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About CSC_2S004_EP: Knowledge You will Obtain from This Course
Briefly: You should finish the course having gained sufficient knowledge to complete a typical machine
learning pipeline/project from start to end: from formulating the problem and preparing data, to selecting
an appropriate model and learning algorithm, and being able to understand and explain the performance
and the limitations of such a selection on such a problem.

The course is divided very roughly into two parts: first we lay the foundations, and some important
formal notions. This allows us, in the second half of the course, to take a tour through a number of
contemporary machine learning methods and ‘recipes’, understanding both the practical implications and
the theoretical insights behind each one. At the end of the course you will have enough knowledge to take
on a range of machine learning problems, as well as the ability to move into advanced topics, such as those
covered in post-graduate studies.

A rough outline of what you’re expected to know/be able to do by the end of week 5

Theoretical knowledge: You should

• Have notions about the main terms (these are highlighted as keywords where introduced), including features,
labels, training vs test set, model, prediction, irreducible error vs residual error vs loss

• Be able to follow a derivation of Ordinary Least Squares (OLS) and Logistic Regression. In doing so you
should be able to identify and motivate: data types (what is x, what is y), choice of performance/error/loss
metric, optimization method, and model representation.

• Understand the main assumptions of OLS (and how/when these assumptions could be incorrect; and some
strategies to take in those cases).

• Understand Gradient Descent (GD): when/why use it; how to derive gradient update from loss metric; will it
converge

• Be able to discuss the main differences (and advantages vs disadvantages) of the parametric models mentioned
above wrt non-parametric k-Nearest-Neighbors (kNN).

• Be clear on how different k affects the performance of kNN and polynomial regression (having k basis functions),
in particular with regard to overfitting

• Understand uncertainty in machine learning and how this relates to the bias-variance trade-off;
• What is overfitting and how it can be mitigated with regularization.

Practical skills: You should be able to

• Use the pandas library for loading, inspecting, and manipulating data sets
• Be familiar with the numpy library for matrix algebra and probability, e.g., be able to translate something

like w ∼ N (0, I20.1) or (w⊤X− y)⊤(w⊤X− y) into one line of Python code.
• Interpret (from a theoretical and practical perspective) the meaning of the parameters/weights/coefficients
• and the output of the sigmoid function σ(·) wrt classification and confidence
• Design and implement basis functions ϕ, and use them to obtain a non-linear decision boundary/surface
• Cast a relatively simple ML problem (given as a textual description) into an ML abstraction (X, y, etc.)
• Implement (at least in a basic form) methods such as: OLS, kNN, Logistic Regression with Gradient Descent
• Understand practical implications of, e.g., using OLS vs kNN regression
• Instantiate ML models from the sklearn library, and use them to solve regression and classification tasks
• Interpret learning curves (on training data, and test data)
• Be able to tune hyper-parameters (k, α, λ, . . . ) to values that work for a given [practical] problem
• Be able to produce an intuitive and concise visualisation of your results (e.g., tables, or plots)
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• Be aware of what is at stake wrt overfitting vs underfitting (bias vs variance) for every method (linear-,
polynomial regression, kNN, . . . ), with regard to a practical/hands-on problem; and be able to choose and
employ techniques (especially: ridge penalty, and cross validation) to ensure a reasonable tradeoff

Updates to expect to material in 2025
The field of Machine Learning is expanding and developing at a rapid pace. In the present iteration of
CSC_2S004_EP (2025), respect with previous years, there will be relatively more emphasis on Probabilistic
Machine Learning (and uncertainty analysis) and Generative Modelling. Kernel Methods such as Support
Vector Machines will remain phased out. That does not mean that this material is no longer relevant
in machine learning. We retain a study of many ‘traditional’ ML techniques such as Linear and Logistic
Regression, k-Means Clustering, not for tradition’s sake; but because they are effective tools on their own
as well as serving as excellent foundation to more advanced (including, but not only, modern) methods.
In terms of notation, we make a particular effort in 2025 to distinguish between loss metric ℓ of which the
expectation is minimised by a machine learning algorithm (and other kinds of error).
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Chapter 1

Introduction to Machine Learning

We will introduce some notation and important terms and concepts that will be used throughout much
of the course; a general overview of machine learning; and some practical advice for taking on a machine
learning project (such as the course project).

Main Concepts
You should learn what this course is about (what you are expected to
learn), and also the following concepts:

• data, [test] instance, features, labels, training set, predictions

• model and error (vs residuals), ground truth

• loss metric and notions of distance

• optimization as learning

• tasks: what is supervised vs unsupervised learning; regression vs
classification, classification vs clustering; . . .

• setting up a machine learning problem

• issues arising when dealing with data: missing values, bias, scaling,
size, anomalies, avoiding typical pitfalls . . .

• what is machine learning (and with respect to statistics, optimisa-
tion, computer science, . . . )

1.1 Representing Data

We can typically represent data as a matrix,

X =




x1,1 x1,2 . . . x1,d

x2,1 x2,2 . . . x2,d
...

... . . . ...
xn,1 xn,2 . . . xn,d




(1.1)
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with columns being features (or attributes), and each row is an instance of data (or data point). Let the
i-th row (instance) be

xi = [xi,1, . . . , xi,d]

with xi,j ⇔ x
(i)
j (alternative notation) being the j-th attribute of the i-th instance.

The data can also be represented as a set of n instances:

{xi}ni=1 ⇔ {x1, . . . , xn}

We often have labels available:

y = [y1, . . . , yn]⊤ =




y1
...

yn


 (1.2)

such that label yi (also called the target) is associated with each i-th instance xi. Putting these together
as tuples/examples, we have a data set:

D = {(xi, yi)}ni=1 ⇔ {X, y}

We learn to predict y from x, i.e., map x to y. The domain Y in which each yi lives (yi ∈ Y), and
whether we have yi available or not, determines the type of machine learning task. Of course, the domain
X in which each xi lives, also has a significant effect on how we approach a problem.

Often we will borrow notation from statistics, where upper case X := X1, . . . , Xd and Y denote random
variables (describing/denoting features, i.e., symbols attached to columns) and lower case x = [x1, . . . , xd]
and y (as above) as actual data points, i.e., instances/realisations of those random variables, containing
actual values. If the row-subscript is absent, (x, y), it indicates a generic instance, often a test instance
along side hypothetical label, i.e., one that was not necessarily observed previously in the training set (from
which our machine learning algorithms derive knowledge). This is an important distinction of machine
learning: the data processed by a learning algorithm is usually not the resulting model (produced by an
algorithm) will operate on.

Machine learning is at the crossroads of different fields (computer science, statistics, applied mathe-
matics, signal processing, . . . ); each field brings its own terms and notation – so be ready to see different
notation and different terms that mean the same thing!

1.2 Model and Error
Any relation we are interested in modeling using the data may be described by the following:

y = f⋆(x) + ϵ (1.3)

where f⋆ is the true (‘ground truth’ or ‘generating’) model – a hypothetical concept/never observed in
practice; and ϵ is its irreducible error. The true model is the best one we could obtain given infinite data.
Why does it have error?

Let’s consider a toy problem, of Example 1.2. Some made-up data for this toy example is plotted in
Figure 1.1. The black points represent the training examples we have observed (actual people that would
exist if this were real data). These points were ‘generated’ from some true concept. Formally we represent
a concept via probability distributions, for example P (Y, X) = P (Y |X)P (X); in the figure, the variance
of conditional distribution P (Y | x) is shown, and can be interpreted as an indication of confidence.
Specifically, in this case, ϵ ∼ N (0, σ2) and y ∼ N (f(x), σ2).
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Example 1.2.1- GPA vs Early career earnings

Suppose we want to model the relationship of grade point averages (GPAs) vs their early-career earnings (in
k€/month). For example, a financial institution may wish to know this is order make a decision regarding
a loan to final-year students, or we might simply be conducting analytics/a study involving this question in
order to formulate advice for students.

The ‘true’ (unknown) model f⋆ will provide the best possible estimate f⋆(x) for any given x, generated from
the underlying concept. The data we consider here (Fig. 1.1) is made up, so the ‘true’ concept refers to the
one that generated this data. It indicates that higher GPA correlates in general with higher earnings. But
there are cases such that as hypothetical Fred who obtained a GPA of 1.0 and then went to work in his
father’s business earning a nice monthly sum, and hypothetical Susan (not shown) who got a GPA of 4.3 but
went into research, embarking on a PhD, and earning barely above the minimum wage.

We only have a finite set of training points (xi, yi) with which to build our model (f̂ ; in the Fig. 1.1 has been
constructed via OLS – which will be covered later in Section 2.1). If all our assumptions are correct and we
have infinite training data, the best we can hope for is a fit and an error similar to that incurred by f⋆.

Why is there always error? Yes, we could add features (GPA from which university, intelligence, family
wealth, etc.) to our data (thus representing a more detailed concept), but still we would never expect 0 error
in a real-world problem. We can never know the future with complete certainty.

Say you are aiming for a GPA of 3.0 (x = 3) and want to have an idea of your future earnings, the prediction
of the model ŷ = f̂(x) is shown as a horizontal line in magenta. The true expected earnings (according to
this example) is slightly lower. What are the actual earnings (what is the actual error of this prediction)? We
will have to wait and see; if we knew that already, we wouldn’t need to build a model; and hence the point
of machine learning.
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Figure 1.1: Fictitious data {(xi, yi)}ni=1, model f̂ ≈ f⋆, irreducible error ϵ = y−f⋆(x), prediction ŷ = f̂(x),
and residual error ei which is input to the loss metric ℓi = ℓ(yi, ŷi) = ℓ(ei). The relationship between x
and y does not need to be linear for these concepts to hold.

1.3 Machine Learning
Machine learning is about obtaining model f̂ ≈ f⋆ from data D. We could instead ask a domain expert to
design f̂ for us from expert intuition (or f̂ may just be a human expert), but in machine learning we use
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a learning algorithm to learn f̂ . How do we learn f̂? Which f̂ is good enough for our task?
The criteria we are optimizing is our performance metric. A performance metric can be a payoff function

like accuracy (higher is better) or, inversely, a loss metric (lower is better; an accuracy of 100% equals loss
of 0). Let us denote loss metric (or loss function)

ℓ(ŷ, y)

This function should give ℓ(ŷ, y) = 0 when ŷ = y (when our prediction ŷ is precisely accurate, i.e., zero
error) and some number ℓ(ŷ, y) > 0 when our prediction is incorrect to some degree; where the value ℓ(ŷ, y)
is proportional to the ‘incorrectness’. This function ℓ does not need to be symmetrical with regard to its
arguments; underestimating y may produce a larger error than overestimating by the same quantity. The
choice and/or design of the performance metric should come under extremely careful consideration, as it
answers the question from above which f̂ is a good one: the one that provides predictions ŷ = f̂(x) such
that error ℓ(ŷ, y) is, in general, as low as possible. (We emphasise, and will do throughout, the in general,
as opposed to for each specific training case).

1.3.1 Error vs Residual vs Loss: Sorting it out

Although there is clear conceptual overlap, we nevertheless strive to distinguish among these terms, because
often it is important: the irreducible error variable ϵ is not the same as the loss function ℓ(·, ·), although
our expected loss (coming soon, Eq. (1.4)) will contain/inherit the irreducible error. The residual error e is
empirically observable (for a specific data point); and ℓ is usually a function of e. Observe these relations:

ŷ = y + e ▷ A prediction
e = y − ŷ ▷ Its residual error

ℓ(y, ŷ) = ℓ(e) ▷ The loss function, a function of the residual
ŷ = f⋆(x) + ϵ + e ▷ Plugged Eq. (1.3) into the top equation

thereby we see both the irreducible and reducible error are involved in a prediction for a given input.
A common example of a loss metric in regression is the squared error:

ℓ(ŷi, yi) = e2
i = (ŷi − yi)2

which is also equivalent to classification error (the inverse of classification accuracy) when y ∈ {0, 1}. The
terms error and loss can sometimes be used interchangeably, but there is actually a conceptual difference:
sometimes in machine learning (and life, in general), we incur loss even when we do not commit any error.

So now there are several meanings behind the term ‘error’; which error should we reduce, from a
machine-learning perspective? The residual error is only tangible in the training phase, since to measure
it requires both a training label and a prediction, for the same instance; we do not the true label when
a model is deployed (otherwise there would be no point to deploy it). And in this context it is easy to
reduce the residual error to 0 simply by predicting ŷ such that ŷ = y. Anyway, in the general sense it does
not make sense to seek lower e because negative values are just as bad as positive. The irreducible error
is irreducible, so neither does it make sense to target that (even when f̂ = f⋆, and hence why, as a rule
of thumb, we should never expect 100% accuracy). We can aim to reduce loss ℓ, where lower is always
better (and 0 is best); but, on the other hand, achieving ℓ(yi, ŷi) = 0 is simple, by setting ŷi = f(xi) = yi.
Simple, and pointless.

So the question: In machine learning, what error/loss are we most interested in? Here is the answer:
we do not aim to minimise loss ℓ(ŷi, yi), rather we aim to minimise the expected loss:

ŷ = argmin
f

EY ∼P (Y |x)[ℓ(f(x), Y )] (1.4)
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This equation expresses concisely the goal of machine learning: build model f whose predictions ŷ for a
given instance x can be expected to be ‘good’ (i.e., small loss).

This is worth emphasising, as it highlights the main particularity of machine learning (as opposed to,
say, pure optimisation or basic statistics): we aim that ℓ(ŷ, y) be low on instances we have not seen before;
i.e., it should be such that when we deploy f̂ on new input (test instance) x which has never been seen
before, we obtain prediction ŷ = f̂(x) where ℓ(ŷ, y) is low.

There can be many loss metrics, error metrics, accuracy metrics, and so on, to evaluate a model. But
we strive to distinguish: loss ℓ is the one that our model f̂ has been trained to minimise, in expectation.

The expectation is with respect to Y since this (the true label) is the quality we do not know1; i.e., we
do not know the value of the label (y) associated with the observation (x), and we do not know distribution
P either. Only x (the data point) and ℓ (the error metric) may be given to us (and if they are not, we
have to obtain it, and decide on it, respectively, before proceeding).

Statistics and probability can help us estimate (i.e., to model) P , and optimisation algorithms can
help us with the argmin. In the real-world, many practical aspects (data wrangling, computer science
and programming, . . . ) are required to implement, and to complete the pipeline; and ensure successful
deployment. In deployed form, the solution to Eq. (1.4) is commonly called (in the popular media) ‘the
AI’.

The following steps are necessary (though not necessarily in this order) to approach a machine learning
problem:

1. Obtain and curate data (preprocessing) D

2. Choose/design your performance metric (accuracy, or error/loss function ℓ)

3. Decide on a model/representation (for f̂)

4. Employ a learning algorithm (optimization method) to produce f̂

Table 1.1: Major steps involved in a machine learning problem

By now steps 1. and 2. should be becoming clear. We will look at steps 3. and 4. later, in Section 2.

1.4 Types of Machine Learning

Machine learning is always about minimizing expected error (or equivalently), but the different domain
of inputs (X ), outputs (Y), data available to us and underlying concept, and different loss functions, all
contributes to a vast diversity of tasks which can be categorised by many different aspects. –

Firstly, if we have some labels y1, . . . , yn in our training set then we can approach a supervised machine
learning task.

If the domain of the labels is continuous (real-valued numbers, e.g., Y = R), then we have a regression
task. If the domain of the labels is discrete, e.g., Y = {0, 1} or, more generally, Y = {1, . . . , k}, then we
have a classification task (binary classification, and multi-class/k-class classification, respectively). There
is a close overlap with regression if we are looking for probabilistic output, e.g., P (y = 1|x) (the probability
that instance x belongs to class 1) because P ∈ [0, 1] ⊂ R provides a continuous value. Both regression and

1We use upper case Y sometimes to explicitly point out that this is a random variable, in the statistical sense, not a
concrete value in a dataset
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classification encompass an enormous number of tasks, often going under other names such as: forecasting,
filtering, smoothing, interpolation, extrapolation, recommender systems, predictive maintenance, and so
on.

If we do not have labels yi associated with instances xi in the training set, we may still build f̂ to
assign labels to xs anyway. This is called unsupervised machine learning. If we assign discrete values,
we may be doing clustering analysis. If we consider continuous values as labels, we can approach tasks
such as dimensionality reduction, representation learning, or density estimation (where f̂(x) is the relative
probability of observing x in the distribution p(x)).

In reinforcement learning, we learn an agent/policy to produce outputs which are actions to take in an
environment, and receive inputs which are states (or observations of states in that environment), rather
than a data set. This is a complex context, because with our actions we can affect future observations
(future inputs) received by our agent; essentially the model generates its own training data by interacting
with the environment.

1.5 Practical Advice for Tackling a Machine Learning Problem
In practice (machine learning in the real world), it is normal to find the most challenging aspect of machine
learning to be understanding/setting up/formulating a problem (What are the features? What is the label?
What is the appropriate error metric?). It is normal if the most time consuming part of the machine-
learning pipeline is preprocessing (tabulating, checking and cleaning data, dealing with missing values,
outliers, feature selection, feature removal, feature extraction, . . . ) and it is normal that this task never
seems to finish, even in advanced stages of a project.

Once you have defined your problem, it would be unusual if you find this class of problem has not been
tackled before; i.e., you can usually expect that there is an off-the-shelf method to solve the problem. Often,
in practice, machine learning is almost only about defining a problem then choosing, and parametrizing a
method (rarely do we have to design a new one from scratch). Although ‘choosing a method’ sounds quick,
a good theoretical understanding of machine learning, and the different algorithms, is essential to guide
this choice in terms of which method and its parameters, or otherwise decide that a modification/novel
method is required.

Warning signs: You get 100% accuracy. A ‘dumb’/baseline model (e.g., predicts 0 for everything)
or a simple statistic (e.g., predict always the mean, or majority class label without considering the input)
performs as well or almost as well as your model. Even worse: you forgot to use a baseline at all. You
cannot explain your results clearly and intuitively to a machine learning expert. You cannot explain your
results clearly and intuitively to a domain expert2 who is not an expert in machine learning. You are
unsure of the limitations of your model or about the uncertainty associated with its predictions. You
went straight for deep learning but can’t justify why that was the necessary/best choice (as opposed to a
classical [and usually more understood and reliable] method). You’re not having fun.

2A ‘domain expert’ not necessarily in the academic sense. If you are training a computer vision system to recognise pictures
of cats, a domain expert is someone who knows what a cat looks like



Chapter 2

Regression

So far we have covered some fundamental terminology, and discussed machine learning from a high-level
and abstract point of view; as an algorithm using data to build a model with which we can make predictions
that minimise expected loss/error. And we covered some general limitations and danger-points to be aware
of (potential bias, measures of confidence on predictions, a need for explainability, . . . ).

We are now going to commit to some concrete decisions (make some specific assumptions) regarding
the data-error-model-algorithm combination. Namely, in the context of regression.

We begin by looking at ordinary least squares (OLS) regression, i.e., linear regression. Then, non-linear
regression via basis functions (e.g., polynomial regression). Finally, we look at least squares regression via
gradient descent, which offers a more robust optimization (‘learning’) than OLS.

Main Concepts
By the end of this week you should know

• How to recognise (and set up) a regression problem

• With respect to ordinary least squares (OLS), what is (cf. Table 1.1):

– the data looking like (in matrix/vector form)
– the error/loss metric
– the representation of the model
– the optimization routine/algorithm

i.e., the derivation of OLS from a machine learning point of view
(the why of each equation is most important than the how

• Why OLS may be insufficient, i.e., when the associated assumptions
may fail; and

• . . . which of these assumptions may be overcome by polynomial re-
gression

• The main notions of gradient descent (GD); why/when to prefer
GD over OLS; how is it not a closed form solution; will it converge,
how do we know that, what does that mean in practical terms?

You’ll need some matrix algebra and some matrix calculus to work through the material in this chapter.

17
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See the Section A.2 and Section A.3 in the Appendix if you are not familiar or need a refresher.

2.1 Ordinary Least Squares (OLS)

The method of ordinary least squares (OLS) is well known to many areas of mathematics and science and
lays a base for almost all methods we will look at in this course. We will approach it here from a machine
learning point of view.

2.1.1 Data

We assume training data in the form of inputs X and output labels y (as elaborated above in Eq. (1.1)
and Eq. (1.2), respectively). In regression, we assume output labels in the real domain, i.e., y ∈ R.

Example 2.1.1- House Pricing (Toy Example) – Data

Consider the Price of a house (y, in €) given its floor Area (x1, in m2) and Distance to the town centre (x2,
in km). Our data could look as follows:

Area (m2) Dist. (km) Price (×1000 €)
i x1 x2 y
1 58 1.2 260
2 65 1 280
3 80 1.5 420
4 120 8 320
n 250 20 270

2.1.2 Model

We consider the following model:

w = [w1, . . . , wd]⊤

ŷi = xiw = f̂(xi) =
d∑

j=1
xi,j · wj = xi,1w1 + · · ·+ xi,dwd

ŷ = Xw = [f̂(x1), . . . , f̂(xn)]⊤ (2.1)

i.e., the model is represented by a vector of weights w (sometimes equivalently called parameters and
denoted θ or coefficients and denoted β); specifically one weight for each feature. Note how a prediction
is obtained by a linear combination of these weights.

Note: For convenience of notation, we mostly avoid the explicit specification of an intercept (w0, also
known as the bias term). This simplification is perfectly valid, under any of a number of assumptions, for
example: x1 = 1 always, or y has mean 0 such that no intercept is needed (only slope).

2.1.3 Metric

We consider the squared error (Fig. 2.1) as the loss metric, such that

ℓ(yi, ŷi) = (yi − ŷi)2 = e2
i
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is the loss wrt the i-th training example and its residual error ei. When we sum this error over all examples
in the training set, the error can be viewed as the residual sum of squares:

E(w) =
n∑

i=1
ℓ(yi, ŷi) =

n∑

i=1
e2

i (2.2)

and thus written as a function of weights w.

2 0 2
yi yi

0

5

(yi, yi)

Figure 2.1: Squared Error

We may express all the residual errors in vector form, thus:

e = [e1, . . . , en]⊤

= y− ŷ
= y−Xw ▷ From Eq. (2.1)

E(w) = e⊤e = (y−Xw)⊤(y−Xw) (2.3)

i.e., which is equivalent to Eq. (2.2). Have a look at Eq. (A.1) if the development so far is not obvious.

