
The Higher-Order Computability Path Ordering:
the End of a Quest

Fréd́eric Blanqui1, Jean-Pierre Jouannaud2, and Albert Rubio3

1 INRIA, Campus Scientifique, BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France
2 LIX, Projet INRIA TypiCal, École Polytechnique and CNRS, 91400 Palaiseau, France

3 Technical University of Catalonia, Pau Gargallo 5, 08028 Barcelona, Spain

Abstract. This paper provides a new, decidable definition of the higher-order
recursive path ordering. Type comparisons are made only when needed, therefore
eliminating the need for the computability closure. Bound variables are handled
explicitely, making it possible to handle recursors for arbitrary strictly positive
inductive types. This new definition appears indeed to capture the essence of
computability arguments̀a la Tait and Girard, therefore explaining the title.

1 Introduction

This paper adresses the problem of automating termination proofs for
typed higher-order calculi.

The first attempt we know of goes back to Breazu-Tannen and Gal-
lier [14] and Okada [26]. Following-up a previous work of Breazu-Tannen [13]
who considered the confluence of such calculi, both groups of authors
showed independently that proving strong normalization of a polymor-
phic lambda-calculus with (first-order) constants defined by first-order
rewrite rules was reducible to the termination proof of the set of rewrite
rules: beta-reduction need not be considered. Both work used Girard’s
method based onreducibility candidates-also called sometimescom-
putability candidates. These works gave rise to a whole new area, by ex-
tending the type discipline, and by extending the kind of rules that could
be taken care of.

The type disipline was extended soon later by Barbanera and Dougerthy
independently to cover the whole calculus of constructions [1, 17].

Higher-order rewrite rules satisfying thegeneral schema, a general-
ization of G̈odel’s primitive recursion rules for higher types, were then
introduced by Jouannaud and Okada [19, 20] in the case of a polymor-
phic type discipline. The latter work was then extended first by Barbanera
and Fernandez [2, 3] and finally by Barbanera, Fernandez and Geuvers to
cover the whole calculus of constructions [4].

It turned out that recursors forsimpleinductive types could already
be handled, but arbitrary strict inductive types could not, prompting for
an extension of the general schema, which was reformulated for that pur-
pose by Blanqui, Jouannaud and Okada [9]. The new formulation was
much more expressive, and was indeed able to handled many more in-
ductive types than originally, by allowing for more expressive rulesat
the object levelof the calculus of constructions. The new version of the
schema was also much more flexible, but rules were still restricted to op-
erate on object-level terms. The schema was finally extended by Blanqui
in a series of papers in order to cover the entire calculus of inductive
constructions including strong elimination rules [5, 7, 6]. This required a
further generalization of the general schema, by allowing for recursive
rules on types.

The definition of the general schema used a precedence on higher-
order constants, as does Dershowitz recursive path ordering for first-
order terms [16]. This suggested generalizing this ordering to the higher-
order case, a work done by the last two authors in the case of a simple
type disciplines under the name of HORPO [21]. Comparing two terms
with the Higher Order Recursive Path Ordering starts by comparing their
types under a given well-founded quasi-ordering on types before to pro-
ceed recursively on the structure of the compared terms. There were two
variants of the subterm case: in the first, following the recursive path or-
dering tradition, a subterm of the lefthand side was compared with the
whole righthand side; in the second, a term belonging to the computabil-
ity closure of the lefthand side was used instead of a subterm. And in-
deed, a subterm is the basic case of the computability closure construc-
tion, whose fixpoint definition included various operations under which
Tait and Girard’s notion of computability is closed.

HORPO was then extended to cover the case of the calculus of con-
structions by Walukiewicz [30], and to use semantic interpretations of
terms instead of a bare precedence on function symbols by Borralleras
and Rubio [12]. If was finally improved as well by the two original au-
thors, who included the mechanism of the computability closure origi-
nating from [9], and allowed for a restricted polymorphic discipline [22].
The ordering and the computability closure definitions shared a lot in
common, raising some expectations for a simpler and yet more expres-
sive definition, as advocated in [10]. These expectations were partly met
in [11], where a new, syntax oriented recursive definition was given for
HORPO, instead of a pair of mutually inductive definitions for the com-

2

putability closure and the ordering itself. In contrast with the previous
definitions, bound variables were handled explicitely by the ordering, al-
lowing for arbitrary abstractions in the righthand sides.

A third, different line of work was started by van de Pol and Schwicht-
enberg, who wanted to (semi)-automate termination proofs of higher-
order rewrite rules based on higher-order pattern matching, a problem
generally considered as harder as the previous one [27, 29, 28]. Related
attempts with more automation appear in [25, 23], but were rather uncon-
clusive for practical applications. The general schema was then adapted
by Blanqui to cover the case of higher-order pattern matching [6]. Fi-
nally, Jouananud and Rubio showed how to turn any well-founded order
on higher-order terms including beta and eta, into an well-founded order-
ing for proving termination of such higher-order rules, and introduced a
very simple modification of HORPO to apply this result [24].

A fourth line of work started much later, by extending Aart and Giesl’s
dependency pairs method to the higher-order case. ... Blanqui, Sato, Sakai.

Finally, a last line of work addresses the question of proving termi-
nation of higher-order programs. This is of course a slightly different
question, usually adressed by using abstract interpretations. These inter-
pretations may indeed use the general schema or HORPO as a basic in-
gredient for comparing inputs of a recursive call to those of the call they
originate from. This line of work was started by ... Neil Jones, Podelski,
and later continued by Blanqui ...

We believe that our quest shall be shown to be useful for all these lines
of work, either as a building block, or as a guiding principle.

In this paper, we first slightly improve the definition of our ordering
in the very basic case of a simple type discipline, and rename it as the
Higher Order Computability Path Ordering. We then adress the treat-
ment of inductive types which remained ad’hoc sor far, therefore con-
cluding our quest thanks to the use of accessibility, a relationship which
was shown to generalize the notion of inductive type by Blanqui [6].

2 Higher-Order Algebras

Polymorphic higher-order algebras are introduced in [22]. Their purpose
is twofold: to define a simple framework in which many-sorted algebra
and typed lambda-calculus coexist; to allow for polymorphic types for
both algebraic constants and lambda-calculus expressions. For the sake
of simplicity, we will restrict ourselves to monomorphic types in this

3

presentation, but allow us for polymorphic examples. Carrying out the
polymorphic case is no more difficult, but surely more painful.

