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Multi-label Classification

Multi-label classification: a subset of labels may be assigned to
each input instance.

Beach
Sunset
Foliage
Urban
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Input Beach Sunset Foliage Urban

1 0 1 0

0 1 0 0

0 1 0 1

0 1 1 0

0 0 1 1

? ? ? ?

y = [1, 0, 1, 0]⇔ labels {Beach, Foliage} are relevant to x.
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Often read in the literature:
We model and predict labels together due to label depen-
dence.

And many empirical results appear to confirm this.
But what is the mechanism? When does it hold? . . . Why?

y4y3y2y1

x

vs
y4y3y2y1

x

vs . . . ?
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A View/Timeline of Multi-label Learning in Academia

< 2000s Just use independent models.
. . . 2010 Model labels together, based on label

dependence/co-occurrences.
. . . 2015 Keep using label dependence, but in a more

sophisticated/efficient way now.
. . . 2015 Multi-label learning for image, text, forecasting,

recommendation, audio, health applications, distilling wine . . .
2020 [. . . and for covid19].

. . . 2020 Just use independent models.

. . . 2020 Just use deep [convolution / recurrent] neural networks.
2020 . . . . . . deep [graph-embedding / residual / adversarial /

transformer/. . . ] neural networks.
2020 . . . with [missing / partial / fast / incremental / weak / zillions

of/. . . ] labels.
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Multi-label Classifiers: Examples
x

y1, y3 y2, y4
(RAkEL)

y4y3y2y1

x

(Classifier Chains)

y4

y3y2

y1

x

(CDNs)

y1

y2

z

x (Neural Network)
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?

(MLkNN)

x1 = 1

x2 = 1 x2 = 1

y = [0, 1, 1] y = [1, 1, 0]y = [0, 0, 0] y = [0, 1, 1]

no
yes

no yesno yes

(Trees, RFs)

Refs. in Bogatinovski et al., “Comprehensive comparative study of multi-label classification methods”, 2022
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Classifier Chains: An Example of ‘Problem Transformation’

A chain (structure) over the output variables;
Cascaded prediction across a chain/graph
Motivation: Model label dependence

y4y3y2y1

x
X Y1 Y2 Y3 Y4

x(1) 0 1 1 1
x(2) 1 0 0 0
x(3) 0 1 0 1
x(4) 1 0 0 0
x(5) 0 0 0 0

x̃ ŷ1 ŷ2 ŷ3 ŷ4

Read et al., ECML-PKDD 2009 and Read et al., “Classifier Chains: A Review and Perspectives”, 2021
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Why Model Labels Together: A Fresh Look

1 Introduction

2 Why Model Labels Together: A Fresh Look

3 Model-based Model-Agnostic Transfer Learning
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Suggestion 1: Because Label Dependence
Argument: If label variables are correlated/interdependent, we
should model/predict them together; accuracy will better.

y4y3y2y1

x

y4y3y2y1

x

Maybe, under metrics that require joint modelling1 (e.g., exact
match accuracy). But there is more to this story! Consider:

Dozens of methods improving on independent models under
Hamming loss which does not require joint modelling
Many methods improve their results with different node
orderings yet dependence is symmetrical!
Efforts to model label dependence correlate only weakly with
accuracy. No one has found the best structure.

1Dembczyński, Waegeman, and Hüllermeier, “An Analysis of Chaining in Multi-Label Classification”, 2012
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Taking a Step Back: What is Label Dependence?

Label dependence:

P(Y1, Y2) ̸= P(Y1)P(Y2)

coincides with the intuition “beach and sunset may co-occur
frequently" but also: the beach may indicate no urban, no beach
may indicate no sunset (mutual exclusivity), etc.

Very rare cases: no correlation or perfect correlation measurable.

But in multi-label classification we are specifically interested in
conditional dependence between Y1 and Y2 having observed x.

P(Y1, Y2|x) ̸= P(Y1|x)P(Y2|x)

We never know P. There are many ways to estimate it.

Intuition conditional independence: I know a sunset when I see it.