2.1.4 Optimization (learning algorithm)

First, here’s a warm-up/refresher: how to minimize a function (x, w, and y are all scalars) E(w) = (y−wx)2

wrt w? We set the derivative to 0 and solve for w:

d
dw

E(w) = d
dw

(y − xw)2 ▷ where xw = ŷ

0 = 2(y − xw) d
dw

(−xw)

0 = −(2y − 2xw)x
0 = −2yx + 2xwx

2yx = 2xwx

xw = y

w = y/x

This is just a slope of best fit!
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Now again, but for for Eq. (2.3) wrt w, setting to 0, and solving for w:

∇wE(w) = ∇we⊤e
= ∇w(y−Xw)⊤(y−Xw) ▷ From Eq. (2.3)
= ∇w(y⊤ − (Xw)⊤)(y−Xw) ▷ Vector/matrix transpose, See Eq. (A.5)

= ∇w
(
y⊤y− y⊤Xw− (Xw)⊤y + (Xw)⊤(Xw)

)

= ∇w
(
y⊤y− 2(Xw)⊤y + w⊤X⊤(Xw)

)
▷ Scalar ‘trick’; See Eq. (A.6)

= ∇w
(
y⊤y− 2(Xw)⊤y + w⊤(X⊤X)w

)
▷ Association; See Eq. (A.3)

= ∇w
(
y⊤y− 2w⊤X⊤y + w⊤(X⊤X)w

)
▷ Transposes; See Eq. (A.4)

0 = −2X⊤y + 2(X⊤X)w ▷ Derivative of quadratic; Eq. (A.10). Set it to 0. (2.4)
X⊤y = (X⊤X)w ▷ Now solve for w. . .

w = (X⊤X)−1X⊤y (2.5)

and we walk away with w – it is our ‘trained’ model. Machine learning! At this point, we might denote
this vector ŵ to specifically show that we will deploy this version of the weights for making predictions.
To be more specific, we could denote ŵOLS to show that it is the weights provided by OLS in particular –
not necessarily the same ones discovered by some other optimisation method. The point is to distinguish
this solution of particular weight-values from the ‘generic’ or ‘abstract’ w in the derivation above.

Example 2.1.2- House Pricing – Model (continued from Ex. 2.1.1)

According to OLS assumptions (namely, of linearity) if w1 = 4.21, then adding 10 of m2-floor-area adds €42k
to the price:

y = f(x) = w0 · 1 + w1 · x1 + w2 · x2 = xw ▷ where x0 = 1
= 99.8 + 4.2x1 − 43.1x2

However, this increase may only be true when close to the centre (i.e., feature-feature interaction). In addition,
it may make a difference if we are adding 50 m2 to a small house vs adding to an already-large house (non-
linearity, non-additivity).
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Remark: We can check that the result Eq. (2.5) is a minimum by taking the derivative of Eq. (2.4)
again. We find:

= ∇w(X⊤Xw−X⊤y)
= ∇wX⊤Xw
= X⊤X

which is positive semi-definite (equivalent to finding a positive scalar number when working in a single
dimension) and thus – yes – it is a minimum.

Sometimes closed-form solutions like this do not ‘feel like’ machine learning, but we should take this
option whenever we believe the necessary assumptions match our problem. One might argue that least
squares is a basic tool of statistics, not a machine learning algorithm. The difference (if there is to be one)
is only how we see the outcome. From the machine learning point of view: we have a predictive function,
of parameters ŵ, that we can deploy and will provide us with predictions ŷ for any new future instances
x.

The main message from this section: OLS makes particular choices regarding the main components
of machine learning (data format, error metric, model representation, and optimization routine; listed in
Table 1.1) – it should be clear which ones.

2.2 Issues with OLS

Or, more precisely: issues with the assumptions behind OLS. As stated above, OLS was built on the main
assumption of a linear function of attributes. For example, when d = 3 features, we assume that the true
relationship between x and y is

y = w⋆
1x1 + w⋆

2x2 + w⋆
3x3︸ ︷︷ ︸

f⋆(x)=xw⋆

+ϵ where irreducible error ϵ ∼ N (0, σ2)

for some particular w⋆. This assumption entails, more precisely:

1. linearity: the relationship between x and y is linear

2. no collinearity among features x1, . . . , xd

3. data points have been sampled identically and independently (iid) with respect to the generating
(ground-truth) distribution; i.e., (xi, yi) ∼ P⋆(Xi, Yi) where P⋆(Xi, Yi) some real-world concept

4. homoskedasticity, i.e., σ is fixed; so ϵ is also always distributed the same way for any x

5. the irreducible error has mean 0, and is Gaussian-distributed; hence ϵ ∼ N (0, σ2)

We will overcome assumptions 1 and 2 in Sections 2.3 and 2.4–2.5. We continue to hold on the iid
assumption; see Section 2.7 for a brief exploration of this topic. Meanwhile we discuss the final assumptions
in Sections 2.6 and Section 2.8; note that these do not affect the prediction itself but rather the error term
– our uncertainty around the prediction.
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Example 2.2.1- Forecasting career earnings; Version II (Interpretation of parameters).

Let’s come back to the example based on predicting earnings (Example 1.2), but this time with two different
features: gender and height. The ‘gender pay gap’ is widely acknowledged (about 13% in the EUa; i.e., being of
gender female is associated with a 13% decrease in salary). Some studiesb further suggest that each additional
centimetre of height is associated with a 1% increase in annual income. These are linear relationships. We
might imagine something like:

income = f(x) = 40000− 5200 · female + 400 · cm_above_average + ϵ

where (female = 0)⇔ male. Note: 5200 is 13% of 40000.

If this were the true f⋆, OLS would be a perfect choice to model this relationship from data. However, the
reality is certainly more complex: it could be that the relationship between height and income is non-linear:
the height effect moving from 210cm to 211cm could be less than from 169cm to 170cm (feature non-linearity).
Furthermore, it could be that height contributes as a different factor for men and women (feature interaction).
Or, it even might be that women are paid less on account of their height not their gender (feature correlation).

These considerations bring out the limitations of OLS: even with this two-variable problem, we have just
broken several of the assumptions listed just above.

aaccording to [1]
be.g., [3, 8], though to emphasise: we are only looking for a thought-provoking example sufficiently complex to

highlight the limitations of OLS; not a serious investigation into the subject matter – which we leave to the domain
experts for now!

2.3 Basis Functions and Polynomial Regression (for Non-Linearity)

To fix the issues suggested in Example 2.2 we need to remove the assumption of linearity; i.e., non-linear
regression. For this, we can introduce the concept of a basis function ϕ(x) to be used as a feature.

For example (feature interaction) if an expert suggests that each additional cm of height above average
(feature x2) may provide a different penalty/gain for men (x1 ̸= 1) than for women (x1 = 1), then we
might use extra features

ϕ1(x) = (1− x1)x2 and ϕ2(x) = x1x2

to model that possibility.
When non-linear relationships are suspected, the basis function can provide a non linearity, e.g.,

ϕ3(x) = x2
2

suggests that the influence of feature x2 on y is quadratic wrt its value. A domain experts can help choose
such functions for us.

When we have no domain insight to work from, we can turn to polynomial regression which is a special
case of non-linear regression where the basis functions are attributes and/or combinations of attributes
raised powers 1, . . . , k (e.g., ϕ(x) = [1, x1, x2, x1x2, x2

1, x2
2, (x1x2)2, . . . , xk

1, xk
2, (x1x2)k]) and hope that the

learning algorithm will calculate reasonable weights for them.
Non-linear regression in this context is as simple as fitting linear regression (e.g., OLS) to these features

ϕ. So OLS provides ϕw; i.e., a linear combination, and indeed, the resulting hyperplane is linear in the
space where ϕ lives. This means that we assume a linear relationship between ϕ and y, whereas ϕ-functions
are non-linear, thus there has been a non-linear transformation from x to ŷ. That is why, if we plot x vs
ŷ we will see a non-linear decision surface.
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2.4 Dealing with Collinearity and too Many Features

In OLS we need to invert (X⊤X) (or, in the context of non-linear regression via basis functions: (Φ⊤Φ))
but this is not possible if variables are collinear! (because the matrix is not full rank; and determinant is
zero). As a consequence, we cannot find a unique solution ŵ.

Consider when x2 is deterministically dependent on x1, as in x2 = 2.2x1:

ŷ = ŵ1x1 + ŵ2x2

= ŵ1x1 + ŵ2(2.2x1)
= (ŵ1 + 2.2ŵ2)x1

There are an infinite number of possibilities for ŵ = [ŵ1, ŵ2]! We have this problem whenever we have
more columns/features than rows/examples; the matrix cannot have linearly-independent columns. Having
more features than examples is very likely when using many polynomial basis functions!

2.5 Gradient Descent (GD)

With gradient descent (GD) we find ŵ in a different way than in Eq. (2.5) (the OLS solution). Essentially
we stop the derivation at Eq. (2.4),

0 = g = −2X⊤y + 2(X⊤X)w ▷ from Eq. (2.4)
= −X⊤(y−Xw) ▷ . . . and simplified a bit (2.6)

thus obtaining vector g of the same dimensions as w. But also note that the formula contains w, thus it
is not a closed-form solution; in fact, not a solution of any kind yet. This g is our gradient. It points in
the direction of higher error. So we descend away from that direction (move in the other direction), i.e.,
towards a solution. How much to descend? We introduce a learning rate α to determine that. We start
with some (any, random) w, choose a sensible α (more on this later), and repeat the process

w← w− αg

until we are satisfied (ideally, until convergence). Good news: if the function is convex (and in least squares
it is!) and for a sensible choice of learning rate (it should not be too large, and not be 0) the solution
will converge to minw E(w). It means, in practice, we will certainly find w which achieves the smallest
possible error on our training data. Even better: the theory of universal approximation (e.g., [6]) tells us
with the right basis functions, we can reduce this error to 0, i.e., obtain perfect performance (essentially,
by interpolating the data points with our function)! Bad news: perfect performance only on our training
data. In machine learning we care about the error on our test data that we haven’t seen yet. More bad
news: the theory of universal approximation does not tell us which are the right basis functions.

Gradient descent [and its variants] is a very well-used (and very successful) algorithm in machine
learning today. It is the base of practically all deep neural networks, and deep learning is essentially not
more than an automatic way to learn the ϕ that we discussed earlier.

2.6 Dealing with Heteroskedasticity

So far we have overcome the issue of non-linearity (in Section 2.3) and co-linearity (Section 2.4; via GD –
Section 2.5). Let’s now look at the issue of heteroskedasticity, which is when the underlying distribution is a
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Figure 2.2: Synthetic ground-truth f⋆(x)±σ(x) (left) showing heteroskedasticity. And a real-world example
(right): celular growth (y radial cells) in Scots pine tree vs week of the year (x ∈ {1, . . . , 52}) in a region
in Southern Finland. Although polynomial least squares (POLS; as per Section 2.3) takes care of non-
linearity, it does not take care of heteroskedasticity: note that σ(x) is near zero for certain ranges of x,
and significantly larger for other ranges (there is almost no variance/error over the coldest/darkest winter
months, since the tree does not grow at this time). On the other hand, k-nearest neighbours (kNN) makes
no assumption on distribution of errors.

different shape for different locations (points) x. Figure 2.2 shows an example where both the assumptions
of linearity and homoskedasticity are broken, and σ(x) is now a function of x (rather than constant σ).

We easily overcome the assumption of non-linearity with polynomial basis functions (denoted POLS
in the figure) but heteroskedasticity is still an issue: note that the fit around ranges x = 1, . . . , 10 and
x = 42, . . . , 52 is a bit ‘off’.

2.7 A Word on the IID Assumption

The iid assumption is essential to machine learning.
If xi+1 is strongly correlated to xi (or yi+1 strongly correlated to yi), we cannot strictly consider error

terms Ei and Ei+1 separately; rather we should model them together (notice that ϵi+1 and ϵi are now
interdependent), which creates a major headache: we could not then reduce E(w) to a decomposable sum
over individual instances as we have been doing until now (E(w) = ∑n

i=1 Ei).
If the presence of minor correlation among instances, it may be OK to proceed anyway. However,

the presence of significant dependence suggests a time series/signal processing problem, and we will need
to model the dependence and/or decorrelate the data (break the dependence) before proceeding with
off-the-shelf machine learning methods (such as gradient descent).

2.8 Gaussian Errors

The assumption of Gaussian errors, refers to

ϵ ∼ N (0, σ2)
y ∼ N (xw, σ2) (2.7)

This is a reasonable assumption most of the time.
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If residual errors ei don’t look like they are Gaussian noise, it’s usually a sign that other assumptions
have failed. Normally, the errors should be void of clear patterns that might aid a prediction (such patterns
should be captured by f instead!) Fig. 4.1 shows such a case.

Later (Week 3.2, and beyond) we will consider the loss metric as the negative log likelihood which
provides us a probabilistic interpretation:

E(w) = − log p(y; w) = − log
n∏

i=1
p(yi|xi) ▷ negative log likelihood

= −
n∑

i=1
logN (yi|xiw, σ2) ▷ log Gaussian, from Eq. (2.7)

= − 1
2σ2

n∑

i=1
(yi − xiw)− n

2 log(2πσ2) ▷ some math

0 = ∇
[
− 1

2σ2

n∑

i=1
(yi − xiw)− n

2 log(2πσ2)
]

▷ set derivative to 0

= −
n∑

i=1

(
yi − xiw

)
xi ▷ got rid of terms not a function of w

= −X⊤(y−Xw) ▷ the gradient
w =

(
X⊤X

)−1X⊤y ▷ closed form solution as per OLS

which is exactly the result we obtained in Eq. (2.5).

2.9 Conclusion
With the right basis functions we can model any regression function to any desired degree of accuracy.
Since the error function is convex, we can be guaranteed to find the minimum (i.e., solve the problem!).
However, we cannot know beforehand which basis functions to use, nor even how many of them will be
required. Even if we could ‘calculate’ this, we are only guaranteed to obtain this desired accuracy on
the training data. Hence, our journey into machine learning must continue! However, we have already
some really important ingredients. A linear combination of weights and attributes plus a non-linearity plus
gradient descent-based learning comprises a huge part (we might say, most of) modern machine learning
and AI.
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Chapter 3

Classification

This week we commit to a different sort of model, namely classification models (or classifiers), which can be
used to make qualitative decisions, where the class label is chosen from a set of categories, e.g., y ∈ {0, 1}.
We concentrate mainly on the method of logistic regression, which builds on many of the same concepts as
in linear regression. We also look at the method of k-nearest neighbours. Both these approaches provide
the main building blocks of more advanced methods that we will look at later.

Main Concepts
By the end of this week you should know

• How to recognise (and formulate) a classification problem

• Why is logistic regression a discriminative classifier

• With respect to logistic regression: what is (here, referring to the
list in Table 1.1)

– the data looking like (in tabular/matrix/vector form)
– the error/loss metric
– the representation of the model
– the optimization routine/algorithm

i.e., the derivation of logistic regression (again, the why is more
important than the details of the how)

• A probabilistic view of machine learning (and logistic regression, in
particular)

• How k-nearest neighbours works; why is it a non-parametric method

• Various considerations of logistic regression vs k-nearest neighbours

Earlier (Section 1.2) we discussed a toy example regression problem of modeling earnings (y ∈ R+ in
k€), suggesting that such a prediction could be used to make a decision on providing a loan [or not] to an
applicant specified by instance x. We could also model this decision directly as a classification problem:

ŷ = h(x) where y ∈
{

0 ⇒ Deny applicant x the loan ⇔ predict applicant will default,
1 ⇒ Give applicant x the loan ⇔ predict applicant will not default

27
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where, in classification, we usually denote h (for hypothesis) instead of f (for regression function); but the
concepts introduced so far (model, error/loss, weights, . . . ) hold also in this case. In fact, classification
can be (and often is) approached as a regression problem:

f(x) = P (Y = y |X = x) (3.1)

where (wrt the loan example) P (Y = 0 | X = x) = 0.9 implies that our model believes that the client
specified by x would likely default (with probability 0.9) on the loan, i.e., the loan should be denied. Since
output 0.9 ∈ R, this is regression.

And since 0.9 ∈ [0, 1] (it is a probability) then, we can make a classification (hard, 0–or–1 decision), by
passing it over a threshold (usually 0.5), as

ŷ = h(x) = argmax
y∈{0,1}

P (Y = y |X = x) (3.2)

= [[f(x) ≥ 0.5]] (3.3)

=
{

0 f(x) < 0.5
1 f(x) ≥ 0.5

where [[·]] be an indicator function, such that [[A]] = 1 iff condition A holds.
In this chapter we focus on discriminative classifiers: we want to learn to discriminate (distinguish)

between class 0 and class 1, when making a decision. Later we will look at generative classifiers.

Example 3.0.1- A Toy Example: Obtaining a Loan

Suppose several clients go to the bank and ask for a 100k loan. The bank considers their monthly earnings
and their savings and makes a decision. A logistic regression model, as we consider in this chapter, might
look like the following (note, the data and example is completely fictitious):
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3.1 Discriminative vs Generative Classifiers

First, recall Bayes rule:
p(y | x) = p(x | y)p(y)

p(x)
and associated concepts, presented in Appendix A.4.
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In discriminative models, we only want to discriminate between one class y = 0 and another y = 1 (i.e.,
make a prediction or classify in instance). As a directed probabilistic graphical model (Bayesian Network):

x Y

where x is shaded to indicate that it has been observed, and the arrow represents conditional probability.
Discriminative classifiers are a function of distribution p(Y |x). The ‘function’ we are referring to is h;

the decision rule of a classifier or regression model:

ŷ = h(x) = argmax
y∈{0,1}

p(y | x) = argmax
y∈{0,1}

p(y, x) = argmax
y∈{0,1}

p(x | y)p(y) (3.4)

The fact that each term is equal does not mean that all p are the same; they refer to different distri-
butions which stem from different modelling decisions. In this chapter we are concerned with the first one
(discriminative classifier):

ŷ = h(x) = argmax
y∈{0,1}

p(y | x)

Later, in Chapter 11, we will look at generative classifiers where we instead model

ŷ = h(x) = argmax
y∈{0,1}

p(x | y)p(y) (3.5)

It means that in this Chapter we need to model P (Y | x). This is exactly what is represented Eq. (3.1).

3.1.1 0/1 Loss in Classification

In discriminative classification we frequently refer to our goal as

ŷ = argmax
y∈{0,1}

P (Y = y|X = x)

(as in Eq. (3.2)). What follows (in this subsection) is a derivation that explains why this makes sense,
with respect to classification accuracy. First note that, equivalently (in the inverse sense, of an error/loss
metric) the 0/1 loss

E0/1(y, ŷ) = [[y ̸= ŷ]] = 1− [[y = ŷ]] =
{

0 if y = ŷ

1 otherwise
(3.6)

is equivalent to classification accuracy (maximizing accuracy, is the same as minimizing 0/1-loss).
As in regression, we write out the expected conditional expected error, and try to minimize it. It’s a

non-differentiable function, but we can simplify:

E[E0/1(Y, y) | x] =
∑

y∈{0,1}
E(y, ŷ) · P (Y = y|X = x)

=
∑

y∈{0,1}
(1− [[y = ŷ]]) · P (Y = y|X = x) ▷ from Eq. (3.6)

= 1− P (Y = y|X = x)

ŷ = argmin
y∈{0,1}

[
1− P (Y = y|X = x)

]
▷ minimize this

ŷ = argmax
y∈{0,1}

P (Y = y|X = x) ▷ . . . , i.e., maximize this (3.7)

This is a MAP estimate (maximum a-posteriori). Where do we get P (Y |X = x) from? We should learn
it; and logistic regression is one way to do it.
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3.2 Logistic Regression
In logistic regression, we approach the problem similarly to linear regression: 1) assume a linear combination
of attributes and weights, 2) identify an error function, 3) obtain the gradient on the error function wrt some
parameters w, and then 4) apply gradient descent. We do the same here with one additional ingredient1:
we wrap a non-linearity around the linear combination such that

f(x) = σ(w⊤x) = p(y = 1 | x) (3.8)

The f(x) here is the same one as Eq. (3.1), and the non-linearity refers to the sigmoid function (also known
as the logistic function) denoted σ, such that

σ(a) = 1
1 + exp(−a) (3.9)

which provides a convenient mechanism to ‘squish’ any value a ∈ [−∞, +∞] into range σ(a) ∈ [0, 1], and
thus in turn allowing us to treat this as a probability (the right-hand-side of Eq. (3.1)). We pass this
number over a threshold to get a classification ŷ ∈ {0, 1} as described by Eq. (3.3).

Generally we are interested in evaluating a classifier (decision function, h) under classification accuracy:
1
n

∑n
i=1[[ŷi = yi]] (+1 for each correct classification). However this function is non-differentiable because of

the indicator function [[·]]. Instead, we usually use as a surrogate loss metric (recall: we would typically
distinguish the loss as the metric optimised by the algorithm, as possibly different from the evaluation
metric that will tell us how well a classifier solves the problem it is deployed on). A loss metric well suited
to our needs, of having a smooth and differentiable function, is log loss:

E(w) =
n∑

i=1
ℓ(yi, σi) = −

n∑

i=1
{yi log(σi) + (1− yi) log(1− σi)} (3.10)

where σi ≡ σ(w⊤xi) = p(yi = 1 | xi) is the sigmoid function expressed in Eq. (3.9).
Once you are convinced that this loss makes sense, the next task is to minimise it wrt our parameters.

As you know from the previous chapter, this means having an expression for the gradient of E(w) wrt w:

∇wE(w) = ∇w

{
−

n∑

i=1
{yi log(σi) + (1− yi) log(1− σi)}

}
▷ Plugged in from Eq. (3.10)

= −
n∑

i=1

(
yi∇wσi

σi
+ ∇w(1− σi)

1− σi
− y∇w(1− σi)

1− σi

)
▷ Derivative of log

= −
n∑

i=1

(
yi(1− σi)��σi∇ww⊤xi

��σi
−����(1− σi)σi∇ww⊤xi

����1− σi
+ y����(1− σi)σi∇ww⊤xi

����1− σi

)
▷ . . . of σ

= −
n∑

i=1
(yi(1− σi)xi − σixi + yiσixi)

= −
n∑

i=1
(yixi����−yiσixi − σixi����+yiσixi) ▷ cancel

=
n∑

i=1
xi(σi − yi) ▷ cleanup

= X⊤(σ − y) ▷ vector/matrix notation (recall: X ∈ Rn×d; see Eq. (A.2) – where ei = σi − yi)
1and one change notation/convention: x is now assumed to be a column vector, and hence we write w⊤x rather than xw

as before. We still assume that X ∈ Rn×d
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That wasn’t too crazy; only a lot of simple rules to recall at the right time. Such a derivation only needs
to be be done once for the development of any machine learning method. We only need the last line (the
gradient)! And it looks similar to Eq. (2.6), apart from the presence of σ (and the transpose, due to the
use of column vectors rather than row vectors x, here).

