Récriture d’Ordre Supérieur

Jean-Pierre Jouannaud
Ecole Polytechnique
91400 Palaiseau, France

email: jouannaud@lix.polytechnique.fr
http: //w3.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud

Project LogiCal, P6le Commun de Recherche en
Informatique du Plateau de Saclay, CNRS, Ecole
Polytechnique, INRIA, Université Paris-Sud.

January 3, 2005

Outline

Outline

© Algebres d’ordre supérieur polymorphes

@ Higher-order rewriting
e Higher-order plain rewriting
e Higher-order plain ordering
e Higher-order normal rewriting
e Higher-order normal orderings

Jean-Pierre Jouannaud Ecole Polytechnique 91400 Palaiseau, Fi plain

Algebres d’ordre supérieur polymorphes

Notre but est de décrire
e les algebres d’ordre supérieur polymorphes,
e la récriture avec filtrage simple,
e la récriture avec filtrage modulo (n,

e la réduction de la confluence a certaines
formes de paires critiques,

e les preuves de terminaison basées sur le
HORPO.

Given a set S of sort symbols of a fixed arity,
denoted by s : +" — %, and a set S” of type
variables, the set 75+ of polymorphic types is
generated from these sets by the constructor —
for functional types:

Ty = a | S(T2) | (T — Ter)
force S"ands:«" - x €8

Var (o) denotes the set of (type) variables of the
type o € Tgv. Types are functional when headed
by the — symbol, and data types when they are
headed by a sort symbol. — associates to the
right.

Type substitutions

A type substitution is a mapping from S" to Tgv
extended to an endomorphism of 75v. We write
c¢ for the application of the type substitution & to
the type 0. We denote by

Dom(o) = {a € 87 | ao # o} the domain of

o € Tgv, by oly its restriction to the domain
Dom(o) NV, by Ran(c) = U,cpom(r) Var(ao) its
range. By a renaming of the type ¢ apart from

V C X, we mean atype c£ where ¢ Is a type
renaming such that Dom(¢) = Ran(o) and
Ran(§) Ny =1,

We shall use «, ; for type variables, o, T, p, 0 for
arbitrary types, and &, { to denote type
substitutions.

Function symbols are meant to be algebraic
operators equiped with a fixed number n of
arguments (called the arity) of respective types
o1 € Tgv,...,0n € Tgv, and an output type

o € Tsv such that Var (o) C |, Var(ai):

F = L"j Folx...xanﬂo

01y..,0n,0

Membership of f to a set F,, «...xo,—c IS Written
f.:o01x... X0y — 0. Atype declaration is
first-order if it uses only sorts, and higher-order
otherwise. It is polymorphic if it uses some
polymorphic type, otherwise, it is monomorphic.
Type instantiation does not change arities.

Terms

T =X|(\X:Te.T) | (T, T) | F(T,...,T).

We may omit ¢ in XX : o.u as well as @, writing
u(v) for @(u,v). The term u(Vv) is called a
(partial) left-flattening of s = u(vy)...(vn), u
being possibly an application itself. Var (t) is the
set of free variables of t. s shall be ambiguously
used to denote a list, or a multiset, or a set of
terms sq,...,Sp.

Terms are identified with finite labeled trees by
considering Xx : ¢._ as a unary function symbol
taking a term u as argument to construct the
term XX : o.uU.

Environments

Definition

An environment I is a finite set of pairs written
as {x1 : 01,...,%n : on}, Where x; is a variable, o;
is a type, and x; # x; fori # |.

Var(l') = {X1,...,Xn} is the set of variables of I'.
Given two environments I' and ', their
composition is the environment
F-r=r'u{x:cerl|x¢Vvar(l)}. Two
environments I and [" are compatible if
r-r=rurl’.

Our typing judgements are writtenas |l Fr s : 0.

Regles de typage

Variables: Abstraction:

X:oel [{X:0} Frt:T

[FrXx:o [Fr(MXX:ot)io—T
Functions:

f:oyx...xon—0€F
¢ some type substitution of domain C | J, Var (o)
[Frtyi0& ... T Frtyoné

I l—]:f(t]_,...,tn) . O'g

Application:
[Frs:o—717 [Frt:o

[7 Q(s,t): 7

Given an environment [and a typable term s,
there exists a unique type ¢ such that
[FrS:0.

Lemma

[Frs:oimpliesl¢ FxsE: o€ forany €.

.

