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Classification Multi-label
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For input @ we get a vector output

y=h(x)=h([x1,....xdq]) = [y1,-- . m

inputs outputs

N.B. Not multi-class, but multi-class multi-labell

y =10,1,1,0] < labels {2,3} are relevant to corresponding x.



Reduction #1 (to binary): Binary Relevance Method
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The binary relevance method (BR transformation) = one binary
classifier trained for each label, i.e.,
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classifier trained for each label, i.e.,



Reduction #2 (to multi-class): Label Powerset Method
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The label powerset method (LP transformation) = a single target
multi-class classifier. Labels are modeled together, mais ...

@ Overfitting
o yc {01}t



A Brief Timeline of Multi-label Learning in Academia

@ < 2000s : Use (baseline) reduction #1 (BR), or #2 (LP)
e ...2010:

o We beat BR (using label dependence)!

e Many applications!
e ...2015:

o We beat the methods that beat BR (using label dependence in
a more sophisticated way)!
e Wait — what are we doing? And why?

e ...2020 :

o Models get deep, deeper, ...; (CNNs, LSTM, ...)

e Problems get big, bigger, ...

e Do we actually need label dependence models? (BR seems to
work well!)

@ Recently/Currently:

o New tasks and applications: partial labels, weak labels, label
ambiguity, imprecise prediction/with abstention, ...
o Models: neural, graph embeddings, adversarial, attention, ...



Example Application: Multi-Label Classification
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Missing-data Imputation / Recommender Systems
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Time Series Forecasting / Trajectory Prediction
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(including multi-dimensional time series).
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Support for multilabel / multioutput in SCIKITLEARN.

Adapted methods:

*]
(*]
(*]
o
*]
(*]
("]
*]

sklearn.
sklearn.

sklearn.

sklearn
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sklearn.

sklearn

tree.DecisionTreeClassifier
tree.ExtraTreeClassifier

ensemble.ExtraTreesClassifier

.neighbors.KNeighborsClassifier

neural_network.MLPClassifier
neighbors.RadiusNeighborsClassifier

ensemble.RandomForestClassifier

.linear_model.RidgeClassifierCV

i.e., Decision Trees, Nearest-Neighbours, Neural Networks.

Classifier-agnostic (transformation/reduction methods):

@ sklearn.multiclass.OneVsRestClassifier < Baseline BR

@ sklearn.multioutput.ClassifierChain < Coming to this soon



Neural Networks
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(we're coming back to this later ...)

Nam et al., ECML-PKDD 2014 (application to multi-label) and dozens more!



k-Nearest Neighbours (kKNN)
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Zhang and Zhou, Pat. Reg. 2007 (MLKNN)



Decision Tree Classifiers

no yes no yes

ly =[0,0,0]] ly=0.11] [y=011]] ly =[1,1,0]]

Using multi-label entropy,

L
Hu(S)==> P(y; = k)log, P(y; = k)
Jj=1 ke{0,1}

Typical advantages/disadvantages of decision trees apply.

See, e.g., Borchani et al., “A Survey on Multi-output Regression”, 2015; more recently: Stepisnik and Kocev,
“Oblique Predictive Clustering Trees”, 2020



Decision Tree Regression

X[0] <= 16.494
mse = 4.9
samples = 100
value = [[0.021]
[0.0917]
True/ Ealse
X[0] <= -44.963 X[0] <=28.711
mse = 4.71 mse = 4.599
samples = 59 samples = 41
value = [[0.282] value = [[-0.355]
[-0.417]] [0.823]]

L

mse = 4.646
samples = 29
value = [[-0.416]
[-0.631]]

mse = 4.265
samples = 30
value = [[0.957]
[-0.211]]

Using redefined impurity measure:

N L
> i —w)

i=1 j=1

where y; is the mean of Y; in the node.

mse = 4.695

samples = 36

value = [[-0.052]
[0.758]]



file:///tmp/mozilla_jesse0/Borchani-2015-WDMKD.pdf
file:///tmp/mozilla_jesse0/Borchani-2015-WDMKD.pdf

Classifier Chains
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(Greedy) Classifier Chains

A chain (structure) over the output variables;

e Cascaded prediction across a chain/graph
o Motivation: Model label dependence with structure
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Read et al., ECML-PKDD 2009 [Test of Time Award 2019]



(Greedy) Classifier Chains

A chain (structure) over the output variables;

e Cascaded prediction across a chain/graph
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(Greedy) Classifier Chains

A chain (structure) over the output variables;

e Cascaded prediction across a chain/graph

o Motivation: Model label dependence with structure
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Read et al., ECML-PKDD 2009 [Test of Time Award 2019]



(Greedy) Classifier Chains

A chain (structure) over the output variables;

e Cascaded prediction across a chain/graph
@ Motivation: Model label dependence with structure
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For example,
y3 = h(x,y1,¥2)

Use training data to fit base classifier (or regressor) h3 (e.g.,

decision tree, logistic regression, ...).
Inference: i, o, ... are greedy predictions from hy, ho, . . ..