Given a setS of sort symbolsof a fixed arity, denoted bys : ∗n → ∗,
the set oftypesis generated by the constructor→ for functional types:

TS := s(T n
S) | (TS → TS)

for s : ∗n → ∗ ∈ S

Types arefunctionalwhen headed by the→ symbol, anddata types
otherwise.→ associates to the right. We useσ, τ, ρ, θ for arbitrary types.

Function symbols are meant to be algebraic operators equiped with
a fixed numbern of arguments (called thearity) of respective types
σ1, . . . , σn, and anoutput typeσ. LetF =

⊎
σ1,...,σn,σ Fσ1×...×σn→σ. The

membership of a given function symbolf toFσ1×...×σn→σ is called atype
declarationand writtenf : σ1 × . . .× σn → σ.

The setT (F ,X) of raw algebraicλ-termsis generated from the sig-
natureF and a denumerable setX of variables according to the grammar:

T := X | (λX : TS .T) | @(T , T) | F(T , . . . , T).

The raw termλx : σ.u is anabstractionand@(u, v) is an application.
We may omitσ in λx : σ.u and write@(u, v1, . . . , vn) or u(v1, . . . , vn),
n > 0, omitting applications.Var(t) is the set of free variables oft. A
raw termt is groundif Var(t) = ∅. The notations shall be ambiguously
used for a list, a multiset, or a set of raw termss1, . . . , sn.

Raw terms are identified with finite labeled trees by consideringλx :
σ.u, for each variablex and typeσ, as a unary function symbol takingu
as argument to construct the raw termλx : σ.u. Positionsare strings of
positive integers.t|p denotes thesubtermof t at positionp. We uset� t|p
for the subterm relationship. The result of replacingt|p at positionp in t
by u is writtent[u]p.

An environmentΓ is a finite set of pairs written as{x1 : σ1, . . . , xn :
σn}, wherexi is a variable,σi is a type, andxi 6= xj for i 6= j. Var(Γ) =
{x1, . . . , xn} is the set of variables ofΓ . Our typing judgements are writ-
ten asΓ `Σ s : σ. A raw terms has typeσ in the environmentΓ if the
judgementΓ ` Σ s : σ is provable in the inference system given at
Figure 1. An important property of our type system is that a raw term
typable in a given environment has a unique type. Typable raw terms are
calledterms. We categorize terms into three disjoint classes:

1. Abstractionsheaded byλ;

4

Variables:
x : σ ∈ Γ

Γ Σ̀ x : σ

Functions:
f : σ1 × . . .× σn → σ ∈ F

Γ Σ̀ t1 : σ1 . . . Γ Σ̀ tn : σn

Γ Σ̀ f(t1, . . . , tn) : σ

Abstraction:
Γ · {x : σ} Σ̀ t : τ

Γ Σ̀ (λx : σ.t) : σ → τ

Application:
Γ Σ̀ s : σ → τ Γ Σ̀ t : σ

Γ Σ̀ @(s, t) : τ

Fig. 1.The type system for monomorphic higher-order algebras

2. Prealgebraicterms headed by a function symbol, assuming (for the
moment) that the output type off ∈ F is a base type;

3. Neutral terms are variables or headed by an application.

A substitutionσ of domainDom(σ) = {x1, . . . , xn} is a set of triples
σ = {Γ1 `Σ x1 7→ t1, . . . , Γn `Σ xn 7→ tn}, such thatxi andti have
the same type in the environmentΓi. Substitutions are extend to terms by
morphism, variable capture being avoided by renaming bound variables
when necessary. We use postfixed notation for substitution application.

A rewrite rule is a tripleΓ `Σ l → r such thatVar(r) ⊆ Var(l), and
Γ `Σ l : σ andΓ `Σ r : σ for some typeσ. Given a set of rulesR, for
example the beta- and eta- rules of the lambda-calculus,

s
p−→

l→r∈R
t iff s|p = lγ andt = s[rγ]p for some substitutionγ

The notationl → r ∈ R assumes that the variables bound inl, r (resp.
the variables free inl, r) are renamed away from the free variables ofs[]p
(resp. the bound variables ofs[]p), to avoid captures.

For simplicity, typing environments are omitted in the rest of the pa-
per.

A higher-order reduction ordering� is a well-founded ordering of
the set of typable terms which is

(i) monotonic: s � t implies thatu[s] � u[t];
(ii) stable: s � t implies thatsγ � tγ for all substitutionγ.
(iii) functional: s−→β ∪−→η t impliess � t,
In [22], we show that the rewrite relation generated byR∪{beta,eta}

can be proved by simply checking thatl > r for all l → r ∈ R with
some higher-order reduction ordering.

5

3 The Higher-Order Computability Path Ordering

HOCPO is generated from three basic ingredients: atype ordering; a
precedenceon functions symbols; and astatusfor the function symbols.
Accessibility is a new ingredient originating in inductive types, while the
other three were already needed for defining HORPO. We describe these
ingredients before defining the higher-order computability path ordering.
We define the ordering in two steps, accessibility being used in the sec-
ond step only. The first ordering is therefore simpler, but the second is
much more expressive.

3.1 Basic ingredients

– A quasi-ordering on types≥TS calledthe type orderingsatisfying the
following properties:
1. Well-foundedness: >TS is well-founded;
2. Arrow preservation: τ → σ =TS α iff α = τ ′ → σ′, τ ′ =TS

τ andσ =TS σ′;
3. Arrow decreasingness: τ → σ >TS α implies σ ≥TS α or α =

τ ′ → σ′, τ ′ =TS τ andσ >TS σ′;
4. Arrow monotonicity: τ ≥TS σ impliesα → τ ≥TS α → σ andτ →

α ≥TS σ → α;

5. Stability:
(i) σ >TS τ impliesσξ >TS τξ for all type substitutionξ;
(ii) σ =TS τ impliesσξ =TS τξ for all type substitutionξ.

– aprecedence≥F on symbols inF∪{@}, with f >F @ for all f ∈ F .
– a status for symbols inF ∪ {@} with @ ∈ Mul.

We recall important properties of the type ordering [22]:

Lemma 1. Assumingσ =TS τ , σ is a data type iffτ is a data type.

