Récriture d'Ordre Supérieur

Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France

email: jouannaud@lix.polytechnique.fr http://w3.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud

Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud.

January 3, 2005

Outline

- Algèbres d'ordre supérieur polymorphes
- Migher-order rewriting
 - Higher-order plain rewriting
 - Higher-order plain ordering
 - Higher-order normal rewriting
 - Higher-order normal orderings

Algèbres d'ordre supérieur polymorphes

Notre but est de décrire

- les algèbres d'ordre supérieur polymorphes,
- la récriture avec filtrage simple,
- la récriture avec filtrage modulo $\beta\eta$,
- la réduction de la confluence à certaines formes de paires critiques,
- les preuves de terminaison basées sur le HORPO.

Types

Given a set S of sort symbols of a fixed arity, denoted by $s: *^n \to *$, and a set S^{\forall} of type variables, the set $\mathcal{T}_{S^{\forall}}$ of polymorphic types is generated from these sets by the constructor \to for functional types:

$$\mathcal{T}_{\mathcal{S}^{\forall}} := \alpha \mid \mathbf{s}(\mathcal{T}_{\mathcal{S}^{\forall}}^{n}) \mid (\mathcal{T}_{\mathcal{S}^{\forall}} \to \mathcal{T}_{\mathcal{S}^{\forall}})$$

for $\alpha \in \mathcal{S}^{\forall}$ and $\mathbf{s} : *^{n} \to * \in \mathcal{S}$

 $\mathcal{V}ar(\sigma)$ denotes the set of (type) variables of the type $\sigma \in \mathcal{T}_{S^{\forall}}$. Types are *functional* when headed by the \rightarrow symbol, and *data types* when they are headed by a sort symbol. \rightarrow associates to the right.

Type substitutions

 \mathcal{R} an $(\xi) \cap \mathcal{V} = \emptyset$.

A *type substitution* is a mapping from S^{\forall} to $T_{S^{\forall}}$ extended to an endomorphism of $\mathcal{T}_{S^{\forall}}$. We write $\sigma \xi$ for the application of the type substitution ξ to the type σ . We denote by $\mathcal{D}om(\sigma) = \{\alpha \in \mathcal{S}^{\forall} \mid \alpha\sigma \neq \alpha\}$ the domain of $\sigma \in \mathcal{T}_{S^{\forall}}$, by $\sigma|_{\mathcal{V}}$ its restriction to the domain $\mathcal{D}\mathit{om}(\sigma) \cap \mathcal{V}$, by $\mathcal{R}\mathit{an}(\sigma) = \bigcup_{\alpha \in \mathcal{D}\mathit{om}(\sigma)} \mathcal{V}\mathit{ar}(\alpha\sigma)$ its range. By a renaming of the type σ apart from $V \subset \mathcal{X}$, we mean a type $\sigma \xi$ where ξ is a type

We shall use α, β for type variables, $\sigma, \tau, \rho, \theta$ for arbitrary types, and ξ, ζ to denote type substitutions.

renaming such that $\mathcal{D}om(\xi) = \mathcal{R}an(\sigma)$ and

Signatures

Function symbols are meant to be algebraic operators equiped with a fixed number n of arguments (called the *arity*) of respective types $\sigma_1 \in \mathcal{T}_{S^{\forall}}, \ldots, \sigma_n \in \mathcal{T}_{S^{\forall}}$, and an *output type* $\sigma \in \mathcal{T}_{S^{\forall}}$ such that $\mathcal{V}ar(\sigma) \subseteq \bigcup_i \mathcal{V}ar(\sigma_i)$:

$$\mathcal{F} = \biguplus_{\sigma_1, \dots, \sigma_n, \sigma} \mathcal{F}_{\sigma_1 \times \dots \times \sigma_n \to \sigma}$$

Membership of f to a set $\mathcal{F}_{\sigma_1 \times ... \times \sigma_n \to \sigma}$ is written $f: \sigma_1 \times ... \times \sigma_n \to \sigma$. A type declaration is *first-order* if it uses only sorts, and higher-order otherwise. It is *polymorphic* if it uses some polymorphic type, otherwise, it is *monomorphic*. Type instantiation does not change arities.

$$\mathcal{T} := \mathcal{X} \mid (\lambda \mathcal{X} : \mathcal{T}_{\mathcal{S}^{\forall}}.\mathcal{T}) \mid \mathfrak{Q}(\mathcal{T},\mathcal{T}) \mid \mathcal{F}(\mathcal{T},\ldots,\mathcal{T}).$$

We may omit σ in λx : $\sigma.u$ as well as @, writing u(v) for @(u,v). The term $u(\overline{v})$ is called a (partial) *left-flattening* of $s=u(v_1)\ldots(v_n)$, u being possibly an application itself. $\mathcal{V}ar(t)$ is the set of free variables of t. \overline{s} shall be ambiguously used to denote a list, or a multiset, or a set of terms s_1,\ldots,s_n .

Terms are identified with finite labeled trees by considering λx : σ ._ as a unary function symbol taking a term u as argument to construct the term λx : σ .u.