Read et al., ECML-PKDD 2009 [Test of Time Award 2019]



(Greedy) Classifier Chains

A chain (structure) over the output variables;

e Cascaded prediction across a chain/graph
@ Motivation: Model label dependence with structure
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For example,
y3 = h(x,y1,¥2)

Use training data to fit base classifier (or regressor) h3 (e.g.,

decision tree, logistic regression, ...).
Inference: i, o, ... are greedy predictions from hy, ho, . . ..

Read et al., ECML-PKDD 2009 [Test of Time Award 2019]



Multi-label Inference: What are we doing?; Why?

e Hamming loss (decomposable):
?y([1,0,0],[1,0,1]) =1/3

@ 0/1 loss (non-decomposable):
€o/1([1,0,0],[1,0,1]) =1

The minimizer is not (necessarily) the same!
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Class Labels Class Labels Class Labels

Under total uncertainty, left is optimal for Hamming loss, right for 0/1-loss



Probabilistic Classifier Chains

We can plug in predictions y (greedy); or any
Vi, yi =y € {0,1}; to minimise 0/1-loss :

3

y = argmax P(y|x)
ye{0,1}3

i.e., a path through the probability tree; e.g., p([010]|x) = 0.288



Motivation for Structure in Multi-Target Learning ?

Common argument: Because label dependence!



Motivation for Structure in Multi-Target Learning ?

Common argument: Because label dependence!

Yes for 0/1 loss.

Hamming loss & other decomposable metrics = classifier chains
are useless? (and other structure/dependence-based models).

o A

DSOS 050
ORONORORR =

Risk minimization says that yes (chains are useless) under
Hamming loss,

but empirical results show classifier chains performing well under
most metrics (incl. Hamming loss)!

i.e., structure is generally effective? — then why?



Other reasons for modelling targets together (other than excuse
‘because label dependence [to minimise 0/1-loss]’, etc.):

o Connectivity = efficiency (sometimes)

o Connectivity = interpretation (sometimes)

o Connectivity = power (it's why deep nets or stacking works?)

@ In same cases the minimizer is the same (e.g., low-noise
scenarios / prediction is easy) = surrogates work well.

Multiple tasks = regularization (regularization is good)

! Different reason if you train on y() or y 0 a5 inputs

Waegeman, Dembczynski, and HuIIermeler “Multi-target prediction: a
unifying view on problems and methods”, 2019; Read et al., “Classifier Chains:
A Review and Perspectives”, 2021



Other reasons for modelling targets together (other than excuse
‘because label dependence [to minimise 0/1-loss]’, etc.):

Connectivity = efficiency (sometimes)

o

o Connectivity = interpretation (sometimes)

o Connectivity = power (it's why deep nets or stacking works?)
o

In same cases the minimizer is the same (e.g., low-noise
scenarios / prediction is easy) = surrogates work well.

e Multiple tasks = regularization (regularization is good)

James-Stein Estimator

Joint-target regularization is beneficial even if targets are
intrinsically independent.

! Different reason if you train on y() or y 0 a5 inputs

Waegeman, Dembczynski, and HuIIermeler “Multi-target prediction: a
unifying view on problems and methods”, 2019; Read et al., “Classifier Chains:
A Review and Perspectives”, 2021
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Advantages quickly fade as n > 0.

Explains reemergence of independent models vs structure
debate. ..



Chains vs Other Approaches

X1 X2 X3 Y2

Basis expansion | x ¢1 ¢y
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Lessons on Finding a Good Structure

Different chain orders are equivalent in theory if you have P

Dependence is not the only component to consider (and your
hierarchy is probably not better than a random one)

Weaker base learner/smaller training set = more connectivity
Weaker (greedy) inference = choose more carefully

Best structure for loss £;, may not be the best for loss ¢,

Best structure for @ not the best for & (you can use a
population; do dynamic selection)

@ Search: Space is huge, but local optimum can be good

Read et al., “Classifier Chains: A Review and Perspectives”, 2021 (under review)
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Metric BR (left) CC; (mid) CC) (right)
HAMMING LOSS 0.17 0 0
0/1 Loss 0.50 0 0

Where € {0, 1}2; Base-model = Logistic regression; TBut not greedy inference!