Lemma

Given a signature F, environment I, term s and
type o suchthatl Frs:o,thenl - " Frs:o
for all I’ compatible with T.

\,

Lemma

Given a signature F, environment ', term s and
type o such that " £ s : o, then for all

p € Dom(s), there exists a canonical
environment I's; and a type 7 such that

s, 7 s|p : 7 is a subproof of the proof of

[Frs:o0. Moreover, s, . = (Is},)(s)p)q"

Lemma

Given a signature F, an environment I, two
terms s and v, two types ¢ and 7, and a position
p € Pos(s)suchthatl Frs:o, s, FrSlp:T
and g Frv:7,thenl F£s|v],:o.

Substitutions

Definition

A substitution

v = {(Xl : 01) — (Fl,tl), ey (Xn : O'n) — (Fn,tn)},
Is a finite set of quadruples made of a variable
symbol, a type, an environment and a term,
such that

(I) Vi € [1..n], {j 7§ xj and [Frti: o,

(i) Vi #j € [1..n], X; # X;, and

(i) Vi # j € [1..n], [and T; are compatible
environments.

We may omit the type o; and environment [in
(Xi : Ji) — (Fi,ti).

Substitutions

The set of (input) variables of the substitution ~
is Var(vy) = {Xa,...,Xn}, its domain is the
environment Dom(y) = {X1 : 01,...,Xn : On}
while its range is the environment

Ran(y) = Uie[l..n] .

Note that Ran(v) is indeed an environment by
assumption (iii).

Given

vy={(x1:01) — (F1,t1),...,(Xn : on) — (I, tn)},
then Ran(v) Frt: o;.

Compatibility

Definition

A substitution v is compatible with an
environment [if

(i) Dom(~) is compatible with T,

(i) Ran(~) is compatible with T\ Dom(~).
We will also say that ~ is compatible with the
judgement Frs: 0.

Substitution instance

A substitution v compatible with a judgement
I -7 s : o operates as an endomorphism on s
and yields the term s~ defined as:

If s=xeXandx ¢ Var(v)

then sy =x
If s=xeXand (x:0)— (It)erl
then sy =t

If s =0(u,v)

then sy = O(u~,v~y)

If s="f(uy,...,up)
then sy =f(u1vy,...,uyy)
If S=X:T.U

Type invariance

Given a signature F and a substitution ~
compatible with the judgement ' - s : o, then
[-Ran(y) Frsvy:o.

Let S = {01, 02, 03, 04}, S” = {a : %, 3 : %}, and
F={f:axpf—a0:axp— [}

Let I = {X1 : 01, X2 : 02, X3 : 03, X4 : 04}, and

s = 9(f(X1,X2),f(X3,Xs4)). ThenT Fxs: 03. Let
v={X1:01+— ({X1:02, X6 :01},9(X1,Xs)), X3 :
03 — ({Xz 102, X5 03},g(X2,X5)),X6 00—
({Xl : 02, X5 : 03},f(X1,X5))}.

Dom(~y) = {X1 : 01, X3 : 03, Xg : 02}, and
Ran(v) = {Xl :02,X2 1 02,X5 : 03, Xp: 01}.

Sy = g(f (g(xl> X6)7 Xz),f(g(Xz, X5)7 X4))'
[-Ran(v) = {X1 : 02, X2 : 02, X3: 03, Xg:

04, X5 : 03, Xg: 01}.

- Ran(vy) Fr sv:0s.

Récriture simple d’ordre supérieur

Regles de récriture

Definition

Given a regular signature F, a rewrite rule is a
quadruple written T - | —r : o, where |l and r
are higher-order terms such that

(i) Var(r) C Var(l),

(DI Frl:cand T Fxr:o0.

The rewrite rule is said to be polymorphic if o is
a polymorphic type. A plain term rewriting
system, or simply term rewriting system is a set
of rewrite rules.

Récriture

Definition

Given a plain higher-order rewriting system R
and an environment I, a term s such that

[xS : o rewrites to a termt at position p with
therule i + I — 1 : oj, the type substitution &

and the term substitution ~, written

Fres % tors—gt assuming the

Fi [Ii—>ri
environment I, if:

(i) Dom(v) C Ti€,

(II) Fif o Ran(fy) C Fs‘p,
(iii) s|p = li&y,

(iv) t = s[rigy]p.

Conservation du typage par récriture

Assumethatl Frs:candl - s —r t. Then
I |_j:t20'.