Now we can apply gradient descent (recall: Section 2.5).
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Figure 3.1: Gradient descent for logistic regression. It is important to distinguish between the data space
(left), weight space (centre), error signal (right).

At this point we are only a small step from the deep neural networks which have revolutionised so many
domains in the recent decade.

3.3 k-Nearest Neighbours (kNN)

The k-nearest neighbours method (kNN) is lazy and non-parametric. We do not learn parameters w. To
make a prediction for test point x, we simply find the k points in the training set which are closest to it,
then:

P (Y = y |X = x) = 1
k

k∑

κ=1
yκ (3.11)

where y1, . . . , yk are the labels of the k closest instances (the labels belonging to the {x1, . . . , xk} ⊂ {xi}ni=1
that are most similar to test instance x) we found; known as the neighbourhood of x. Getting from here
(Eq. (3.11)) to a classification ŷ ∈ {0, 1} is as simple as Eq. (3.1)—Eq. (3.3).

kNN does not have a error function explicitly minimized during training because there is no training.
It is nevertheless possible to express the error function that kNN minimizes (implicitly); but we will look
into this later.

The kNN method can be applied to regression also (kNN regression). This is the same: our prediction
ŷ = f(x) is simply the right hand side of Eq. (3.11). There is no assumption required about the underlying
distribution; the resulting fit can be highly non-linear; indeed sometimes too non-linear (we discuss the
implications in more depth later).

In Fig. 2.2 we saw that kNN’s decisions can be too local, making it susceptible to overfitting. Could
we combine kNN and parametric linear regression?

A method resulting from the combination of linear regression and kNN is local regression, or locally-
weighted least squares (LWLS).
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The best of both worlds, and the worst of both worlds. This worst case complexity becomes cubic for
a given (x, xi)-pair, at test time. In other words, we suffer the curse of dimensionality already well-known
to kNN.

Consider (even in only two dimensions) Figure 3.2. This is an increasing problem as the dimensionality
d rises.
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Figure 3.2: GPS coordinates (standardized, to mean 0) x = [x1, x2] vs elevation (in metres) y around the
Plateau de Saclay. Despite the relative smoothness of local regression (as depicted) it is still at risk where
data is sparse: see, e.g., the right-hand side providing an estimate of −400m below sea level.

How relevant is kNN in the age of modern deep neural architectures? Actually, kNN can still be
remarkably effective. It can be used in conjunction with neural networks (for an improved/compacted
feature space representation, i.e., mitigate the curse of dimensionality). It can even be itself expressed
as a neural network. Finally, and perhaps most importantly, kNN provides us insight into core concepts
of machine learning which are omnipresent in AI. Even in modern generative AI models like ChatGPT,
there is a legitimate debate about how much is learning and generation, and how much is kNN-style
memorisation.



Chapter 4

Overfitting and Regularization

This is arguably the most important chapter. Machine learning is essentially about minimising expected
error (or loss). Given that we have such powerful tools available to us, it is overfitting; lack of generalisation;
that is by far the most common pitfall in machine learning. It results from the fact that we use our training
data as an approximation to the expectation (of expected error), therefor we overfit the training data.
Regularization is the solution (mitigation) to overfitting.

By now, some questions have begun arising: Should I use k-nearest neighbours or logistic regression?
How to know if I should use basis functions? How many basis functions should I use? Which basis
functions? There is a precise answer to this question: you should use exactly the basis functions which
allow your model to best minimise expected loss. What is the expected loss? Unfortunately, there
is no precise answer to this question; not in practical terms, at least. But in this chapter we move closer
to being able to estimate it, and understand its composition.

Main Concepts
By the end of this week you have a good idea of

• How is minimizing expected loss machine learning?

• What is bias and variance in the context of expected loss?

• What is overfitting and what is it caused by

• How can we mitigate it (i.e., with regularization), particularly via

– Ridge regression
– Cross-validation

• How might underfitting occur and manifest itself.

Have a look at Section A.4 and Section A.5 if you need refresher on random variables and expectations;
we will use them a lot in this chapter.

4.1 A Discussion on Rational Agents and Uncertainty

A rational agent (i.e., intelligent agent/what the popular media would refer to as ‘an AI’) is one that
minimizes expected loss; or, equivalently, that acts optimally based on its beliefs and according to observed
evidence and clear preferences. It should model any uncertainty. As in artificial intelligence in general,

33
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in machine learning we aim that the model we produce performs as a rational agent, where

• beliefs = model f (and, more generally, P (y|x), of which f is a function),

• evidence = observations x,

• preferences = loss function ℓ; and where

• uncertainty is modeled by an expectation E.

Normally, humans are remarkably good at avoiding overfitting in their learning and decision making
processes. Hence, it it almost a paradox that we must train ourselves carefully to avoid it when training
models in a machine learning context.

But sometimes, even as intelligent agents, we also fall into modelling problems. The following is a
thought exercise to explore the topic (inspired vaguely by this article).

Let y = 1 denote it is necessary to act urgently to prevent a catastrophic outcome from climate change
and let y = 0 be the opposite (it is not necessary to act). And so ŷ = 0 is a prediction1 that it is not
necessary to act urgently to prevent climate change (implying we either believe climate change does not
exist or that it may exist but does not require any action to address); and of course ŷ = 1 is the prediction
to the contrary.

As an exercise: complete the example (i.e., plug in your own numbers) by specifying these elements
yourself: decide on a number for P (Y = 1|x) the probability you believe in catastrophic results from
climate change if we do not act urgently, according to the evidence x you have observed so far (in the most
general sense: scientific literature, news, social media posts, anecdotal discussion from your entourage,
. . . ); noting that this gives you automatically P (Y = 0|x) = 1 − P (Y = 0|x). And fill in the values for
ℓ(y, ŷ) for all y ∈ {0, 1} and ŷ ∈ {0, 1}; noting that it could be that ℓ(0, 0) = 0 (no loss/cost involved); yet
ℓ(1, 1) > 0 (cost involved; even though prediction is correct).

Your 0 < P (Y = y|x) < 1 numbers should express uncertainty (we do not live in a fully-observed
deterministic world). The only ingredient left to being a rational agent is make a decision (prediction)
taking into account this uncertainty. We deal with that next.

How do you know if you have the ‘right answer’? When you minimize your expected loss. This may not
align with everyone else’s! This is due to a different loss function, different evidence, or holding different
beliefs (interpretations of evidence). If you have the same loss function, evidence, and beliefs as someone
else, yet your conclusions differ, one of you is behaving as an irrational agent.

1Or better, prescription. Often, in machine learning, the output of the model implies an action

https://www.slate.fr/story/187620/ecologie-changement-climatique-scenario-catastrophe-rationalite-panique-esperance-mathematique
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4.2 Conditional Expected Loss
Recall: In machine learning we want to build f̂ . Given some instance x, it should return a prediction

ŷ = f̂(x)

What value should ŷ take, optimally speaking? The answer to this question is precisely the value which
minimizes the loss;

min
ŷ

ℓ(y, ŷ)

When we have y, this is a trivial optimization problem: the minimum of ℓ(y, ŷ) can be obtained simply by
setting ŷ = y. But of course, in general (in practice/under deployment) we don’t have y (otherwise there
would be no point in building a model to predict it in the first place). The fact that we do not know what
y is represents a source of uncertainty. What should we do? Which ŷ should we choose? The answer:
choose ŷ which minimizes conditional expected loss:

EY ∼P (Y |x)[ℓ(Y, ŷ)] =
∑

y∈{0,1}
ℓ(y, ŷ)P (y|x) (4.1)

where Y is discrete (with probability mass function P , i.e., a classification problem), or, in the continuous
case,

EY ∼P (Y |x)[ℓ(Y, ŷ)] =
∫

ℓ(y, ŷ)p(y|x) dy

with probability density function p (i.e., a regression problem).
This is simply the definition of a conditional expectation of a function (conditioned on x, of function

ℓ(Y, ŷ)).
Notice that we take the expectation wrt Y , whereas ŷ is fixed (because we fixed it; it is our prediction),

and also x is fixed (it was given to us as observed evidence, let us not tamper with the evidence). It is
essentially a weighted sum; a sum over ℓ(y, ŷ), weighted by P (y|x).

Recall we wanted to minimize this, therefore (taking the example of discrete-valued Y ):

ŷ∗ = argmin
ŷ∈{0,1}


 ∑

y∈{0,1}
ℓ(y, ŷ)P (y|x)


 (4.2)

where ŷ∗ corresponds to our best prediction, under this minimization.
Before looking further – check you have understood so far. For example, recall your P and ℓ from the

exercise in Section 4.1. Now solve Eq. (4.2). Do you agree that the result ŷ∗ seems rational?
Just as we have expressed the uncertainty wrt y in terms of P , now we must : we do not have P !
We only have training data {(xi, yi)}ni=1 which has been generated or drawn from P .

4.3 Minimizing Empirical Loss
Because we do not have access to the true P (Y |x), we cannot directly minimize the expected loss. Another
option is to instead minimize the empirical loss, using our training data:

ℓ(w) = ℓ({yi, f̂(xi)}ni=1) = 1
n

n∑

i=1
ℓ(yi, f̂(xi)) (4.3)

(where we have explicitly replaced ŷ with f̂(x) here, so that we can remember that f̂ is represented by w;
and since our training data is fixed, then ℓ is a function of w). Notice that P does not appear here! The
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data (which has been sampled from true P ) represents P instead. The law of large numbers tells us, with
infinite samples, minimizing Eq. (4.3) is equivalent to minimizing Eq. (4.1). Since we are given each yi and
xi in the training data, the loss function is a function of w only (everything else is fixed/given as part of
the problem). Therefore we just minimize Eq. (4.3) wrt w:

ŵ = argmin
w

ℓ(w)

and produce f̂ (represented by [model representation] ŵ). The problem is: we do not have infinite samples,
so the equivalence doesn’t hold; i.e., we are minimizing the wrong error function. And that is where the
problem of overfitting comes in (we overfit the training data quantity and fail to generalize to all possible
data that our model might see).

Over-fitting the training data is like concluding that there will be no catastrophic effects from human-
induced climate change, because this did not happen in the past, and we have no evidence of this ever
happening2. In other words, a potential failure to model uncertainty about the future.

4.4 Bias-Variance Decomposition
We have so far been discussing uncertainty regarding our prediction, under a fixed model (producing that
prediction). Yet, what about the uncertainty regarding which model to start with? We need to think
about what we do and do not know (i.e., our uncertainty). We do have ℓ (let’s suppose squared error3),
we do have data {xi, yi}ni=1. But, we do not have the true P from which the data was sourced/generated.

Our uncertainty is around Y and F̂ . F̂? But isn’t f̂ determined deterministically, when we train our
model? Indeed, f̂ is fit on the training data which is sourced from an unknown distribution; i.e., a random
variable; so the modelling decision inherits this uncertainty, and becomes a random variable itself; F̂ .
Intuitively: whatever model we choose (let’s say, linear regression), we will get a different f̂ for a different
training set drawn from the same distribution.

Then,

E
Y,F̂

[ℓ(Y, F̂ )|X = x] = E[(Y − F̂ )2|X = x] ▷ let F̂ be shorthand for F̂ (x) (4.4)

= E[Y 2 − 2Y F̂ + F̂ 2]
= E[Y 2]− E[2Y F̂ ] + E[F̂ 2]
= E[Y 2] + E[F̂ 2]− E[2Y F̂ ] ▷ reorder terms
= V[Y ] + (E[Y ])2
︸ ︷︷ ︸

E[Y 2]

+V[F̂ ] + (E[F̂ ])2
︸ ︷︷ ︸

E[F̂ 2]

−E[2Y F̂ ] ▷ V[Y ] = E[Y 2]− E[Y ]2

= V[Y ] + V[F̂ ] + (E[Y ])2 + (E[F̂ ])2 − 2E[Y F̂ ] ▷ reorder; and E[2] = 2
= V[Y ] + V[F̂ ] + f2 + (E[F̂ ])2 − 2fE[F̂ ] ▷ E[Y ] = E[f + ϵ] = f , and E[ϵ] = 0

= σ2 + V[F̂ ] +
{

f2 + (E[F̂ ])2 − 2fE[F̂ ]
}

▷ Y ∼ N (f, σ2), so V[Y ] = σ2

= σ2 + V[F̂ ] + (f − E[F̂ ])2

= σ2 + V[F̂ ] + (E[f − F̂ ])2 ▷ E[f ] = f

= σ2
︸︷︷︸

irreducible

+ (E[f − F̂ ])2
︸ ︷︷ ︸

bias2

+ V[F̂ ]︸ ︷︷ ︸
variance

2Catastrophic effects implying effects worse than presently
3If we don’t have a loss function, we should go decide/design one quickly and then come back; see earlier chapters



4.5. UNBIASED ESTIMATORS 37

This is the expression of the bias-variance trade-off (plus the irreducible error – see Section 1.2 if you have
forgotten what that means).

The ‘reducible error’ (bias + variance) embodies the trade-off, caused by uncertainty in the data set
which represents only a random finite sample of infinite possible datasets from P . With an infinite data
set we can hope to reduce bias and variance 0 (because there is no more uncertainty, after infinite data we
have ‘seen it all’). But in all other cases (including all real-world problems), we have to make appropriate
model choices. The no free lunch theorem (this is a real thing, see [13]) tells us that no model can be best
for every problem setting.

4.5 Unbiased Estimators

Here is another question to check your understanding: is the ordinary least squares estimator an unbiased
estimator? In other words, is the bias of ordinary least squares regression 0? Here we prove this (denoting
the model by its parameters):

E[w− ŵ] = 0
w = E[ŵ]

= (X⊤X)−1XE[Y ] ▷ where Y contains the uncertainty; not the same as y
= (X⊤X)−1X(wX + E[ϵ]) ▷ Y = f + ϵ where ϵ ∼ N (0, Iσ)
= (X⊤X)−1X(wX) ▷ and so, therefore, E[ϵ] = 0
= (X⊤X)−1(X⊤X)w
= w

4.6 Bias vs Consistent Estimators

An estimator is consistent if ŵ converges in probability to w⋆ as n→∞ (i.e., optimality). An estimator is
unbiased if µ = E[ŵ] = w⋆ which is true for all sample sizes. It is possible to be unbiased but not converge
to any value. It is also possible to be bias, but still converge as n→∞. Example: The estimator µ̂ = x̄+ 1

n
for E[X]. We note that E[x̄ + 1

n ] ̸= µ for finite n (so it is a biased estimator). But, as n→∞, the 1
n term

vanishes, and µ̂→ E[X] converges to true mean, so it is a consistent estimator.

4.7 Bias and Variance in Human Judgement

Despite our many flaws as human beings, we excel at not overfitting. In other words, we are excellent
when it comes to generalisation to new settings. When presented with uncertainty due to a relatively small
amount of data relative to the complexity of a problem, we tend to reduce our expected error by employing
massive bias. We say bias here as a neutral term. But of course in the social sense it can, sometimes, indeed
be bad. And this can be a problem as we rely on bias to reduce variance, i.e., make consistent decisions
that largely reduce our overall error (at the cost of some particular errors). Example: you have to translate
‘nurse’ into French (as in, "the patient called for the nurse" without any additional context). If you provide
ŷ = ’infirmière’ = f(’nurse’) you reduce your expected error, since most nurses in the world are female,
but you risk propagating social bias. It is argued, e.g., [4], that humans excel at generalisation to new
tasks precisely because we trade off bias against variance; this is not always negative. This does not mean
we should be proud of our social bias. Indeed, on the one hand there are obvious negative consequences
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from bias. And, working together as a group, humans are able to reduce bias without increasing variance
(error); an analogy to ensemble methods in machine learning – we look at those later.

4.8 Ridge Regression and Lasso Regression
The techniques of ridge regression and lasso regression are forms of regularization which basically means
mitigating overfitting. We noted that bias can help us guard against overfitting. Therefore it should not
be a surprise to know that the resulting models from both these techniques are biased estimators. Both
methods involve restricting the magnitude (length, or norm) of the weight vector w. Which norm? Exactly,
that is the difference between the two methods.

Consider a simple example of fitting a line to a set of data points {(xi, yi)}ni=1; each xi is a single
dimension (e.g., as in Figure 1.1), thus we only regularize (restrict) the slope w of the line (a single
parameter). Ridge regression adds a penalty λw2 to the loss function. Whereas Lasso regression adds
penalty λ|w|. It means we want a slope such that the line fits the training data well, but also at a trade-off
that the norm of w is not too large;

• in Lasso: the absolute-value norm, also known as the L1-norm4, ∥w∥1 = |w|; and

• in Ridge: the Euclidean norm, ∥w∥2 = w2). (also known as the L2 norm).

With ridge regression we have the advantage that w2 has a straightforward derivative (thus a closed
form solution is possible). Lasso regression has the advantage that it may set coefficients to 0 and thus
performs feature selection (if wj = 0, then the j-th feature xj is worthless as the model only ever sees
w3 · x3 = 0 · x3 = 0, and thus the column x can be discarded from the data). Why does this not happen
with Ridge?

Note that if w is already small, then w2 will be really small (thus incurring tiny penalty). Suppose we
have a budget to reduce the magnitude of some parameter w by 0.1. Note:

1002 − 99.92 = 20 ▷ Large w; ∥w∥2 norm (Ridge)
|100| − |99.9| = 0.1 ▷ Large w; ∥w∥1 norm (Lasso)

0.12 − 02 = 0.01 ▷ Small w; ∥w∥2 norm (Ridge)
|0.1| − |0| = 0.1 ▷ Small w; ∥w∥1 norm (Lasso)

Given a choice, Ridge will eliminate much more penalty by reducing the magnitude of large parameters.
To Lasso it makes no difference if the parameter being reduced is large or small (the penalty reduction is
the same), therefore it will may reduce parameters all the way to 0.

Recall that we are talking about the penalty function which is added to the loss function ℓ.

The ridge and lasso techniques can be combined into what is known as the elastic net method.

4.9 Validation Sets and Cross Validation
In machine learning we run intro trouble (with overfitting) when we target our training data instead of
test data, as we never have access to our ‘real’ test data (which our deployed model will see). But we can
simulate test data, by cutting off a bit of the training set. We call this a validation set. For example, we
fit our model on 60% of the training set, and use the remaining 40% to check model performance.

4Though we avoid the Lp notation here to avoid confusion with loss metric ℓ; even though there is a connection to the loss
metric, it is not an equivalence here, since we are discussing a penalty which is added to the loss metric
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60%? More, less? How much of our data can we spare for a validation set (knowing that we cannot use
this same data for training, thus we reduce the size of our training set)? The technique of k-fold5 cross
validation allows us to use all of it. Suppose a dataset of n = 100 points, if k = 5 we can train on instances
1, . . . , 80, then test (‘validate’) on instances 81, . . . , 100; also train on instances 1, . . . , 20, 41, . . . , 100 and
test on instances 21, . . . , 40; and so on for k = 5 sets. Since we can measure mean and variance over
multiple sets, this is a great way to gauge uncertainty.

In deep learning (when training sets are typically huge) it is typical to only have a single validation
set.On small datasets we can consider leave-one-out cross validation where k = n.

In any case, it is fundamental that no test point should ever have been seen at training time.

4.9.1 Cross validation and hyper-parameter selection

Many methods have hyper-parameters, such as the λ in ridge (or lasso) regression, number (and type)
of basis functions, or the k in k-nearest neighbours (quick check: it should be clear the difference from
‘regular’ trainable parameters such as wj). Which λ works best? More accurately, our question is: Which
λ provides the best bias-variance trade-off (i.e., reduces expected loss the most) on the unseen test data of
our problem setting.

It is a question involving Eq. (4.4) since we have uncertainty about the test label (it is not available to
us) as well as uncertainty around the model (which involves λ). Let ℓl(λ) be the empirical loss of model
f̂λ on the l-th test fold, where this f̂λ has been trained on the l-th training fold. Suppose we want to
estimate which of values λ ∈ {0.1, 1, 10} is best for our problem. We can choose via the results k-fold cross
validation:

λ̂ = argmin
λ∈{0.1,1,10}

1
k

k∑

l=1
ℓl(λ)

(recall: on the test folds!).

4.9.2 Cross validation and preprocessing

Often we need to standardize our data, or some other kind of preprocessing. Should we standardize the
original training set and then do cross validation, or should we standardize each train and validation set
independently.

Answer: We should always try to adhere as closely as possible to the principal of treating validation
sets as true test data; we should not look at it or touch it at training time. Therefore we should standardize
on the training fold (this will involve calculating means and variances for each feature) and then use the
same means/variances to standardize the validation set for that fold.

4.10 Underfitting

Due to the massive amounts of power and capacity at our fingertips these days (deep learning frameworks),
and our temptation to use it, we are unlikely to experience underfitting on a simple problem. On the other
hand, there are plenty of complex problems out there for which we do not yet have good models. And an
unsuited model is akin to the problem of failed assumptions. Consider the examples Fig. 2.2 and Fig. 2.1.1:
the assumption of linearity is not a good one, when approaching these problems. Fig. 4.1 shows how this
relates to least squares and its assumptions; namely via the detection of non-Gaussian errors. This issue
would be rapidly remedied with a few basis functions, but then we are back to our original question

5Beware: not the same k as in kNN
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(almost literally, the first question of this chapter): what is the right amount/degree of polynomial of basis
functions?
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Figure 4.1: Diagnosing a weak model with a residuals plot. OLS (left) and its residual plot (right). Even
if unable to view the fit (e.g., due to high-dimensional x), we might suspect there is an under-fitting issue
because the [standardized] residual errors are not approximately Gaussian distributed; ∼ N (0, 1).
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Chapter 5

Neural Networks: An Introduction

Artificial neural networks play a major role in modern machine learning and artificial intelligence. They
are not a new technology, but important developments in the previous decade have lead to impressive
performance in a number of relevant application domains.