Lemma 2. Assumeσ1 → . . . → σm → σ ≥TS τ1 → . . . → τn → τ ,
whereσ, τ are data types. Then,σ ≥TS τ andσi1 =TS τ1, . . . , σin =TS τn

for some subsequencei1, . . . , in of [1..m] which we choose minimal for
the lexicographic comparison of strings of integers. We shall writeτ ⊆ σ.

Proof. Straightforward induction onm. 2

Lemma 3. Let≥TS be a quasi-ordering on types such that>TS is well-
founded, arrow monotonic and arrow preserving. Then, the relation≥→

TS
= (≥TS ∪�→)∗ is a well-founded quasi-ordering on types extending
≥TS and�→, whose equivalence coincides with=TS .

6

3.2 Notations

Our ordering notations are as follows:

– s�X t for the main ordering, with a finite set of variablesX ⊂ X
and the convention thatX is omitted when empty;

– s : σ�X
TS t : τ for s�X t andσ ≥TS τ ;

– l : σ�TS r : τ as initial call for eachl → r ∈ R;
– s � t is a shorthand fors � u for all u ∈ t.

We can now introduce the definition of HOCPO.

3.3 Ordering definition

Definition 1. s : σ�X t : τ iff either:

1. s = f(s) with f ∈ F and either of
(a) t ∈ X
(b) t = g(t) with f >F g ∈ F ∪ {@} ands�X t
(c) t = g(t) with f =F g ∈ F , s�X t ands(�TS)statf t

(d) t = λy : β.w ands�X∪{z} w{y 7→ z} for z : β fresh
(e) u�X

TS t for someu ∈ s
2. s = @(u, v) and either of

(a) t ∈ X
(b) t = λy : β.w ands�X∪{z} w{y 7→ z}
(c) t = @(u′, v′) and{u, v}(�TS)mul{u′, v′}
(d) u�X

TS t or v�X
TS t

(e) u = λx : α.w andw{x 7→ v}�X t
3. s = λx : α.u and either of

(a) t ∈ X
(b) t = λy : β.w, α >TS β ands�X w{y 7→ z} for z : β fresh
(c) t = λy : β.w, α =TS β andu{x 7→ z}�X w{y 7→ z} for z : β fresh
(d) u{x 7→ z}�X

TS t for z : α fresh
(e) u = @(v, x), x 6∈ Var(v) andv�X t

This new definition schema, which appeared first in [11], incorporates
two major innovations with respect to the version of HORPO defined
in [22]. The first is that terms can be ordered without requiring that their
types are ordered accordingly. This will be the case whenever we can
conclude that some recursive call is terminating by using computability
arguments rather than an induction on types. Doing so, the ordering in-
herits directly much of the expressivity of the computability closure. The

7

second is the annotation of the ordering by the set of variablesX that
were originally bound in the righthand side term, but have become free
when taking some subterm. This allows rules 1d and 2b to pull out ab-
stractions from the righthand side regardless of the lefthand side term,
meaning that abstractions are smallest in the precedence. An innovation
with respect to [11] is rule 3b, which compares abstractions according
to their respective types. The precedence on function symbols becomes
now total when>F is total onF .

One may wonder why Case 1c uses recursively the weaker compar-
ison s(�TS)statf t rather than the stronger ones(�X

TS)statf t. The reason
is that the latter would not result into a well-founded ordering as shown
now:

Example 1.Non termination.
Let a be a type, and{f : a × a ⇒ a, g : (a → a) ⇒ a} be the sig-

nature. Let us consider the following non-terminating rule (its righthand
side beta-reduces to its lefthand side in one beta-step):

f(g(λx.f(x, x)), g(λx.f(x, x))) → @(λx.f(x, x), g(λx.f(x, x)))

Let us assume thatf >F g and thatf has a multiset status. We now show
that the ordering modified as suggested above succeeds with the goal

1. f(g(λx.f(x, x)), g(λx.f(x, x)))�TS @(λx.f(x, x), g(λx.f(x, x))).

Since type checks are trivial, we will omit them, although the reader will
note that there are very few of them indeed. Our goal yields two subgoals
by Case 1b:

2. f(g(λx.f(x, x)), g(λx.f(x, x)))� λx.f(x, x) and
3. f(g(λx.f(x, x)), g(λx.f(x, x)))� g(λx.f(x, x)).

Subgoal 2 yields by Case 1d

4. f(g(λx.f(x, x)), g(λx.f(x, x)))�{z} f(z, z) which yields by Case 1c
5. f(g(λx.f(x, x)), g(λx.f(x, x)))�{z} z twice, solved by Case 1a and
6. {g(λx.f(x, x)), g(λx.f(x, x))}(�{z}

TS){z, z} solved by Case 1a applied
twice.

We are left with subgoal 3 which yields by Case 1b

7. f(g(λx.f(x, x)), g(λx.f(x, x)))� λx.f(x, x), which happens to be
the already solved subgoal 2, and we are done.

8

With the definition we gave, subgoal 6 becomes:
{g(λx.f(x, x)), g(λx.f(x, x))}(�TS ∪�

X
acc)mul{z, z} and does not suc-

ceed with�TS since the set of previously bound variables has been made
empty

The reader can check that chosing the precedenceg >F f yields
exactly the same result in both cases. 2

We give now an example of use of this new definition with the induc-
tive type of Brouwer’s ordinals, whose constructorlim takes an infinite
sequence of ordinals to build a new, limit ordinal, hence admits a func-
tional argument of type IN→ Ord, in whichOrd occurs positively. As a
consequence, the recursor admits a more complex structure than that of
natural numbers, with an explicit abstraction in the righthand side of the
rule for lim. The strong normalization proof of such recursors is known
to be quite hard.

Example 2.Brouwer’s ordinals.
0 : Ord S : Ord ⇒ Ord lim : (IN → Ord) ⇒ Ord
n : IN F : IN → Ord
rec : Ord × α × (Ord → α → α) × ((IN → Ord) → (IN → α) →
α) ⇒ α

1. rec(lim(F), U, X, W)�TS @(W, F, λn.rec(@(F, n), U, X,W)) yields
4 subgoals according to Case 1b:

2. α ≥TS α which is trivially satisfied, and
3. rec(lim(F), U, X, W)�{W, F, λn.rec(@(F, n), U, X,W)}which sim-

plifies to:
4. rec(lim(F), U, X, W)�W which succeeds by Case 1e,
5. rec(lim(F), U, X, W)� F , which generates by Case 1e the compar-

ison lim(F)�TS F which fails sincelim(F) has a type which is
strictly smaller than the type ofF .