Environments

Definition

An *environment* Γ is a finite set of pairs written as $\{x_1 : \sigma_1, \dots, x_n : \sigma_n\}$, where x_i is a variable, σ_i is a type, and $x_i \neq x_i$ for $i \neq j$. $Var(\Gamma) = \{x_1, \dots, x_n\}$ is the set of variables of Γ . Given two environments Γ and Γ' , their composition is the environment $\Gamma \cdot \Gamma' = \Gamma' \cup \{x : \sigma \in \Gamma \mid x \notin \mathcal{V}ar(\Gamma')\}.$ Two environments Γ and Γ' are *compatible* if $\Gamma \cdot \Gamma' = \Gamma \cup \Gamma'$.

Our typing judgements are written as $\Gamma \vdash_{\mathcal{F}} s : \sigma$.

Règles de typage

Variables:

$$\frac{\mathbf{x}:\sigma\in\Gamma}{\Gamma\vdash_{\mathcal{F}}\mathbf{x}:\sigma}$$

Abstraction:

$$\frac{\Gamma \cdot \{\mathbf{X} : \sigma\} \vdash_{\mathcal{F}} \mathbf{t} : \tau}{\Gamma \vdash_{\mathcal{F}} (\lambda \mathbf{X} : \sigma . \mathbf{t}) : \sigma \to \tau}$$

Functions:

$$f: \sigma_1 \times \ldots \times \sigma_n \to \sigma \in \mathcal{F}$$
 ξ some type substitution of domain $\subseteq \bigcup_i \mathcal{V}ar(\sigma_i)$

$$\Gamma \vdash_{\mathcal{F}} t_1 : \sigma_1 \xi \ldots \Gamma \vdash_{\mathcal{F}} t_n : \sigma_n \xi$$

$$\Gamma \vdash_{\mathcal{F}} f(t_1, \ldots, t_n) : \sigma \xi$$

Application:

$$\frac{\Gamma \vdash_{\mathcal{F}} \mathbf{S} : \sigma \to \tau \quad \Gamma \vdash_{\mathcal{F}} \mathbf{t} : \sigma}{\Gamma \vdash_{\mathcal{F}} \mathbf{Q}(\mathbf{S}, \mathbf{t}) : \tau}$$

Properties

Lemma

Given an environment Γ and a typable term s, there exists a unique type σ such that $\Gamma \vdash_{\mathcal{F}} s : \sigma$.

Lemma

 $\Gamma \vdash_{\mathcal{F}} \mathbf{s} : \sigma \text{ implies } \Gamma \xi \vdash_{\mathcal{F}} \mathbf{s} \xi : \sigma \xi \text{ for any } \xi.$

Lemma

Given a signature \mathcal{F} , environment Γ , term s and type σ such that $\Gamma \vdash_{\mathcal{F}} s : \sigma$, then $\Gamma \cdot \Gamma' \vdash_{\mathcal{F}} s : \sigma$ for all Γ' compatible with Γ .

Properties

Lemma

Given a signature \mathcal{F} , environment Γ , term s and type σ such that $\Gamma \vdash_{\mathcal{F}} s : \sigma$, then for all $p \in \mathcal{D}om(s)$, there exists a canonical environment $\Gamma_{s|_p}$ and a type τ such that $\Gamma_{s|_p} \vdash_{\mathcal{F}} s|_p : \tau$ is a subproof of the proof of $\Gamma \vdash_{\mathcal{F}} s : \sigma$. Moreover, $\Gamma_{s|_{\rho}, \sigma} = (\Gamma_{s|_p})_{(s|_p)_{|q}}$.

Lemma

Given a signature \mathcal{F} , an environment Γ , two terms s and v, two types σ and τ , and a position $p \in \mathcal{P}os(s)$ such that $\Gamma \vdash_{\mathcal{F}} s : \sigma, \Gamma_{s|_p} \vdash_{\mathcal{F}} s|_p : \tau$ and $\Gamma_{s|_p} \vdash_{\mathcal{F}} v : \tau$, then $\Gamma \vdash_{\mathcal{F}} s[v]_p : \sigma$.

Definition

A substitution

 $\gamma = \{(x_1 : \sigma_1) \mapsto (\Gamma_1, t_1), \dots, (x_n : \sigma_n) \mapsto (\Gamma_n, t_n)\},$ is a finite set of quadruples made of a variable symbol, a type, an environment and a term, such that

- (i) $\forall i \in [1..n], t_i \neq x_i \text{ and } \Gamma_i \vdash_{\mathcal{F}} t_i : \sigma_i$,
- (ii) $\forall i \neq j \in [1..n], x_i \neq x_j$, and
- (iii) $\forall i \neq j \in [1..n]$, Γ_i and Γ_j are compatible environments.

We may omit the type σ_i and environment Γ_i in $(x_i : \sigma_i) \mapsto (\Gamma_i, t_i)$.

Substitutions

The set of (input) variables of the substitution γ is $\mathcal{V}ar(\gamma) = \{x_1, \ldots, x_n\}$, its *domain* is the environment $\mathcal{D}om(\gamma) = \{x_1 : \sigma_1, \ldots, x_n : \sigma_n\}$ while its range is the environment $\mathcal{R}an(\gamma) = \bigcup_{i \in [1..n]} \Gamma_i$. Note that $\mathcal{R}an(\gamma)$ is indeed an environment by assumption (iii).

Lemma

Given

$$\gamma = \{(\mathbf{x}_1 : \sigma_1) \mapsto (\Gamma_1, t_1), \dots, (\mathbf{x}_n : \sigma_n) \mapsto (\Gamma_n, t_n)\},$$

then \mathcal{R} an $(\gamma) \vdash_{\mathcal{F}} t_i : \sigma_i$.

