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This Lecture: Objectives

What is Reinforcement Learning (RL) in context of this talk (vs search,
optimization, supervised learning, . . . )
Why RL (potential applications, and motivation)
How to set up a RL problem ← probably the most important part
We will focus on a few toy examples
Main concepts and fundamentals, up until and including value functions
Solving a toy problem with Monte Carlo RL
Practical challenges of RL
Convince you that with what we covered so far, we can scale up to real-world
problems, by plugging in appropriate deep-learning architectures
If there’s time: discuss different algorithms, and a more detailed positioning of RL
in the context of modern AI, including open research in this area
(More) questions
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Types of Models (Where we might use Machine Learning)
Descriptive models (data mining, pattern mining, data analytics, . . . )
⇒ describe the past and present
Predictive models (machine learning, statistical methods, extrapolation,
forecasting, . . . )
⇒ use the past and present to predict the future
Prescriptive models (optimisation and autonomous agents, reinforcement
learning, solvers, planning, . . . ) ← In this course, we are here
⇒ take actions that will change the future
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Progress in Context
2004:

Human can learn how to play Go in a few minutes and go on to beat the state-of-the-art
AI
DARPA Grand Challenge: None of the autonomous vehicles finished; the best team
completed 11.78 of the 240 km
Computer vision still largely unsolved. Focus on mining text associated with any given
image, or ‘bag of pixels’.
Speech recognition had plateaued, needed heavy personalized training; Machine
translation provided ‘amusing’ examples

2024, Already seems like old news:
AI has beaten world champion in Go
Autonomous vehicles drive hundreds of kilometres through urban environments
Computer vision and speech recognition penetrating the mass market (Siri, Google
Translate, etc.);
Impressive results from of language models, text-to-image models (ChatGPT, Midjourney,
. . . ).
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But still a long way to go. Consider AI vs Pigeon:
Getting from point A to B without crashing into anything, over long distances, in
3d coordinates, and orders of magnitude less power than modern AI
Impressive visual skills: Pigeons identify breast cancer ’as well as humans’: Pigeons, with
training, did just as well as humans in a study testing their ability to distinguish cancerous from
healthy breast tissue samples. [. . . ] Likely no bigger than the tip of your index finger, the
pigeon’s brain nonetheless has impressive capabilities . . . Pigeons can distinguish identities and
emotional expressions on human faces, letters of the alphabet, misshapen pharmaceutical
capsules, and even paintings by Monet vs Picasso.

– BBC (2015); Scientific article: Levenson et al., Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast

Cancer Images, PLOS ONE 2015; Turner and Edward The pigeon as a machine: Complex category structures can be acquired by a simple

associative model. Iscience 26.10 (2023).
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Introduction: Reinforcement Learning
No data set; only an environment
No training labels; only reward signal
The model is an agent; map state-observations to actions
Sequential decision making (decisions affect the future ← huge implications!!!)
Main challenge: associating agent actions with rewards through time

RewardState

Action

AGENT

ENVIRONMENT

Reinforcement Learning is a means to obtain an intelligent agent1.
1or, autonomous agent, rational agent, an ‘AI’
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Applications: Games

(a) Chess (b) Atari (c) Go (d) StarCraft II (e) Dota

1997 Deep Blue (search-based) beats world champion at Chess
2013 DeepMind (DQL) surpasses human expert on some Atari 2600 games
2016 DeepMind AlphaGo (MCTS) beat world champion
2019 DeepMind AlphaStar (PG, IL, . . . ) acquires grandmaster status
2019 OpenAI agents (PPO) defeats world champion team in live Dota match

FPS-Quake Starcraft-AlphaStar

https://youtu.be/NXkD77ioGi0
https://lh3.googleusercontent.com/ckm-3GlBQJ4zbNzfiW97yPqj5PVC0qIbRg42FL35EbDkhWoCNxyNZMMJN-f6VZmLMRbyBk2PArLQ-jDxlHbsE3_YaDUmcxUvMf8M=w1440-rw-v1
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Applications: Robotics and Autonomous Vehicles