Proof.

By Lemma 3, Ii¢ £ i€ : 07&. By conditions (i,ii),
~ is compatible with the environment ;.

Hence, ¢ - Ran(vy) Fx li&y : 0i€ by lemma 11.
By condition (ii) and lemma 4, I's| F£ {7y : 0i&,
and therefore, by condition (iii), I's,, Fr S|y : 01§
(this tells us how to compute ¢).

Similarly,l's|, Frri§y : ai. By lemma 6,

[F7 s[ri&y]p @ €. Condition (iv) concludes. [

,,,,,,,,,,,,, ——

Exemple du A-calcul

The following three equations originate from the
A-calculus, and are called a-, - and
n-conversions:

{v:t} F MX:ov =, Ay :oV{X—y}
ify & Bvar(v) U (Var(v) \ {x})
{uio,v:i7} F @X:ov,u) =3 V{X —u}
{uto—=7} F AXX:00(Uu,x) =, u
if X & Var(u)

The above equations are equation schemas : all
occurrences of u and v stand for arbitrary terms
to which substitutions {x — y} and {x — u}
apply. a-convertible terms are considered
identical. % Is the congruence generated by

the S-equality, and — ; the S-reduction rule:

{U:a, v:pB} Fr@AX:av,u) —; v{X—u}

Godel's system T

Let S = {N}, S" = {a},
F={0:—-N,s:N—-N, +: NxN— N,
rec: Nxax(N—a—a)—a}.

Gaodel’s recursor for natural numbers is defined
by the following rewrite rules:

{U:a, X N—a—a} F
rec(0,U,X) — U

{X:N,U:a, X:N—>a—a} F
rec(s(x),U, X) — O(X, x,rec(x,U, X))

Godel's system T
{} b s=rec(S(0),0,rec(0,Ax : Ny : N. +
(6Y) Ny TN = N = NZz: Ny(+(x,2)))

s —3
{U:a, X:N—a—a} F rec(0,U,X)—U
rec(S(0),0,x : Ny : N. + (x,y))

_>{x N, U:a, X:N=a—a} F rec(S(x),U,X)—@(X x,rec(x,U,X))

O(Ax,y : N. +(x,y),0,rec(0,0, X,y : N. + (X,y)))
—5 00y : N.+(0,y),rec(0,0, X,y : N. +(x,y)))

—5 +(0,rec(0,0, Xx,y : N. + (X,Y)))
2
_>{U:a, X:N—=a—al + rec(0,U,X)—U +(0,0)

—ix:N} F +(x,0)—x

Vocabulaire

Aterm s such that s —>t is called reducible. s|,

Is a redex and t the reduct Irreducible terms are
said in R-normal form. A substitution ~ is in
R-normal form if X~ is in R-normal form for all x.
We denote by — the reflexive, transitive

closure of the rewrite relation —, and by «—

its reflexive, symmetric, transitive closure.

A term is strongly normalizable if there are no
infinite rewriting sequences issuing from it. The
relation — is strongly normalizing if all terms
are strongly normalizable.

It is confluent if s —* u and s —* v implies that
u—*t and v—*t for some t.

Higher-order plain orderings

Definition: a higher-order reduction ordering > is a

well-founded ordering of the set of judgements:
(i) monotonicity: (I Fxs:0) = (I Frt:o)
implies (I -T" Fzuls]:7) = (T-T" Frult] : 7)
VI" Fzu[x : o] : 7 with ', " compatible

(i) stability: (T Frs:0) > (I Fxt:0o)implies
(M- Ran(y) Frsy:0) > (I-Ran(y) Frty:o)
vV~ compatible with I

(iii) compatibility: (' Frs:0) = (I Fxt: o)
implies (" Frs:o0) = (" Frt:o)

VI’ s.t. I, [’ compatible, " Frs,t:o

(iv) functionality: (I 7 s:0——4t: o) implies
(F }_}'SZU) ~ (F |_]:t20').

(v) polymorphicity: (I Frs:0) > (I Fxt: o)
implies (F'¢ Fx s : o) = (M€ Fxt€: of) VE.

Strong normalization

Theorem

Let > be a higher-order reduction ordering and
R ={l; Fxli — ri}ic be a higher-order rewrite
system such thatli; £ I; > rj foreveryi € I.
Then the relation — U — is strongly
normalizing.