Compatibility

Definition

A substitution γ is *compatible* with an environment Γ if

- (i) $\mathcal{D}om(\gamma)$ is compatible with Γ ,
- (ii) $\mathcal{R}an(\gamma)$ is compatible with $\Gamma \setminus \mathcal{D}om(\gamma)$.

We will also say that γ is compatible with the judgement $\Gamma \vdash_{\mathcal{F}} \mathbf{s} : \sigma$.

Substitution instance

Definition

A substitution γ compatible with a judgement $\Gamma \vdash_{\mathcal{F}} s : \sigma$ operates as an endomorphism on s and yields the term $s\gamma$ defined as: $s = x \in \mathcal{X}$ and $x \notin \mathcal{V}ar(\gamma)$ then $s\gamma = x$ $s = x \in \mathcal{X}$ and $(x : \sigma) \mapsto (\Gamma, t) \in \Gamma$ lf then $s\gamma = t$ lf s = Q(u, v)then $s\gamma = Q(u\gamma, v\gamma)$ $s = f(u_1, \ldots, u_n)$ lf then $s\gamma = f(u_1\gamma, \dots, u_n\gamma)$ $\mathbf{S} = \lambda \mathbf{X} : \tau . \mathbf{U}$ (← □) (回) (ص) (\square)

Type invariance

Lemma

Given a signature \mathcal{F} and a substitution γ compatible with the judgement $\Gamma \vdash_{\mathcal{F}} \mathbf{s} : \sigma$, then $\Gamma \cdot \mathcal{R}$ an(γ) $\vdash_{\mathcal{F}} \mathbf{s} \gamma : \sigma$.

Exemple

```
Let S = \{o_1, o_2, o_3, o_4\}, S^{\forall} = \{\alpha : *, \beta : *\}, \text{ and }
\mathcal{F} = \{ \mathbf{f} : \alpha \times \beta \to \alpha, \mathbf{g} : \alpha \times \beta \to \beta \}.
Let \Gamma = \{x_1 : o_1, x_2 : o_2, x_3 : o_3, x_4 : o_4\}, and
 s = g(f(x_1, x_2), f(x_3, x_4)). Then \Gamma \vdash_{\mathcal{F}} s : o_3. Let
\gamma = \{x_1 : o_1 \mapsto (\{x_1 : o_2, x_6 : o_1\}, g(x_1, x_6)), x_3 : a_1 \}
 o_3 \mapsto (\{x_2 : o_2, x_5 : o_3\}, g(x_2, x_5)), x_6 : o_2 \mapsto
 (\{x_1: o_2, x_5: o_3\}, f(x_1, x_5))\}.
\mathcal{D}om(\gamma) = \{x_1 : o_1, x_3 : o_3, x_6 : o_2\}, \text{ and }
Ran(\gamma) = \{x_1 : o_2, x_2 : o_2, x_5 : o_3, x_6 : o_1\}.
 s\gamma = g(f(g(x_1, x_6), x_2), f(g(x_2, x_5), x_4)).
 \Gamma \cdot \mathcal{R}an(\gamma) = \{x_1 : o_2, x_2 : o_2, x_3 : o_3, x_4 : a_4 : 
 O_4, X_5 : O_3, X_6 : O_1 \}.
 \Gamma \cdot \mathcal{R}an(\gamma) \vdash_{\mathcal{F}} s\gamma : o_3.
```

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなべ

Récriture simple d'ordre supérieur

Règles de récriture

Definition

Given a regular signature \mathcal{F} , a *rewrite rule* is a quadruple written $\Gamma \vdash I \rightarrow r : \sigma$, where I and r are higher-order terms such that

- (i) $Var(r) \subseteq Var(I)$,
- (ii) $\Gamma \vdash_{\mathcal{F}} I : \sigma \text{ and } \Gamma \vdash_{\mathcal{F}} r : \sigma.$

The rewrite rule is said to be *polymorphic* if σ is a polymorphic type. A *plain term rewriting* system, or simply term rewriting system is a set of rewrite rules.

Definition

Given a plain higher-order rewriting system R and an environment Γ , a term s such that $\Gamma \vdash_{\mathcal{F}} s : \sigma$ rewrites to a term t at position p with the rule $\Gamma_i \vdash I_i \to r_i : \sigma_i$, the type substitution ξ and the term substitution γ , written $\Gamma \vdash s \xrightarrow[\Gamma_i \vdash I_i \to r_i]{p} t$, or $s \to_R t$ assuming the

environment Γ , if:

- (i) $\mathcal{D}om(\gamma) \subseteq \Gamma_i \xi$,
- (ii) $\Gamma_i \xi \cdot \mathcal{R}an(\gamma) \subseteq \Gamma_{\mathfrak{s}|_p}$,
- (iii) $s|_{p} = I_{i}\xi\gamma$,
- (iv) $t = s[r_i \xi \gamma]_p$.

Conservation du typage par récriture

Lemma

Assume that $\Gamma \vdash_{\mathcal{F}} \mathbf{s} : \sigma \text{ and } \Gamma \vdash \mathbf{s} \rightarrow_{R} t$. Then $\Gamma \vdash_{\mathcal{F}} t : \sigma$.

Proof.