Helicopter Robot More Robots

Ibarz et al., How to train your robot with deep reinforcement learning: lessons we have learned, 2021

AIGym Walker1 Walker2 Cars

https://www.youtube.com/watch?v=VCdxqn0fcnE
https://www.youtube.com/watch?v=ZhsEKTo7V04
https://www.youtube.com/watch?v=W4joe3zzglU
https://www.gymlibrary.dev/environments/classic_control/
https://www.youtube.com/watch?v=TEFXp2Ro-10
https://www.youtube.com/watch?v=pgaEE27nsQw&t=28s
https://youtu.be/wL7tSgUpy8w?t=78


12

Applications: Logistics, Finance and Business

Trading/finance/manage investment portfolio IBM

In recommendation engines, email advertising
Marketing and advertising; real-time bidding Advertising/Bidding Bidding

https://miro.medium.com/max/1598/1*oAuFspZKqASVtGlmBCubPA.png
https://machinelearningknowledge.ai/wp-content/uploads/2020/08/Applications-of-Reinforcement-Learning-2.jpg
http://www0.cs.ucl.ac.uk/staff/K.Malialis/files/wsdm17.pdf
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Application: Energy Systems



14

Luo et al., Controlling Commercial Cooling Systems Using Reinforcement
Learning, 2022. N.B. Also Energy

https://deepmind.com/blog/article/deepmind-ai-reduces-google-data-centre-cooling-bill-40
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Applications: Education, Healthcare, Agriculture, Politics, LLMs . . .
Healthcare: Diagnosis, manage hospital resources, . . . Health

Education: Personalised/auto-generated curriculum, . . .
Farming and Agriculture: Managing resources, . . .
Sports
Politics: Obtaining a policy Politics

Large Language Models (and other deep neural networks)

https://pythonhealthcare.org/the-learning-hospital/
https://news.vice.com/en_us/article/nep5wb/how-a-labor-union-is-using-an-algorithm-to-predict-when-to-organize
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General Setup for Reinforcement Learning: Agent and the Environment

1 The agent observes the state of the environment, and receives a reward
2 The agent takes an available action
3 The next state is determined by environment dynamics (‘rules of the game’)

RewardState

Action

AGENT

ENVIRONMENT

Important: The agent may alter the environment (and thus its own future state
observations and reward!)
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Environment-agent interaction (simplified):
env = Environment ()
agent = Agent(env)

while True:
a = agent.act(s)
s_next , r = env.step(a)
agent. update ((s,a,r, s_next ))
s = s_next
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The Reward Signal and Trajectories
At time t we observe st , take action at , obtain reward rt+1, and advance to next state
st+1. An episode (or trajectory, τ):

τ = {s1, a1, r2, s2, a2, r3, s3, a3, . . . , rT−1, sT−1, aT−1, , rT , sT}

Challenges:
Sparse rewards, e.g., rt = 0 most of the time
Weak rewards (limited impact of actions on reward)
Temporal credit assignment: Which actions (at−1? at−100? both? none?) led to
reward rt?

0 25 50 75 100 125 150 175 200

0

1

2

3

4

5

6

Reward
rt



21

Agent and Policy

The policy defines the behaviour of the agent;

at = π(st)

indicates the action to take given the observation of the current state; i.e., the agent
observes st and takes action at in response.

a

s

Neural Network

State Action
st at
0 +1
1 +1
2 −1
3 +1

Q-Table
‘Hardwired’ policy

We can also have a stochastic policy P(At | St = st) = π(st).
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Search (vs RL)
It’s just a search (each node is a state):

1 Generate the search tree
2 Collect sum of rewards at leaf
3 Backup
4 Choose the best branch

Does not scale!
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Optimization (vs RL)

1 Generate a policy (or several)
2 Evaluate (check sum of rewards obtained)
3 Choose the best; [modify and] repeat

source: Youtube

Does not scale!

https://www.youtube.com/watch?v=sZidN2GrOtU


24

Imitation Learning (vs RL)
1 Observe an expert take action at from state st
2 Collect a dataset for t = 1, 2, . . .