6. rec(lim(F), U, X, W)� λn.rec(@(F, n), U, X, W) which yields by
Case 1d

7. rec(lim(F), U, X, W)�{n} rec(@(F, n), U, X, W) which yields by
Case 1c

8. {lim(F), U, X, W}(�TS)mul{@(F, n), U, X, W}, which reduces to
9. lim(F)�TS @(F, n), whose type comparison succeeds, yielding by

Case 1b
10. lim(F)� F which succeeds by Case 1e, and
11. lim(F)� n which fails because track ofn has been lost!

9

Solving this example requires therefore: first, to access directly the
subtermF of rec(lim(F), U, X, W) in order to avoid the type compari-
son forlim(F) andF when checking whetherrec(lim(F), U, X, W)�{W, F, λn.rec(@(F, n), U, X, W)};
and second, to keep track ofn when comparinglim(F) andn.

3.4 Properties of HOCPO

3.5 Accessibility

While keeping the same type structure, we make use here of a fourth in-
gredient, theaccessibilityrelationship for date types introduced in [5].
This will allows us to solve Brouwer’s example, as well as other exam-
ples of non-simple inductive types.

We say that a data typeσ occurspositively(resp.negatively) in a type
τ if τ is a data type (resp.τ is a data type non equivalent toσ in =TS), or if
τ = ρ → θ andσ occurs positively (resp. negatively) inθ and negatively
(resp. positively) inρ.

A setAcc(f) of accessible arguments for each function declarationf :
σ1 . . . σn → σ such thatσ is a data type :i ∈ [1..n] is said to beaccessible
if all data types occuring inσi are smaller thanσ in the quasi-order≥TS ,
and in case of equivalence (with=TS), they must occur positively inσi.
Note that the application operator@ : (α → β) × α → β can be seen
as a function symbol with an empty set of accessible positions, since its
output typeτ may occur negatively in any of its two argument typesσ
andσ → τ .

A term u is accessiblein f(s), f ∈ F , iff there existsi ∈ Acc(f)
such thatu = si or u is accessiblein si. It is accessible in a setv iff it is
accessible in somev ∈ v, in which case we writes �accu.

We can now obtain a more elaborated ordering as follows:

Definition 2. s : σ�X t : τ iff either:

1. s = f(s) with f ∈ F and either of
(a) t ∈ X
(b) t = g(t) with f >F g ∈ F ∪ {@} ands�X t
(c) t = g(t) with f =F g ∈ F , s�X t ands(�TS ∪�

X
acc)statf t

(d) t = λy : β.w ands�X∪{z} w{y 7→ z} for z : β fresh
(e) u�X

TS t for someu ∈ s

(f) u�X
TS t for someu such thats �accu

2. s = @(u, v) and either of
(a) t ∈ X

10

(b) t = λy : β.w ands�X∪{z} w{y 7→ z}
(c) t = @(u′, v′) and{u, v}(�TS)mul{u′, v′}
(d) u�X

TS t or v�X
TS t

(e) u = λx : α.w andw{x 7→ v}�X t
3. s = λx : α.u and either of

(a) t ∈ X
(b) t = λy : β.w, α >TS β ands�X w{y 7→ z} for z : β fresh
(c) t = λy : β.w, α =TS β andu{x 7→ z}�X w{y 7→ z} for z : β fresh
(d) u{x 7→ z}�X

TS t for z : α fresh
(e) u = @(v, x), x 6∈ Var(v) andv�X t

The only differences with the previous definition are in Cases 1c of
the main definition which uses an additional ordering�X

acc based on the
accessibility relationship�acc to compare subterms headed by equivalent
function symbols, and in Case 1f which uses the same relationship�acc to
reach deep subterms that could not be reached otherwise. Let now

u :C σ → σ�X
acc t :C τ → τ iff

σ ≥TS τ, τ ⊆ σ and

1. u �acc t, or

2. t = @(v, w), u �accv andu�X
TS w

We could of course strengthen�X
acc by giving additional cases, for

handling abstractions and function symbols on the right. We do not feel
that this is worth it, and leave it as an interesting, albeit non entirely trivial
exercise for the interested reader.

We now revisit Brouwer’s example, whose strong normalization proof
is checked automatically by this new version of the ordering:

Example 3.Brouwer’s ordinals.
0 : Ord S : Ord ⇒ Ord lim : (IN → Ord) ⇒ Ord
n : IN F : IN → Ord
rec : Ord × α × (Ord → α → α) × ((IN → Ord) → (IN → α) →
α) ⇒ α

We skip goals 2,3,4 which do not differ from the previous attempt.

1. rec(lim(F), U, X, W)�TS @(W, F, λn.rec(@(F, n), U, X,W)) yields
4 subgoals according to Case 1b:

5. rec(lim(F), U, X, W)� F , which succeeds now by Case 1f,

11

6. rec(lim(F), U, X, W)� λn.rec(@(F, n), U, X, W) which yields by
Case 1d

7. rec(lim(F), U, X, W)�{n} rec(@(F, n), U, X, W) which yields goals
8 and 12 by Case 1c

8. {lim(F), U, X,W}(�TS ∪�
{n}
acc)mul{@(F, n), U, X, W}, which reduces

to
9. lim(F)�{n}

acc @(F, n) which checks first thatOrd =TS Ord, and then
yields successively by Case 2 of�{n}

acc :
10. lim(F) �accF which succeeds sinceF is accessible inlim(F), and
11. lim(F)�{n}

TS n which succeeds by Case 1a of the main definition (us-
ing the type comparisonOrd ≥TS IN). Our remaining goal

12. rec(lim(F), U, X, W)�{n}{@(F, n), U, X, W}
decomposes into three goals trivially solved by Case 1e, that is

13. rec(lim(F), U, X, W)�{n}{U,X, W}, and one additional goal
14. rec(lim(F), U, X, W)�{n} @(F, n) which yields two goals by Case 1b
15. rec(lim(F), U, X, W)�{n} F , which succeeds by Case 1f, and
16. rec(lim(F), U, X, W)�{n} n which succeeds by Case 1a, therefore

ending the computation.

