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Multi-label Classification

Multi-label classification: a subset/vector of labels is be assigned
to each input instance.

x =

Beach
Sunset
Foliage
Urban

y = [1, 0, 1, 0] ⇔ labels {Beach, Foliage} are relevant to x.
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Input Beach Sunset Foliage Urban

1 0 1 0

0 1 0 0

0 1 0 1

0 1 1 0

0 0 1 1

? ? ? ?

Task:
ŷ = [?, ?, ?, ?] = h(x) ŷ ∈ {0, 1}m
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Also,

text categorization
missing-value imputation
recommender systems
time-series forecasting
network inference
tracking and localization
image segmentation
molecule design
audio labelling
. . .
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https://arxiv.org/pdf/2006.04700.pdf
https://link.springer.com/article/10.1007/s10618-018-0595-5
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Standard ‘Recipe’/Traditional Approach
1 ‘We measure label dependence using <insert method>’

y1
y2

y3

y4

2 ‘We construct a model called <insert novel method>’
3 ‘We show <insert small number>%-improvement vs

independent models’

y4y3y2y1

x

vs y4y3y2y1

x

vs . . . ?
Implication: Predictive performance ⇔ label dependence.
This talk: A fresh investigation, and an updated view.
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A Timeline of Multi-label Learning in Academia
< 2000s Just use independent models.
. . . 2010 Model labels together; label dependence/co-occurrences.
. . . 2015 Using label dependence in a more sophisticated/efficient way.
. . . 2015 Multi-label learning for image, text, forecasting,

recommendation, audio, health applications, distilling wine . . .
2020 [. . . and for covid19].

. . . 2020 Just use independent models

. . . 2020 Must use deep [convolution / recurrent] neural networks.
2020 . . . . . . deep [graph-embedding / residual / generative adversarial

/ transformer/. . . ] neural networks
with [missing / weak / incremental / evolving / imbalanced /
millions of/. . . ] labels.

2023 Still persistent in the literature1

Except: Multi-target regression? < 1/10-th volume of literature.

1Mylonas et al., “On the Persistence of Multilabel Learning, Its Recent Trends, and Its Open Issues”, 2023
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Multi-label Classifiers: Examples

x

y1y3 y2y4

Random k-Label Sets and
Meta Labels

y4y3y2y1

x

Classifier Chains and
Bayesian Networks

y4

y3y2

y1

x

Conditional Dependency
Networks

y1

y2

z

x

Neural Networks

4 3 2 1 0 1 2 3 4
x1

5

4

3

2

1

0

1

2

3

x
2

000
001
010
011
101
?

k-Nearest Neighbours

x1 = 1

x2 = 1 x2 = 1

y = [0, 1, 1] y = [1, 1, 0]y = [0, 0, 0] y = [0, 1, 1]

no
yes

no yesno yes

Decision Trees and Random
Forests

Algorithm Adaptation vs Task Adaptation / Problem Transformation

Refs. in Bogatinovski et al., “Comprehensive comparative study of multi-label classification methods”, 2022;
plus Cisse, Al-Shedivat, and Bengio, “ADIOS: Architectures Deep In Output Space”, 2016
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Classifier Chains: An Example of ‘Problem Transformation’

A chain (structure) over the output variables;
Cascaded prediction across a chain/graph
Motivation: Model label dependence

y4y3y2y1

x
X Y1 Y2 Y3 Y4
x(1) 0 1 1 1
x(2) 1 0 0 0
x(3) 0 1 0 1
x(4) 1 0 0 0
x(5) 0 0 0 0

x̃ ŷ1 ŷ2 ŷ3 ŷ4

Read et al., ECML-PKDD 2009 and Read et al., “Classifier Chains: A Review and Perspectives”, 2021
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Classifier Chains: An Example of ‘Problem Transformation’

A chain (structure) over the output variables;
Cascaded prediction across a chain/graph
Motivation: Model label dependence

y4y3y2y1

x
X Y1 Y2 Y3 Y4
x(1) 0 1 1 1
x(2) 1 0 0 0
x(3) 0 1 0 1
x(4) 1 0 0 0
x(5) 0 0 0 0

x̃ ŷ1 ŷ2 ŷ3 ŷ4

For example, ŷ3 = h3( x, ŷ1, ŷ2 ) with base classifier (or regressor)
h3 (e.g., decision tree, logistic regression, . . . ).

Typical example of a “problem transformation" (or model agnostic)
meta method that works well vs independent models – but why?

