
Cheat Sheet 1

Proof General

Ctrl-C Ctrl-Enter

Goto the cursor

Ctrl-X Ctrl-F

Open a file

Ctrl-X Ctrl-S

Save

Ctrl-X Ctrl-C

Quit

Basic notations

Logic Prop
>,⊥ True, False
¬p ~ p

p ∧ q p /\ q

p ∨ q p \/ q

a = b a = b

a 6= b a <> b

p⇒ q p -> q

p⇔ q p <-> q

∀x ∈ A .∀y . q(x, y) forall (x:A) y, q x y

∃x ∈ A . p(x) exists x:A, p x

Paper Coq

Lemma 1. For all nat-
ural numbers n and m if
m ≤ n then the following
equation holds:

n−m + m = n

Proof. Trivial

Theorem good_name :

forall n m,

m <= n ->

n - m + m = n.

Proof.

(* your proof *)

Qed.

Basic commands

Require Import ssreflect ssrbool.

Load libraries ssreflect and ssrbool

Variable name : type.

Declares a variable

Theorem name : statement.

State a theorem

Proof.

Start the proof of a theorem

Qed.

Terminate the proof of a theorem

Terminology

Context


P : nat->Prop

x : nat

h : P x

The bar ===============

Goal

{
forall y, y = x -> P y︸ ︷︷ ︸ ︸ ︷︷ ︸

Stack Conclusion

Top is the head of the stack, here y

Basic proof commands

done.

Prove the goal by trivial means, or fail

=========

0 <= n
→

move=> x px.

Introduce x and P x naming them x and px

=========

forall x,

P x -> Q x -> G

→

x : T

px : P x

=========

Q x -> G

(move=> x _. to throw away P x completely)

move: x px.

Generalise x and px

x : T

px : P x

=========

Q x -> G

→
=========

forall x,

P x -> Q x -> G

(move: x (px). to leave a copy of px in the context)

apply: H.

Apply H to the current goal

H : A -> B

=========

B

→ =========

A

case: ab.

Eliminate the conjunction, disjunction or absurd

ab : A /\ B

=========

G

→ =========

A -> B -> G

ab : A \/ B

=========

G

→ =========

A -> G

=========

B -> G

ab : False

=========

G

→

case: exg3.

Eliminate the existential quantification

exg3 : exists n, 3 < n

=========

G

→
=========

forall n,

3 < n -> G

case: x.

Perform a case analysis on x

x : nat

=========

P x

→ =========

P 0

=========

forall x,

P (S x)

elim: x.

Perform an induction on x

x : nat

=========

P x

→ =========

P 0

=========

forall x,

P x -> P (S x)

split.

Prove a conjunction

=========

A /\ B
→ =========

A

=========

B

left.

Prove a disjunction choosing the left part.

=========

A \/ B
→ =========

A



right.

Prove a disjunction choosing the right part.

=========

A \/ B
→ =========

B

exists n.

Prove an existence giving a witness.

n : nat

=========

exists x, P x

→
n : nat

=========

P n

rewrite Eab.

Rewrite with Eab left to right

Eab : a = b

=============

P a

→
Eab : a = b

=============

P b

rewrite -Eab.

Rewrite with Eab right to left

Eab : a = b

=============

P b

→
Eab : a = b

=============

P a

have pa : P a.

Open a new goal for P a. Once resolved introduce a
new entry in the context for it named pa

a : T

=========

G

→
a : T

=========

P a

a : T

pa : P a

=========

G

suffices pa : P a.

Open a new goal with an extra item in the context for
P a named pa. When resolved, it asks to prove P a

a : T

=========

G

→

a : T

pa : P a

=========

G

a : T

=========

P a

Notations for natural numbers: nat

"n.+1 :: " := (S n)

"n.-1 :: " := (predn n)

m + n := (addn m n)

m * n := (muln m n)

m <= n := (leq m n)