4 Ordering properties

Contrasting with our previous proposal made of an ordering part and
a computability closure part, our new ordering is a decidable inductive
definition: s�X t and s�X

acc t are corecursive definitions by induction
on the triple(n, s, t), using the order(>IN ,−→β ∪�, �)lex, wheren is
the number of abstractions int. The quadratic time decidability follows
when ruling out Case 2e of the definition of�X , since all operations
used are clearly of linear time complexity. The fact that�X and�X

acc are
quadratic comes from those cases that recursively compare one side with
each subterm of the other side. This assumes of course that precedence
and statuses are given, since inferring them yields NP-completeness as is
well-known for the recursive path ordering on first-order terms.

We proceed proving the various needed properties of our orderings.
All proofs are routine.

Lemma 4. Assume thatu�X v is a successful comparison originating
from a comparison of the forms� t. ThenVar(u)∩X = ∅ andVar(v) ⊆
Var(u) ∪X.

Lemma 5 (Stability).� is stable.

12

Lemma 6 (Renaming).If s�X t and ξ : X → X is an injection such
thatXξ ∩ Var(s) = ∅, thensξ�Xξ tξ.

A weakening rule could be added to the ordering to ease the com-
parisons by conctructing the needed setX rather than guessing it. A
strengthening rule could also be added to eliminate useless variables from
X.

Lemma 7 (Monotonicity). �X
TS is monotonefor candidate terms and

for terms.

Lemma 8 (Groundness).Assume thats : σ with σ ground ands�X
TS t :

τ with∀x : θ ∈ X, thenθ is ground. Then, for any successful comparison
u : δ�Y v : ρ originating froms�X

TS t, thenδ andρ are ground.

Proof. First,τ is ground by property of>TS . The proof is then by induc-
tion on|s|+ |t|.

Lemma 9. Assume thatf(s)�X u. Thenf(s)� λX.u.

This Lemma does clearly not hold for the ordering�X
TS . This will be

a major source of difficulties in our strong normalization proof.

Proof. Simple induction on the size ofX and use of Case 1d.

5 Strong normalization

Theorem 1. (�TS)
+ is a decidable higher-order reduction ordering.

Since�TS is not transitive, this result implies that it is possible (and
possibly useful) to replace the recursive calls(�TS ∪�

X
acc)statf t in Case 1c

of the definition of�X
TS by the more expressive ones((�TS ∪�

X
acc)

+)statf t,
to the price of losing decidability of the relation�TS . In practice, we can
approximate this more expressive formulation without losing decidabil-
ity, for example by using the recursive calls(�TS ∪�

X
acc�TS)statf t.

We are left with strong normalization, and proceed as in [22] and [11].
One proof is however quite different, that of computability property (v).

5.1 Candidate Terms

Because our strong normalization proof is based on Tait and Girard’s
reducibility technique, we need to associate to each typeσ, actually to
the equivalence class ofσ modulo=TS , a set of terms[[σ]] closed under

13

term formation. In particular, ifs ∈ [[σ → τ]] andt ∈ [[σ]], then the raw
term @(s, t) must belong to the set[[τ]] even if it is not typable, which
may arise in caset does not have typeτ but τ ′ =TS τ . Modifying the
type system to type terms up to type equivalence=TS is routine [22]. We
use the notationt :C σ to indicate that the candidate termt has typeσ.

5.2 Candidate interpretations

In the coming sections, we consider the well-foundedness of the strict
ordering(�TS)

+, that is, equivalently, the strong normalization of the
rewrite relation defined by the ruless−→ t such thats�TS t. Note that
the setX of previously bound variables is empty. We indeed have failed
proving that the ordering(�X

TS)
+ is well-founded for an arbitraryX, and

we think that itis not, since it cannot be used recursively in Case 1c of
our definitions, as shown in Section 3. As usual in this context, we use
Tait and Girard’s computability predicate method, with a definition of
computability for candidate terms inspired from [22, 5].

Definition 3. The family ofcandidate interpretations{[[σ]]}σ∈TS is a fam-
ily of subsets of the set of candidates whose elements are the least sets
satisfying the following properties:

(i) If σ is a data type ands :C σ is neutral, thens ∈ [[σ]] iff t ∈ [[τ]] for
all termst such thats�TS t :C τ ;

(ii) If σ is a data type ands = f(s) :C σ is prealgebraic withf :
σ1 . . . σn ⇒ σ′ ∈ F and σ = σ′ξ, thens ∈ [[σ]] iff si ∈ [[σiξ]] for all
i ∈ Acc(f) andt ∈ [[τ]] for all termst such thats�TS t :C τ ;

(iii) If σ is the functional typeρ → τ thens ∈ [[σ]] iff @(s, t) ∈ [[τ]]
for all t ∈ [[ρ]];

A candidate terms of typeσ is said to becomputableif s ∈ [[σ]]. A
vectors of terms of typeσ is computable iff so are all its components.
A (candidate) term substitutionγ is computable if all candidate terms in
{xγ | x ∈ Dom(γ)} are computable.

Our definition of candidate interpretations is based on a lexicographic
combination of an induction on the well-founded type ordering>→

TS (which
includes>TS), and a fixpoint computation for data types. This is so since

(i) the type of the righthand side term has necessarily decreased strictly
in Case 1d: lets : σ andu{y : β 7→ z : β} : τ bne the terms compared in
Case 1d, and assume thats : σ�X

TS t = λy : β : u is the originating com-
parison, henceσ ≥TS β → τ ; by Lemma 3, we getσ >TS τ , showing
our claim;

14

(ii) the type of the righthand side term has not increased in Case 1a,
thanks to the type check.

5.3 Computability properties

We start with a few elementary properties stated without proofs:

Lemma 10. Assumeσ =TS τ . Then,[[σ]] = [[τ]].

Lemma 11. Let s = @(u, v) :C τ . Thens is computable ifu andv are
computable.

Lemma 12. Let s :C σ ∈ T min
S be a strongly normalizable term. Thens

is computable.

Lemma 13. Assume thats is computable and strongly normalizable and
thatf(s) �accv for somef ∈ F ∪ {@}. Thenv is computable.

We now give the fundamental properties of the interpretations. Note
that we use our term categorisation to define the computability predi-
cates, and that this is reflected in the computability properties below.

(i) Every computable term is strongly normalizable for�TS ;
(ii) If s is a computable candidate term such thats�TS t, then t is

computable;
(iii) A neutral terms is computable ifft is computable for all termst

such thats�TS t;
(iv) An abstractionλx : σ.u is computable iffu{x 7→ w} is com-

putable for all computable termsw :C σ;
(v) A prealgebraic terms = f(s) :C σ such thatf : σ → τ ∈ F is

computable ifs :C σ is computable.
All proofs are adapted from [22], with some additional difficulties.