Read et al., ECML-PKDD 2009 and Read et al., “Classifier Chains: A Review and Perspectives”, 2021
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War Story 1 (Intuition Fails)

These models perform well:

y4y3y2y1

x

y4y3y2y1

x

These ones perform not so well:

y3y1y2y4

x

y4y3y2y1

x

But no obvious pattern/explanation why.
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War Story 2 (Sanity Check Fails)

Take two totally unrelated datasets; stick them together; search for
inherent structure.

Hypothesis: Find something like this,

x x

y1 y2 y3 y4 y1 y2 y3 y4

Outcome: Found something like this,

x x

y1 y2 y3 y4 y1 y2 y3 y4
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War Story 3 (More Weirdness)

y4y3y2y1

x

outperforms
y4y3y2y1

x

Average accuracy over 100 random train/test splits:

(Left) 0.47 > 0.41 (Right)

and the left wins 100/100 times! Yet, it’s the
same model (classifier chains)!
same base classifier (SGD, same initialization)
same structure
same data (Scene dataset; same splits)
except: on the right, we flip the label-indicator bits,
YRight = 1 − YLeft (N.B. No information removed/added!)
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War Story 4 (Theory ̸= Practice?)

Under Hamming loss we find that

y4y3y2y1

x

outperforms y4y3y2y1

x

(significantly) even though there is no reason for this to happen
(Hamming loss does not require joint modelling to optimize2!)

2Neither do ranking-based metrics, by the way; Dembczyński et al., “On Label
Dependence and Loss Minimization in Multi-label Classification”, 2012
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War Story 5 (Back to Square One?)

y4y3y2y1

x

equals performance of
y4y3y2y1

x

under 0/1-Loss/exact-match metric which requires joint modelling
to optimize, and even though we know there is label dependence.
(Especially common in multi-target regression3).

Hence, why the deep learning community usually do not provide
structure over outputs (also: the multi-label deep learning papers
don’t show much interest in exact-match metrics).

3Borchani et al., “A Survey on Multi-output Regression”, 2015
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Suggestion 1: Because Label Dependence
Argument: If label variables are correlated/interdependent, we
should model/predict them together; accuracy will better.

Label dependence:

P(Y1, Y2) ̸= P(Y1)P(Y2)

Actually, we should be interested in conditional dependence:

P(Y1, Y2|x) ̸= P(Y1|x)P(Y2|x)

e.g.,
y1 y2 vs

x

y1 y2

Dembczyński et al., “On Label Dependence and Loss Minimization in Multi-label Classification”, 2012
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. . . Because of Conditional Label Dependence?

Posterior of two multi-label classifiers (2 labels, test instance x):

00 01 10 11
y|x

0.00
0.25
0.50
0.75
1.00

P(
y|

x)

00 01 10 11
y|x

0.00
0.25
0.50
0.75
1.00

P(
y|

x)
E[Hamming loss] the same; E[0/1-loss]: twice as large!

Not only a question of dependence, but of loss metrics and
uncertainty; modelling together ̸= predicting together.

Figures from work with Ekaterina Antonenko and Ander Carreño
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The ‘Wrong’ Dependence
X1 X2 Yxor Yand
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 1

vs

X1 X2 Ŷxor Ŷand
0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

yAND yXOR

x1, x2

outperforms yXOR yAND

x1, x2

but dependence is symmetrical?

Y2 ∼ P⋆(Y2 | x, Y1) ̸= Ŷ2 ∼ P̂(Y2 | x, Ŷ1)

where P̂ depends on base classifier, inference, etc.
Different distributions! Essentially: distribution shift (‘concept
drift’).
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Suggestion 2: Put Easy Labels First

Argument: There may be error propagation across the structure,
so we should, e.g., put easy labels first.

y4y1y2y3

x

But: Incorrect label predictions may also increase the accuracy of
other label predictions!
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Suggestion 3: Error Correction

Argument: We can ‘correct’ errors (and distributions) at
prediction time, e.g., via stacking.

y1 y2 y3 y4

ỹ1 ỹ2 ỹ3 ỹ4

x

OK4, but
This is not label dependence modelling, we only correct bias
of individual models; and thus
not much improvement under exact-match metrics
involves a separate training mechanism for each layer.

4e.g., (among many others) Loza Mencía and Janssen, “Learning rules for multi-label classification: a stacking
and a separate-and-conquer approach”, 2016
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Suggestion 4: Deep Neural Networks

Argument: Just use a deep neural network like everyone else!