3 Train your favourite classifier (or regressor)
4 Update as necessary

Image source: Fang et al. Survey of imitation learning for robotic manipulation. 2019.

Imitation Learning is Supervised Learning, not RL.
Scales quite well; but usually does not work (OK, can say the same about RL on
many problems, but . . . ) and is fundamentally limited – cannot generalise
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Stochastic Environments
Deterministic environments: if agent chooses to step forward (action), the agent
move forwards (next state). Stochastic environments, e.g., real world:

Image credits: unknown/can’t remember

The agent takes action a from state s and arrives to state s ′ with probability
s ′ ∼ p(· | s, a). A stochastic adversary makes your environment stochastic too!
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A Markov Decision Process (MDP): Model of the Environment

In stochastic environments, we cannot choose the next state deterministically.

S state space, s ∈ S
A action space, a ∈ A(s)
R reward space, r(s, a) ∈ R

r(s, a) reward function
p(s′ | s, a) transition function (dynamics)
π(a | s) policy of the agent

St

At

Rt+1St+1

In Reinforcement Learning we do not necessarily know this model.
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Slippery Floor Environment
state s ∈ {1, 2, 3, 4}
action a ∈ {←,⟳,→}
reward function r(4,⟳) = 1
else r(s, a) = 0 for other values of s, a
transition function s ′ ∼ p(· | s, a)

e.g.,

p( x ♢ | x ♢ ,←) = 0.5

The floor is slippery!! And the lights are
off, agent only sees ‘s’:

x

←→

0.50

0.50

←↻→

0.50

0.50 0.50

0.25

0.25

←↻→
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← ↻
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0.500.50
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(transition graph representing MDP dynamics)
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Markov Decision Process:
Does your environment satisfy the Markov property?
(Is it possible to perform optimally from any state st?)

st =

Important consideration! Much of Reinforcement Learning is built around the Markov
assumption!
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Markovian state:

st =

Other solutions: LSTMs, track the difference across frames, . . . .

i.e., if your decision process is not Markov, you can make it one (not necessarily
easily)!
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Reinforcement Learning: Produce a Policy for an Environment

The output of reinforcement learning is a policy

at = π(st)

(for any state st ∈ S) – but what policy?

The best policy should take the best action from the current state;

a∗
t = π(st)

i.e., the action to to optimize (this is the important question!) ??? . . .

to optimize what?

x ♢
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The Gain (Finite Scenario)

The gain (aka return2 or sum of future rewards) at step t is

Gt =
T∑

i=t
Ri+1

= Rt+1 + Rt+2 + . . . + RT

i.e., the sum of rewards of the episode; it indicates the value at current time t.

x ♢

2We call it G the gain to avoid confusion with R the reward
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(green for gain). But: when T =∞? And rt+1 = 1 vs rt+1000 = 1?

2We call it G the gain to avoid confusion with R the reward
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The Return/Gain (Infinite Scenario)
The return (aka gain) at step t is

Gt =
∞∑

k=0
γkRt+k+1 (1)

= Rt+1 + γRt+2 + γ2Rt+3 + . . . (2)

with discount factor γ ∈ (0, 1) which indicates the relative value of closer rewards.

x ♢

Gain G from each possible s of optimal agent

Task: The agent should take actions At to maximize Gt ! The policy is implicit!

But
Gt is from the future! The future is uncertain!
Gt inherits the randomness (uncertainty) from environment and agent!

Therefore: We should maximize expected gain E[Gt ], also called value.
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Value = Expected Gain

Reinforcement learning is about maximising value:

π∗ = max
π

E[Gt ]

a∗
t = π∗(st)

= minimising expected loss = the general setting of machine learning!

Remarks:
gain Gt calculated according to discount factor γ and from time t
expectation (randomenss) E from our policy π and the environment dynamics p
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The Value Function

The value function (aka state-value function),

V π(s) = E[Gt | St = s]

maps a state to a value; which is the expected return from that state following policy
π interacting with the environment.