Dembczyński et al., “On Label Dependence and Loss Minimization in Multi-label Classification”, 2012
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Label Dependence and Loss Metrics
Suppose conditional dependence,

P(Y1, Y2|x) ̸= P(Y1|x)P(Y2|x)

y1 y2 P(y1, y2|x)
0 0 0.0
0 1 0.5
1 0 0.5
1 1 0.0

The question is not just of dependence, but of uncertainty.
Hamming similarity (or loss) (can target labels independently):

:= 0.5 · [[y1 = ŷ1]] + 0.5 · [[y2 = ŷ2]]

⇒ Predict ŷ = [0, 0] or ŷ = [1, 1]!
Exact match accuracy (or 0/1 loss) (need label dependence):

:= [[y = ŷ]] = [[Hamming similarity = 1]]

⇒ Predict ŷ = [1, 0] or ŷ = [0, 1]!
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Modelling Label Dependence
Attractive idea: 1) detect dependence, 2) form a structure.

amazed happy relaxing quiet sad angry

amazed

happy

relaxing

quiet

sad

angry

Good news: Accuracy probably better than independent models.

Bad news: But not necessarily. Random structure also better. No
single best structure. Would be impossible to find anyway (we
don’t have true P). Actually even with P, we cannot find it. Even
if we do, it is only specific (optimal) to certain loss metric, base
classifiers, parametrization, test instance, . . . . And it’s all very
expensive.
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Case in point: trial all structures that fully model P(Y1, . . . , Y6|x),
i.e., full label dependence (chain rule).
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Jaccard score from 45 chain permutations; 'emotions' data. 

Indeed - modelling label dependence gives better results (in this
case)! But why so different? There is very little correlation
between structure and accuracy.

Read et al., “Classifier Chains: A Review and Perspectives”, 2021
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Even if I have the true P, using Hamming loss, . . .

X1 X2 Yxor Yand
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 1

yXOR yAND

x1, x2

yAND yXOR

x1, x2

results may vary (consider: base classifier, inference, . . . ).
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Suggestion 1b: Avoiding Error Propagation

Argument: There may be error propagation across the structure,
so we should, e.g., put easy labels first.

y4y1y2y3

x

But
Empirically: Incorrect label predictions may also increase the
accuracy of other label predictions!
Observation x is available at each step (error should not
propagate!2)

2In the context of forward pass/greedy inference; a more complete discussion in Senge, Coz, and Hüllermeier,
“On the Problem of Error Propagation in Classifier Chains for Multi-label Classification”, 2014
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Suggestion 1c: Correcting Predictions

Argument: We can ‘correct’ errors at prediction time, e.g., via
stacking.

y1 y2 y3 y4

ỹ1 ỹ2 ỹ3 ỹ4

x

Yes (maybe). But
P(y1|ỹ1, ỹ2, ỹ3, ỹ4) ̸= P(y1, y2, y3, y4|x), i.e., this is not label
dependence modelling, we only correct bias of individual
models;
involves a separate training mechanism for each layer.
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Suggestion 2: Structure is acting like a Neural Network

Argument: Structure among labels ⇒ ‘deep’ ‘neural’ network.

x

y1 y2 y3

z1 z2 z3

x

y1x

y2x y1

y3

Classifiers as activation/transfer functions, labels as hidden nodes.
A bit like ResNets. But:

No back propagation (deep prediction, but not deep learning);
the hidden nodes are not hidden.
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Consider prediction task

x̃ 7→ ŷ2

and the data available at training time (left) vs test time (right):

X1 X2 X3 Y2
Basis expansion x ϕ1 ϕ2 y2

Stacking x ỹ1 ỹ2 y2
Classifier chain x y1 y2
Neural network x y2

X1 X2 X3 Y2
x̃ ϕ1 ϕ2 ŷ2
x̃ ỹ2 ỹ2 ŷ2
x̃ ŷ1 ŷ2
x̃ ẑ1 ẑ2 ŷ2

where ϕj ≡ ϕj(x) (e.g., hand-coded/expert-designed basis function), ỹj = hj(x)
(trained on original dataset, then stacked), and yj supplied directly in the
original training set, and zj are hidden units (not observed).
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Suggestion 3: Structure is providing Regularisation
Argument: Modelling labels together provides better results even
if they are independent.

For example the James Stein estimator (for m > 2 labels, yj ∈ R):

ŷJS = 1− (m − 2)σ̂2

∥ŷ∥2
ŷ = λ · ŷ

where λ shrinks (regularises) the max.-likelihood estimate ŷ.