It is already! Classifiers as activation functions, labels as
non-hidden ‘hidden nodes’ and delay nodes. A bit like ResNets.

x

y1 y2 y3

z1 z2 z3

≈ x

y1x

y2x y1

y3

OK, sure – no back propagation (this is deep prediction, but not
deep learning). So: Yes, deep neural networks can work. In both
cases: the structure provides power.
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Consider prediction task

x̃ 7→ ŷ2

y2

x

and the data available at training time (left) vs test time (right):

X1 Y2
Basis expansion x ϕ1 y2

Stacking x ỹ2 y2
Classifier chain x y1 y2
Neural network x y2

X1 Y2
x̃ ϕ2 ŷ2
x̃ ỹ2 ŷ2
x̃ ŷ1 ŷ2
x̃ z ŷ2
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Suggestion 5: Structure Provides Regularisation
Argument: Modelling together provides regularization.

The James Stein estimator ŷJS = 1−(m−2)σ̂2

∥ŷ∥2 ŷ = λ · ŷ where λ

shrinks (regularises) the max.-likelihood estimate ŷ.

Benefit from modelling non-existent label dependence (mainly on
the left, low number of examples n):

0 20 40 60 80 100
n

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
ELS EJS1

This helps explain the bit-flip story! Statistical significance, but
minimal gains when many examples.

Good discussion by Waegeman, Dembczyński, and Hüllermeier, “Multi-target prediction: a unifying view on
problems and methods”, 2019
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Suggestion 6: The ‘Ensemble Effect’
Argument: ‘Ensembles of X’ provides better results but actually
the ensemble deserves the credit, not X; because ensembles provide

More predictive power
More regularisation

The following methods are all equivalently linear. The ensemble
provides a (slight) benefit in terms of regularization only:

1 2 3 4 5 6 7 8 9 10 15 20
n

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

M
SE

IR
RC
ERC
EIR

E = Ensemble, I = Independent, C = Chain
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So Which Is It Then?
Classifier chains vs independent classifiers (Music-Emotions data):

Exp. 1 Exp. 2 Exp. 3 Exp. 4
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Ga
in

Exp. 1: ‘Standard’ setup (both with logistic regression as base
classifier, under 0/1 loss)
Exp. 2: Remove benefit from modelling label dependence (use
Hamming Loss instead)
Exp. 3: Remove benefit from predictive power (replace logistic
regression with deep NNs)
Exp. 4: Remove influence of regularisation (heavy regularization)

interesting: 20% higher accuracy by modelling label dependence,
even when theoretically pointless!

Read, From Multi-label Learning to Cross-Domain Transfer. 2023
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Conclusions So Far

We should model and predict labels together mainly because of
label dependence (i.e., if our loss metric suggests that we need to
learn it), but we can also get benefits from additional capacity and
regularisation brought by additional structure inherent to modelling
labels together.

With enough data/computational power, regularised deep neural
network architectures likely to overpower traditional methods of
multi-label learning.

But this is interesting: implies improvement from modelling
totally unrelated tasks together.
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Transfer Learning: A Quick Intro
1 Find related source task (S)
2 Use it to improve the model you deploy on target task (T )

y1 y2

z

x

vs yS yT

zS zT

xS xT

Plot (right) from Torrey and Shavlik, “Transfer learning”, 2010.

Adapting to concept drift while learning from a data stream
= transfer learning.

A key word was: related. But what if related-
ness is not a requirement?
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Thoughts on That

Transfer learning from unrelated source task; is like connecting the
first layer of a neural network randomly (random structure better
than no structure)?

"Connecting the first layer randomly is just about the stupi-
dest thing you could do" – Yann LeCun

Remarks:
He said "just about"
He didn’t say it didn’t work
Theres a minor difference: We mean, not randomly drawn
from all possible models, rather randomly drawn from all [a
collection of] existing trained models

So let’s try it anyway. . .
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Proof of Concept: ‘Insomniac Fungi’
A model (random forest) for classifying patients into insomniac
(red) or not (blue), based on clinical sleep data:

xS

xS

We give the same random forest a yeast genome vector, provide an
insomnia diagnosis (shown as big dots), use it as new descriptive
feature, boosts +2% accuracy when predicting yeast
phenotypes.
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Lessons for dealing with Concept Drift
Some (mostly unsubstantiated) claims, and a few open questions:

When you react to concept drift, this is why you keep some
models! Your models are now somewhat ‘irrelevant’ but still
provide predictive capacity/regularization/. . .
Even if drift was complete, you still should keep some models
(slow phase-out)!
What does complete drift mean, anyway? (is it possible for a
concept to be ‘completely’ unrelated to another)?
If we never deleted any models, would we eventually get a
‘universal computation engine’ (learn all possible concepts)?
Limitation of Neural Networks in streams: ‘catastrophic
forgetting’
Limitation of Ensembles of Incremental Decision Trees in
streams: ‘catastrophic remembering’ (relatively poor
properties of adaptation and scalability)
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Thank you!
jesse.read@polytechnique.edu

http://www.lix.polytechnique.fr/~jread/

jesse.read@polytechnique.edu
http://www.lix.polytechnique.fr/~jread/


35

References I

This talk is based on (many more references within): From
Multi-label Learning to Cross-Domain Transfer: A Model-Agnostic
Approach, J. Read, 2022.
https://arxiv.org/pdf/2011.11197.pdf
Accepted/In Press; Applied Intelligence.

