51, 52, 53, 54, 57, 58, 59 spread in the following fashion.  
 

occurrences 61 4 10 11 15 14 60 8 37 129 
  

Th results have been encouraging (see table 3). However, there was a supplementary condition on this 

able 3 reports FCB costs and CPU times obtained using the edge-swapping local descent on the liebchen1 

5. Future work 
 

he Local Search approaches tested so far represent only some out of many possibilities. Our very basic 

e 
instance that imposed that certain edges necessarily had to be in the spanning tree solution (call this modified 
liebchen1 instance, with a fixed initial partial solution, liebchen3 henceforth). There were 55 fixed edges in 
the partial solution, out of a possible total of 87 tree branches.  This severely restricted the scope of 
application of the edge-swapping heuristic. 
 
T
and liebchen3 instances, as well as the FCB costs obtained using Deo’s NT heuristic, VNS and TS.  The last 
column contains the lower bound obtained with the MINFCB formulation of section 3. 
 

T
implementations of VNS and TS improve substantially on the performances of the pure Local Search 
approach, but other variants are possible and will be tested. Another direction of research suggests to 
experiment with other methods for obtaining bounds. Indeed one of the IP formulations of MinFCB looks 
quite promising for the application of Lagrangean relaxation and related subgradient techniques, and is 
currently being implemented. The possibility of exploiting polynomial methods for solving the non-
fundamental version of the problem  in order to get bounds for the fundamental case also deserves to be 
given more consideration. Finally little is known about the (quite natural) matroid generalisation of MinFCB. 
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 Local Search NT [3] VNS TS 

N FCB cost CPU time FCB cost CPU time FCB cost CPU time FCB cost CPU time
5 72 0: 00: 00 78 0: 00: 00 72 0: 00: 00 72 0: 00: 00
10 474 0: 00: 00 518 0: 00: 00 466� 0: 00: 03 468� 0: 00: 02
15 1318 0 :00: 00 1588 0: 00: 00 1296� 0: 00: 34 1296� 0: 00: 12
20 2608 0: 00: 03 3636 0: 00: 00 2576� 0: 02: 11 2598� 0: 00: 37
25 4592 0: 00: 16 6452 0: 00: 00 4466� 0: 14: 59 4534� 0: 02: 07
30 6956 0: 00: 47 11638 0: 00: 00 6846� 0: 27: 18 6950� 0: 03: 50
35 10012 0: 02: 19 16776 0: 00: 00 9936� 1: 36: 00 10004� 0: 08: 36
40 13548 0: 06: 34 28100 0: 00: 01 13366� 3: 31: 26 13530� 0: 16: 00
45 18100 0: 14: 22 35744 0: 00: 01 17890� 8: 01: 49 18092� 0: 35: 58
50 23026 0: 31: 04 48254 0: 00: 03 22790� 22: 17: 27 23008� 1: 11: 37
 
Table 1:  Computational results (FCB cost and CPU times) on NxN mesh graphs having unit edge costs, with 
Local Search, Deo's NT heuristic, VNS, and TS performances (FCB costs and times (h:mm:ss)).  
 

6. References 
 
[1] Brambilla, A. and Premoli, A. (2001) “Rigorous Event-Driven (RED) Analysis of Large-Scale Nonlinear 
RC Circuits”, IEEE Transactions on Circuits and Systems-I, 48(8):938-947. 
[2] Deo, N., Prabhu, G.M., and Krishnamoorthy, M.S. (1982) “Algorithms for generating Fundamental 
Cycles in a Graph”, ACM Transactions on Mathematical Software, 8(1):26-42. 
[3] Deo, N., Kumar, N., and Parsons, J. (1995) “Minimum-length Fundamental-cycle Set Problem: New 
Heuristics and an Empirical Investigations”, Congressus Numerantium, 107:141-154. 
[4] Galbiati G. (2001) “On Min-max Cycle Bases”, in Proceedings ISAAC 2001 (Eades and Takaoka eds.), 
LNCS 2223, Springer-Verlag. 
[5] Galbiati, G., and Amaldi, E. (2003) “On the Approximability of the Minimum Fundamental Cycle Basis 
Problem”, Workshop on Approximation and Online Algorithms (WAOA03), Budapest, Sept. 2003. 
[6] Gerards A.M.H., De Pina J.C., and Schrijver A. (2002) “Shortest Circuit Bases of Graphs”, to appear. 
[7] Liebchen, C. (2003) “Finding Short Integral Cycle Bases for Cyclic Timetabling”, TU Berlin, Institut für 
Mathematik, Internal report 2003/12. 
[8] Sysło, M. (1979) “On Cycle Bases of a Graph”, Networks 9:123-132. 
 
 

 Local search NT [3] VNS TS Lower bound
Instance FCB cost CPU time FCB cost FCB cost FCB cost FCB cost 

liebchen1 40407 0: 06 50259 39851* 39867* 31220.534 
liebchen3 56887 0: 01 - - - 39907.96 

  
Table 3: Computational results on Liebchen’s instances. Missing values are due to a missing implementation 
of the corresponding algorithm in presence of a partial initial solution. 
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 p=0.2 

n LS Time Bound Time VNS Time TS Time 
10 216.698† 0 216.698† 0 216.698† 0 216.698† 0 
20 1052.38† 0 1052.38† 0: 56 1052.38† 0 1052.38† 0 
30 3315.89 0 2750.92 0: 28 3111.71� 0: 14 3315.89 0 
40 4634.04 0 4065.187 16: 58 4504.84� 0: 22 4633.45� 0 
50 7007.34 0: 01 6448.711 2: 38: 51 6991.53� 1: 11 7007.34 0: 02 

 p=0.4 
n LS Time Bound Time VNS Time TS Time 
10 472.599 0 459.305† 0: 02 459.305† 0 472.599 0 
20 2021.82 0 1894.747 0: 08 2021.37� 0: 04 2021.37� 0 
30 4467.13 0 4265.6 22: 56 4455.2� 0: 29 4455.2� 0: 01 
40 7685.97 0: 01 - - 7648� 1: 46 7684.53� 0: 02 
50 11096.8 0: 05 - - 11022.8� 9: 32 11073.4� 0: 12 

 p=0.6 
n LS Time Bound Time VNS Time TS Time 
10 581.525 0 547.406† 0: 08 547.406† 0 547.406† 0 
20 2776.22 0 2627.558 0: 59 2756.6� 0: 08 2756.6� 0 
30 7031.2 0 6445.83 39: 32 6979.15� 1: 13 7031.2 0: 03 
40 11686.0 0: 02 - - 11513� 6: 40 11683.4� 0: 04 
50 19387.3 0: 10 - - 19174.1� 7: 06 19174.1� 1: 06 

 p=0.8 
n LS Time Bound Time VNS Time TS Time 
10 992.866 0 775.838† 0: 26 775.838† 0 775.838† 0 
20 3478.11 0 3164.9 2: 31 3383.45� 0: 13 3383.45� 0: 02 
30 8971.78 0: 01 7823.848 1: 43: 05 8384.32� 2: 42 8930.17� 0: 02 
40 14946.4 0: 07 - - 14870.7� 5: 30 14902.2� 0: 16 
50 25349.9 0: 12 - - 25061.2� 31: 55 25245.5� 0: 53 

 
 
Table 2:  Computational results on weighted Euclidean random graphs: Local Search, Lower Bound, VNS 
and TS performances (FCB cost and times (mm:ss or h:mm:ss)). 
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