2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
Estimating y = [ 1, , m] = [0.5, , 0.5]

y
yJS

j j

0.5 0.0 0.5 1.0 1.5
y1

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

y 2

... showing only [ 1, 2] = [0.5, 0.5], etc
y = [ 1, 2, ]
y = [ 1, 2, ]
yJS = [ 1, 2, ]

1

2

Good discussion by Waegeman, Dembczyński, and Hüllermeier, “Multi-target prediction: a unifying view on
problems and methods”, 2019
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But: gains are minimal when n≫ m (many examples, few labels):

0 20 40 60 80 100
n

0.000

0.025

0.050

0.075

0.100

0.125
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0.175
ELS EJS1

5 10 15 20 25 30
m

0.002

0.000

0.002

0.004

0.006

0.008

0.010
ELS EJSm

(Showing the [E rror of least squares - E rror of James Stein estimator])

Indeed, the shrinkage factor λ loses strength quickly wrt n:

0 2 4 6 8 10
|y|2

0.0

0.2

0.4

0.6

0.8

1.0

n = 100
n = 10
n = 5
n = 1
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Suggestion 2b and 3b: The ‘Ensemble Effect’
Argument: Modelling labels appears to provide better results but
actually the ensemble deserves the credit, by providing

More predictive power
More regularisation, e.g.,

Ensembles of independent models on independent labels under mean squared
error which evaluates labels independently; (and purely linear concepts):

1 2 3 4 5 6 7 8 9 10 15 20
n

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

M
SE

IR
RC
ERC
EIR

i.e., ensemble having non-negligible benefit as a regulariser, this
time for larger n!
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So Which is it Then?
Goal: Isolate empirical evidence for such suggestions

Methodology: Progressively remove support for each
‘Suggestion’, measure accuracy Gain of classifier chains vs
independent models (initially, base classifier = logistic regression):

Experiment 1 (‘Suggestion 1’): under 0/1-loss, dependence
modelling should shine! – i.e., gap should be significant
Experiment 2 (‘Suggestion 2 and 3’): . . . switch to Hamming
loss; i.e., no direct need for dependence modelling – any
difference in accuracy must be capacity vs regularisation!
Experiment 3 (‘Suggestion 3’): now use multi-layer neural
nets for non-linearity/extra capacity; i.e., any difference now
must be regularisation!
Experiment 4 (‘Suggestion 0’): . . . now heavily regularised
neural net; if any significant difference now – I will be be
confused!

And repeat many times to smooth out noise.
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Exp. 1 Exp. 2 Exp. 3 Exp. 4

1.0

1.2

1.4

1.6

1.8

2.0

2.2
Ga

in

Logical

Conclusion: Modelling labels together is essential to capture label
dependence, but a significant gain is obtained simply by the extra
capacity offered by the structure.
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Exp. 1 Exp. 2 Exp. 3 Exp. 4

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
Ga

in

Music

Conclusion: Modelling labels together is essential to capture label
dependence, but a significant gain is obtained simply by the extra
capacity offered by the structure.
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Exp. 1 Exp. 2 Exp. 3 Exp. 4

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35
Ga

in

Scene

Conclusion: Regularisation plays a non-negligible role, i.e.,
modelling labels together simply to avoid overfitting!
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Exp. 1 Exp. 2 Exp. 3 Exp. 4

1

2

3

4

5

6
Ga

in

Yeast

Conclusion: Regularisation plays a non-negligible role, i.e.,
modelling labels together simply to avoid overfitting! N.B. Small,
but non-negligible! Yeast has relatively high label density.
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Lessons So Far

1 We can offer a minor rephrasing:
We should model and predict labels together mainly be-
cause of label dependence (i.e., if our loss metric suggests
that we need to learn it), and we can also get benefits
from additional capacity and regularisation brought by ad-
ditional structure inherent to modelling labels together.

2 Answer to all multi-label problems = deep neural network
architectures with standard regularised learning . . . ?
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Reasons to Retain Interest

Modelling labels together with model-agnostic/base-classifier
approaches (and other algorithm-adaptations):

still work well especially on fewer training examples
(important for, e.g., small data and recovery from concept
drift in data streams)
require no hidden units; depth/non-linearity comes ‘for free’
requires no back propagation
more choice (decision trees, including a mixture of different
models, . . . ) – for reasons of interpretability or reliability; and

And we have shown several percentage points of improvement
from modelling totally unrelated tasks together

← very
interesting!?
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Model-based Model-Agnostic Transfer Learning

1 Introduction

2 Why Model Labels Together: A Fresh Look

3 Model-based Model-Agnostic Transfer Learning
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Transfer Learning

Quick guide to transfer learning:
1 Find related source task (S)
2 Use it to improve the model you deploy on target task (T )

y1 y2

z

x

vs yS yT

zS zT

xS xT

Plot (right) from Torrey and Shavlik, “Transfer learning”, 2010.

A key word was: related. But what if related-
ness is not a requirement?
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Thoughts on That

Transfer learning by connecting the model from an unrelated
source task. This is similar to connecting the first layer of a neural
network randomly.