Main Concepts
By the end of this week (Introduction to Neural Networks) you have a
good idea of

• The historical context of artificial neural networks

• What is an artificial neuron, its activation function, and how it
relates to methods that you have already learned (linear, and logistic
regression)

• What are hidden (latent) neurons (units)/hidden layers and
when/why are they needed

• Forward propagation

• Some notions of backpropagation (at least: what is the general idea,
why is it needed)

We can formalize several of the methods we’ve seen so far (e.g., linear regression, logistic regression,
polynomial regression)1 into the framework of neural networks. Or, more specifically, a single neuron
(‘node’ or ‘unit’); as exemplified in Figure 5.1; with weights w and an activation function f .

1 x1 x2

f

w0 w1 w2

Figure 5.1: An artificial neuron. Each edge represents a weight wj (here: w = [w0, w1, w2]); the output,
or activation, of this neuron is f(w⊤x).

What is the difference between a model f and an activation function f? In the case of a single neuron,
1Actually, almost any model, including k-nearest neighbours can be put into the framework of a neural network
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and in terms of output, there is no difference; we can still write f(w⊤x) as we have done earlier, to
represent the model. However when we have a neural network of several neurons (such as the one in
Figure 5.2 below), we must distinguish: each neuron has its own activation function, and own set of inputs,
z1 = f1(w⊤

1 x), z2 = f2(w⊤
2 x), . . . , σ = σ(u⊤z), and so on. This means that the model is represented by

multiple activation functions (and correspondingly multiple sets of weights). In neural networks and in
particular deep learning, the model is often called the representation or architecture, or simply the network.

σ

z4z3z2z1

x5x4x3x2x1

Figure 5.2: A vanilla two-layer multi-layer neural network, often called a multi-layer perceptron (despite
the fact that it make use arbitrary activation functions, not just the step function used by the perceptron).
It is a deep neural network in the most minimal sense, as it is comprised of more than one layer. In this
case, we have used sigmoid activation functions in both layers, including the outer layer.

With reference to Fig. 5.1, we can see the difference between several methods seen until now as simply
a different choice of

1. activation function f (e.g., the identity function f(a) = a for linear regression; or the sigmoid
activation f(a) = σ(a) for logistic regression),

2. error/loss function E(w) (e.g., squared error for OLS, plus a Euclidean norm penalty for ridge, log
loss for logistic regression, and so on), and

3. optimization method (e.g., closed-form optimization, or gradient descent) for learning weights

as summarised in Table 5.1.

Table 5.1: Here is a summary of some of the methods seen so far, plus a new one – the perceptron. Note
that more variations are possible, e.g., there is a closed form available for ridge regression. The activation
functions can be viewed in Fig. 5.3.

Optimization Error/Loss function Activation function Name
Closed form squared error identity ordinary least squares
Gradient descent squared error identity linear regression
Gradient descent squared error + penalty identity ridge regression
Gradient descent logistic loss sigmoid logistic regression
Perceptron algorithm accuracy threshold linear unit perceptron classifier

Recall the no free lunch theorem (we mentioned in Section 4.4), which tells us that the average per-
formance of all possible methods on all possible problems will be equal. In the context of this course, it
means: we are not building towards a single best machine learning method; such a method does not exist;
we are rather concerned with producing different classes of model which tend to better suited to different
types of problem.
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Figure 5.3: Activation functions: identity function, threshold linear unit, and sigmoid function.

And (we mentioned in Section 2.9) the theorem of universal approximation tells us that a neural
network of one hidden layer, with an appropriate (non-linear) activation function, can approximate any
f(x) to any desired degree of precision. However, it does not tell us how to train the network; i.e., the
theorem also applies to polynomial basis function expansion and ‘hard-wired’/‘hand-coded’ networks. A
visual demonstration is provided in Fig. 5.4 and Fig. 5.5.
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Figure 5.4: A visual hint at universal approximation: in this case only 30 hidden nodes (sigmoid activation
function) are used to approximate this function: y = f(x) = 0.8 · sin(x) + 1.2

√
x. We could (according

to the theorem) approximate arbitrarily complex functions to any desired degree of accuracy, with a finite
number of hidden nodes. But beware: the theorem does not guarantee how to train such a network (and
indeed, here we have generated an unrealistic density of training points).

0 2 4 6 8 10
z

1.0

0.5

0.0

0.5

1.0
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Figure 5.5: Only 10 simple random (untrained) activation functions, shown faintly in the background, have
been averaged together to produce the blue curve. Much of what we do in machine learning boils down to
weighted averages; where learning is about adjusting weights.
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Chapter 6

Deep Learning (Backpropagation)

We have already motivated neural networks, and in particular deep neural networks (containing hidden
nodes between the input and output). Now we just need to train such models, i.e., deep learning.

Deep learning (fitting neural networks of arbitrary depth) is performed via error backpropagation, i.e.,
fitting all learnable/trainable parameters1). Learning via error backpropagation is ‘just gradient descent’
but there are some important qualitative differences, requiring additional study and consideration, when
we go deeper.

Main Concepts
These are some important concepts that you should understand in the
context of deep learning:

• Backpropagation (how it works, how it is implemented; how it is
represented as a computational graph).

• Some forms of regularization typically used in deep neural networks;
in particular, dropout and early stopping

• Issues with depth, e.g., exploding and vanishing gradients, dead
neurons

• An intuition of the abstraction performed by deep neural networks,
moving from raw feature inputs up towards high-level class concepts

• A rough idea of how big a network should/can be, and which activa-
tion functions to consider and why (e.g., why go beyond the sigmoid
activation); why is the rectified linear unit (ReLU) commonly used.

• How to deal with k > 2 classes (multi-class classification) and multi-
output prediction (in the general case where y ∈ Rm)

Back propagation has been used since the 1980s. However, major interest in deep neural networks
started to pick up from around 2006, pushed by a number of conceptually small yet qualitatively important
details, including:

• Layer-wise pre-training
1We do not learn the activation functions; the class of activation function is usually considered a hyper-parameter
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• Larger quantities of labelled data

• More powerful computers and, particularly, the use of Graphical Processing Units (GPUs) for matrix
computations

• Software infrastructures (e.g., TensorFlow, PyTorch)

• Small algorithmic changes, e.g., the use of cross entropy instead of MSE

6.1 A Worked Example: Setting Up
Let’s set up a machine learning problem in terms of the four main ingredients (recall: Table 1.1).

6.1.1 Data

Let’s suppose datasetD = {xi, yi}ni=1 where inputs xi = [x1, . . . , x5] (i.e., input space x ∈ R5) are associated
with labels yi ∈ {0, 1}.

6.1.2 Model

Let’s suppose the network depicted in Figure 5.2 (reproduced here):

σ

z4z3z2z1

x5x4x3x2x1

The network (model) is specified by weight matrices W ∈ R5×4 (layer 1, note d = 5) and u ∈ R4×1 (layer
2); with activation function for both layers being the sigmoid function: f1 ≡ f2 ≡ σ with 2 indicating the
top layer, σ ≡ f2(z).

The output of the network, σ, can be converted to a predicted label ŷ via a threshold.

6.1.3 Error metric

Let us use the squared error loss metric:

Ei = ℓ(yi, σi) = ∥ yi − σi︸ ︷︷ ︸
ei

∥22 = e2
i

Squared error is not typically associated with classification, but it has been in the past, and there is
no reason why we cannot use it.

6.1.4 Optimisation

We’re just missing the component of optimization; i.e., the actual learning. We’ll do that with stochastic
gradient descent; and for this we need to obtain the gradients via error backpropagation through the
network. That is what this chapter is about.
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6.2 Forward Propagation
Backpropagation can be called more fully ‘error backpropagation’. We need to start by calculating an error,
which involves a forward pass/forward propagation of the input. We will consider learning via stochastic
gradient descent on mini-batches (details in Section 6.5). In the special case of batch size 1, we may train
on (update by) one example xi ∈ R1×5 at a time.

The forward pass looks like this:

x← xi ▷ Select/load/impute training instance
z = f1(xW︸︷︷︸

a1

) ▷ i.e., z ∈ R1×4

σ = f2( zu︸︷︷︸
a2

) ▷ i.e., σ ∈ R

ŷ = [[σ ≥ 0.5]] ▷ We only do this when network is deployed
y ← yi ▷ Load/impute training label, corresponding to input xi

E(y, σ) = ∥y − σ∥22 ▷ i.e., E ∈ R+

Note that the training error is evaluated on σ and not ŷ; i.e., ŷ is not involved in the learning process;
that is why it is greyed-out.

Note (see Section A.2 if this is note clear):

xW = [x1, x2, x3, x4, x5]




w1,1 w1,2 w1,3 w1,4
w2,1 w2,2 w2,3 w2,4
w3,1 w3,2 w3,3 w3,4
w4,1 w4,2 w4,3 w4,4
w5,1 w5,2 w5,3 w5,4




= [xw1, xw2, xw3, xw4] = [a1, a2, a3, a4] = a1

where a1 is the activation, which is provided to the activation function:

z = f1(a1) = f1(xW) = [f1(a1), . . . , f1(a4)] (6.1)

It should be clear that different dimensions will work similarly (if multiplied/transposed correctly), pro-
ducing σ. And that the top layer works similarly:

zu = [z1, z2, z3, z4]




u1
u2
u3
u4


 =

k∑

j=1
zjuj = a2

and
σ = f2(zu) = f2(a2)

where σ ∈ [0, 1].

6.3 Backpropagation
With regard to input x, forward propagation has produced for us z, σ, and most importantly (required
for the following), the error E (indeed, note that we propagate from input to error and back, not only
between input and output). We want to propagate this error back down through the network; by providing
a gradient to all trainable parameters.
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We already know how to calculate gradients. Note that, using the standard techniques (that we have
seen already), gradient ∇uE can be obtained as follows (the 1

2 is for convenience):

g2 = ∇uE

= ∇u
1
2 (y − σ)2

= (y − σ)∇u(y − σ)
= (σ − y)∇uσ

= (σ − y)︸ ︷︷ ︸
e

·σ(1− σ)︸ ︷︷ ︸
f ′

2

∇uzu

= (σ − y) · f ′
2︸ ︷︷ ︸

δ2

z

= z · δ2

We have gradient g2 ∈ R4×1, with which we can update weights u!
But to be doing deep learning, we need to update weights under the surface layer – how to update W?

Again, we need the gradient; this time with respect to W. Continuation of backpropagation (for gradient
G1, and noting that z is a function of W) is as follows. Note, in particular, how information about the
error, embodied in δ2, is used (back-propagated).

G1 = ∇WE = δ2∇W[u f1(xW)︸ ︷︷ ︸
z

] ▷ Expanding z from Eq. (6.1)

= δ2u⊤∇W [f1(xW)] ▷ Product rule, ∇Wuz = (∇Wu)z + u(∇Wz)
= δ2u⊤ ⊙ f ′

1∇W[xW] ▷ Element-wise multiplication; see A.6
= x⊤ δ2u⊤ ⊙ f ′

1(Wx)︸ ︷︷ ︸
δ1

▷ See also, Eq. (A.11)

= x⊤δ1

We have gradient G1 ∈ R5×4 (again, it’s important to realise that this is exactly the dimensions of W)!
Now we can update our parameters according to gradient descent, using gradients: G1, g2.

6.4 Computational Graphs
A computational graph tells how to compute something. They are sometimes called ‘call graphs’ or
‘dependency graphs’ in the context of functional programs. Indeed, computation graphs can be used for
many things, like for separating the data from dynamics in video game design, but in the context of deep
learning, we will use it to denote the forward and backward passes, for error back-propagation.

Fig. 6.1 shows the computational graph for a single-layer network with a sigmoid output; like logistic
regression, except in this example, considering squared error (rather than log loss). When querying this
graph for the relationship between w2 and E we obtain the expression:

∂E

∂w2
= ∂E

∂f2

∂f2
∂a2

∂a2
∂w2

= δ2
∂a2
∂w2
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a = w × x

E = (y − σ)2

σ(a) y

w x

Figure 6.1: A computational graph. This is not a neural network; but it shows the computations involved
in a neural network’s forward pass – all the way to the error.

6.5 Stochastic Gradient Descent (SGD)

Methods of gradient descent is not strictly tied to backpropagation, but backpropagation provides the
necessary gradients with which we can perform gradient descent. In the context of deep neural networks,
for reasons of tractability, we need to look at stochastic gradient descent (SGD). The only difference (from
‘standard’, or batch gradient descent) is that we take random samples (we will call them mini-batches), so
we descend the error function stochastically. In the case of a mini-batch of size 1, we take a single example
xi from the training data, and carry out gradient descent, by calculating the error against the label yi,
and the network’s output. A larger number of iterations is required, wrt batch gradient descent, but this
is by far worth the trade-off against the complexity of using the entire dataset on each iteration (when the
dataset is large, as is often the case in deep learning applications). The optimal size of the mini-batch is
another hyper-parameter. For the generalisation to minibatches of size > 1, see Sec. 6.9.

6.6 Suggested Practical Procedure for Training Neural Networks

The general strategy for learning via stochastic gradient descent in deep neural networks is the same for
any network architecture; as long as we can define a derivative for each computation. A rough outline of
a suggested procedure to follow is as follows:

1. Design the network architecture (from inputs to outputs, e.g., Figure 5.2, including the chosen acti-
vation functions)

2. Draw the computational graph for the network (including the error computation), e.g., Fig. 6.3
corresponding to Fig. 5.2 and use it to obtain the gradient computation with respect to all quantities
of interest (trainable parameters/weights)

3. Apply SGD; which, for each each iteration:

(a) Forward-propagate inputs x all the way through to the error E
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(b) Back-propagate track error signals δ recursively all the way down to the input layer
(c) Obtain gradients G and do SGD updates ‘as usual’

Hint: Be very careful about matrix dimensions at each step.

6.7 Generalising to Multiple Outputs

In a multi-class problem for m > 2 classes, outputs should be one-hot-encoded into an m-length vector
(m labels); e.g., y = [0, 1, 0] representing the second of three possible classes (‘class number 2’ of 3). We
should use a softmax function,

σk = P (Y = k | x) = exp(w⊤
k x)∑m

k′=1 exp(w⊤
k′x)

which is simply a generalisation of sigmoid functions (σ = σ1 = 1 − σ2), placed over the output to scale
the outputs accordingly to represent a categorical distribution (σks should sum to unity).

If we allow for multiple labels per input (the multi-label problem), we can just use a sigmoid activation
plus a threshold per-label; since, e.g., y = [1, 1, 0] is a valid classification (more than one class-label
activated simultaneously, for a single input vector).

Such a network is shown in Fig. 6.2.

σ1 σ2 σ3

z4z3z2z1

x5x4x3x2x1

Figure 6.2: This network has three sigmoid outputs, it can be used for multi-label or multi-class classifica-
tion, depending on the normalisation/thresholding on the outputs.

As we shall see, neither of these setups affects our back-propagation procedure, other than changing
some dimensionality.In particular, note that (where y are the m-labels associated with some particular
instance x)

E(y, σ) = ∥y− σ︸ ︷︷ ︸
e

∥22 = ee⊤ (6.2)

i.e., e ∈ R1×3 (the residual errors for each output separately, respective of the input x and corresponding
true target outputs y), and E ∈ R+ (overall error associated with the network output for this input). This
is because the labels are stored in vectors y ∈ R1×3 and the outputs of the network in σ ∈ [0, 1]1×3.

6.8 Generalising to L-Layers

Let’s do a worked example, on the network Fig. 6.2, with a further generalisation: {x, z, σ} ⇔ {x0, x1, x2},
and {d, k, m} ⇔ {d0, d1, d2}. This means that (for our forward pass) x0 ∈ R1×d0 , W1 ∈ Rd0×d1 , W2 ∈
Rd1×d2 . For d0 inputs, d1 hidden units, d2 outputs. The computational graph is shown in Fig. 6.3.



6.8. GENERALISING TO L-LAYERS 53

x

a1 = xW1

W1

x1 = f1(a1)

a2 = x1W2

x2 = f2(a2)

W2

e = y − x2

E = 1
2ee

⊤

y

Figure 6.3: A computational graph for the ‘standard’ multi-layer perceptron of a single row of hidden
units. We distinguish (different node for each of) the transfer function (producing aℓ) and the activation
function (producing xℓ); a detailed reminder in Section 6.8.

The update for W2 can be read straight off the computational graph:
∇W2E = ∇eE · ∇x2e · ∇a2x2 · ∇W2a2

= ∇e[12ee⊤] · ∇x2 [y− x2] · ∇a2 [σ(a2)] · ∇W2 [x1W2]

= e · −1⊙ f ′
2(a2) · x⊤

1

= −x⊤
1 (e⊙ f ′

2(a2))︸ ︷︷ ︸
δ2∈R1×m

= −x⊤
1 δ2
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And similarly for W1:

∇W1E = ∇eE · ∇x2e · ∇a2x2 · ∇x1a2 · ∇a1x1 · ∇W1a1

= ∇e[12ee⊤] · ∇x2 [y− x2] · ∇a2 [σ(a2)] · ∇x1 [x1W2] · ∇a1 [x1] · ∇W1 [x0W1]

= e · −1⊙ f ′
2(a2) ·W⊤

2 ⊙ f ′
1(a1) · x⊤

0 ▷ Recall here that a1 = xW1 ∈ Rk×1

= −x⊤
0 (e⊙ f ′

2(a2) ·W⊤
2 ⊙ f ′

1(a1))︸ ︷︷ ︸
δ1∈R1×d

= −x⊤
1 δ1

Now let ℓ be the ℓ-th layer of the network. A network goes from ℓ = 0, 1, . . . , L where the 0th layer
simply imputes the training sample as input, and the L-th layer provides the output:

(x0, xL)← (xi, yi)

where (xi, yi) a training pair from the training set (not part of the network definition).
In a dense network2 (like the one exemplified above, where nodes in nodes are fully connected) we have

weight matrices W1, . . . , WL and activation functions f1, . . . , fL; we may now set L > 1 arbitrarily for a
deep neural network.

The forward pass (including error calculation, vs true outputs y) is as follows,

xℓ = fℓ(xℓ−1Wℓ)
EL = E(xL, y)

(we can also read this straight off the computational graph; Fig. 6.3) where, recalling a depiction of a
neuron,

x2

x1

1

...

xd

∑

∑d
j=0 wjxj

w2

w1

w0

...
wd

f

inputs

weights

activation functiontransfer function

we may denote (as we have above, and in Fig. 6.3),

aℓ = xℓ−1Wℓ ▷ Output of transfer function (the activation)
xℓ = fℓ(aℓ) = fℓ ▷ Output of activation function

(we distinguish between the output of the transfer function aℓ = xℓ−1Wℓ = [a1, . . . , adℓ
], and the output

of the activation function xℓ = fℓ(aℓ) = [fℓ(a1), . . . , fℓ(adℓ
)]).

And backpropagation can be summarized as the following:
2We study non-dense layers in coming weeks
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δL = e⊙ f ′
L(aL)

δℓ = δℓ+1W⊤
ℓ+1 ⊙ f ′

ℓ(aℓ)
Gℓ = ∇Wℓ

E = x⊤
ℓ−1δℓ

(note that only the final layer L is different).
So we can see that the δℓ vector is responsible for propagating the error information back through the

network.

6.9 Generalising to Mini Batch Updates
In stochastic gradient descent, we do not obtain a gradient based on the entire data set at once because it
can be too expensive to do so (for large n). Instead, we choose a random subset of instances; with the special
case of a single instance (x0, xL)← (xi, yi) being dealt with already. Note that if we use mini-batch X0 and
YL (containing nb-instances, randomly selected from the data-set), noting in the algorithm/implementation
needs to change! (supposing we are carefully considering the matrix dimensions; e.g., X0 ∈ Rnb×d to fit
with the running example above).
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Chapter 7

Convolutional Neural Networks (CNNs)

The family of deep learning architectures known as convolutional neural networks (CNNs) are one of the
most important used today, particularly in the context of machine learning for images and sequences/signals
(e.g., sensor measurements, audio, text, and medical signals and imagery). Like many deep architectures,
they have existed already for several decades in some form (see in particular [9], inspired by [7]) and the
concept of a convolution itself since at least a century ago, but have become widely used in recent years due
to increases in available data and the computational resources to process that data (particularly GPUs),
and associated software frameworks. CNNs are a powerful and versatile tool in the machine learning
toolbox.

Main Concepts
To follow the material this week, you should already know

• How to carry out the forward pass in a neural network with
dense/fully-connected layers (a MLP)

• How backpropagation works with gradient descent

This week your objective should be to learn:

• Why/when to use a CNN (rather than a MLP), including (but not
only): images, text, signals

• How a discrete convolution works; you should be able to do a simple
convolution ‘by hand’

• The purpose of a pooling layer; average pool and max pool units,
and how to back propagate through them

• What is a filter (kernel), and how is it updated via backpropagation

• What are the stride and padding hyper-parameters

In the lab-tutorial, you should learn how to implement and apply CNNs.

CNNs are a type of multi-layer neural network that share weights across inputs.
In this chapter we get into the itsy bitsy details of how CNNs work in order to gain a strong intuition

about their functionality and their potential application to real-world problems. If you need a primer or
longer reference introducing CNNs, a few references to consider: [5, 10, 2].

57
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7.1 Convolution

Convolutional Neural Networks are so called due to their use of convolution1 We are particularly interested
in discrete convolutions (and to start with, in 1d), where signal (e.g., vector) x is convolved with filter w
as follows:

z = (x ∗w)

zt =
k∑

j=1
xt+j−1wj

i.e., x and w are convolved to produce z; where the symbol ∗ is the convolution operator (not multiplica-
tion).

x1 x2 x3 x4 x5

w1 w2

Figure 7.1: We can picture a 1d discrete convolution as vector w moving across vector x, where we take
the dot product of the overlap, at each step.

Figure 7.2: A specific wavelet (kernel/filter) is convolved with an EEG signal (top); such that the motifs
known as spindles can be extracted using a threshold (bottom). Source: [11]. All that is needed is a
pooling mechanism to collect the result, for example, to output the percent of the signal spent above the
threshold.