Jaccard score from 45 chain permutations; ‘emotions' data.
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How to Traverse a Given Structure (Inferefge)

o Greedy vs Brute-force inference

@ Al Tree-search methods ; see fig —
e Dynamic / Population

e Generic agents / RL
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Chains vs Deep Learning?
Can chains compete against deep architectures?
Some years ago: Yes!  Now:

@ Maybe wrt accuracy, but only on relatively smaller datasets
o Maybe wrt explainability:

e decision trees (etc.) as base model
e connection among outputs

o Classifier chains are deep architectures; can be combined:

¥2 Y1
v

=D

¥y2
D)
z

A combination of chaining and deep-neural architectures

Read and Hollmén, Multi-label Classification using Labels as Hidden Nodes, 2017,Cisse, Al-Shedivat, and
Bengio, “ADIOS: Architectures Deep In Output Space”, 2016,, “Learning Deep Latent Spaces for Multi-Label
Classification”, 2017



Regressor Chains
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Regression Multi-Cibles

X1 Xz X3 Xa X5 Y1 Yo Y3
2.12 1.217 -0.675 -0.451 0.342 37.00 25 0.88
-0.717 -0.826 0.064 -0.259 -0.717 | -22.88 22 0.22
1.374 0.95 0.175 -0.006 -0.522 | 19.21 12 0.25
1.392 -0.496 -2.441 -1.012 0.268 88.23 11 0.77

[ 1591 0208 017 -0.207 1686 | 7 ? 7]

As in classification: We can use independent models . ..

As in classification: We can put variables into a chain (regressor
chains);

But it's probably useless to do that, because
@ Our loss metric has changed (probably MSE, MAE, ...)

@ We probably chose linear regression; lost our non-linearity



Regressor Chains

We can ...

@ Work very hard on structure
o Look at other loss functions (other than MSE, MAE, ...);
such as modal estimates.

-15
-1 -1.0 -05 0.0 05

A

Two equally un/likely trajectories (given x) over y; € R, y» € R : MSE vs MAE vs MAP
approx.

Waegeman, Dembczynski, and Hiillermeier, “Multi-target prediction: a unifying view on problems and
methods”, 2019; Read and Martino, “Probabilistic Regressor Chains with Monte-Carlo Methods”, 2020



Sequential Monte Carlo Methods for tracking modal predictions
(i.e., trajectories)?:

Related approach : Multi-target regression via output space
quantization3

Other options: Multi-target decision trees* and ensembles; and
deep learning.

2Read and Martino, Neurocomputing 2020
3Spylromitlros-Xioufis. Sechidis, and Vlahavas, ArXiv preprint 2020
Stepidnik and Kocev, ArXiv preprint 2020



Modern Multi-Output Topics
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Open Questions
Loss metrics: which loss is more appropriate, and given some loss,
how to minimize it in a principled way.

Interpretation /Explainability: What does label dependence mean
wrt the data?

Hy

Pa




Trends
Bigger / deeper.

Larger target spaces (4,000—3,000,000 labels), i.e., ‘extreme
multi-label classification’

Wider range of applications
o tagging
@ video recommendation

Intersection with existing areas (deep learning, multi-task, transfer
learning, etc.).

e.g., Jasinska-Kobus et al., “Probabilistic Label Trees for Extreme Multi-label Classification”, 2020 and
references therein



Trends

@ Import extra problems (already known in wider machine
learning) : streams, semi-supervised learning, time series
classification, etc.

e Learning with partial labels (noisy annotators), weak labels
(lazy annotators), label ambiguity and imprecise classification
(messy ground truth/partial abstention).

The set of candidate labels
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GroundTruth|{Tagged Labels|

people people

" clothing clothing
cloud sky sky

water sea
nature




Summary

e Summary



Summary: Multi-target Learning and Prediction

Special cases: Multi-label classification; multi-target regression

A look at methods through the lens of classifier chains and
regressor chains (decision trees and neural networks as
alternative/overlap)

Main question: /f, and why, and how to use structure

Not answered (in detail): how to find that structure. There is
no single optimal structure, and there is more to multi-target
learning than ‘modelling label dependencies’: consider metrics,
efficiency, base models, interpretation, . ...

Multi-target problems getting bigger and more diverse;
intersecting with other areas

Many applications; More theoretical research needed
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Thank you !
http://wuw.lix.polytechnique.fr/~jread/
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