By Lemma 3, $\Gamma_i \xi \vdash_{\mathcal{F}} I_i \xi : \sigma_i \xi$. By conditions (i,ii), γ is compatible with the environment $\Gamma_i \xi$. Hence, $\Gamma_i \xi \cdot \mathcal{R}$ an(γ) $\vdash_{\mathcal{F}} I_i \xi \gamma : \sigma_i \xi$ by lemma 11. By condition (ii) and lemma 4, $\Gamma_{s|_p} \vdash_{\mathcal{F}} I_i \xi \gamma : \sigma_i \xi$, and therefore, by condition (iii), $\Gamma_{s|_p} \vdash_{\mathcal{F}} s|_p : \sigma_i \xi$ (this tells us how to compute ξ). Similarly, $\Gamma_{s|_p} \vdash_{\mathcal{F}} r_i \xi \gamma : \sigma_i \xi$. By lemma 6,

 $\Gamma \vdash_{\mathcal{F}} s[r_i \xi \gamma]_p : \sigma_i \xi$. Condition (iv) concludes.

Exemple du λ -calcul

The following three equations originate from the λ -calculus, and are called α -, β - and η -conversions:

Equations

The above equations are equation schemas : all occurrences of u and v stand for arbitrary terms to which substitutions $\{x \to y\}$ and $\{x \to u\}$ apply. α -convertible terms are considered identical. $\overset{*}{\underset{\beta}{\longleftrightarrow}}$ is the congruence generated by the β -equality, and $\underset{\beta}{\longleftrightarrow}$ the β -reduction rule:

$$\{u : \alpha, v : \beta\} \vdash_{\mathcal{F}} \mathbb{Q}(\lambda x : \alpha.v, u) \longrightarrow_{\beta} v\{x \mapsto u\}$$

Gödel's system T

Let
$$S = \{N\}$$
, $S^{\forall} = \{\alpha\}$, $\mathcal{F} = \{0 : \rightarrow \mathbb{N}, \ s : \mathbb{N} \rightarrow \mathbb{N}, \ + : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N},$ rec : $\mathbb{N} \times \alpha \times (\mathbb{N} \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha\}$. Gödel's recursor for natural numbers is defined by the following rewrite rules:

$$\{U: \alpha, X: \mathbb{N} \to \alpha \to \alpha\} \vdash rec(0, U, X) \to U$$

$$\{x : \mathbb{N}, \ U : \alpha, \ X : \mathbb{N} \to \alpha \to \alpha\} \vdash rec(s(x), U, X) \to \mathfrak{Q}(X, x, rec(x, U, X))$$

Gödel's system T

$$\{\} \vdash s = rec(S(0), 0, rec(0, \lambda x : \mathbb{N} y : \mathbb{N}. + (x, y), \lambda x : \mathbb{N} y : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} z : \mathbb{N}.y(+(x, z))))$$

$$s \rightarrow_{\{U:\alpha, X: \mathbb{N} \rightarrow \alpha\}}^{3} \vdash rec(0, U, X) \rightarrow U$$

$$rec(S(0), 0, \lambda x : \mathbb{N} y : \mathbb{N}. + (x, y))$$

$$\rightarrow_{\{x: \mathbb{N}, U:\alpha, X: \mathbb{N} \rightarrow \alpha \rightarrow \alpha\}}^{\epsilon} \vdash rec(S(x), U, X) \rightarrow \mathbb{Q}(X, x, rec(x, U, X))$$

$$\mathbb{Q}(\lambda x, y : \mathbb{N}. + (x, y), 0, rec(0, 0, \lambda x, y : \mathbb{N}. + (x, y)))$$

$$\rightarrow_{\beta}^{\epsilon} \mathbb{Q}(\lambda y : \mathbb{N}. + (0, y), rec(0, 0, \lambda x, y : \mathbb{N}. + (x, y)))$$

$$\rightarrow_{\beta}^{\epsilon} + (0, rec(0, 0, \lambda x, y : \mathbb{N}. + (x, y)))$$

$$\rightarrow_{\beta}^{\epsilon} + (0, rec(0, 0, \lambda x, y : \mathbb{N}. + (x, y)))$$

$$\rightarrow_{\beta}^{\epsilon} + (0, rec(0, 0, \lambda x, y : \mathbb{N}. + (x, y)))$$

$$\rightarrow_{\beta}^{\epsilon} + (0, rec(0, 0, \lambda x, y : \mathbb{N}. + (x, y)))$$

$$\rightarrow_{\beta}^{\epsilon} + (0, rec(0, 0, \lambda x, y : \mathbb{N}. + (x, y)))$$

 $\rightarrow^{\epsilon}_{\{x:\mathbb{N}\}\ \vdash\ +(x,0)\rightarrow x}$ 0

• **4 ∄** • 9 **0 0**

Vocabulaire

A term s such that $s \xrightarrow{p} t$ is called *reducible*. $s|_{p}$ is a redex and t the reduct. Irreducible terms are said in *R-normal form*. A substitution γ is in *R*-normal form if $x\gamma$ is in *R*-normal form for all x. We denote by $\stackrel{*}{\longrightarrow}$ the reflexive, transitive closure of the rewrite relation \longrightarrow , and by $\stackrel{*}{\longleftrightarrow}$ its reflexive, symmetric, transitive closure. A term is strongly normalizable if there are no infinite rewriting sequences issuing from it. The relation — is strongly normalizing if all terms are strongly normalizable. It is *confluent* if $s \longrightarrow^* u$ and $s \longrightarrow^* v$ implies that $u \longrightarrow^* t$ and $v \longrightarrow^* t$ for some $t \longrightarrow^* t$ for some $t \longrightarrow^* t$