1Technically we do a cross-correlation, not a convolution; a veteran of signal processing might point out the subtle difference:
a convolution involves flipping the filter as a first step; but it becomes equivalent in our context of a CNN in machine learning.
Just be aware that in numpy you would use numpy.correlate instead of numpy.convolve to reproduce the simple example
of ‘convolutions’ given in the lecture
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Fig. 7.2 illustrates the application of a convolution on a electroencephalographic (EEG) signal, used to
detect particular patterns known as ‘spindles’. But we can begin a detailed analysis on some simple toy
examples. First, where signal x = [x1, x2] (1d signal of length 2) is convolved with filter (also called a
kernel in the context of CNNs) w = [w], the result of the convolution is:

z = [z1, z2] = x ∗w = [x1w, x2w] (7.1)

So, if x = [2, 4] and w = 0.5, then z = [z1, z2] = [1, 2].
Note how the parameter/weight (the filter) w is shared among input x (even though x is not the same

length as w, unlike previous models we looked at).
Another example, where x = [1, 2, 3] and w = [0.4, 0.6]:

z = [z1, z2] = x ∗w = [x1w1 + x2w2, x2w1 + x3w2] (7.2)

This result can be replicated in Python with np.correlate(x,w,mode = ’valid’2).

7.1.1 2d Convolutions

A discrete convolution can also be carried out in 2d (e.g., an image X). A 2d convolution allows us to
work with images without reshaping them; but the fundamentals are the same to a 1d convolution over a
signal.

Again we ‘slide’ W over X, and compute dot products on the overlap. We produce a new image Z.

x11

x12

x13

x14

x21

x22

x23

x24

x31

x32

x33

x34

x41

x42

x43

x44

w11

w12

w21

w22

z11

z12

z13

z21

z22

z23

z31

z32

z33

z11

Figure 7.3: We can picture a 2d discrete convolution as matrix W moving across matrix X, to produce
Z.

7.1.2 Padding and the Mode of a Convolution (valid, full, or same)

You can imagine a convolution (as we have studied) as running one fixed-length signal w towards and
through another fixed-length signal x, and taking a sum over products at each step of intersection. What
do we consider the first step of intersection?

1. At first point of overlap between x and w (mode = full)

2. At first point where x and w are fully overlapping (mode = valid)
2This is a parameter of numpy.convolve and numpy.correlate; it is a non-negligible consideration in toy examples, but

not so important in larger CNN architectures; see Section 7.1.2 for further elaboration
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3. Such that the result w ∗ x is the same length as x (mode = same).

This does not really have too much effect on results in a large network.

7.1.3 Other Remarks

A convolution in time/space is equivalent to multiplication in the frequency domain (e.g., after a Fourier
transform; after appropriate padding). From the signal processing point of view, an image can be seen as
a 2D signal.

7.2 Pooling

Although called convolutional, CNNs employ pooling layers which are a crucial element. An alternative
name for a CNN is a shift invariant artificial neural network, as shift/translation invariance is by far one
of its most useful properties, and this is obtained using pooling. Backpropagation is carried out through
both pooling and convolutional layers, but only the weights determining the convolution are updated.

You can think of pooling (also called subsampling) as a summary statistic of a convolution. Consider
the average pool unit: an average is invariant to the position of inputs, e.g.,

avg([1, 2]) = avg([2, 1]) = 1.5

Another option is the max pool unit:

max([1, 2]) = max([2, 1]) = 2

Again we see observe translation invariance.

7.3 Activation Function

Like in other neural architectures, we include an activation function. In practice the activation function
is be applied right after the convolution, then the pooling is applied (in theory, the activation could
equivalently be applied after the pooling, depending on the activation/pool units). As for MLPs, the
activation function is important for non-linearity; but it is not specific to CNNs – activation functions (and
their derivatives, and back-propagating through them) have already been covered above (Chapter 6) with
regard to dense layers – it’s the only reason we don’t make more of a fuss of them here.

7.4 Building a CNN / Architecture of a CNN

A CNN is typically composed of several convolutions and pooling operations in parallel, and several con-
volutions and pooling operations in series, followed by a flattening (when working with images) and con-
catenation, and dense layers, finishing very similarly to a standard MLP, producing output y. A simplified
example is shown in Fig. 7.4.

7.5 Backpropagation and Training a CNN

In machine learning, we want to learn the weights (kernel) W. To do so, again we turn to backpropagation.
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x1
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x4

x5

z1

z2
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z2

z3
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µ

µ

µ
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Outputw1

w2

u

Figure 7.4: A minimalistic CNN operating on signal x ∈ R5, producing classification y ∈ R. Activations
(behind zj and y) not shown. There are two convolution operations involved (typically, there would be
more; and also several layers of convolution and pooling, plus several dense layers following concatenation).

First, consider again the example from Eq. (7.1), for which the computational graph is drawn in
Figure 7.5: a 1D filter [w] on 2D input signal [x1, x2]. Reading off the computational graph, we see:

∂E

∂w
= ∂E

∂ŷ

∂ŷ

∂z1

∂z1
∂w

+ ∂E

∂ŷ

∂ŷ

∂z2

∂z2
∂w

(7.3)

∂E

∂w
= ∂E

∂ŷ
( ∂ŷ

∂z1

∂z1
∂w

+ ∂ŷ

∂z2

∂z2
∂w

)

= E′δ1x1 + E′δ2x2

ŷ

E

z1

y

z2

w x2x1

Figure 7.5: A computational graph for a simple convolution with 1D filter [w] and 2D input signal [x1, x2];
the result z is pooled into ŷ which is used directly as a prediction, leading to error E(ŷ, y).

Now consider Eq. (7.2), for which the computational graph drawn in Figure 7.6: a 2D filter w = [w1, w2]
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on 3D input signal [x1, x2, x3].

x1

x2

x3

z1

z2
ŷ

Input
Convolved

Pooled/Output

w u

w1

z1 z2

w2x1 x2 x3

ŷ

E

y

Figure 7.6: A depiction of the architecture (left) and associated computational graph (right) for a simple
convolution with 2D filter w = [w1, w2] and 3D input signal [x1, x2, x3]; the result z is pooled into ŷ which
is used directly as a prediction, leading to error E(ŷ, y).

Since w = [w1, w2], there are two gradients to calculate. We follow the standard approach:

∇wE(w) =
[

∂E

∂w1
,

∂E

∂w2

]
▷ Write out the error

∂E

∂w1
= ∂E

∂ŷ

(
∂ŷ

∂z1

∂z1
∂w1

+ ∂ŷ

∂z2

∂z2
∂w1

)
▷ Write out our query (wrt w1)

= ∂E

∂ŷ

(
∂ŷ

∂z1

∂x1:2w
∂w1

+ ∂ŷ

∂z2

∂x2:3w
∂w1

)

= ∂E

∂ŷ

(
∂ŷ

∂z1
x1 + ∂ŷ

∂z2
x2

)

= ∂E

∂ŷ

∂ŷ

∂z1
x1 + ∂E

∂ŷ

∂ŷ

∂z2
x2

∂E

∂w2
= ∂E

∂ŷ

(
∂ŷ

∂z1

∂z1
∂w2

+ ∂ŷ

∂z2

∂z2
∂w2

)
▷ Write out our query (wrt w2)

= ∂E

∂ŷ

(
∂ŷ

∂z1

∂x1:2w
∂w2

+ ∂ŷ

∂z2

∂x2:3w
∂w2

)

= ∂E

∂ŷ

(
∂ŷ

∂z1
x2 + ∂ŷ

∂z2
x3

)

= ∂E

∂ŷ

∂ŷ

∂z1
x2 + ∂E

∂ŷ

∂ŷ

∂z2
x3

∇w = [δ1, δ2] ∗ [x1, x2, x3] = δ ∗ x

The forward pass is a convolution and the backward pass is also a convolution!
What about backpropagating through the pooling layer? In other words, what is ∂ŷ

∂z1
and ∂ŷ

∂z2
in Eq. (7.3) above? It depends on what pooling function we are using.
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Sum pool Suppose a sum pool operation

ŷ = z1 + z2

Then:
∂ŷ

∂zj
= ∂(z1 + z2)

∂zj
= (z1 + z2) = 1

(it’s the same for j = 1 and j = 2).

Average pool Similarly, for the average pool operation,

ŷ = 1
2(z1 + z2)

for which the derivatives are:
∂ŷ

∂zj
=

∂ 1
2(z1 + z2)

∂zj
= 0.5 (7.4)

(again, for j = 1 and j = 2; equivalently).

Max pool And for max-pool:
ŷ = max(z1, z2)

So if z1 = 1 and z2 = 2, then ŷ = z2 = 2. Let’s do the derivatives:

∂ŷ

∂z1
= 0 ∂ŷ

∂z2
= 1

Intuitively: if we change z2 by a little bit, y will change by the equivalent amount (i.e., 1 times the amount);
but if we change z1 by a little bit, there will be no (0) change to y. So, in back-propagation we pass δ back
only along the branch which was maximal on the way up.

7.6 A Concrete Example

Let’s get a bit more concrete: Assume squared error E(w) = 1
2(ŷ − y)2, and average pool (Eq. (7.4)).

Furthermore, filter w = [0.5], and signal x = [0.8, 0.4], with true label y = 1, all together as follows. The

Forward pass:

x1 ← 0.8
x2 ← 0.4
z1 = w · 0.8 = 0.4
z2 = w · 0.4 = 0.2
ŷ = 0.5(z1 + z2) = 0.3
E = 0.5(ŷ − y)2 = 0.15
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Backward pass:

g = ∂E

∂w
= ∂E

∂ŷ

(
∂ŷ

∂z1

∂z1
∂w

+ ∂ŷ

∂z2

∂z2
∂w

)

= (ŷ − y)(0.5 · x1 + 0.5 · x2)
= (0.3− 1) · (0.5 · 0.8 + 0.5 · 0.4)
= −0.42

Gradient descent update:
w ← w + α0.42

As earlier (in dense networks), here too, a weight w represents influence over a decision ŷ (and therefore
also, the error produced by the network). And again, we are asking the question how does it influence
the decision? And through which nodes does it gain influence? Under max pool one of the z-nodes
(the non-maximal one) holds no responsibility for the decision, and therefore backpropagation should not
pass through that node on the way back down the network. Under average pool the z-nodes have equal
responsibility.



Chapter 8

Decision Trees (and Ensembles)

Learning with decision trees and ensemble methods are two separate concepts, but they combine well, and
are often considered together; as we shall do here.

Even though decision trees are not closely related to other methods we’ve looked at so far, it is important
to have understood already the concepts of overfitting and regularization (arguably, more than ever, with
regard to trees) before proceeding.

Main Concepts
Some of the main points to understand regarding decision trees:

• Base concepts: entropy and information gain

• Algorithm to build (induce, from data; namely greedy recursive
induction) a decision tree; and

• how to interpret such a decision tree

• The main advantages/disadvantages of decision tree models vs other
models you have seen so far

And relating to ensemble methods, you should get:

• The main idea behind bagging and random forest ensembles (beyond
the assumption that more trees = better accuracy), e.g., it should
become clear to you

– why decision trees in particular are so popular/effective in this
context,

– how ensemble methods can reduce variance of estimates.

• How is boosting different from bagging (e.g., regarding bias/variance
trade-off, and more particularly with regard to the reduction of
bias), and what is a ‘weak learner’.

In decision tree learning, our model f takes the form of a decision tree. Making classifications (or
regression) with a decision tree is usually intuitive, as it reflects human decision making. Our main
question revolves around: how to learn (induce) such a tree. It requires some basics in information theory.

65



66 CHAPTER 8. DECISION TREES (AND ENSEMBLES)

8.1 Information and Entropy

Consider random variable X; taking values x ∈ X . In the context of information theory we can refer to x
as a message.

The self information of a ‘message’ x,

I(x) = − log P (x) (8.1)

= log 1
P (x)

tells us a ‘surprise value’ of receiving message x (note: although it does not tell us about the importance
of that message).

And entropy is simply the expected self information:

H(X) = E[I(X)] (8.2)
= −

∑

x∈X
P (x) log P (x) (8.3)

which tells us the uncertainty around any given x. So, entropy is a measure of uncertainty. Note that
entropy is a function of the random variable X, not a specific value x).

For simplicity, we will start with binary variables: X has a Bernoulli distribution parametrized by
θ ∈ [0, 1]; a fair-coin has θ = 0.5; and X = {0, 1}. See Fig. 8.1.
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Figure 8.1: The relationship of a Bernoulli random variable X to its entropy H(X); where θ = P (X = 1),
and 1− θ = P (X = 0) and (specific to this figure) θ = 0.7.

Many sport and social events are at their ‘most exciting’ when the entropy of the result variable is
maximal. For example, the recent trend in the U.S. of gender reveal parties1.

1Where the gender of a baby is revealed to expectant parents, in a party context, in an over-exuberant and often dangerous
fashion https://en.wikipedia.org/wiki/Gender_reveal_party

https://en.wikipedia.org/wiki/Gender_reveal_party
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8.1.1 Conditional Entropy

We will also need conditional entropy, which expresses the uncertainty around Y given X:

H(Y | X) = −
∑

x∈X ,y∈Y
p(x, y) log p(y | x) ▷ Entropy of Y |X (8.4)

= −
∑

x∈X ,y∈Y
p(y | x)p(x) log p(y | x) ▷ Definition of joint probability

= −
∑

x∈X
p(x)

∑

y∈Y
p(y | x) log p(y | x) ▷ p(x) is not dependent on y

=
∑

x∈X
p(x)EY ∼p(Y |x)[− log p(Y | x)] ▷ Expected self information (8.5)

=
∑

x∈X
p(x)H(Y | x) ▷ cf. eqs. (8.2) and (8.3) (expected self information) (8.6)

8.1.2 Information Gain

How much information do we gain by considering P (Y |X) vs P (Y )? Another way to think about it:
how much entropy do we reduce by splitting on X (entropy indicates uncertainty, so we want to reduce
uncertainty)? We can define information gain as:

G(S, X) = H(Y )−H(Y |X) (8.7)
= H(Y )−

∑

x∈X
p(x)H(Y |x) (8.8)

where X ∈ {X1, . . . , Xd} (it’s one of the available features). But what if we do not have P (Y ), P (Y |X),
P (X)? What we do have is data, e.g., a set S = {y1, . . . , yn} (where each yi ∈ {0, 1} a label), or a
subset Sx ⊂ S (labels yi where xi = x which are instances xi matching on feature x). Empirically,
P (Y = 1) ≈ 1

n

∑n
i=1 yi. More generally, P (Y = 1) := 1

|S|
∑

yi∈S yi (allows for S to be subset of the full
dataset). Therefore, we can define information gain on empirical sets S as:

G(S, X) = H(S)−
∑

x∈X

|Sx|
|S|
·H(Sx) (8.9)

where Sx the set of yi where corresponding xi = x.

8.2 A Worked Example
Again: information gain G(S, Xj) measures the change in entropy from not splitting (H(S)) vs splitting
(H(S|Xj)) on attribute Xj . We want to maximize this change wrt Xj (i.e., by choosing the right feature
to split on.

To begin building a decision tree, we need to split branches from the root. A good split is one where
the purity of labels is maximised at the leaves, which means that uncertainty is minimised, which means
that entropy is minimised. A leaf containing three examples whose labels are {1, 1, 1}, is 100% pure; and
if we are to understand that this represents P (Y = 1 | x) = 1, then entropy is 0. Thus, in the absence of
knowledge of P , but having a set, we treat the set as an empirical distribution, and calculate entropy on
the set.

Let’s take a toy example: Fig. 8.2. Imagine we want to build a decision tree to decide to address
someone as vous (y = 1) or tu (y = 0) in French, given the available attributes x.
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Index Age Friend Gender Form
i X1 X2 X3 Y
1 Adult No M vous
2 Adult No F vous
3 Adult Yes M tu
4 Adult Yes F tu
5 Child No M tu

Child No F ?

Figure 8.2: A toy example, showing a very small dataset on a highly simplified framing of the question of
the formal vs informal ‘you’ in French; alongside the question (regarding the induction of a decision tree):
which attribute to split on in order to construct an effective and efficient decision tree, providing accurate
decision y, based on attributes x?

To start building a decision tree we should split on some attribute. Which attribute Xj shall we split
on? Let’s try Gender (let vous = 1, and S = {1, 1, 0, 0, 0} as per Fig. 8.2):

H(S) = H({1, 1, 0, 0, 0}) = 0.97 ▷ No split
H(S | X = M) = H({1, 0, 0}) = 0.92 ▷ Left branch
H(S | X = F) = H({1, 0}) = 1 ▷ Right branch

H(S | X3) =
∑

x∈{M,F}
P (X = x) ·H(Sx) ▷ Split on X3; cf. Eq. (8.6)

= 0.95
G(S, X3) = H(S)−H(S|X3) ▷ Information Gain

= 0.02
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Figure 8.3: Splitting on Gender (left) vs Friend (right) attribute.
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That’s not very much gain! Let’s try splitting on Friend:

H(S | Yes) = H({0, 0}) = 0
H(S | No) = H({1, 1, 0}) = 0.92
H(S | X3) = 0.55

G(S, X2) = 0.42

A much better choice (0.42 > 0.02)! Recall: We want to maximize purity/lower uncertainty at the
leaves (push entropy towards 0). In fact this is the best possible split. Fig. 8.3 illustrates the result
in information gain. The numbers correspond to Figure 8.4, which is the Scikit-Learn decision tree.
The remaining branches in Fig. 8.4 are following the same process recursively, with appropriate stopping
criteria.

Friend ≤ 0.5
entropy = 0.971

samples = 5
value = [3, 2]

Adult ≤ 0.5
entropy = 0.918

samples = 3
value = [1, 2]

True

entropy = 0.0
samples = 2

value = [2, 0]

False

entropy = 0.0
samples = 1

value = [1, 0]

entropy = 0.0
samples = 2

value = [0, 2]

Figure 8.4: Scikit-Learn’s depiction of the full decision tree (default parameters); where value = [1, 0]
indicates that there is one sample of the 0-th indexed class (tu), and zero for the other. Orange represents
the concentration of Y = 0 (‘tu’), and blue represents the concentration of Y = 1 (‘vous’).

8.2.1 Information Gain with feature variables taking many values

You can see that in Fig. 8.4 there would not be any change even if we introduced categorical attributes
of arbitrary cardinality |X |, e.g., x ∈ {1, 2, 3, 4}. We still induce a binary-splitting decision tree, but there
are more are more possible splits to decide from, e.g., x ≤ 1.5, x ≤ 2.5 and x ≤ 3.5, for attribute X (in
this example).

8.2.2 Information Gain with continuous feature variables

If X ∈ R (rather than X ∈ {0, 1}, as treated above), there could be infinite possible values, but with a
finite data set {x1, . . . , xn} there are only finite split points (namely, n − 1). Therefore this is the same
case as in Section 8.2.1, considering splits X < x′ (left branch), X ≥ x′ (right branch), for split points x′

in between data points.
In many cases, the use of continuous variables in decision trees may lead to less interpretability, and

it might be advised (if interpretability is indeed the main focus) to discretise features first. For example,
with regard to our toy data (Table 8.2), even though more information is available it could be less useful
to consider a continuous ‘Age’ attribute and end up with a split of something like Age < 18.208 years; as
compared to ‘= Child’.
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8.3 Decision Tree Regression

What about when the target variable is continuous, Y ∈ R? With continuous labels, Y ∈ R (i.e., decision
trees for regression) we can use squared error instead of entropy to measure impurity; and continue with
the above methodology. You would notice that the shape of squared error (i.e., parabola) is ‘similar’ to
the logarithmic shapes shown for entropy (when viewed upside down), and is conceptually similar: error is
a measure of variance, and both are maximal in Bernoulli variables if P (Y = 1) = 0.5. Consider Fig. 8.5.

But why use squared error instead of just entropy again? The formula for entropy requires us to
evaluate pdf p(y). How to evaluate this over a set, when y ∈ R?
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Figure 8.5: The relationship of a Bernoulli random variable X to its variance V(X); where θ = P (X =
1) = E[X], and 1−θ = P (X = 0). This helps understand why squared error is a good option when X ∈ R.

8.4 Gini Impurity

An alternative measure of impurity to entropy used for classification is Gini impurity (you’ll see it offered
as an option (i.e., hyper-parameter) in Scikit-Learn):

g(Y ) =
∑

y∈{0,1}
P (Y = y)(1− P (Y = y)) = 1−

∑

y∈{0,1}
P (Y = y)2

There is a connection to Gini coefficient which is commonly used to measure income inequality (if the
wealth of the world is distributed evenly across the population; vs if the [probability] mass of wealth lies
with a single individual; the two extremes).

See Fig. 8.6; and note again the main point here: uncertainty is maximal and minimal in the same
places (as entropy, and squared error).

8.5 Advanced Connections

At the beginning [of this chapter] we said decision trees are not closely related to other methods we’ve
looked at so far. This is only superficially true. Indeed, the concepts behind decision tree induction (e.g.,
entropy), are very much an integral part of machine learning. Indeed, logistic regression is/was known as
the ‘maximum entropy method’ in natural language processing. When we take Eq. (??) but consider two
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Figure 8.6: The relationship of a Bernoulli random variable X to its Gini impurity g(X); where θ = P (X =
1), 1− θ = P (X = 0). Compare to Fig. 8.5 and Fig. 8.1.

different distributions, we arrive at the same cross entropy that we use as a loss function for in neural
networks – as we essentially want to minimize the difference between our distribution p(y | x) and the
distribution producing the true label.

8.6 Knowing When to Stop

Important aspects of growing/inducing a decision tree are

1. knowing when to stop, and – a related item,

2. interpreting the result

(overly deep trees will both overfit and be difficult to interpret).
Decision trees, on their own, are not known for consistently topping the charts in predictive performance

(although they can!), but when accuracy is a priority; we would usually consider ensembles of decision trees
– as we do, next.

8.7 Ensemble Methods

Using an ensemble of models is a general approach that can be used with any class of model. But decision
trees are often associated with this approach used in ensembles. A first objective is to understand why
(and why not, ensembles of ridge regression, for example?).

An ensemble is simply using many instantiations of one type of method, which together make a single
decision per instance x. But beware, that the intuition of ‘more is better’ is only generalisable under
certain conditions; namely when individual models are different from each other (their predictions should
not be expected to always be the same, even for the same instance x). Therefore most of the emphasis
in ensembles is on achieving diversity among the models. Decision trees are thus a great candidate for
ensembles because decision trees are unstable learners, meaning that they can vary significantly with only
minor changes to the training data; diversity among trees is easy to obtain.
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8.7.1 Bagging

Trees are unstable, but decision-tree induction is still a deterministic algorithm, and will render the same
tree from the same training data set – so how to obtain diversity from a single training set? That’s where
bagging comes in.