"[C]onnecting the first layer randomly is just about the
stupidest thing you could do" – Yann LeCun

Remarks:
He said "just about"
He didn’t say it didn’t work
Minor difference: In our case, not random in the sense of
randn(), rather just totally unrelated

So let’s try it anyway. . .



31

Insomniac Fungi
A model (random forest) for classifying patients3: suffering
insomnia (red) or not (blue), based on sleep measurements
xS = [x1, x2]:

xS

xS

When a yeast genome is squeezed into x̃S , an insomnia diagnosis
as an additional feature gives + ≈ 2% accuracy for predicting
genome function.

3Medical data thanks to Olivier Pallanca
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Replicating on Synthetic Data

A target task xor (data shown, some noise added) is solved via
predictions from and-function (decision boundary shown) as an
additional feature:

1 0 1 2
x1

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

x 2

xS

ỹS yT

xTx̃S
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Multi-Label Chain vs Deep Transfer vs Chain Transfer

y1 y2

z

x

yS yT

zS zT

xS xT

ỹS yT

zS zT

x̃S xT

Main difference from Deep Transfer: A model agnostic approach;
require only outputs.
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A Random Projection or Manufacturing Dependence?

Not a random projection∗, a randomly-chosen projection
hS : XS → YS (target domain to source domain).
∗Actually, we still need a projection f : XS → XT if different sizes.

Then feature selection/regularisation wrt hT .

ŷS yT

xTx̃S

f

hS

hT

hT

Implicit assumption: the source classifier hS was/is useful for
something (else).

Implicit challenge: information bottleneck.
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More Experiments
Recall (from Torrey and Shavlik, “Transfer learning”, 2010):

MLPℓ: neural network, ℓ layers; SLP0 ≡ MLP0

ECC: ensembles of classifier chains
RLP: random-layer projection; ≈ ‘extreme learning machine’4

TC: ’transfer chains’; from unrelated source classifiers
ETC (ensembles of TC)

Subscripts indicate the number of hidden layers. At each step +100 iterations
of gradient descent or (for ensemble methods) +1 model (with 100 iterations).
Hyperparameters and capacity (nodes) roughly equivalent among layers ℓ.
What we’re looking for: is TC at all not useless?

4Huang, Wang, and Lan, “Extreme learning machines: a survey”, 2011
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Results
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Music is a small dataset, transfer chains not efficient, but still
powerful.
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Scene is an image dataset, back-propagation sufficient, no benefit
from transfer.
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Results
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Better results after trasfer, same number of iterations.



36

Results
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Learning starts a bit faster with transfer (step-wise). Random
projections not so effective.
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A Reflection on Results

‘Transfer Chains’ is not a state-of-the-art method.
But it works – and that is interesting!
In an extremely difficult transfer setting: no model
introspection, no source data, no task dependence
Standard neural network architectures worked best5

They cover all ‘suggestions’: dependence-modelling,
non-linearity and capacity, and regularisation.
Model-agnostic approaches offer these aspects too, but face
usual limitations of learning without back-propagation;
Advantages: the depth without the need for deep learning –
using other labels; and free choice of base model

5As seen in the Tutorial Multi-Target Prediction with Deep Neural Network: A hands-on tutorial by Iliadis and
Waegeman this morning!
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Looking Further Afield; Open Questions, Discussion Points

High intersection with the deep learning community –
multi-task learning, transfer learning, lifelong learning, . . . –
‘pretrained’ ‘frozen layers’ and ‘parameter isolation’, ‘universal
computation’, . . .
What does it mean for a label/task to be related to another?
Transfer learning vs reduction/reuse/recycling of models?
Transfer by analogy, rather than transfer of inner layers
A shift from data-driven learning to model-driven learning?
Immediate practical implications: adapting to concept shift in
data streams; don’t forget ‘irrelevant’ models!?
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Conclusions

Multi-label learning: important progress (and many methods)
in recent decades and still relevant!
It is more complex than modelling labels together (or not)
‘because of label dependence’
More explainability on how methods work/predict
Model labels/tasks together for other reasons than label
dependence – and even when there is ‘none’!
Ever larger/more complex problems via data-driven learning
‘from scratch’ – increasingly challenging!
The wider machine learning community is facing many of the
same problems, let’s continue to import their problems and
also to contribute back our solutions!
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Label-Dependence in Multi-label Learning:
A Fresh Look

Jesse Read

Thank you!
http://www.lix.polytechnique.fr/~jread/

http://www.lix.polytechnique.fr/~jread/
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