Higher-order plain orderings

Definition: a *higher-order reduction ordering* ≻ is a well-founded ordering of the set of judgements:

well-founded ordering of the set of judgements: (i) *monotonicity*: $(\Gamma \vdash_{\mathcal{F}} s : \sigma) \succ (\Gamma \vdash_{\mathcal{F}} t : \sigma)$

implies $(\Gamma \cdot \Gamma' \vdash_{\mathcal{F}} u[s] : \tau) \succ (\Gamma \cdot \Gamma' \vdash_{\mathcal{F}} u[t] : \tau)$

 $\forall \Gamma' \vdash_{\mathcal{F}} u[x : \sigma] : \tau \text{ with } \Gamma, \Gamma' \text{ compatible}$ (ii) *stability*: $(\Gamma \vdash_{\mathcal{F}} s : \sigma) \succ (\Gamma \vdash_{\mathcal{F}} t : \sigma)$ implies

$$(\Gamma \cdot \mathcal{R}an(\gamma) \vdash_{\mathcal{F}} s\gamma : \sigma) \succ (\Gamma \cdot \mathcal{R}an(\gamma) \vdash_{\mathcal{F}} t\gamma : \sigma)$$

 $\forall \gamma$ compatible with Γ

(iii) compatibility: $(\Gamma \vdash_{\mathcal{F}} \mathbf{s} : \sigma) \succ (\Gamma \vdash_{\mathcal{F}} \mathbf{t} : \sigma)$ implies $(\Gamma' \vdash_{\mathcal{F}} \mathbf{s} : \sigma) \succ (\Gamma' \vdash_{\mathcal{F}} \mathbf{t} : \sigma)$

 $\forall \Gamma' \text{ s.t. } \Gamma, \Gamma' \text{ compatible, } \Gamma' \vdash_{\mathcal{F}} \mathbf{s}, t : \sigma$ (iv) functionality: $(\Gamma \vdash_{\mathcal{F}} \mathbf{s} : \sigma \longrightarrow_{\beta} t : \sigma)$ implies $(\Gamma \vdash_{\mathcal{F}} \mathbf{s} : \sigma) \succ (\Gamma \vdash_{\mathcal{F}} t : \sigma)$.
(v) polymorphicity: $(\Gamma \vdash_{\mathcal{F}} \mathbf{s} : \sigma) \succ (\Gamma \vdash_{\mathcal{F}} t : \sigma)$

implies $(\Gamma \xi \vdash_{\mathcal{F}} s\xi : \sigma \xi) \succ (\Gamma \xi \vdash_{\mathcal{F}_{a}} t\xi : \sigma \xi) \forall \xi$.

Strong normalization

Theorem

Let \succeq be a higher-order reduction ordering and $R = \{\Gamma_i \vdash_{\mathcal{F}} I_i \to r_i\}_{i \in I}$ be a higher-order rewrite system such that $\Gamma_i \vdash_{\mathcal{F}} I_i \succ r_i$ for every $i \in I$. Then the relation $\longrightarrow_R \cup \longrightarrow_\beta$ is strongly normalizing.

Strong normalization proof

Proof.

Let
$$\Gamma \vdash_{\mathcal{F}} s : \sigma$$
 and $\Gamma \vdash_{\mathcal{F}} s \xrightarrow{\rho} t$. By definition, $\Gamma_{s|_{p}} \vdash_{\mathcal{F}} s|_{p} : \sigma_{i}\xi$, $\mathcal{D}om(\gamma) \subseteq \Gamma_{i}\xi$, $\Gamma_{i}\xi \cdot \mathcal{R}an(\gamma) \subseteq \Gamma_{s|_{p}}$, $s|_{p} = I_{i}\xi\gamma$, and $t = s[r_{i}\xi\gamma]_{p}$. By assumption, $\Gamma_{i} \vdash_{\mathcal{F}} I_{i} \succ r_{i} : \sigma_{i}$. By polymorphism, $\Gamma_{i}\xi \vdash_{\mathcal{F}} I_{i}\xi \succ r_{i}\xi : \sigma_{i}\xi$. By stability, $\Gamma_{i}\xi \cdot \mathcal{R}an(\gamma) \vdash_{\mathcal{F}} I_{i}\xi\gamma \succ r_{i}\xi\gamma : \sigma_{i}\xi$. By compatibility, $\Gamma_{s|_{p}} \vdash_{\mathcal{F}} I_{i}\xi\gamma \succ r_{i}\xi\gamma : \sigma_{i}\xi$. By monotonicity of \succ for terms of equal type, $\Gamma_{s|_{p}} \cdot \Gamma \vdash_{\mathcal{F}} s[I_{i}\xi\gamma] = s \succ s[r_{i}\xi\gamma] = t : \sigma$. By compatibility again, $\Gamma \vdash_{\mathcal{F}} s \succ t$. Finally, the case of a β -reduction is similar.

Higher-order normal rewriting

La définition de la récriture normale fait intervenir des formes normales vis-à-vis de la β -réduction et de la η -expansion.