In bootstrap aggregating (bagging) we sample from the original data set Dm ∼ D2 with replacement.
That means, we select a random instance from the data set D and place it into Dm, and then repeating
that process without ever removing the instance from D. An immediate implication is that we can select
the same instance more than once (meaning that Dm may contain duplicate instances). It also means that:

• samples are independent of each other (an important assumption; recall Section 2.7);

• Dm can contain the same number of samples as D (or fewer, or more); and

• ≈ 63.2% of samples in Dm will be unique, with others being duplicates.

8.7.2 Random Forest

There are other ways to increase diversity. For example, the method of random forest considers a random
subset of features when making each split. This approach can be used in combination with bagging.

Taking this to the extreme we might consider a random split point; an approach known as using
extra-randomized trees.

2Elsewhere the notation ∼ means distributed according to; here it means sampled or drawn from in the empirical sense
(indeed, both concepts are related; we may write Dm ∼ D ∼ P )



Chapter 9

Unsupervised Learning I: Feature
Extraction (Representation Learning)

The paradigm of unsupervised learning is inherently more subjective than supervised learning, but it is
of great and growing importance in machine learning. It is much easier to gather data for unsupervised
learning because we do not need to have labels attached to each instance. And, as such, it is closer to the
way that humans learn.

Case in point: most modern large language models are trained mainly in an unsupervised nature
(technically, self-supervised) in the sense that most learning is done without access to class labels. The ap-
plications involving labels, in most cases, only involve fine tuning for a specific task (such as classification).

In this setting we only have training instances {xi}ni=1, without output labels. Nevertheless, our task
is still to produce a mapping to outputs! To avoid confusion, we will denote these outputs as z, to make
explicit that this is an unsupervised task (i.e., yi is reserved for the training labels). Hence, we seek:
f : x 7→ z where z ∈ Rk, that we have created (extracted) k features, to use as a representation. This
is the task of representation learning or feature extraction or dimensionality reduction – different names,
depending on the precise purpose for which we build this mapping.

Main Concepts
Some of the main points for this week:

• Feature selection vs feature extraction: What is the difference?

• The main types of feature selection: filter method, wrapper method,
embedded method (and the advantages/disadvantages of each).

• Principal Components Analysis (PCA): how does it work and how
to interpret results (what is a principal component)?

• Autoencoders: what are they, when to use them (vs PCA); and how
can we regularize them what is the connection to PCA?

• A rough idea of related methods for unsupervised auto-encoding,
and of advanced architectures and their applications.

73



74CHAPTER 9. UNSUPERVISED LEARNING I: FEATURE EXTRACTION (REPRESENTATION LEARNING)

9.1 Introduction to Principal Components Analysis (PCA)
Suppose: we are provided a data matrix X ∈ Rn×d. Our goal is to associate each i-th instance xi =
[x1, . . . , xd] with a vector of k new features (where k < d); i.e., producing data matrix. Unlike feature
selection, we consider that the columns of Z ∈ Rn×k refer to potentially different features (than those
of xi); i.e., we have ‘extracted’ features. For a given k, how can we decide upon the best k features to
produce? Principal components analysis (PCA) provides an answer.

For convenience of notation and derivation (in this introduction): suppose that our data has already
been centered before we operate on it, i.e., that X has a mean of 0. Furthermore, let’s focus on the [single]
best feature z (that is, let k = 1). Which one is it? Figure 9.1 shows PCA’s answer to the problem on a
toy dataset.
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Figure 9.1: The points (source: https://www.politicalcompass.org/nz2017) indicate a possible place-
ment of New Zealand’s political parties in 2017, on two axes: economic-conservativeness (horizontal) and
political-authoritarian (vertical) conservativeness. PCA has projected the points xi ∈ R2 to subspace
Z = R (which is a line, in this case, since k = 1). It has ‘discovered’ the traditional left-wing/right-wing
political spectrum. We can use Z as our new feature (to replace the two original features). We can see
x̃i ∈ R2 as the reconstruction of xi, and so the difference between these two as a reconstruction error.

What is PCA? PCA is a linear function, and can be seen as a linear orthogonal projection of points xi

onto corresponding points zi which lie on the principal component:

zi = f(xi) = xiw (9.1)

Does f(xi) = xiw look familiar? Hint: ordinary least squares. But how to do the learning (find w?)
in this case? As with machine learning methods we have looked at so far, we need to consider a loss
metric/error function, E(w). But we can’t compare zi to our true label yi because we don’t have such a
label. In Sections 9.2 and 9.3 we introduce two equivalent loss metrics.

9.2 PCA as maximizing variance
We want component w such that the variance among zi-points is maximal. Intuition: we want points to
be as spread out as possible in Z-space; the more spread out they are, the easier they are to distinguish
from each other. Hence our error function (includes the definition of variance, on 0-centered data):

E(w) = − 1
n

n∑

i=1
z2

i = − 1
n

n∑

i=1
(xiw)⊤(xiw) (9.2)
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(we minimize negative variance).
The solution to Eq. (9.2): take the eigenvector corresponding to the largest eigenvalue; this becomes

w.

9.3 PCA as minimizing reconstruction error
We want component w such that zi = xiw back into X -space as a reconstruction x̃i ≈ xi, then the squared
difference (reconstruction error) between these two is minimal. These differences are shown as dashed lines
in Figure 9.1. Realising that each reconstruction is formed via x̃i = xiww⊤, our error function is:

E(w) =
n∑

i=1
∥xi − x̃i∥22 =

n∑

i=1
∥xi − xiww⊤∥22 (9.3)

The solution to Eq. (9.3): take the eigenvector corresponding to the largest eigenvalue; this becomes w.

9.4 On the Connection Between PCA and Eigenvectors
So you knew already what an eigenvector and eigenvalue is, but – how does this connect to PCA?

Suppose we have data matrix X ∈ Rn×d. Our sample-covariance matrix is (recall: given centered data)

S = 1
n− 1X⊤X =

[
σ2

1 σ1σ2
σ2σ1 σ2

2

]
(9.4)

What does our data look like? Figure 9.2 shows an example. The length and width of the ellipse
correspond to the eigenvalues of matrix S, corresponding to data X. The eigenvectors of S provide the
directionality of the data.
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Figure 9.2: Eigenvectors tell us the direction of the data, (rotation), and the eigenvalues tell us the
magnitude of those vectors (scale).

The covariance matrix S contains information about how variables X1 and X2 interact; how they vary
together, and thus – how the data is spread in space. If X1 varies strongly with X2 (e.g., value x1 is large
when x2 is large) then then σ1σ2 will be large. If X1 varies a lot (on its own), then σ2

1 will be large, and
so on. The ellipse is basically a contour line around N (0, S).

There are some interesting properties of co-variance matrices. We can treat it as a linear transformation,
transforming vectors x, i.e., Sx. So what does transformation S do to this vector x? It can scale and rotate
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it. In Figure 9.3, we see the data (left) has been scaled (mid) and then rotated (right). Eigen-decomposition
separates exactly these two operations:

S = UΛU−1 (9.5)
where diagonal matrix Λ of eigenvalues (scaling) and a stack of eigenvectors U (rotation);

Λ =




λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λd




and U = [u1, . . . , ud]

(ul is the l-th eigenvector, associated to the l-th eigenvalue λl).
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Figure 9.3: The left dataset is a scaled and rotated version of the right. Equivalently, we can say: the left
one is a whitened version of the right. .

And what is the connection to PCA: We want to choose a component (or several, when d > k > 1)
Z and project to it. We want the spread (variance) of the data to be maximized across this component.
Looking at the image in Figure 9.3 (on the right), it should be clear that this corresponds to a line passing
through the length of the ellipse. This is exactly the line pointing along the direction of u1 corresponding
to largest eigenvalue (if we assume they are sorted by size, that is λ1). Having chosen a direction, we no
longer care about Λ; eigenvector u1 provides what we need to proceed with an orthogonal projection onto
the component.

Let’s call this vector u1 ≡ w and get rid of the subscript for clarity (recall: we’re first considering the
simple case of only looking for a single best component; k = 1). We just want to project data points x
into that line (it would be a plane when k = 2 and in general we can talk of a subspace) along which this
vector points. The name of that line/subspace is Z. We can use the formula for an orthogonal projection:

projZ(x) = xw
w⊤w

w⊤ ▷ Project x orthogonally onto subspace Z (9.6)

= (xw)w⊤ ▷ Let w⊤w = 1; see Section 9.5 (9.7)
= xww⊤ (9.8)

These orthogonal projections are clearly depicted in Fig. 9.1. And that is PCA!
Still not clear? The following special cases might help understand:

1. Suppose that there is no rotation, only scaling (i.e., σ1σ2 = σ2σ1 = 0, as in Figure 9.3 (middle)) – then
we are already aligned with the standard axes, and just consider which of these axes to project to; it
is the same as feature selection (selecting one of the two features). No need to do eigen-decomposition
here (because there is no composition to start with; try eigen-decomposing S anyway in this case –
what do you see?). This corresponds to feature selection.
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2. Consider the extreme case of perfectly correlated data, where feature X1 = X2. This is actually an
ideal candidate for application of PCA, we can reduce from d = 2 to k = 1 features without any loss
of information. Try this on some toy data, and have a look at λ1 vs λ2; what do you notice?

A final question to check your understanding: Can you see why we center the data before we begin?
Think about what happens if we don’t do this step.

9.5 The Constraint
Whether we maximize variance or minimize reconstruction error, we must impose a constraint that w⊤w =
1. We see this to get from Eq. (9.6) to Eq. (9.7). Why? Think about doing this optimization without the
constraint. Essentially, without such a constraint, the projection is no longer orthogonal and it’s possible
to ‘cheat’ (project out towards infinity) in order to get great variance in Z-space.

9.6 Autoencoders
If PCA is the unsupervised analogy of ordinary least squares; then auto-encoding neural networks (Au-
toencoders) are the unsupervised version of neural networks. One might argue that they are in fact
self-supervised1.

Auto-encoders are simply neural networks, trained to predict their own inputs. Here is a visual im-
pression: d = 5 features and k = 2 hidden layer units:

x5x4x3x2x1

z2z1

x5x4x3x2x1

Auto-encoders provide one important advantage over PCA. It’s the same advantage that MLPs provide
over OLS: non-linearity.

Auto-encoders are a big deal, but this is a relatively short section because autoencoders are, indeed,
essentially just ‘regular’ neural networks (which we have covered in quite some depth already), and they are
trained in the same ways. So the only difference is their selection of output (being equal to the input). Like
all neural networks (but arguable, especially in this case), we need to pay special attention to regularization
(you can imagine the possibility to overfit x = f(x))!

Autoencoders are an integral part of the deep learning ecosystem. Like most of the other animals in
this ecosystem of methods, they have been around in some form or other for decades, but have found
relatively recent popularity (and success), and many different varieties have been spawned and evolved in
the scientific literature in recent years.

9.7 Advanced Representations
It is only a small step from auto-encoders to word-embeddings, which have been a fundamental step forward
in language models.

1Eigen-, Auto- and Self- are equivalent in German, Latin, and English, respectively
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Even without considering recurrent neural networks or transformers (very interesting models, but we
haven’t covered them yet) you should have some ideas (using methods covered so far in the course) of how
you might use of embeddings to train a model to predict the next word in a sentence, or the next pixel of
an image, i.e., generative modelling; generating text or images.



Chapter 10

Unsupervised Learning II: Clustering

Clustering is the unsupervised analogue of classification: we wish to provide (learn) function that maps a
given instance to a cluster label (group). We might also be interested in a ‘soft’ label, or relevance of the
instance to any given cluster.

Formally, the problem can be set exactly like classification, except, we will use label z (rather than
y) to specifically denote that this is not a training label; z ∈ {1, 2, . . . , k} and zi to be assigned to the
i-th instance (or zi such that zij = 1 indicates instance i is to be assigned to the j-th cluster). We
desire to learn function f : x 7→ z and, similarly as in Logistic Regression, we might also be interested in
P (Z = z | X = x), the relevance of x to a given label z, which can be interpreted as a probability. Since
no zi-labels are provided in the training data it is necessary to decide beforehand how many clusters k we
will consider. As always in machine learning, there should be some explicit or implicit loss metric that
allows us to define a good clustering function f .

Main Concepts
1. You should aim to understand k-means clustering; in particular have

a good idea of

• how to implement it,
• how to choose a reasonable k,
• applications where k-means is useful; and importantly,
• when not to use k-means (what are its limitations)

2. You should be aware of Gaussian mixture models as a probabilistic
solution to clustering (and how it relates to and overcomes disad-
vantages of k-means).

3. And you should understand how spectral clustering works (such that
you could implement it), and in particular how it can overcome a
main limitation of k-means clustering.

As always, be aware than the material in these lecture notes is a comple-
ment to, not a version of, the material in the lecture.
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10.1 k-Means Clustering

The method of k-means clustering works by iteratively assigning each instance to one of k clusters based
on the distance between the instance and the mean instance (we will also call a centroid) of each cluster.

Having chosen k, we aim to minimise the intra-cluster distance, while maximising the inter-cluster dis-
tance. This can be expressed formally (given n observations x1, . . . , xn) as identifying k means (µ1, . . . , µk)
and n cluster assignments (z1, . . . , zn), according to the minimization of

E(z1, . . . zn, µ1, . . . , µk) =
n∑

i=1

k∑

j=1
zij∥xi − µj∥2 (10.1)

where (recall) zij = 1 indicates that instance xi belongs to the j-th cluster (and zij = 0 that it does not;
similarly to the multi-class notation mentioned in Section 6.71).

What’s tricky here (respective of minimisation of error functions for classification) is that there are two
sets of unknown parameters: cluster labels (zi), and the cluster means (centroids, µj). If we had one, we
could compute the other (and in closed form), and vice versa. But how to proceed if we have neither?

To break this chicken-and-egg problem, we set one set of parameters randomly (cluster means µj),
then solve for the other (cluster labels zij), and then proceed iteratively. So, we iterate between two steps
corresponding to the optimisations for {µ1, . . . , µk} and {z1, . . . , zn} respectively, keeping one fixed as we
optimise the other. Once iterated until convergence we can expect be at a local optimum.

For the random centroids, we can start by choosing k-points randomly from our dataset – and using
these as the initial centroids. Algorithm 10.1 sketches out the algorithm for minimising Eq. (10.1) which
implies minimising intra-cluster distance and maximising inter-cluster distance.

Algorithm 10.1.1- k-means algorithm

First, select randomly k centroids, then (iteratively, until convergence):

1. Assign each xi (for i = 1, . . . , n) to the closest cluster, i.e., setting zij = 1 for

j = argmin
j′∈{1,...,k}

k∑

j′=1
∥xi − µj∥2

2. Compute the centroids µj (for j = 1, . . . , k) to maximize the fit:

µj ←
∑n

i=1 zijxi∑n
i=1 zij

1Just as for classification, it can be more intuitive to use notation such as zi ∈ {1, . . . , k} as the i-th instance is assigned
label k or xi ∈ Cj for ‘xi belongs to the j-th cluster’ but the z-vector notation facilitates the derivation of more advanced
models later, where z can be a richer feature space beyond a simple indicator
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The second step of Algorithm 10.1 comes from the minimisation of Eq. (10.1) wrt µj :

∇µj E(µj) = ∇µj

n∑

i=1

k∑

j=1
zij∥xi − µj∥2 ▷ derivative of error function

=
n∑

i=1

k∑

j=1
zij∇µj (xi − µj)⊤(xi − µj)

0 = −
n∑

i=1

k∑

j=1
zij2(xi − µj)⊤ ▷ set to 0

µj =
∑n

i=1 zijxi∑n
i=1 zij

▷ solved for µj

It just means: compute the centroids (average instance for a cluster).

10.1.1 How to choose k?

Results will depend largely on the chosen k prior to learning. How to choose k?
Normally (earlier, when we have considered hyper-parameters) the response is simply: the one which

makes the expected error E (on the test set) small.
But we have no training labels with which to create a validation set and simulate testing. Have a close

look at Eq. (10.1) and note that the error E should decrease inversely to k (because clusters are smaller),
with k = n leading to a minimum (zero distance from each point to its cluster centre). Such a solution
would be of no use to us. We can instead increase k gradually and look for a sudden drop in error, which
hints towards a nice value of k. This will appear as an “elbow” in a plot of k vs E.

A commonly used technique is that of called silhouette analysis, which provides a score between −1
(worst possible clustering) and +1 (good clustering). Such measures are based on some kind of calculation
of intra- vs inter-cluster distance (considering instances xi and cluster means/centroids µj).

10.2 Gaussian Mixture Models: A Solution for Probabilistic Clustering
As in classification it is often very useful to have a gauge of confidence or relevance for assigning a label,
especially with a probabilistic interpretation, p(z | x). In Fig. 10.1 (right) we see how this is obtained
by including another set of parameters: Σ1, . . . , Σk, which give the shape of each cluster. This provides
us a Gaussian mixture model (GMM), i.e., a mixture or combination of Gaussian distributions. We will
estimate these parameters alongside means µ1, . . . , µk, but using a ‘soft’ version of the k-means algorithm,
which is the very well known approach of expectation maximization (EM). The derivation will be found
later, in Chapter 11.

10.3 Spectral Clustering: A Solution for Non-Linear Clustering
We can understand spectral clustering as k-means performed in a kind of feature space. Feature space
should remind you of basis functions earlier (feature space is where ϕ-instances live). Except due to the
way we obtain this space (via eigen-decomposition), we can call it instead spectral space. We will denote
z ∈ Z (feature space Z = Rκ) to make the connection with vectors z as above, seen in the above clustering
methods; and be aware that Z ∈ Rn×κ (as used in the following).
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Figure 10.1: A clustering solution of k-Means (left) vs a GMM (right). Beyond just having centroids
(means, µ1, . . . , µk), a GMM also gives us a shape (covariance, Σ1, . . . , Σk) for each cluster.

There is a strong relation to kernel methods (see Chapter B if you are further interested) and indeed,
an equivalence if we consider a Gaussian kernel.

10.3.1 A Brief Outline

Spectral clustering can be seen as a graph partitioning problem. We define similarity function Ki,j ≡
K(xi, xj) between each i-th and j-th instance; to derive an adjacency matrix A (where Ai,j = 1 if the
instances should be connected; and Ai,j = 0 if not). From this we create the Laplacian matrix L = D−A
(degree matrix − adjacency matrix) and do eigenvalue decomposition on it:

UΛU⊤ = L

We then order columns of U (the eigenvectors) ∝ eigenvalues, λ1 ≤ λ2 ≤ . . . ≤ λn, in order to take the
top-κ components,

Z =
[
u1 | . . . | uκ

]

and then apply k-means to Z.
An example is shown in Fig. 10.2 where κ = 2, k = 2.
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Figure 10.2: Spectral clustering, using ℓ2 norm and k = 2-means clustering.
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10.3.2 Why the Smallest Eigenvalues?

Spectral clustering is similar to our study of PCA in the sense of eigen-decomposition (recall: Section 9.4),
except there we eigen-decompose the d-dimensional sample co-variance matrix, and were looking for the
largest eigenvalues. In spectral clustering we eigen-decompose the n-dimensional Laplacian matrix and
instead consider the smallest eigenvalues.

First, take note of some interesting properties of eigenvalues in Λ (having eigen-decomposed L = D−A):

• The smallest eigenvalue is 0, i.e., λ1 = 0

• The first k-smallest eigenvalues are 0 where k is the number of components

Next, to illustrate more clearly, consider a simple toy example (n = 2 examples):

X =
[
x(1)

x(2)

]
=
[
−1
+1

]

And indeed, we can see that this holds: if we connect x(1) and x(2) (into a single component; i.e., A1,2 =
A2,1 = 1), we get λ1 = 0, λ2 = 2. If we disconnect them; i.e., (A1,2 = A2,1 = 0) then λ1 = λ2 = 0 (two
separate components).

After spectral clustering we end up with two points z(1) and z(2) which live in the spectral/feature
space Z ∈ Rn,κ (n = 2, κ = 2 in this case). A big λj will mean they are far apart in the corresponding j-th
dimension.

In general, a small λj means that in the j-th dimension, items are far apart, and if λj = 0 then
components are on top of each other in the j-th dimension. Exactly, we want connected components to be
close together (such that they can easily be clustered by ordinary k-means)!

When the two points are connected: So let’s take the dimension corresponding to the smallest
eigenvalue2, u1, and use it to go into the space of that dimension (project) and then come back (reconstruct):

X̃ = X⊤u1u⊤
1 =

[
0
0

]

When the two points are not connected:

X̃ = X⊤u1u⊤
1 =

[
0
1

]

That’s precisely what we want to see: the points belonging to the same cluster are inseparable!

Of course, this depends on our threshold for connectivity.

A more in-depth discussion is given by [12]

10.4 A Comparative Look at Clustering Algorithms

2Assuming eigenvalues are ordered in size: λ1 < λ2 < · · · < λn
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Figure 10.3: Source: https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_
comparison.html. In this course, we discuss k-means (first column), spectral clustering, and Gaussian
mixture models (last column).

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html


Chapter 11

Probabilistic Machine Learning and
Generative Models

The focus of this chapter is to study and see in context together probabilistic models and generative models.
Generative models have been used in machine learning since its beginnings, but have become sig-

nificantly more popular in recent years, in a large part due to improvements in large neural-network
architectures, and successful application to image and natural-language generation.

Main Concepts
By the end of this topic you should

• Know what is a generative model, why you might want one, how to
use it for generation and discrimination (classification)

• Be able to derive and implement a simple generative model for su-
pervised classification: naive Bayes (NB); using maximum likelihood
estimation (MLE)

• Be able to derive a generative model with latent variables: Gaussian
mixture models (GMM); using expectation maximization (EM). By
this stage you should also understand

– Why you need EM (why not a ‘standard approach’ of MLE)
in this context

– Its potential use for probabilistic clustering, and its connection
to k-means clustering

• Have a high-level view of contemporary generative models, e.g.,
the variational auto-encoder (VAE), generative adversarial network
(GAN), and auto-regressive models for generation including recur-
rent neural networks (RNN, LSTM) and transformers.

By the end, you should feel that, given the right data, you could imple-
ment and train a language model or image-generation tool from scratch,
or adapt some existing one.