The first four properties are proved together.

Proof. Properties (i), (ii), (iii), (iv). Note first that the only if part of prop-
erties (iii) and (iv) is property (ii). We are left with (i), (ii) and the if parts
of (iii) and (iv) which spell out as follows:

Given a typeσ, we prove by induction on the definition of[[σ]] that
(i) Givens :C σ ∈ [[σ]], thens is strongly normalizable;
(ii) Given s :C σ ∈ [[σ]] such thats�TS t for somet :C τ , thent ∈ [[τ]];
(iii) A neutral candidate termu :C σ is computable ifw :C θ ∈ [[θ]]

for all w such thatu�TS w; in particular, variables are computable; note
also thatw cannot be obtained by Case 1a;

15

(iv) An abstractionλx : α.u :C σ is computable ifu{x 7→ w} is
computable for allw ∈ [[α]].

We prove each property in turn, distinguishing in each case whether
σ is a data or functional type.

(ii) 1. Assume thatσ is a data type. The result holds by definition of the
candidate interpretations.

2. Letσ = θ → ρ. By arrow preservation and decreasingness prop-
erties, there are two cases:
(a) ρ ≥TS τ . Let y :C θ ∈ X . By induction hypothesis (iii),y ∈

[[θ]], hence@(s, y) ∈ [[ρ]] by definition of[[σ]]. Since@(s, y) :C
ρ�TS t :C τ by case 2d of the definition,t is computable by
induction hypothesis (ii).

(b) τ = θ′ → ρ′, with θ =TS θ′ andρ ≥TS ρ′. Sinces is com-
putable, givenu ∈ [[θ]], then@(s, u) ∈ [[ρ]]. By monotonicity,
@(s, u)�X

TS @(t, u). By induction hypothesis (ii)@(t, u) ∈
[[ρ′]]. Since[[θ]] = [[θ′]] by Lemma 10,t is computable by defi-
nition of [[τ]].

(i) 1. Assume first thatσ is a data type. Lets�TS t. By definition of
[[σ]], t is computable, hence is strongly normalizable by induction
hypothesis. It followss is strongly normalizable in this case.

2. Assume now thatσ = θ → τ , and lets0 = s :C σ = σ0�TS s1 :C
σ1 . . .�TS sn :C σn�TS . . . be a derivation issuing froms. There-
fore si ∈ [[σi]] by induction oni, using the assumption thats is
computable fori = 0 and otherwise by the already proved prop-
erty (ii). Such derivations are of the following two kinds:
(a) σ >TS σi for somei, in which casesi is strongly normalizable

by induction hypothesis (i). The derivation issuing froms is
therefore finite.

(b) σi =TS σ for all i, in which caseσi = θi → τi with θi =TS θ.
Then,{@(si, y :C θ) :C τi}i is a sequence of candidate terms
which is strictly decreasing with respect to�TS by monotonic-
ity. Sincey :C θ is computable by induction hypothesis (iii),
@(si, y) is computable by definition of[[τi]]. By induction hy-
pothesis (i), the above sequence is finite, implying that the
starting sequence itself is finite.

Therefore,s is strongly normalizing as well in this case.
(iii) 1. Assume thatσ is a data type. The result holds by definition of[[σ]].

2. Assume now thatσ = σ1 → σ2. By definition of [[σ]], u is com-
putable if the neutral term@(u, u1) is computable for allu1 ∈

16

[[σ1]]. By induction hypothesis,@(u, u1) is computable iff all its
reductsw are computable.
Sinceu1 is strongly normalizable by induction hypothesis (i), we
show by induction on the pair(u1, |w|) ordered by(�TS , >IN)
that all reductsw of @(u, u1) are computable. Sinceu is neutral,
hence is not an abstraction, there are three possible cases:
(a) @(u, u1)�TS w by Case 2d, thereforeu �accv�TS w or u1 �

accv�TS w for somev. Since the type ofw is smaller or equal
to the type of@(u, u1), it is strictly smaller than the type of
u, hencew 6= u. Therefore, in casev = u, w is a reduct of
u, hence is computable by assumption. Otherwise,v is u1 or a
minimal-type subterm ofu1, in which case it is computable by
assumption onu1 and Lemma 12, or a minimal-type subterm
of u in which caseu�TS v by Case 1e or 2d since the neutral
term u is not an abstraction, and thereforev is computable
by assumption. It follows thatw is computable by induction
hypothesis (ii).

(b) @(u, u1)�TS w by Case 2c, thereforew = @(v, v1) and also
{u, u1}(�TS)mul{w1, w2}. For type reason, there are again two
cases:
• w1 and w2 are strictly smaller thanu, u1, in which case

w1 andw2 are computable by assumption or induction hy-
pothesis (ii), hencew is computable by Lemma 11.

• u = w1 andu1�TS w2, implying thatw2 is computable by
assumption and induction hypothesis (ii). We conclude by
induction hypothesis since(u1,)(�TS , >IN)lex(w2,).

(c) @(u, u1)�TS w by Case 2b, hencew = λx : β.w′, x 6∈ Var(w′)
and@(u, u1)�w′. By induction hypothesis (iv) and the fact
thatx 6∈ Var(w′), w is computable ifw′ is computable. Since
the type ofλx : β.w′ is strictly bigger than the type ofw′,
we get@(u, u1)�TS w′. We conclude by induction hypothe-
sis, since(u1, λx.w′)(�TS , >IN)lex(u1, w

′).
(iv) By definition of [[σ]], the abstractionλx : α.u :C σ is computable if

the term@(λx.u, w) is computable for an arbitraryw ∈ [[α]].
Since variables are computable by induction hypothesis (iii),u =
u{x 7→ x} is computable by assumption. By induction hypothe-
sis (i), u andw are strongly normalizable. We therefore prove that
@(λx.u, w) is computable by induction on the pair(u, w) compared
in the ordering(�TS ,�TS)lex.