η -reduction and expansion

- η -reduction: si $x \notin \mathcal{V}ar(u)$ alors $\{u: \alpha \to \beta\} \vdash_{\mathcal{F}} \lambda x : \alpha. @(u, x) \to u$
- The use of η -expansion is restricted by spelling out in which context it applies:

$$\{u: \sigma_1 \to \ldots \to \sigma_n \to \sigma\} \vdash_{\mathcal{F}} \mathbf{S}[u]_p \longrightarrow_{\eta}^p \mathbf{S}[\lambda x_1: \sigma_1, \ldots, x_n: \sigma_n. @(u, x_1, \ldots, x_n)]_p$$

if
$$\begin{cases} \sigma \text{ is a canonical output type} \\ x_1, \dots, x_n \notin \mathcal{V}ar(u) \\ u \text{ is not an abstraction} \\ s|_q \text{ is not an application in case } p = q \cdot 1 \end{cases}$$

Note that the first argument of an application is not recursively expanded on top.

η -reduction and expansion

- η -reduction: si $x \notin \mathcal{V}ar(u)$ alors $\{u : \alpha \to \beta\} \vdash_{\mathcal{F}} \lambda x : \alpha.@(u, x) \to u$
- The use of η -expansion is restricted by spelling out in which context it applies:

$$\{u: \sigma_1 \to \ldots \to \sigma_n \to \sigma\} \vdash_{\mathcal{F}} s[u]_p \longrightarrow_{\eta}^p \\ s[\lambda x_1: \sigma_1, \ldots, x_n: \sigma_n. @(u, x_1, \ldots, x_n)]_p$$

$$\begin{aligned} & \text{if} & \left\{ \begin{array}{l} \sigma \text{ is a canonical output type} \\ x_1, \dots, x_n \not \in \mathcal{V}ar(u) \\ u \text{ is not an abstraction} \\ s|_q \text{ is not an application in case } p = q \cdot 1 \end{array} \right. \end{aligned}$$

Note that the first argument of an application is not recursively expanded on top.

Formes normales

The simply typed λ -calculus is confluent modulo α -conversion, and terminating with respect to β -reductions and either the above notion of η -expansions, or the more usual notion of η -reduction, therefore defining normal forms up to α -equivalence.

We write $s \downarrow_{\beta}$ for the unique β -normal form of the term s, $s^{\uparrow \eta}$ for the unique η -long form of s wrt. η -expansion, $s \downarrow_{\eta}$ for the unique η -normal form of s wrt. η -reduction, and $u \uparrow_{\beta}^{\eta}$ for its unique normal form with respect to β -reductions and η -expansions, also called η -long normal form. Terms in η -long normal form are called normalized. <ロト <部ト < 注 > < 注 > の < @

Normal terms

Lemma

Normalized terms are of the following two forms: (i) $\lambda \overline{\mathbf{x}} : \overline{\rho}. @(\mathbf{X}, \mathbf{v}_1, \dots, \mathbf{v}_p)$, for some $\overline{\mathbf{x}} : \overline{\rho}$, $X: \tau_1 \to \ldots \to \tau_p \to \tau \in \mathcal{X}$ where p > 0 and τ is a data type or a type variable, and normalized terms v_1, \ldots, v_p , omitting @() when p = 0; (ii) $\lambda \overline{\mathbf{x}} : \overline{\rho}. @(F(u_1, \ldots, u_n), v_1, \ldots, v_p)$, for some $\overline{\mathbf{x}}:\overline{
ho}$, $\mathbf{F}\in\mathcal{F}_{\sigma_1 imes... imes\sigma_n o(au_1 o... o au_p o au)}$ where au is a data type or a type variable, and normalized terms $u_1, \ldots, u_n, v_1, \ldots, v_p$, omitting $\mathbb{Q}()$ when p = 0 and the other two parentheses when n=0.

Normal terms

In normalized terms, the first argument of an application cannot be in η -long form.

Definition

A term t is tail expanded (resp. tail normal) if:

- (i) $t \in \mathcal{X}$, or
- (ii) $t = f(u_1, \dots, u_n)$, u_1, \dots, u_n are in η -long form (normalized), or
- (iii) $t = \mathbb{Q}(u_1, \dots, u_n)$, u_1 is tail expanded (tail normal and not an abstraction) and u_2, \dots, u_n in η -long form, or
- (iv) $t = \lambda x : \sigma.u$, u is tail expanded (tail normal) and not of the form $\mathbb{Q}(v, x)$ with $x \notin \mathcal{V}ar(v)$.

Tail normal terms

Lemma

Every normalized term t of type σ contains a $\beta\eta$ -equivalent tail normal subterm of type σ , which is a proper subterm iff σ is functional.

 $t \uparrow^{\neq \wedge}$ (resp. $t \uparrow^{\neq \wedge}$) the unique tail expanded (resp. tail normal) term $s \eta$ -equivalent ($\beta \eta$ -) to t:

$$(\lambda x.u) \uparrow^{\neq \Lambda} = \lambda x.(u \uparrow^{\neq \Lambda}) \text{ with } x \notin \mathcal{V}ar(v) \text{ if } u = \mathbb{Q}(v,x)$$

$$\mathbb{Q}(u_1, u_2, \dots, u_n) \uparrow^{\neq \Lambda} = \mathbb{Q}(u_1 \uparrow^{\neq \Lambda}, u_2 \uparrow, \dots, u_n \uparrow)$$

$$(\lambda x.u) \uparrow = \lambda x.(u \uparrow) \qquad \mathbb{Q}(\overline{u}) \uparrow = (\mathbb{Q}(\overline{u}) \uparrow^{\neq \Lambda}) \uparrow^{\Lambda}$$

$$f(\overline{u}) \uparrow^{\neq \Lambda} = f(\overline{u} \uparrow) \qquad f(\overline{u}) \uparrow = (f(\overline{u}) \uparrow^{\neq \Lambda}) \uparrow^{\Lambda}$$

Propriété: s tail normal, ξ type substitution:

$$s\xi \uparrow^{\neq \wedge} = s\xi \uparrow^{\neq \wedge}.$$

Definition

A *normal rewrite rule* is a rewrite rule $\Gamma \vdash I \rightarrow r : \sigma$ such that I and r are tail normal terms. A *normal term rewriting system* is a set of normal rewrite rules.