85
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11.1 Preliminaries

This chapter will only make sense if we recall Bayes rule:

p(y | x) = p(x | y)p(y)
p(x) (11.1)

and conditional and joint probability,

p(x, y) = p(x | y)p(y) = p(y | x)p(x) (11.2)

(note the chain rule), multiplying conditional probability and marginal probability. It will also be very
helpful to remember that

p(x) =
∑

z

p(x, z) or, if z is continuous, p(x) =
∫

p(x, z) dz

(i.e., marginalising out z).
In probabilistic graphical model notation (as a Bayesian network), the expressions of the joint distri-

bution p(x, y) given in Eq. (11.2) can be represented as

X Y

which indicates P (Y | X)P (X), or, equivalently, as

YX

which indicates P (X | Y )P (Y ); and is the main focus in this chapter. These graphical depictions always
factorise as P (node | parents-of-node).

Another important concept for the following is that of likelihood:

L(θ) = Pθ(D)

which tells us the probability of observing data D, according to probability distribution P parametrized
by θ. A graphical representation is shown in Fig. 11.1.

θ yi

xi

n

Figure 11.1: Likelihood of data D = {xi, yi}ni=1 given parameter θ. This graphical model is in plate notation,
showing Pθ(D) = ∏n

i=1 pθ(yi | xi). Such a compact notation is only possible under the iid assumption (no
dependence between data instances).
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11.2 Discriminative Models – A Probabilistic Perspective
Earlier, in Section 3.1, we briefly discussed probabilistic vs generative models. And, in Chapter 3, we took
a probabilistic perspective of classification, where the σ(θ⊤x) function in logistic regression represents
pθ(y = 1 | x).

Let’s write out the likelihood (see also Fig. 11.1):

L(θ) =
n∏

i=1
pθ(yi | xi) (11.3)

In logistic regression, pθ is a Bernoulli distribution, whose evaluation can be expressed as in the follow-
ing:

L(θ) =
n∏

i=1
σyi

i (1− σi)1−yi

where σi = σ(θ⊤xi). Think about how this works out.
As we’re accustomed, let’s take the log for mathematical convenience (make the math easier on us,

when we take the gradient later). Our log likelihood is:

logL(θ) =
n∑

i=1
{yi log(σi) + (1− yi) log(1− σi)} (11.4)

Putting a negative sign in front, we obtain exactly log loss (cf. Eq. (3.10)) as minimised in logistic
regression. Therefore, maximising log likelihood for logistic regression is equivalent to minimising log loss.

What you have just learned: you already knew how to do maximum likelihood estimation.

11.3 Generative Models (for Discrimination): Naive Bayes Classifier
In Section 3.1 we covered already discriminative models, involving

ŷ = argmax
y∈{0,1}

p(x, y)

= argmax
y∈{0,1}

p(y|x)

in the context of classification. We can also use generative models for discrimination:

ŷ = argmax
y∈{0,1}

p(x, y)

= argmax
y∈{0,1}

p(x|y)p(y)

(notice we cannot drop the p(y) term because y is what is being arg-maximised).
We can see this as a kind of query (or prompt if we use the language of LLMs) p(x, Y ):

x Y

where the shaded x indicates that this instance has been observed and thus contains a known value; whereas
the upper case Y indicates a distribution (and uncertainty), rather than a particular value1.

If we can generalise to feature vector (instance) x ∈ Rd, we have ourselves a classifier.
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y

x5x4x3x2x1

Figure 11.2: A probabilistic graphical model of Naive Bayes. Each edge represents P (xj |y); one for each
attribute, j = 1, . . . , 5.

The Naive Bayes classifier is the ‘hello world’ of generative models. As a probabilistic graphical
model, it is displayed in Fig. 11.2, as it is used for classification (that is to say, where x = [x1, . . . , xd] has
been observed, and a classification is pending).

It defines the joint distribution as follows:

p(x, y) = p(x | y)p(y) (11.5)

=
d∏

j=1
p(xj | y)p(y) (11.6)

where the naivety is a shown as a simple product of features (indicating feature independence).
Putting an argmax in front is sufficient to create a classifier:

ŷ = argmax
y

p(x | y)p(y)

but how to train this thing?

11.3.1 Discrete case, x ∈ {0, 1}

The above indicates that we will need parameters to model terms p(x1 | y), . . . , p(xd | y) and p(y), for each
possible y.

First we consider the discrete binary case of a single feature x ∈ {0, 1}, and binary class y ∈ {0, 1}. We
just need to two tables to completely specify the model:

θ = {ϕ, π} =





[
p(X = 0|Y = 0) p(X = 0|Y = 1)
p(X = 1|Y = 0) p(X = 1|Y = 1)

]

︸ ︷︷ ︸
ϕ

,
[
P (Y = 0) P (Y = 1)

]

︸ ︷︷ ︸
π





=
{[

ϕ1,1 ϕ1,2
ϕ2,1 ϕ2,2

]
,
[
π1, π2

]}

(actually, in the binary case here, half of each table is redundant, since, e.g., P (Y = 0) = 1− P (Y = 1)).
Obviously, when d > 1 (number of features) or m > 1 (number of classes), more values are needed for the
sufficient statistics.

Naive Bayes is often rather good (at least, good for such a simple model) under a bag-of-words model
(x(i)

j = 1 when the j-th word in the dictionary appears in the i-th document-instance) at text classification,
but it is not able to generate grammatically-sound sentences, or realistic images, or classifying many other
types of data, all due to its naive assumption of independence among features.

1We can use lowercase y equivalently, when it is clear from context
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11.3.2 Continuous case, x ∈ R

When x ∈ R (again, let’s first suppose a single feature; and again a binary class, y ∈ {0, 1}) we need to
model p(x|y) as a probability density function. We can use a Gaussian:

p(x | y) = N (x | µy, σ2
y) (11.7)

Note that we need one Gaussian (mean, variance) for each y ∈ {0, 1}. So at this point we have [to learn]
parameters

θ = {µy, σy, πy} for y ∈ {0, 1} (11.8)

to completely specify Eq. (11.7).

11.4 Maximum Likelihood Estimation (MLE): Standard Case

How to estimate these parameters θ? In other words, how to do the learning2?
As a reminder, the standard procedure for MLE is outlined here in Table 11.1.

Given training data, a MLE estimate of parameters θ can be obtained via the following:

1. Write out the likelihood using parameters θ

2. (Take the log)

3. Take the derivative

4. Set to 0, solve for θ

Table 11.1: Standard procedure to Maximum Likelihood Estimation

11.4.1 MLE for estimating µ in the context of a Gaussian Model

Forget about Naive bayes for a minute, as we look at an even simpler problem. Suppose we are given
training data {x1, . . . , xn}, and taking the iid assumption3 and that the distribution in question is Gaussian,

2Again, we can debate the nuances of learning vs fitting vs parameter estimation vs . . . . But in any case, this corresponds
to a .fit(X,y) call in Scikit-Learn

3An assumption we make throughout the course; an explanation was given in Section 2.7
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xi ∼ N (x | µ, σ). What should be our estimate for µ? We simply follow the steps outlined in Table 11.1:

L(θ) =
n∏

i=1
p(xi) ▷ Write out the likelihood

=
n∏

i=1
N (xi | µ, σ2) ▷ . . . which involves a Gaussian

=
n∏

i=1

1√
2πσ2

· exp
(
−(xi − µ)2

2σ2

)
▷ expand N

logL(θ) =
n∑

i=1

(
log 1√

2πσ2
+
(
−(xi − µ)2

2σ2

))
▷ Take the log

=
n∑

i=1

−(xi − µ)2

2σ2 ▷ drop constant not dependent on µ

∇µ logL(θ) = 1
2σ2

n∑

i=1
2(xi − µ) ▷ Take the derivative

0 =
n∑

i=1
(xi − µ) ▷ Set to 0

n∑

i=1
xi = nµ ▷ Solve for µ . . .

µ̂ = 1
n

n∑

i=1
xi

It’s just the average! This should coincide with our intuition.

11.4.2 MLE for estimating µy in the context of Gaussian Naive Bayes

Now back to Naive Bayes, a model trained via supervised learning, under class labels yi. Suppose we
are given iid training data {(x1, y1), . . . , (xn, yn)}, and we assume it can be modeled with a Gaussian
distribution N (x|µy, σ2

y), as per Section 11.3.2. In the a binary classification problem, y ∈ {0, 1}, we have
two distributions: N (x|µ0, σ2

0) and N (x|µ1, σ2
1); i.e., two sets of parameters, as per Eq. (11.8).

Let’s try using MLE for estimating µ̂1: Since we’re deriving µ1 in particular, only samples xi|yi = 1
are of interest to us:

L(θ) =
n∏

i=1
p(xi, yi) ▷ Write out the likelihood

=
n∏

i=1
N (xi|µ1, σ2

1)yiπyi
1 · N (xi|µ0, σ2

0)1−yiπ1−yi
0

=
∏

xi|yi=1
N (xi|µ1, σ2

1) ▷ Only over instances xi where yi = 1

∇µ1L(θ) = ∇µ1 . . .

. . . = . . .

µ̂1 = 1
n1

∑

xi|yi=1
xi
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where n1 is the number of examples (xi, yi) having label y1 = 1. Apart from that, the derivation was not
so different from µ̂ just above; this parameter of interest was only present in N (xi|µ1, σ2

1). Again, this
should coincide with our intuition. The other parameters µ0, σ0, σ1, π0, π1 can be derived in a similar way.

11.4.3 MLE for estimating πy in the context of Gaussian Naive Bayes

In estimating class probabilities πy = p(y), we are estimating the parameter of a Bernoulli distribution; by
following the same procedure as above (likelihood L(π1), . . . ),

L(θ) =
n∏

i=1
p(xi, yi) ▷ Write out the likelihood

=
n∏

i=1
p(xi | yi)p(yi)

=
n∏

i=1
N (xi|µ1, σ2

1)yi · πyi
1 · N (xi|µ0, σ2

0)1−yi · π1−yi
0

logL(θ) =
n∑

i=1
yi logN (xi|µ1, σ2

1) + yi log π1 + (1− yi)N (xi|µ0, σ2
0) + (1− yi) log π0

0 = ∇π1

∑

xi|yi=1
log yiN (xi|µ1, σ2

1) + yi log π1

. . . = . . .

π̂1 = 1
n

n∑

i=1
yi

we thus find that π1 is simply the number of examples belonging to class 1 in the training set.
Particularly to the binary case, π0 = 1− π1.

11.4.4 Generalisation to > 1 features

When we have d features, under the feature-independence assumption of Naive Bayes:

L(θ) =
n∏

i=1

d∏

j=1
p(x(i)

j | y
(i))

= . . .

so it requires estimating d means and co-variances separately for each class, such as to completely specify
N (x | µy,1, σy,1) · · · N (x | µy,d, σy,d) (11.9)

for both y = 0 and y = 1. But this is not more complicated than what we have already done so far, it just
involves more [of the same kind of] parameters.

Note that the independence assumption of Naive Bayes implies that we can write
x ∼ N (x | µy, Iy) (11.10)

where Iy is a d×d identity matrix; i.e., zero covariance. So, µy = µy,1, . . . , µy,d and diag(Iy) = σy,1, . . . , σy,d

as per Eq. (11.9).
By now, it should be clear how we can use MLE to obtain estimates of all parameters

θ = {µy,j , σy,j , πy} for j ∈ {1, . . . , d} and y ∈ {1, . . . , k}

and we note that they can all be estimated in closed form.
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11.4.5 Generalisation to > 2 class labels

In the general multi-class case (when y ∈ {1, . . . , m} for m > 2) it becomes convenient to use indicator
variables y

(i)
k ⇔ [[instance i is assigned class k]], hence with one-hot-encoded classes yi:

L =
n∏

i=1
p(xi|yi)

=
n∏

i=1

d∏

j=1

m∏

k=1
N (x(i)

k | µk,j , σ2
k,j)y

(i)
k

= . . .

Notice that taking the log will bring down the exponent as such:

y
(i)
k logN (x(i)

k | µk,j , σ2
k,j)

where y
(i)
k is acting like a binary switch on the Gaussian term; and all but one will be ‘turned off’ for any

given i.
In the multi-class case we also need to bear in mind the constraint that∑m

k=1 πk = 1 (we can use lagrange
multipliers for that). But still this can be done parameter-wise and in closed form, for all parameters.

11.5 Gaussian Bayes

We can overcome the independence assumption by including co-variance, so that instead of Eq. (11.10),
we have, more generally,

x ∼ N (x | µy, Σy) (11.11)

This is known sometimes as Gaussian Bayes (as opposed to Gaussian Naive Bayes). MLE involves (along-
side estimating the means as just above) estimating the sample co-variance matrix (as per Eq. (9.4)).

11.6 Generative AI

Of course, as the name suggests, we can use generative models for generating data:

y ∼ p(y) (11.12)
x ∼ p(x | y) (11.13)

For example, we might want to generate a picture:

cat_label ∼ p(y)
picture_of_a_cat ∼ p(x | cat_label)

We could also set directly y = cat if we knew already we wanted a cat. We might also generate a sentence
of text describing a cat. This depends on a suitable architecture.
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11.7 Gaussian Mixture Model (GMM)
If we mix Gaussian distributions together according to different proportions, the result would be a Gaussian
mixture model (GMM):

p(x, z) = p(x|z)p(z) (11.14)
where, specifically,

p(z) =
m∏

k=1
πzk

k and p(x | z) =
m∏

k=1
N (x | µk, Σk)zk

which by now should not see mysterious; as it is exactly what we had above. However, we have moved to
the unsupervised setting; indeed we wouldn’t usually mix together classes in this way, as in classification
we precisely want to separate (discriminate between) them.

GMMs are very powerful, flexible and very widely used in machine learning. The first important thing
to notice that we have expressed p(x, z) in a generative form. This is illustrated by the Bayesian network
in Fig. 11.3.

µ,Σ

π z

x

Figure 11.3: A GMM as a Bayesian network; where θ = {π, µ, Σ}; the same kind of parameters we
considered for naive Bayes classifier.

For a given parameters θ we can sample from this using ancestral sampling (z is the ‘ancestor’ of x in
Fig. 11.3):

z ∼ p(z) ▷ Draw from Bernoulli/multinoulli parametrised by π

x ∼ p(x | z) ▷ Draw from Gaussian, parametrized by µ, Σ

In this case, only x is of interest, and z is only a means to an end (greater modelling capacity). Thus,
our marginal distribution becomes of interest:

p(x) =
∑

z
p(x, z) =

m∑

k=1
{N (x | µk, Σk) · πk} (11.15)

Note that we can add arbitrary expressiveness to p(x) by varying the number of hidden compontents
(dimensionality of z, i.e., m, which we decide as part of our architecture). This is unlike previously, e.g.,
in Eq. (11.11), where we were limited to the shape of a single Gaussian distribution to express a class
concept.

11.7.1 MLE for estimating parameters of a GMM

Our log-likelihood (over all instances and parameters) is:

logL(θ) = log
n∏

i=1

m∏

k=1
N (xi | µk, Σk)zi,k · πzi,k

k (11.16)

=
n∑

i=1

m∑

k=1
zi,k · {logN (xi | µk, Σk) + log πk}
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we can easily solve for any θ as above, but only if we have z, which we do not, because they are latent
variables! This is an unsupervised task.

The point of this subsection is to express the likelihood and then to realise: this is a hard problem!
Without further development we are stuck; we cannot use the standard approach (as outlined above),
because there are too many unknowns. You could try standard MLE and see where you ‘get stuck’.

11.8 Expectation Maximization (EM) for GMMs

So, we can’t solve directly for parameters θ because we have not yet any values zi. And we cannot estimate
them without the parameters.

In this section we will solve this chicken-and-egg problem via the expectation maximization (EM)
algorithm.

11.8.1 Initialization

To get around the problem of not having θ, we can just make up some random values first. So we
can initialize all parameter values to some random numbers (still meeting certain constraints for certain
parameters; for example ∑k πk = 1).

Understandably, using random numbers causes quite a bit of uncertainty as to which cluster (compo-
nent) a given instance should belong to. When we speak of uncertainty, a natural reaction should be to
model it with an expectation. This takes us to the E step of EM.

11.8.2 The E step (Expectation)

Having an idea of z (for any given x) would help. We calculate its expectation,

E[z] =
∑

z
z · p(z | x)

one at a time:

E[zk] =
∑

zk∈{0,1}
zk · p(zk | x)

= p(zk = 1 | x)

= p(x | zk = 1)p(zk = 1)
p(x)

= N (x | µk, Σk) · πk∑m
k=1{N (x | µk, Σk) · πk}

▷ the numerator from Eq. (11.14) and p(x) from Eq. (11.15)

= rk ▷ the relevance of x to the k-th component

where the denominator is just to correctly normalise the conditional. So, essentially we just use p(z, x),
which was well defined above.

And let ri,k concern the i-th instance xi, zi in particular.

11.8.3 The M step (Maximisation)

Now that we have each zi, or at least an estimation thereof (associated uncertainty ri,k = E[zi,k]), the
problem proceeds almost in a supervised fashion.
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Figure 11.4: GMM-EM on the ‘beetles’ toy dataset; showing p(x|y = 0), p(x|y = 1), and p(x).

The M in EM refers to Maximization, in in particular the M of MLE; for estimating θ̂. We take
the likelihood from Eq. (11.16), but replacing zi,k with ri,k, and perform MLE for the parameters. Let’s
proceed, one at a time, starting with

π̂k = 1
n

n∑

i=1
ri,k

and so on for all parameters (they will be solvable in closed form, as earlier, but this time plugging in ri,k

(from the E step) instead of zi,k.

11.8.4 The EM algorithm: summary

Until convergence (e.g., until there is almost no change from one step to another):

1. Initialize parameter values θ̂

2. E. Step: Compute all {ri,k} using θ̂

3. M. Step: Compute all θ̂ using {(xi, ri)}ni=1

4. Repeat from 2.

11.9 GMM-EM for Probabilistic Clustering
What did do we get from everything so far? What do we walk away with after convergence of EM on a
GMM?

One thing we can do is probabilistic clustering. If we just want a cluster label for any point x, then we
have it:

ẑ = argmax
z∈{1,...,m}

p(z, x) = argmax
z∈{1,...,m}

πz · N (x | µz, Σz)

But this models offers us much more, we also have a probability

ri,k = P (z = k|x)

(that instance x belongs to k-th cluster) for any given x.
And we have a description of the location µ and shape Σ of all clusters, and their relative influence π.

All together, we have an expression of the data; a Gaussian mixture model of the data.
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11.10 k-Means Clustering, or ‘Maximization Maximization’
What happens if instead of the E step we do a hard classification, i.e., just plug in

ẑi = argmax
z∈{1,...,m}

p(z, xi) (11.17)

instead of ri,k, and use those estimated labels to calculate the parameters?
Answer: The algorithm becomes ‘Maximization Maximization’ also known, in this context, as the

k-Means Clustering algorithm. We covered this algorithm in Section 10.1.

11.11 Mixture Density Networks
We can implement GMMs with deep neural networks; such a network is called a mixture density network.
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Appendix A

Fundamentals

Material that appears here in the Appendix is intended to introduce terms and concepts that are be used
in the course, but not necessarily to explain them (at least, not in great detail). In other words, material
here is intended as a reminder/refresher or as a minimalistic introduction. If any of what you read in the
following seems very unfamiliar, locate the relevant keyword in order to find a more complete reference.

A note about notation: Because machine learning spans different scientific areas, it is much more
difficult than it might seem to come up with a single concise notation that can survive all topics without
any changes. It is why it is important to try understand the base concepts, rather than relying on
recognising certain symbols and formulae.
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A.1 Vectors and Sets, and Main Notation

Required for topic 1 (Introduction) onwards

To follow Chapter 1, you need to know what a matrix, a vector and a set is; and how data can be
represented in this way.

In line with common statistical notation, we use upper case (e.g., X or Y ) to denote a random variable
and, in relation to data, an abstract feature or label concept, for example ‘square metres’, which would
correspond to the column headers in a table. And lower case lower (e.g., x or y) a specific data value,
i.e., realisations of those random variables, e.g., 20.4. In the latter case, we usually append subscripts
or superscripts specifying the indices so we know where exactly to find this value in the data, such that,
in terms of a table, xi,j is the value of the cell where the i-th row intersects with the j-th column. For
example, x3,2 = 47 the value of the 3-rd feature of the 2-nd instance.

The entire i-th row can be represented as xi. A data set can either be represented as a set of such
vectors where xi is the i-th element, or a matrix where i is the i-th row. The label yi is associated with
the i-th row, and so the vector y = [y1, . . . , yn]⊤ is typically assumed to be a column vector.

Table A.1 provides an initial set of notation to work with for Chapter 1.

Symbol Meaning
f a model; a function that maps d-dimensional input x = [x1, . . . , xd] to output y
f⋆ specifically the ground-truth model (the one we never know in practice)
f̂ specifically ‘our’ model (what a machine learning algorithm produces)
ϵ the irreducible error; such that from yi = f⋆(xi) + ϵ we observe only (xi, yi)
ŷ a prediction obtained from our model; ŷ = f̂(x)
ei the residual error; obtained for any training pair, as ei = yi − ŷi

ℓ the loss metric

Table A.1: A summary of some notation introduced in Chapter 1.



A.2. MATRIX MULTIPLICATION 101

A.2 Matrix Multiplication

Required for Topic 2 (Least Squares Regression) onwards

Let X ∈ Rn×d be a matrix of n rows and d columns, and let W ∈ Rd×m have d rows and m columns.
We can multiply these matrices together (this is only possible when number of columns of X equals the
number of rows in W) as

Y = XW

where

yi,j = (XW)i,j = Xi,:W:,j =
d∑

k=1
xi,kwj,k

is the multiplication of the i-th row(-vector) with the j-th column(-vector). We can also write:

yi,j = [xi,1, xi,2, . . . , xi,d] ·




w1,j

w2,j
...

wd,j




Multiplying a matrix X ∈ Rn×d with a vector w ∈ Rd×1 gives:

Xw = y

where y = [y1, . . . , yn]⊤ is a column vector, y ∈ Rn×1. For example (n = 4, d = 3):

Xw =




x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3
x4,1 x4,2 x4,3







w1
w2
w3


 =




x1w
x2w
x3w
x4w


 =




∑d
j=1 x1,jwj∑d
j=1 x2,jwj∑d
j=1 x3,jwj∑d
j=1 x4,jwj


 =




y1
y2
y3
y4


 = y

we see that yi = ∑d
j=1 xi,jwj .