We may think of a vector of |S| values; if S = {s1, s2, s3, s4}:

s1 s2 s3 s4
V
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A V-function and Policy for the Frozen Lake Environment:

S

H H

H

H G

Image credits: Jérémie Decock
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The Action-Value Function

The action-value function,

Qπ(s, a) = E[Gt | St = s, At = a]

maps a state and action to a value.

We may think of a table of |S| × |A| values; with A = {a1, a2}:

Q a1 a2
s1
s2
s3
s4
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Monte Carlo RL
Goal: Find V π(s) = E[Gt | St = s] for all s. Then just change s for more value!

x ♢

Problem (1): We don’t have V π(s), we have to calculate (learn) it!
Problem (2): The expectation is annoying!
Solution: Monte Carlo Approximation!

V π(s) = E[Gt | St = s] ≈ 1
N

N∑
n=1

g (s)
n

for N trajectories, ending in gain gn; i.e., play the game N times, fill the value table,

x ♢
then deploy the implicit policy.

Wait! But gn depends on a policy (π)! We require as a parameter the very thing we’re
searching for? Iteration and Exploration vs Exploitation ← key concepts!!!.
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Source: Sutton and Barto, Reinforcement Learning - An Introduction (2nd ed.), 2020
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Scaling Up
Let Vθ(s) be a deep neural network parametrised by θ (also determines policy, πθ).

V (s)

s

Can be MLP, CNN, . . . ; s can be an image, signal, text, . . .

At n-th training iteration:

θ ← θ + α
(
g (s)

n − Vθ(s)
)
∇θVθ(s)

This is just standard gradient descent; can be handled my any modern framework, e.g.,
PyTorch; where g (s)

n is our target (‘class label’).
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Practical Challenges (And Lessons from Data-Stream Learning)

Typical instances of RL are also instances of data-stream learning (learning, i.e.,
updating θ, must be carried out incrementally).

From the data stream learning literature, many problems already discovered, e.g.,
Cold-start problem (how to learn from t = 0); what assumptions can we make?
What does t even mean? What if we miss some t?
Instability issues; when/how to tune hyper-parameters?
Online or batch-incremental learning? How fast do we need to learn?
How to deal with delayed and sparse labels?
Temporal dependence can ruins everything if not modeled/mitigated properly
Robustness vs detecting and adapting to concept drift
Catastrophic forgetting vs lack-of-capacity

See also: Read and Zliobaite, Learning from Data Streams: An Overview and Update 2023
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Open Challenges in Reinforcement Learning

Even simple tasks (for a human) are currently unsolved in the true RL sense. And
learning in real-world environments presents particular challenges.

Learning quickly with limited samples; even when high-dimensional and complex
Generalization and transfer: towards a foundation model
Robustness and safety issues (offline RL and model-based RL)
Explainable agents, interpretable actions
Delayed/partial/weak observations, and handling the associated uncertainty
Legal and ethical concerns, and alignment issues (agent’s reward function vs ours)

In games and LLMs: Useful sometimes, failures acceptable, often amusing.
In the real world: agents must be trustworthy, acceptable results ≈ 100% of the time.
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Questions

?
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Resources and Further Reading
These slides:
https://www.lix.polytechnique.fr/~jread/talks/2024_12_10-Malaga.pdf

Suggested textbook: Sutton and Barto, Reinforcement Learning - An Introduction
(2nd ed.) – particularly Chapter 3 and Chapter 4.

Testbed environments:
https://pypi.org/project/gymnasium/

https://github.com/instadeepai/jumanji

https://pettingzoo.farama.org/environments/classic/rps/
(multi-agent)

Baseline RL-algorithm implementations:
https://stable-baselines.readthedocs.io

If you have more questions:
jesse.read@polytechnique.edu

https://jmread.github.io/

https://www.lix.polytechnique.fr/~jread/talks/2024_12_10-Malaga.pdf
https://pypi.org/project/gymnasium/
https://github.com/instadeepai/jumanji
https://pettingzoo.farama.org/environments/classic/rps/
https://stable-baselines.readthedocs.io
jesse.read@polytechnique.edu
https://jmread.github.io/
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