Definition

A tail normal term s such that $\Gamma \vdash_{\mathcal{F}} s : \sigma$ rewrites to a term t at position p with the tail normal rule $\Gamma_i \vdash I_i \rightarrow r_i : \sigma_i$, the type substitution ξ and the term substitution γ ,

$$\Gamma \vdash s \xrightarrow[\Gamma_i \xi \vdash I_i \xi \to r_i \xi : \sigma_i \xi]{\rho} t$$

if the following conditions are satisfied:

(i)
$$\mathcal{D}\textit{om}(\gamma) \subseteq \Gamma_{i}\xi$$
 (iii) $\begin{cases} s|_{p} \text{ is tail normal} \\ s|_{p} \longleftrightarrow_{\beta\eta}^{*} I_{i}\xi \uparrow^{\neq\eta} \gamma \end{cases}$ (ii) $\Gamma_{i}\xi \cdot \mathcal{R}\textit{an}(\gamma) \subseteq \Gamma_{s|_{p}}$ (iv) $t = (s[r_{i}\xi \uparrow^{\neq \Lambda} \gamma \downarrow_{\beta}]_{p})\downarrow_{\beta}$

Assuming that $s|_p$ is tail normal is not a restriction since we can always chose p fulfilling the property. Computing t requires climbing up $s[r_i\xi\uparrow \neq \land \gamma\downarrow_{\beta}]_p$ from the position p to the root as long as the symbol on the path is the application. No climbing is needed when the output type of a function symbol is a data type, a frequently met assumption.

Higher-order pattern matching is open for order strictly bigger than 4, but is decidable in linear time when the lefthand sides of rules are patterns in the sense of Miller.

Lemma

Let s be a tail normal term such that $\Gamma \vdash_{\mathcal{F}} s : \sigma$, $\Gamma \vdash s \rightarrow_{R^{\eta}_{\beta}} t$. Then $\Gamma \vdash_{\mathcal{F}} t : \sigma$, t is tail normal.

Proof.

By Lemma 3, $\Gamma_i \xi \vdash_{\mathcal{F}} I_i \xi : \sigma_i \xi$. By conditions (i) and (ii) in Definition 20, γ is compatible with $\Gamma_i \xi$. Hence, by Lemma 11, $\Gamma_i \xi \cdot \mathcal{R}$ an(γ) $\vdash_{\mathcal{F}} I_i \xi \gamma : \sigma_i \xi$. By condition (ii) and lemma 4, $\Gamma_{s|_p} \vdash_{\mathcal{F}} I_i \xi \gamma : \sigma_i \xi$, and therefore, by condition (iii), $\Gamma_{s|_p} \vdash_{\mathcal{F}} s|_p : \sigma_i \xi$. Similarly, $\Gamma_{s|_{n}} \vdash_{\mathcal{F}} r_{i}\xi\gamma : \sigma_{i}\xi$. By lemma 6, $\Gamma \vdash_{\mathcal{F}} s[r_i \xi \gamma]_p : \sigma_i \xi$. Using now condition (iv) and Lemma 14 yields $\Gamma \vdash_{\mathcal{F}} t : \sigma$.

Symbolic derivation

$$D(\lambda x.y) \rightarrow \lambda x.0 \quad \text{if } y \neq x \\ D(\lambda x.x) \rightarrow \lambda x.1 \\ D(\lambda x.\sin(F\,x)) \rightarrow \lambda x.\cos(F\,x) \times (D(F)\,x) \\ D(\lambda x.\cos(F\,x)) \rightarrow \lambda x. - \sin(F\,x) \times (D(F)\,x) \\ D(\lambda x.(F\,x) + (G\,x)) \rightarrow \lambda x. (D(F)\,x) + (D(G)\,x) \\ D(\lambda x.(F\,x) \times (G\,x)) \rightarrow \lambda x. \\ (D(\lambda y.(F\,y))\,x) \times (G\,x) + (F\,x) \times (D(\lambda y.(G\,y))\,x) \\ \text{Note that } D(\lambda x.\sin(x)) =_{\beta} D(\lambda x.\sin(\lambda y.y\,x)), \\ \text{hence } D(\lambda x.\sin(x)) \longrightarrow \lambda x.\cos(\lambda x.x\,x) \times \\ (D(\lambda x.x)\,x) \downarrow_{\beta} = \\ \lambda x.\cos(x) \times (\lambda x.1\,x) \longrightarrow \lambda x.\cos(x) \times 1, \text{ requiring higher-order matching for firing the third rule.}$$