If ϵ = [e1, e2, . . . , en]⊤ (a column vector) then the dot product:

ϵ⊤ϵ = [e1, e2, . . . , en] ·




e1
e2
...

en




=
n∑

i=1
e2

i (A.1)

(the result is a scalar value, hence this operation is also known as the scalar product).
Another example:

X⊤e =




x1,1 x2,1 x3,1 x4,1
x1,2 x2,2 x3,2 x4,2
x1,3 x2,3 x3,3 x4,3







e1
e2
e3
e4


 =




x1
x2
x3


 e =




∑n
i=1 xi,1ei∑n
i=1 xi,2ei∑n
i=1 xi,3ei


 =

n∑

i=1
xiei =




g1
g2
g3


 = g (A.2)

Some properties of matrix multiplication:
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A(B + C) = AB + AC ▷ It is distributive
(B + C)A = BA + CA

A(BC) = (AB)C ▷ It is associative (A.3)
AB̸=BA ▷ It is not commutative

Some matrix transpose properties and examples (in the context of multiplication):

(A⊤)⊤ = A
(AB)⊤ = B⊤A⊤ ▷ N.B. Terms reversed! (A.4)

(A⊤w)⊤ = w⊤A
w⊤Ax = (A⊤w)⊤x
(cA)⊤ = cA⊤ ▷ Transpose with scalars (no effect)

(y−Xw)⊤ = y⊤ − (Xw)⊤ ▷ Transpose respects addition (A.5)

Combining these rules, we can write

(XW)⊤(XW) = W⊤X⊤(XW) ▷ From Eq. (A.4)
= W⊤(X⊤X)W ▷ From Eq. (A.3)

If two different formulations result in a scalar, they may be combined:

y⊤Xw︸ ︷︷ ︸
α

+ w⊤X⊤y︸ ︷︷ ︸
α

= 2α = 2w⊤X⊤y = 2y⊤Xw (A.6)
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A.3 Gradients and Vector/Matrix Calculus

Required for Topic 2 (Gradient Descent) onwards

Let w = [w1, . . . , wd]⊤ (note: a column vector). The gradient of a function E(w) wrt w is

g = ∇wE(w) =
[

∂

∂w1
E(w), . . . ,

∂

∂wd
E(w)

]⊤
(A.7)

i.e., a column vector of d partial derivatives g = [g1, . . . , gd]⊤ where

g1 = [∇wE(w)]1 = ∂

∂w1
E(w)

g2 = [∇wE(w)]2 = ∂

∂w2
E(w)

... =
...

gd = [∇wE(w)]d = ∂

∂wd
E(w)

Some handy rules for derivatives:

∇ww⊤x = x (A.8)
∇ww⊤w = 2w (A.9)
∇ww⊤Σw = 2Σw (A.10)
∇wX⊤ = (∇wX)⊤

where x is a row vector of equal length to w, and Σ is a symmetric matrix.
Note that when w⊤z ∈ R (i.e., a scalar product; z is a column-vector shaped like w), then w⊤z = z⊤w,

and thus
∇ww⊤z = dw⊤z

dw = dz⊤w
dw = z = z⊤ (A.11)

See also Eq. (A.6).
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A.4 Random Variables and Probability Distributions

Required for Topic 3 (Logistic Regression) onwards

A random variable X has probability distribution P (X) (or just P , when the context is clear). We can
write this as:

X ∼ P

meaning that X is distributed according to P .
A particular instance x, is a realisation of X, having domain (or support) X , i.e.,

x ∈ X

A probability mass function (pmf), when X is a discrete/nominal variable, provides, for all x ∈ X ,

P (X = x) (A.12)

where P (X = x) ∈ [0, 1] and ∑
x∈X P (X = x) = 1. Often we will use shorthand P (x) ≡ P (X = x)

Sometimes we will also write p(x), when there is no urgency to distinguish the fact that x takes a discrete
distribution (i.e., is a pmf).

So P (x), for a specific x, is not a distribution, rather is a query to the pmf, of the probability that X
takes value x. The distribution shall be denoted P (X) (as mentioned above).

Example A.4.1- Flipping a fair coin: Bernoulli distribution

Let X be a random variable representing the flip of a fair coin, so X = {Heads, Tails}. We can represent this
distribution as:

x Heads Tails
P (X = x) 0.50 0.50

This is a Bernoulli distribution, so we can denote this B(0.5) (the 0.5 is value of the parameter specifying
P (X = Heads) = 0.5. And thus X ∼ B(0.5) indicates that random variable X of a Bernoulli distribution. We
can denote a coin flip as x ∼ B(0.5) (realization of the random variable, or a sample from the distribution).
The result (value of x/flip of the coin) will either be Heads or Tails. We denote xi as the i-th outcome.

0 1
y
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0.3
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P(
Y

=
y

X
=

x)

Figure A.1: Visualisation of an example Bernoulli distribution, for variable Y ; in this case B(0.6) =
P (Y |X = x).
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Example A.4.2- Categorical distribution

Following on from Example A.4 we can introduce a random variable Z =
∑2

i=1[[Xi = Heads]] which represents
the total number of Heads that have come up after 2 flips. Here, Z = {0, 1, 2}. This distribution (and its
pmf) can be represented as:

z 0 1 2
P (Z = z) 0.25 0.50 0.25

Notice how Z ‘inherits’ the randomness of the Xs. This distribution P (Z) is shown also in Fig. A.2.

0 1 2
z

0.0

0.1

0.2

0.3

0.4

0.5
P(

z)

Figure A.2: A categorical distribution, P (Z), where z ∈ {0, 1, 1}.

The conditional distribution
P (Y |X = x) (A.13)

is interesting to us in machine learning, since we usually assume to have observed some instance x. From
this we have the conditional pmf; i.e., P (Y = y|X = x) for all y ∈ Y, and for this x in particular.

Note that all these functions (queries1)

P (Y = y|X = x)
P (Y = y)
P (Y = y|X = x)

return a single number (scalar), even though domains may be multi-dimensional (e.g., y ∈ {0, 1}2, and
x ∈ R4). Again, P (Y | x) denotes the distribution (describing P (Y = y|X = x) for all possible y).

Example A.4.3- Double coin flip – continued

An alternative way to represent the double-coin flip of Ex. A.4 (and Fig. A.2) considering instead a random
vector instead: We flip two fair coins, Y1 and Y2, then (supposing a fair coin)

P (Y = [Heads, Heads]) = 0.25

is the probability of getting Heads on both coins. Here, y ∈ {Heads, Tails}2.

1Again, possible shorthand: P (y|x) ≡ P (Y = y|X = x) ≡ P(Y = y|X = x), etc.
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In Example. (A.4), the outcome of both flips are independent of each other, hence the iid assumption
(for n = 2):

P (y) =
n∏

i=1
P (yi) = 0.25

The joint probability
P (X, Y ) = P (X|Y )P (Y ) = P (Y |X)P (X) (A.14)

is worth studying wrt the differences between discriminative and generative classifiers. In particular, note
(from Eq. (A.14)) that:

ŷ = argmax
y

P (x|y)P (y) = argmax
y

P (y|x)

(the fact that P (x) is missing from the right side is not an error; it is because it is not a function of y –
the variable over which the optimization is carried out).

Required for Topic 4 (Uncertainty and Bias-Variance Tradeoff) and on-
wards

When an instance lives in continuous space, e.g., x ∈ R or x ∈ Rm, we use a probability density function
(pdf):

p(x)
which gives the relative likelihood at point x (relative to other parts in the domain). We use the pdf because
P (X = x) = 0 for any given x ∈ R, so this is not much use to us. Let’s note the relationship

P (a < X ≤ b) =
∫ b

a
p(x) dx

As pmfs (in the discrete case), pdfs should also be non-negative everywhere and sum to 1: i.e.,∫+∞
−∞ p(x) dx = 1; but p(x) itself may be more than 1 for some values of x.
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Figure A.3: The Gaussian distribution.

For example, (Fig. A.3 shows) the normal/Gaussian distribution, which we denote P (X) = N (µ, σ2).
The pdf is denoted p(x) = N (x|µ, σ). So X ∼ N (µ, σ2) denotes that X is a Gaussian-distributed random
variable. The random draw

x ∼ N (0, 1)
can be implemented in Numpy as x = np.random.randn() * 1 + 0. It will produce a number; instanti-
ation of the random variable X.
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A.5 Expectations
The expected value of a variable X:

E[X] =
∑

x∈X
x · P (X = x) ▷ when discrete, e.g., X = {1, 2, . . . , k}

E[X] =
∫ +∞

−∞
x · p(x) dx ▷ when continuous, e.g., X = R

For example, for a fair 6-sided die (X = {1, 2, . . . , 6}): E[X] = 3.5. For the standard Gaussian
distribution (cf., Fig. A.3), E[X] = µ = 0.

The expectation of a function, e.g., f(X) ∈ R:

E[f(X)] =
∫ +∞

−∞
f(x) · p(x) dx

In all cases so far, it is implicit that the expectation is wrt X ∼ P (X).
The conditional expectation of a function ℓ taking variable Y given x (where x the realisation of random

variable X) is
EY ∼P (Y |x)[ℓ(ŷ, Y )] =

∑

y∈Y
ℓ(ŷ, y) · P (Y = y |X = x)

We have explicitly denoted that the expectation is wrt Y only (x and ŷ are given here, considered fixed
numbers/vectors). We suppose that Y is a set of discrete numbers (otherwise the sum would be an integral).
In shorthand, we might denote this as E[Y |x].

Note how the function ℓ inherits the uncertainty of Y .

The expectation of a variable refers to the mean of its distribution E[X] = µ. We can also consider
expected variance; variance is just a function of a variable. Variance represents uncertainty (think about
how this makes sense). In shorthand, We can denote V[X] as the expected variance of the distribution of
X:

V[X] = E[X2]− E[X]2
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A.6 Element-wise multiplication (in the context of back propagation)

Required for Topic 6 (back propagation)

Element-wise multiplication, also known as the Hadamard product, is denoted

C = A⊙B

where cj,k = aj,k · bj,k.

Note that it is commutative (unlike the standard matrix product AB). It corresponds to matrix
multiplication (matrix product) with a diagonal matrix.

The following is an example of how it arises in back propagation. First, let’s recall Eq. (6.2):

E(y, σ) = ∥y− σ∥22
= (y1 − σ1)2 + (y2 − σ2)2 + (y3 − σ3)2

= e2
1 + e2

2 + e2
3

We will take the derivative. Recall (chain rule, where a is the activation; i.e., σ = σ(a)):

∇aE = ∇σE∇aσ

Here we reproduce the network of Fig. 5.2:

σ1 σ2 σ3

z4z3z2z1

x5x4x3x2x1

Also recall (from Eq. (A.7)) that:

∇σE =
[

∂E

∂σ1
,

∂E

∂σ2
,

∂E

∂σ3

]
and ∇aσ =




∂σ1
∂a1

∂σ2
∂a1

∂σ3
∂a1

∂σ1
∂a2

∂σ2
∂a2

∂σ3
∂a2

∂σ1
∂a3

∂σ2
∂a3

∂σ3
∂a3


 =




∂σ1
∂a1

0 0
0 ∂σ2

∂a2
0

0 0 ∂σ3
∂a3




(because ∂σ2
∂a1

= 0 – the activation a1 does not affect σ2 in any way – etc).
So, finally, we see that (continuing the example of the sigmoid activation function):

∇aE = ∇σE∇aσ

= ∇σE ⊙ (σ ⊙ (1− σ))
= ∇σE ⊙ f ′

where f ′ = diag(∇aσ).
Another way to see this is to consider the computational graphs (a layer with 2 outputs):
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a

σ

E

a1

σ1

a2

σ2

E

The one on the left could be considered operations on matrices, with the default operation being matrix
multiplication. In the graph on the right it is explicit the fact that only ak is required to produce σk.

∇aE =
[

∂E

∂a1
,

∂E

∂a2

]

=
[

∂E

∂σ1

∂σ1
∂a1

,
∂E

∂σ2

∂σ2
∂a2

]

= e⊙ σ′

and if there was a w and x in common to each ak:

∇wE =
[

∂E

∂σ1

∂σ1
∂a1

∂a1
∂w

+ ∂E

∂σ2

∂σ2
∂a2

∂a2
∂w

]

∇wE =
[

∂E

∂σ1

∂σ1
∂a1

x + ∂E

∂σ2

∂σ2
∂a2

x

]

= (e⊙ σ′)x
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Appendix B

Kernel Methods

Note to CSE204 2023–2024 students: You are not required to study the
material in this chapter; it is here for historical reasons. Given one more
week of the course, it would have been about this topic/chapter. The first
paragraph in the following (written in previous years) still holds!

Despite the soaring popularity of deep neural network architectures in recent decades, kernel methods
are still relevant to a plethora of modern application domains. And an understanding of the mathematical
concepts behind such methods are of invaluable importance across the many modern domains of artificial
intelligence. Although we have been hearing about the ‘Big Data’ era for some years now, and have
certainly seen mammoth amounts of data being turned into deep models (particularly in the areas of
computer vision and natural language), many modern data science problems can be tackled with kernel
methods, and one can easily argue they are being overlooked.

Kernel methods give us the non-linearity of a feature-map (seen earlier, e.g., in the context of polynomial
regression) but with the advantage of never having to explicitly calculate that feature map. Rather we
only need to define a similarity function, known as a kernel. Kernel methods, which are kernelized versions
of methods we have already seen (such as regression, PCA, k-means), can be applied to data with complex
input spaces such as sequences, graphs, and text. They are also very well mathematically supported.

Main Concepts
In this topic, you should aim to develop a notion of

• Implicit vs explicit feature spaces

• The kernel trick

• The position held by kernel methods in modern machine learning

You should know the simple recipe of how to kernelize a method. And
you should understand the method of Spectral Clustering, including how
to implement it, and how (and when is best, vs e.g., standard k-means)
to apply it.
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B.1 Feature Maps and Feature Space; Explicit vs Implicit Mapping

Recall (e.g., from Section 2.3 in the context of polynomial regression) that we can use a feature map

ϕ : X 7→ H (B.1)

to map any input x from input-data space X into feature space H, hence the corresponding point in feature
space is ϕ ∈ H, obtained via ϕ = ϕ(x).

The family of methods known as kernel methods fit a linear decision surface (decision boundary in the
case of classification), i.e., a hyperplane in H; noting that the corresponding surface in the original space
X may be non-linear.

This is what we did in, e.g., polynomial regression. However this is the major difference: kernel methods
deal with an implicit feature space; and as doing such these methods never need to explicitly compute the
map denoted in Eq. (B.1). This has huge practical implications.

B.2 Kernels and the Inner Product

A kernel is simply a comparison between two instances,

K : X × X 7→ R
K(x, x̃) ∈ R

providing a scalar output which is a measure of comparison between the two inputs.
To explore kernels and kernel methods, we should first be convinced that the inner product (or dot

product1) ⟨x, x̃⟩ can provide us a useful comparison between x and x̃, i.e.,

K(x, x̃) = ⟨x, x̃⟩

We note, for example, that it is symmetric, ⟨x̃, x⟩ = ⟨x, x̃⟩. And there is a relationship with Euclidean
distance; if two vectors x and x̃ are both normalized (such that ⟨x, x⟩ = 1 and ⟨x̃, x̃⟩ = 1), then we find
that

⟨x, x̃⟩ = 1− 1
2∥x− x̃∥22

We also know that the inner product of these vectors is the cosine of the angle θ between x and x̃:

⟨x, x̃⟩ = cos θ

The sign of the inner product tells us if two vectors are pointing in the same direction (⟨x, x̃⟩ > 0) or not
(⟨x, x̃⟩ < 0). And the vectors are orthogonal to each other when ⟨x, x̃⟩ = 0.

Note also the connection to covariance: large numbers multiplied together give a large number. When
normalization is done appropriately:

⟨x, x̃⟩ = cov(x, x̃)
1We can also talk of the dot product here, so-called because of the notation x · x̃, or a scalar product, because it produces

a scalar output ∈ R. We can also write x⊤x̃ under the implication of column vectors. However, the inner product is a more
general concept and more appropriate when dealing with kernels; as they can be defined on infinite-dimensional spaces
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And indeed, another name for the kernel matrix is the covariance matrix (but note: variance among
instances, not among features):

K =




K(x1, x1) K(x1, x2) . . . K(x1, xn)
K(x2, x1) K(x2, x2) . . . K(x2, xn)

...
K(xn, x1) K(xn, x2) . . . K(xn, xn)




. (B.2)

Consider the utility of the inner product in classification illustrated in Fig. B.1.
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Figure B.1: A classification problem separating two classes Y = {−1, +1} of data instances; where black
and yellow points form the training dataset (class −1 and +1 respectively), and x̃ is a test point. A line
has been fitted as a decision boundary, defined by w (a normalized version of this vector is shown in gray).
There are numerous obvious uses of the inner product here: ⟨x̃, x⟩ > 0 tells us that x̃ is pointing in the
same direction as x (and therefore might perhaps take the same class label). And we can compare to w in
the same way to find out which side of the decision boundary the test point is on, leading to a classification
ŷ = sign (⟨x̃, w⟩).

We additionally note that we can easily generalize to d > 2. Even if we can’t visualize in many
dimensions in X , we can nevertheless visualize vectors plotted j vs xj . Consider Fig. B.2

Are you now convinced that the inner product is a useful comparison? Then we already have our first
kernel, the linear kernel:

K(x, x̃) = ⟨x, x̃⟩ (B.3)

We can also use many functions K to get many kinds of kernels: polynomial kernels, Gaussian kernels,
sequence and string kernels, graph kernels, etc. In many cases, the nature of the kernel depends on the
nature of X and, like explicit feature maps, we can choose random kernels or they can be designed by an
expert.

What happened to our feature vector ϕ(x) ∈ H in all this? That’s exactly the point. Whatever function
we choose for K, we can imagine that in feature space

K(x, x̃) = ⟨ϕ(x), ϕ(x̃)⟩ (B.4)
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Figure B.2: The dot product between each pair of x reveals a pattern among the two visually similar
instances (namely, x1 = [1, 10, 2] and x2 = [4, 10, 3]); ⟨x1, x2⟩ = 110 whereas ⟨x1, x3⟩ = 10: bigger number
= greater similarity. N.B. Centering the data is important for these comparisons to work properly.

but we just implement K(·, ·) and never need to implement ϕ(·) or visualize any ϕ or do any computations
explicitly in its space H.

So I can choose any function K(x, x̃) that I want? Well, although we never need to go into feature space
H ourselves we do want to be assured that there is some inner product representation in that space2, i.e.,
that ⟨ϕ(x), ϕ(x̃)⟩ from Eq. (B.4) is valid given our implementation of K(·, ·). To obtain these assurances,
then kernels should be symmetric positive-definite (although some other kernels may work in practice). A
symmetric function K is positive definite if:

n∑

i=1

n∑

j=1
αiαjK(xi, xj) ≥ 0

for any α = [α1, . . . , αn], αi ∈ R.
We can see that this is the case for the inner product, Eq. (B.3). Polynomial and Gaussian (RBF)

kernels are also positive definite. Recall: the symmetry simply implies that K(xi, xj) = K(xj , xi). And
recall also that this also applies to covariance functions, which can thus be used as kernels.

B.3 Kernel Trick

We use the kernel trick to kernelize a method. To do this, one chooses a machine learning method and
completes the following procedure:

1. Express the method in terms of inner products (every x should appear inside some ⟨x, xi⟩ or ⟨xi, x⟩).

2. Replace every ⟨xi, x⟩ with K(xi, x).

3. Implement K(·, ·).

2As an aside: that is why we have used notation H instead of F for the feature space so far; H is a Hilbert space; which is
a kind of feature space which can generalize to infinite dimensions but is equipped with an inner product
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B.4 Exemplified: Kernel Ridge Regression
We exemplify on ridge regression. The estimator for this method is derived (you may recall from earlier
topics on regression) by minimizing the error function as follows:

E(w) = (y−Xw)⊤(y−Xw) + λw⊤w
= . . . ▷ (take the derivative, set to 0, solve for w)

ŵ = (X⊤X + λId)−1X⊤y ▷ where Id is a d-dimensional identity matrix (B.5)
= X⊤ (XX⊤ + λIn)−1y︸ ︷︷ ︸

α

▷ N.B. In is an n-dimensionaly identity matrix (B.6)

= X⊤α ▷ where α ∈ Rn×1 (B.7)

=
n∑

i=1
αixi ▷ (as a summation)

The difference from Eq. (B.5) to Eq. (B.6) is a subtle but important one. The difference in terms of
notation (since these two equations are equal to each other); notably the size of the matrix. Note that
S = X⊤X ∈ Rd×d (the S is to recall, e.g., Eq. (9.4)) but K = XX⊤ ∈ Rn×n (specifically with connection
to kernel matrix Eq. (B.2) – in the case of the linear kernel). Recall that

Whereas ŷ = Xw lies in the column space of X; the vector ŵ = X⊤α lies in the row space of X;

ŵ =
n∑

i=1
αixi = X⊤α, ŷ =

d∑

j=1
ŵjxj = xw

Recall: Our goal is to express the method in terms of inner products between xs. To do so, we substitute
ŵ (from Eq. (B.7)) into ŷ = xŵ, obtaining:

ŷ = x(X⊤α)
= (α⊤X)x⊤

= (((XX⊤ + λIn)−1y)⊤X)x⊤

= ((XX⊤ + λIn)−1y)⊤Xx⊤

= ((XX⊤ + λIn)−1y)⊤(xX⊤)⊤

= ((K + λIn)−1y)⊤κ⊤

where K is the n× n kernel matrix, of entries Kij = K(xi, xj) and κ = [K(x1, x̃), . . . , K(xn, x̃)]. Done!
Now we choose some value for the ridge (say, λ = 0.1) and plug in a Gaussian kernel for Kij . When

we apply it to the Tadpole problem3 in Fig. B.3.
Conclusion: Since ridge regression is a linear model, we know the regression decision survace is in fact

a line (in feature space). The novelty is: we didn’t have to go into that space; we didn’t compute ϕ(x) at
any point; no tadpoles were harmed or manipulated in any way – we just simply measured the similarity
of one to another using some similarity function K.

3If you didn’t attend the lecture: each point in the figure is a tadpole
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Figure B.3: The orange curve is in fact a line (in feature space) .
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