Bogatinovski, Jasmin et al. “Comprehensive comparative study
of multi-label classification methods”. In: Expert Systems with
Applications 203 (2022), p. 117215.
Borchani, Hanen et al. “A Survey on Multi-output Regression”.
In: Wiley Int. Rev. Data Min. and Knowl. Disc. 5.5 (Sept.
2015), pp. 216–233. issn: 1942-4787. doi:
10.1002/widm.1157. url:
http://dx.doi.org/10.1002/widm.1157.

https://arxiv.org/pdf/2011.11197.pdf
https://doi.org/10.1002/widm.1157
http://dx.doi.org/10.1002/widm.1157


36

References II
Cisse, Moustapha, Maruan Al-Shedivat, and Samy Bengio.
“ADIOS: Architectures Deep In Output Space”. In:
Proceedings of The 33rd International Conference on Machine
Learning. Vol. 48. New York, New York, USA: PMLR, 2016,
pp. 2770–2779.
Dembczyński, Krzysztof et al. “On Label Dependence and Loss
Minimization in Multi-label Classification”. In: Mach. Learn.
88.1-2 (July 2012), pp. 5–45. issn: 0885-6125. doi:
10.1007/s10994-012-5285-8.
Loza Mencía, Eneldo and Frederik Janssen. “Learning rules for
multi-label classification: a stacking and a separate-and-conquer
approach”. In: Machine Learning 105.1 (2016), pp. 77–126.
issn: 1573-0565. doi: 10.1007/s10994-016-5552-1. url:
https://doi.org/10.1007/s10994-016-5552-1.
Mylonas, Nikolaos et al. “On the Persistence of Multilabel
Learning, Its Recent Trends, and Its Open Issues”. In: IEEE
Intelligent Systems 38.2 (2023), pp. 28–31.

https://doi.org/10.1007/s10994-012-5285-8
https://doi.org/10.1007/s10994-016-5552-1
https://doi.org/10.1007/s10994-016-5552-1


37

References III

Read, Jesse. “From Multi-label Learning to Cross-Domain
Transfer: A Model-Agnostic Approach”. In: Applied Intelligence
08.2023 (2023), pp. 1537–7497. url:
http://arxiv.org/abs/2207.11742.
Read, Jesse et al. “Classifier Chains: A Review and
Perspectives”. In: Journal of Artificial Intelligence Research
(JAIR) 70 (2021). https:
//jair.org/index.php/jair/article/view/12376/26658,
pp. 683–718. url:
https://jair.org/index.php/jair/article/view/12376.
— .“Classifier Chains for Multi-label Classification”. In:
ECML-PKDD 2009: 20th European Conference on Machine
Learning. Bled, Slovenia: Springer, 2009, pp. 254–269. url:
http://link.springer.com/chapter/10.1007%2F978-3-
642-04174-7_17.

http://arxiv.org/abs/2207.11742
https://jair.org/index.php/jair/article/view/12376/26658
https://jair.org/index.php/jair/article/view/12376/26658
https://jair.org/index.php/jair/article/view/12376
http://link.springer.com/chapter/10.1007%2F978-3-642-04174-7_17
http://link.springer.com/chapter/10.1007%2F978-3-642-04174-7_17


38

References IV

Torrey, Lisa and Jude Shavlik. “Transfer learning”. In:
Handbook of research on machine learning applications and
trends: algorithms, methods, and techniques. IGI global, 2010,
pp. 242–264.
Waegeman, Willem, Krzysztof Dembczyński, and
Eyke Hüllermeier. “Multi-target prediction: a unifying view on
problems and methods”. In: Data Mining and Knowledge
Discovery 33.2 (2019), pp. 293–324. issn: 1573-756X. doi:
10.1007/s10618-018-0595-5. url:
https://doi.org/10.1007/s10618-018-0595-5.

https://doi.org/10.1007/s10618-018-0595-5
https://doi.org/10.1007/s10618-018-0595-5

	Multi-Label Learning
	Digging Deeper
	A Revised Understanding
	Suggestion 4: Neural Networks
	Suggestion 5: Regularisation

	Making use of our Lessons: Model Agnostic Transfer Learning and Adapting to Concept Drift
	References