Higher-order normal ordering

Definition: a higher-order normal reduction ordering

- is a well-founded ordering of the set of judgements such that:
- (i) tail monotonicity: $(\Gamma \vdash_{\mathcal{F}} \mathbf{s} : \sigma) \succ (\Gamma \vdash_{\mathcal{F}} \mathbf{t} : \sigma)$ implies $(\Gamma \cdot \Gamma' \vdash_{\mathcal{F}} u[\mathbf{s}] : \tau) \succ (\Gamma \cdot \Gamma' \vdash_{\mathcal{F}} u[\mathbf{t}] : \tau)$

 $\forall s, t$ tail expanded terms and

 $\forall \Gamma' \vdash_{\mathcal{F}} u[x : \sigma] : \tau \text{ such that } \Gamma, \Gamma' \text{ are compatible,}$ and u[s] and u[t] are tail expanded;

- (ii) stability for all terms;
- (iii) compatibility for all tail expanded terms;
- (iv) tail functionality: $(\Gamma \vdash_{\mathcal{F}} \mathbf{s} : \sigma \longrightarrow_{\beta} t : \sigma)$ implies $(\Gamma \vdash_{\mathcal{F}} \mathbf{s} : \sigma) \succ (\Gamma \vdash_{\mathcal{F}} t : \sigma)$
- for all tail expanded terms s and t.

Higher-order normal ordering

Definition

A subrelation \succ^{η}_{β} of a higher-order normal reduction ordering ≻ is said to be (i) β -stable if $(\Gamma \vdash_{\mathcal{F}} s) \succ^{\eta}_{\beta} (\Gamma \vdash_{\mathcal{F}} t)$ implies $(\Gamma \cdot \mathcal{R}an(\gamma) \vdash_{\mathcal{F}} s\gamma\downarrow_{\beta}) \succ (\Gamma \cdot \mathcal{R}an(\gamma) \vdash_{\mathcal{F}} t\gamma\downarrow_{\beta})$ for all tail normal terms s, t and tail normal substitution γ compatible with Γ ; (ii) η -polymorphic if $(\Gamma \vdash_{\mathcal{F}} s) \succ_{\beta}^{\eta} (\Gamma \vdash_{\mathcal{F}} t)$ implies $(\Gamma \xi \vdash_{\mathcal{F}} s \xi \uparrow \neq \wedge) \succ_{\beta}^{\eta} (\Gamma \xi \vdash_{\mathcal{F}} t \xi \uparrow \neq \wedge)$ for all tail normal terms s, t and all type substitution ξ .

Termination

Theorem

Assume that \succ is a higher-order normalized reduction ordering and that \succ^η_β is a β -stable and η -polymorphic subrelation of \succ . Let $R = \{\Gamma_i \vdash I_i \rightarrow r_i : \sigma_i\}_{i \in I}$ be a higher-order rewrite system such that $(\Gamma_i \vdash_\mathcal{F} I_i) \succ^\eta_\beta (\Gamma_i \vdash_\mathcal{F} r_i)$ for every $i \in I$. Then the relation $\longrightarrow_{R^\eta_\beta}$ is strongly normalizing.

Proof

Let
$$\Gamma \vdash_{\mathcal{F}} s \xrightarrow[\Gamma_i \xi \vdash I_i \xi \to r_i \xi : \sigma_i \xi]{\rho} t$$
. By confluence of $\uparrow^{\neq \Lambda}$,

$$s|_{p} = I_{i}\xi \uparrow \not= \Lambda \gamma \downarrow_{\beta} \text{ and } s = s[I_{i}\xi \uparrow \not= \Lambda \gamma \downarrow_{\beta}]_{p}.$$

By η -polymorphism: $\Gamma_i \vdash_{\mathcal{F}} I_i \succ_{\beta}^{\eta} r_i$ implies

$$\Gamma_i \xi \vdash_{\mathcal{F}} I_i \xi \uparrow \not= \land \succ_{\beta}^{\eta} r_i \xi \uparrow \not= \land$$
. By β -stability:

$$\Gamma_{i}\xi \cdot \mathcal{R}an(\gamma) \vdash_{\mathcal{F}} (I_{i}\xi\uparrow \downarrow \wedge)\gamma \downarrow_{\beta} \succ \vdash_{\mathcal{F}} (r_{i}\xi\uparrow \downarrow \wedge)\gamma \downarrow_{\beta}.$$

By compatibility:

$$\Gamma_{s|_{p}} \vdash_{\mathcal{F}} (I_{i}\xi \uparrow^{\neq \wedge} \gamma) \downarrow_{\beta} \succ (r_{i}\xi \uparrow^{\neq \wedge}) \gamma \downarrow_{\beta}.$$

By monotonicity:

$$\Gamma_{s|_{p}} \cdot \Gamma \vdash_{\mathcal{F}} s[I_{i}\xi \uparrow^{\neq \wedge} \gamma \downarrow_{\beta}]_{p} = s \succ s[r_{i}\xi \uparrow^{\neq \wedge} \gamma \downarrow_{\beta}]_{p}.$$

By compatibility:

$$\Gamma \vdash_{\mathcal{F}} \mathbf{s}[I_i\xi\uparrow^{\neq\wedge}\gamma\downarrow_{\beta}]_{\rho} = \mathbf{s} \succ \mathbf{s}[r_i\xi\uparrow^{\neq\wedge}\gamma\downarrow_{\beta}]_{\rho}.$$

By tail functionnality: $\Gamma \vdash_{\mathcal{F}} s[r_i \xi \uparrow \neq \land \gamma \downarrow_{\beta}]_p \succ t$.

By transitivity: $\Gamma \vdash_{\mathcal{F}} s \succ t$.