Strong normalization proof

Letl Frs:ocandl F£s P, t. By
¢ B hi§—rngoig

definition, ') 7 S|p : 0i€, Dom(7y) C T¢,

& - Ran(y) C T, Slp = li§y, and t = s[ri{y]p.

By assumption, [i F£ |; = r; : 0.

By polymorphism, Ii¢ £ i€ > ri& : €.

By stability, I';¢ - Ran(v) Fx &y = riéy : ai€.

By compatibility, I's;, Fx iy = ri&y : aié.

By monotonicity of - for terms of equal type,

Csp, T Frslliéy] =s = s[riéy] =t 0.

By compatibility again, [s > t.

Finally, the case of a 5-reduction is similar. []

Higher-order normal rewriting

La définition de la récriture normale fait
intervenir des formes normales vis-a-vis de la
S-réduction et de la n-expansion.

n-reduction and expansion

e n-reduction: si x ¢ Var(u) alors
{u:a—p} FrX:a.0(u,x)—u

n-reduction and expansion

e n-reduction: si x ¢ Var(u) alors
{u:a—p} FrX:a.0(u,x)—u

e The use of n-expansion is restricted by
spelling out in which context it applies:

{uior — ... 5 oq — 0o} Frsfulp —F
S[AX1:01,...,%Xn : on.@(U, X1, ..., Xn)]p

o is a canonical output type

X1,...,Xn & Var(u)

u is not an abstraction

S|q Is not an applicationincasep =q -1

Note that the first argument of an application
IS not recursively expanded on top.

Formes normales

The simply typed A-calculus is confluent modulo
a-conversion, and terminating with respect to
(-reductions and either the above notion of
n-expansions, or the more usual notion of
n-reduction, therefore defining normal forms up
to a-equivalence.

We write s| 5 for the unique g-normal form of the
term s, s7" for the unique n-long form of s wrt.
n-expansion, s |, for the unique n-normal form
of s wrt. p-reduction, and u |7} for its unique
normal form with respect to -reductions and
n-expansions, also called n-long normal form.
Terms in n-long normal form are called
normalized.

Normal terms

Lemma

Normalized terms are of the following two forms:
(i) XX : p.@(X, V1, ...,Vp), for some X : p,
X:m1—...=1—17cXwWherep >0andris
a data type or a type variable, and normalized
terms vy, ..., Vp, Omitting @() when p = 0;

(i) XX : p.@(F (uq,...,uUn),V1,...,Vp), for some
X0 F € Fox xop(ri—..—m—r) Where T is a
data type or a type variable, and normalized
terms uq,...,Un, V1, ..., Vp, OMitting @() when

p = 0 and the other two parentheses when
n=0~0.

Normal terms

In normalized terms, the first argument of an
application cannot be in n-long form.

Definition

A termt is tail expanded (resp. tail normal) if:
(Yt e X, or

(i)t =f(ug,...,up), Ug,...,u, are in np-long form
(normalized), or

(iii) t = ©(uy, ..., uy), Uy is tail expanded (tail
normal and not an abstraction) and us, ..., u, in
n-long form, or

(iv) t = XX : o.u, u is tail expanded (tail normal)
and not of the form @(v, x) with x ¢ Var(v).

Tail normal terms

Every normalized term t of type ¢ contains a
Gn-equivalent tail normal subterm of type o,
which is a proper subterm iff o is functional.

t 7# (resp. t]7") the unique tail expanded (resp.
tail normal) term s n-equivalent (Gn-) tot :

(AX.u) T#A= Ax.(u1#0) with x & Var(v) if u = Q(v, x)
©(ug, Uz, ...,Un) T#A=0@(up T#M, Uz T,...,Un 1)

(Xu)T = Xx.(ur) Q)T = (e(u)r) 1"

f)= = f(u?n) fa)r = (f@r=) 1"

Propriété: s tail normal, £ type substitution:

SETAN = SE T,

Higher-order rewriting

Definition

A normal rewrite rule is a rewrite rule

' |1 —r:osuchthatl and r are tail normal
terms. A normal term rewriting system is a set
of normal rewrite rules.

Higher-order rewriting

Definition

A tail normal term s such thatl' Frs: o
rewrites to a term t at position p with the tail
normalrulel; = I — 1 : gj, the type
substitution ¢ and the term substitution ~,

res 2% 4
i b hg—rnigoig

if the following conditions are satisfied :

I A
n |

(i) Ii§ - Ran(y) STy, (V) t = (s[r& T v Lslp)l

N

Higher-order rewriting

Assuming that s|, is tail normal is not a
restriction since we can always chose p fulfilling
the property. Computing t requires climbing up
s[rié T#A v | g]p from the position p to the root as
long as the symbol on the path is the
application. No climbing is needed when the
output type of a function symbol is a data type, a
frequently met assumption.

