Outline of the lectures

- Dec 13
- Dec 20
- Jan 10
- Jan 17
- Jan 24
Outline of the lectures

- The need for randomization
- Probabilistic automata
- Probabilistic bisimulation
- Probabilistic calculi
- Testing equivalence
- Introduction to probabilistic model checking and PRISM
- Metrics for probabilistic processes
- Verification of anonymity protocols: Dining Cryptographers, Crowds
Questions from the last lecture

Question 1:

- $P +_p Q \sqsubseteq_{\text{may}} \tau.P + \tau.Q$
- $\tau.P + \tau.Q \sqsubseteq_{\text{must}} P +_p Q$
Questions from the last lecture

Question 2: which of the following hold?

- $A\varphi \iff \mathcal{P}_{\geq \lambda} \varphi$?
- $A\varphi \Rightarrow \mathcal{P}_{\geq \lambda} \varphi$?
- $E\varphi \iff \mathcal{P}_{\geq \lambda} \varphi$?
- $E\varphi \Rightarrow \mathcal{P}_{\geq \lambda} \varphi$?
Questions from the last lecture

Question 3:

- $\Diamond \varphi \equiv \textbf{true} \cup \varphi$
- $\square \varphi \equiv \neg \Diamond \neg \varphi$
- $Pr^+_s \neg \psi = 1 - Pr^-_s \psi$
- $Pr^-_s \neg \psi = 1 - Pr^+_s \psi$

where the semantics of path formulas are extended with:
$s, s_1, \ldots \models \neg \psi$ iff $s, s_1, \ldots \not\models \psi$
Probabilistic bisimulation

A relation \(\mathcal{R} \subseteq S \times S \) is a \textit{strong probabilistic bisimulation} iff for all \(s_1, s_2 \in \mathcal{R} \) and for all \(a \in A \)

- if \(s_1 \xrightarrow{a} \mu_1 \) then \(\exists \mu_2 \) such that \(s_2 \xrightarrow{a} \mu_2 \) and \(\mu_1 \mathcal{R} \mu_2 \),
- if \(s_2 \xrightarrow{a} \mu_2 \) then \(\exists \mu_1 \) such that \(s_1 \xrightarrow{a} \mu_1 \) and \(\mu_1 \mathcal{R} \mu_2 \).

We write \(s_1 \sim s_2 \) if there is a strong bisimulation that relates them.
Probabilistic bisimulation

Transitions with different probabilities are allowed, as long as we go to equivalent states.

Diagram:

- States 1, 2, 3, 4, and 5 are connected by arrows labeled with 'a'.
- An arrow from state 1 to state 3 with a probability of 0.5 labeled as 'p'.

States 2 and 3 can reach states 4 and 5 respectively with the same label 'a'.
Probabilistic bisimulation

What about transitions to non-equivalent states?

We can argue that for p close to 0.5, the processes are “close”.
Pseudometrics

\[m : S \times S \to [0, \infty) \text{ s.t.} \]

- \[m(s, s) = 0 \]
- \[m(s, t) = m(t, s) \]
- \[m(s_1, s_3) \leq m(s_1, s_2) + m(s_2, s_3) \]

Goal: find a pseudometric \(m \) such that \(m(s, t) = 0 \iff s \sim t \)

Such a pseudometric is a metric on \(S/\sim \)
Metrics on probability distributions

- m: metric on S
- Goal: create metric \hat{m} on $\text{Disc}(S)$
- $f : S \to \mathbb{R}$ is 1-Lipschitz wrt m iff
 $$|f(s) - f(s')| \leq m(s, s') \quad \forall s, s' \in S$$
- $f(\mu) = \sum_s \mu(s)f(s)$
- Kantorovich metric:
 $$\hat{m}(\mu, \mu') = \sup \{|f(\mu) - f(\mu')| : f \text{ is 1-Lip wrt } m\}$$
Metrics on probability distributions

Kantorovich-Rubinstein theorem:

- Write $M(\mu, \mu')$ for the joint distributions $\alpha \in \text{Disc}(S \times S)$ with marginals μ, μ', i.e.
 \[
 \alpha(s, S) = \mu(s) \quad \alpha(S, t) = \mu'(t)
 \]

- Then:
 \[
 \hat{m}(\mu, \mu') = \inf \left\{ \sum_{s,t} \alpha(s, t)m(s, t) \mid \alpha \in M(\mu, \mu') \right\}
 \]
Metrics on probability distributions

\(\hat{m}(\mu, \mu') \) can be computed as the solution to the following Linear program:

- **Variables:** \(\alpha_{s,t}, s, t \in S \)
- **minimize** \(\sum_{s,t} \alpha_{s,t} m(s, t) \)
- **subject to:**
 \[
 \sum_t \alpha_{s,t} = \mu(s) \quad \forall s \in S \\
 \sum_s \alpha_{s,t} = \mu'(t) \quad \forall t \in S \\
 \alpha_{s,t} \geq 0 \quad \forall s, t \in S
 \]
Complete Lattices

- Partially ordered set \((L, \leq)\)
 (reflexivity, antisymmetry, transitivity)

- All subsets of \(A \subseteq L\) have a supremum \(\bigvee A\) and an infimum \(\bigwedge A\)

- Examples:
 - \(2^S\) with \(\subseteq\)
 - \([0, 1]\) with \(\leq\)
 - Equivalence relations ordered by refinement

Question: what are the \(\bigvee, \bigwedge\) in each case?
Complete Lattices

- \mathcal{M}: the set of all 1-bounded pseudometrics on S
- Ordered by: $m \leq m'$ iff $m(s, t) \geq m'(s, t)$ for all $s, t \in S$
- (\mathcal{M}, \leq) is a complete lattice
- What are \top, \bot, \lor, \land?
Knaster-Tarski theorem:

-
 ▶ (L, \leq) is a complete Lattice

-
 ▶ f is monotone: $a \leq b$ implies $f(a) \leq f(b)$

-
 ▶ Then f has a maximum and a minimum fixpoint (in fact the fixpoints form a complete Lattice under \leq)
The metric extension of bisimulation

General idea:
- Start from $m = \top$, i.e. everything is equivalent, which means distance 0 (similarly to the algorithm for computing bisimulation)
- The goal is that whenever $m(s, t) = a$ and $s \xrightarrow{a} \mu$, t should match it with a transition $t \xrightarrow{b} \mu'$ such that $\hat{m}(\mu, \mu') \leq a$
- $F : \mathcal{M} \rightarrow \mathcal{M}$ updates m so that the above property holds
- Our metric is the maximum fixpoint of F
Hausdorff distance

- Extend m from S to 2^S

- $m(A, B) = \max\{\sup_{s \in A} \inf_{t \in B} m(s, t), \sup_{t \in B} \inf_{s \in A} m(s, t)\}$
The metric extension of bisimulation

- Define $F : \mathcal{M} \to \mathcal{M}$ as $F(m)(s, t) < \epsilon$ iff
 - $\forall s \xrightarrow{a} \mu \exists t \xrightarrow{a} \mu' : \hat{m}(\mu, \mu') < \epsilon$
 - $\forall t \xrightarrow{a} \mu \exists s \xrightarrow{a} \mu' : \hat{m}(\mu, \mu') < \epsilon$

- Define $s \xrightarrow{a} = \{ \mu | s \xrightarrow{a} \mu \}$

- Then
 $$F(m)(s, t) = \max_{a} \hat{m}(s \xrightarrow{a}, t \xrightarrow{a})$$
The metric extension of bisimulation

- F is monotone, i.e. $m \leq m' \Rightarrow F(m) \leq F(m')$
- Hence, it has a maximum fixpoint
- We take m as the maximum fixpoint of F
- It can be computed by iterating F starting from \top
The metric extension of bisimulation

Lemma

R: equivalence relation on S, m: metric on S s.t. $m(s, t) = 0 \iff sRt$. Then

$\hat{m}(\mu, \mu') \iff \mu R \mu'$

Theorem

$m \sim t$ iff $m(s, t) = 0$