17

Since@(λx.u, w) is neutral, we need to show that all reductsv of
@(λx.u, w) are computable. We consider the four possible cases in
turn:
1. If @(λx.u, w)�TS v by Case 2d, there are two cases:

- if w�TS v, we conclude by induction hypothesis (ii) thatv is
computable.
- if λx.u�TS v, thenλx.u�TS v since the type ofλx.u must be
strictly bigger than the type ofv. There are two cases depending
on the latter comparison.
If the comparison is by Case 3d, thenu�TS v, and we conclude
by induction hypothesis (ii) thatv is computable.
If the comparison is by Case 3c, thenv = λx : α′.u′ with α =TS
α′. By stability,u{x 7→ w}�TS u′{x 7→ w}, henceu′{x 7→ w}
is computable by property (ii) for an arbitraryw ∈ [[α]] = [[α′]] by
lemma 10. It follows thatv is computable by induction hypothe-
sis, since(u,)(�TS ,�TS)lex(u

′,).
2. If @(λx.u, w)�TS v by case 2c, thenv = @(v1, v2), and by defi-

nition of�, {λx.u, w}(�TS)mul{v1, v2}. There are three cases:
- v1 = λx.u andw�TS v2. Thenv2 is computable by induction hy-
pothesis (ii) and, sinceu{x 7→ v2} is computable by the main as-
sumption,@(v1, v2) is computable by induction hypothesis, since
(λx.u, w)(�TS ,�TS)lex(λx.u, v2).
- Terms in{v1, v2} are reducts ofu andw. Therefore,v1 andv2

are computable by induction hypothesis (ii) andv is computable
by Lemma 11.
- Otherwise, for typing reason,v1 is a reduct ofλx.u of the form
λx.u′ with u�TS u′, andv2 is a reduct of the previous kind. By
the main assumption,u{x 7→ v′′} is computable for an arbitrary
computablev′′. Besides,u{x 7→ v′′}�TS u′{x 7→ v′′} by stability.
Thereforeu′{x 7→ v′′} is computable for an arbitrary computable
v′′ by induction hypothesis (ii). Then@(v1, v2) is computable by
induction hypothesis, since(u,)(�TS ,�TS)lex(u

′,).
3. If @(λx.u, w)�TS v by Case 2b, thenv = λx.v′, x 6∈ Var(v′)

and@(λx.u, w)�TS v′. Sinceλx.v′�TS v′ by Case 3d,v′ is com-
putable by induction hypothesis. Sincex 6∈ Var(v′), it follows
thatλx.v′ is computable.

4. If @(λx.u, w)�TS v by case 2e, thenu{x 7→ w}�horpo v. By as-
sumption,u{x 7→ w} is computable, and hencev is computable
by property (ii). 2

18

We are left with property (v) whose proof differs substantially from [22]
and even from [11] and needs some preparation.

The interpretation order on candidate terms. As already explained, each data
type interpretation[[σ]] is the fixpoint of a monotone functionF on the
powerset of the set of terms. Hence, for every computable terms ∈ [[σ]],
there exists some smallest ordinalo(s) such thats ∈ F o(s)(∅), whereF a

is thea transfinite iteration ofF . The relations =σ u iff o(s) > o(u),
is therefore a well-founded ordering of the set of computable candidate
terms. This relation can itself be extended to an ordering of the set of
computable candidate terms

s :C σ → σ = t :C τ → τ
iff σ ≥TS τ, τ ⊆ σ, and for all computableu :C σ andv :C τ ⊆ u

@(s, u) =σ @(t, v)

Lemma 14. = is a well-founded ordering of the set of computable can-
didate terms.

Proof. This follows easily because any computable candidate terms :C
σ → σ can be lifted to a computable candidate term@(s, x : σ) :C σ,
since variables are computable. 2

Lemma 15. Assume thats :C σ → σ and t :C τ → τ are computable
candidate terms such thats�TS t. Thens = t.

Proof. By definition of�TS , σ → σ ≥TS τ → τ , and by Lemma 2,
σ ≥TS τ andτ ⊆ σ. An easy induction on the length ofσ shows that
@(s, u)�TS @(t, v). Since@(s, u) and @(t, v) cannot be abstractions,
@(s, u) =σ @(t, v) by definition of the interpretations. The result fol-
lows. 2

Lemma 16. Let s = f(s) � u = h(u) :C σ → σ�X
acc t :C τ → τ where

σ andτ are data types andVar(u) ∩X = ∅. Assume that the candidate
termu′γ is computable for all termsu′ and computable substitutionsγ
such thats�X u′ andDom(γ) ⊆ X, a property called (IH), and thatt′ =
g(t′) is computable for all computable vectors of candidate termst′ such
that (f, s : θ)(>F , =statf)lex(g, t′ : ρ), a property called (OH). Then,tγ
is computable andu = tγ.

Proof. By definitionu�X
acc t, σ ≥TS τ , τ ⊆ σ and

19

1. Case 1:u �acct. By (IH), u is computable, hencet is computable
by Lemma 13. Further,u =σ t by definition of the interpretations.
SinceVar(t) ⊆ Var(u) andVar(X) ∩ Var(u) = ∅, we gettγ = t
and we are done.

2. Case 2:t = @(v, w), u �accv andv�X
TS w. By Lemma 13 and def-

inition of the interpretations as before,v = vγ is computable and
u =σ vγ. Froms�u�accv�X

TS w, we gets�X
TS w by Case 1f, hence

wγ is computable by assumption (IH). Now, sinceu =σ vγ andwγ
is computable, then, by definition of interpretations,tγ = @(vγ, wγ)
is a computable candidate term andu = tγ. 2

We are now ready for the proof of our last computability property.

Proof. Property (v).
Sinces is a multiset of computable terms by assumption,�TS is well-

founded on the set of reducts of terms ins by Properties (i) and (ii). We
use this remark to build our outer induction argument: we prove thatf(s)
is computable by induction on the pair(f, s : σ) ordered lexicographi-
cally by (>F , =statf)lex. This is our outer induction hypothesis (OH).

Sincef(s) is prealgebraic, it is computable if every subterm at an
accessible position is computable (which follows by assumption) and
reductst of s are computable.

Since�TS is defined in terms of�X , we actually prove by an in-
ner induction on the recursive definition of�X the more general in-
ner statement (IH) thatuγ is computable for an arbitrary termu such
that f(s)�X u and computable substitutionγ of domainX such that
X ∩ Var(s) = ∅.

Since the identity substitution is computable by property (iii), our in-
ner induction hypothesis (IH) implies our outer induction hypothesis.

1. If f(s)�X u by Case 1a, Thenu ∈ X and we conclude by assump-
tion onγ thatuγ is computable.

2. If f(s)�X u by Case 1b, thenu = g(u) with g ∈ F ∪ {@} and
s�X u. By the inner induction hypothesis (IH),uγ is computable.
Sincef >F g, we conclude thatuγ is computable by (OH).