Higher-order pattern matching is open for order
strictly bigger than 4, but is decidable in linear
time when the lefthand sides of rules are
patterns in the sense of Miller.

Higher-order rewriting

Let s be a tail normal term such thatl' Frs: o,
s —R? t. Thenl k£t :o,tistail normal.

Proof.

By Lemma 3, ¢ £ i€ : 07&. By conditions (i)
and (ii) in Definition 20, v is compatible with I;¢.
Hence, by Lemma 11, ¢ - Ran(y) Fz &y : oi€.
By condition (ii) and lemma 4, I's| Fz {7y : 0i&,
and therefore, by condition (iii), I's,, Fr s|p : aié.
Similarly, I's|, F# ri§y : 0i. By lemma 6,

[7 s[riéy]p @ oi€. Using now condition (iv) and
Lemma 14 yields I Fxt: 0. []

Symbolic derivation

AX.0 ify #£x
AX.1
Ax.cos(F x) x (D(F) x)

()\xx :
: AX. —sin(F x) x (D(F) x)
G x

)
)
D(A\x.sin(F x))
D(Ax.cos(F x))
D(A\x.(F x) + (G x))
D(A\x.(F x) x (G x)) AX.
(DOY-(Fy))x) x(Gx)+(F x)x (D(y.(Gy))x)

Note that D(Ax.sin(x)) =3 D(Ax.sin(\y.y x)),
hence D(Ax.sin(x)) — AX.COS(AX.X X) X

(DX .X) X) 5=

AX.cos(x) x (Ax.1 x) — Ax.cos(x) x 1, requiring
higher-order matching for firing the third rule.

MX.(D(F) x) 4+ (D(G) x)

Higher-order normal ordering

Definition: a higher-order normal reduction ordering

> is a well-founded ordering of the set of
judgements such that:

(i) tail monotonicity: (I Frs: o) = (I F£t:0)
implies (I -T" Fzuls]:7) = (I-T" Frult] : 7)
Vs, t tail expanded terms and

VI Fxulx : o] : 7 such that I', [’ are compatible,
and u[s] and u[t] are tail expanded,;

(i) stability for all terms;

(iif) compatibility for all tail expanded terms;
(iv) tail functionality: (I' Fxs:0—;t: 0)
implies (I Frs:o) = (I Fxt:0)

for all tail expanded terms s and t.

Higher-order normal ordering

Definition

A subrelation >g of a higher-order normal
reduction ordering > is said to be

(i) B-stable if (I Fxs) =} (I Fxt) implies

(- Ran(vy) Fzsylg) = (- Ran(y) Frtyls) for
all tail normal terms s, t and tail normal
substitution v compatible with T;

(if) n-polymorphic if (T Fxs) =} (T F#t) implies
(T FrsET#) =3 (T€ Fx tET#0) for all tail
normal terms s, t and all type substitution &.

Termination

Theorem

Assume that > is a higher-order normalized
reduction ordering and that >g Is a (-stable and
n-polymorphic subrelation of . Let

R={l + i —r:o}ic be ahigher-order
rewrite system such that (I Fx) =7 (5 =7 1i)
for every i € I. Then the relation Ry IS
strongly normalizing.

Letm Frs —- t. By confluence of [#",
Mg F ig—rnigoig
Slp =1&T#0 v [gand s = s[lig T v | lp.
By n-polymorphism: I Fx l; = r; implies
& Fr iE1#0 =7 g 120, By (-stability:
& - Ran(y) bx ([T)y L= Fr (§T#)y Ls.
By compatibility:
Cs, Fr (LET#A) L= (€T)y Ls.
By monotonicity:
Csp, T FrslliéT v lslp =5 = s[ngT# v Lglp-
By compatibility:
Mz sigT v Lglp = s = s[ng 12 v Lglp.
By tail functionnality: ' =z s[r{T#A v []p > t.
By transitivity: ' - s > t.

	Outline
	Algèbres d'ordre supérieur polymorphes
	Higher-order rewriting
	Higher-order plain rewriting
	Higher-order plain ordering
	Higher-order normal rewriting
	Higher-order normal orderings