3. If f(s)�X u by case 1c, thenu = g(u), f =F g, s�X u and finally
s (�TS ∪ �

X
acc)stat u. By the inner induction hypothesis,uγ is com-

putable. By Lemmas 15 and 16,s =statf uγ. Thereforeuγ = f(uγ)
is computable by the outer induction hypothesis.

4. If f(s)�X u by case 1d, thenu = λx.v with x 6∈ Var(s) andf(s)�X∪{x} v.
By (IH), v(γ ∪ {x 7→ w}) is computable for an arbitrary computable

20

w. Assuming without loss of generality thatx 6∈ Ran(γ), thenv(γ ∪
{x 7→ w}) = (vγ){x 7→ w}. Therefore,uγ = λx.vγ is computable
by computability property (iv).

5. If f(s)�X u by Case 1e, thent�X
TS u for somet ∈ s. By assumption

on s, t is computable. Sincet is a subterm ofs, Var(t) ⊆ Var(s),
henceVar(t) ∩ X = ∅, implying that tγ = t and tγ is therefore
computable. By property (iv)λX.t is computable. By mononicity,
λX.t�TS λX.u, henceλX.u is computable by Property (ii), anduγ
is computable by Property (iv).

6. If f(s)�X u by Case 1f, thens �acct�TS u. By Lemma 13,t is com-
putable. By definition of�acc, Var(t) ⊆ Var(s), hence the proof can
proceed as previously. 2

5.4 Strong normalization proof

We are now ready for the strong normalization proof.

Lemma 17. Letγ be a type-preserving computable substitution andt be
an algebraicλ-term. Thentγ is computable.

Proof. The proof proceeds by induction on the size oft.

1. t is a variablex. Thenxγ is computable by assumption.
2. t is an abstractionλx.u. By computability property (v),tγ is com-

putable if uγ{x 7→ w} is computable for every well-typed com-
putable candidate termw. Taking δ = γ ∪ {x 7→ w}, we have
uγ{x 7→ w} = u(γ∪{x 7→ w}) sincex may not occur inγ. Sinceδ is
computable and|t| > |u|, by induction hypothesis,uδ is computable.

3. t = @(t1, t2). Thent1γ andt2γ are computable by induction hypoth-
esis, hencet is computable by Lemma 11.

4. t = f(t1, . . . , tn). Thentiγ is computable by induction hypothesis,
hencetγ is computable by computability property (vii). ut

The proof of our main theorem follows as a corollary of Lemma 17
when using the identity substitution, and of computability property (i).

6 Conclusion

An implementation of HOCPO with examples is available from the web
page of the authors.

21

There are still a few possible improvements that we have not yet ex-
plored, such as ordering the abstractions according to their type, order-
ing F ∪ {@} arbitrarily -this would be useful for some examples, e.g.,
some versions of Jay’s pattern calculus [18], increasing the set of accessi-
ble terms for applications that satisfy the strict positivity restriction, and
showing that the new definition is strictly more general that the general
schema -when adopting the same type discipline.

A more challenging problem to be investigated then is the generaliza-
tion of this new definition to the calculus of constructions along the lines
of [30] and the suggestions made in [22], where an rpo-like ordering on
types was proposed which allowed to give a simgle definition for terms
and types. Starting with definition 1 is of course desirable.

Finally, it appears that the recursive path ordering and the computing
closure are kind of dual of each other: the definitions are quite similar, the
closure constructing a set of terms while the ordering deconstructs terms
to be compared, the basic case being the same: bound variables and var-
ious kinds of subterms (direct, accessible and basic type subterms). Be-
sides, the properties to be satisfied by the type ordering, which were in-
fered from the proof of the computability predicates, almost characterize
a recursive path ordering on the first-order type structure. A intriguing,
challenging question is therefore to understand the precise relationship
between computability predicates and recursive path orderings.

Acknowledgements:the second author wishes to acknowledge the
crucial participation of Mitsuhiro Okada to the very beginning of this
quest, and to thank Makoto Tatsuta for inviting him in december 2007 at
the National Institute for Informatics in Tokyo, whose support provided
him with the ressources, peace and impetus to conclude this quest with
his coauthors.

References

1. F. Barbanera. Adding algebraic rewriting to the calculus of constructions: Strong normal-
ization preserved. InProc. of the 2nd Int. Workshop on Conditional and Typed Rewriting,
1990.

2. F. Barbanera and M. Fernández. Combining first and higher order rewrite systems with type
assignment systems. InProc. of the 1st Int. Conf. on Typed Lambda Calculi and Applications,
LNCS 664, 1993.

3. F. Barbanera and M. Fernández. Modularity of termination and confluence in combinations
of rewrite systems withλω. In Proc. of the 20th Int. Colloq. on Automata, Languages, and
Programming, LNCS 700, 1993.

22

4. F. Barbanera, M. Fernández, and H. Geuvers. Modularity of strong normalization and conflu-
ence in the algebraic-λ-cube. InProc. of the 9th Symp. on Logic in Computer Science, IEEE
Computer Society, 1994.

5. F. Blanqui. Termination and confluence of higher-order rewrite systems. InProc. of the 11th
Int. Conf. on Rewriting Techniques and Applications, volume 1833 ofLNCS, 2000.

6. F. Blanqui. Inductive Types in the Calculus of Constructions. In TLCA,Lecture Notes in
Computer Science2701:395–409. Springer-Verlag, 2003.

7. F. Blanqui. Definitions by rewriting in the calculus of constructions, In LICS, 2001.
8. F. Blanqui, J.-P. Jouannaud, and M. Okada. The Calculus of Algebraic Constructions. In RTA,

Lecture Notes in Computer Science1631:301–316. Springer-Verlag, 1999.
9. F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive Data Types.Theoretical Computer

Science277:41–68, 2002.
10. F. Blanqui, J.-P. Jouannaud, and A. Rubio. Higher order termination: from Kruskal to com-

putability. InProc. LPAR, Phnom Penh, Cambodgia, LNCS 4246, 2006.
11. F. Blanqui, J.-P. Jouannaud, and A. Rubio. HORPO with Computability Closure: A Recon-

struction InProc. LPAR, Yerevan, Armenia, LNCS, 2007.
12. C. Borralleras and A. Rubio. A monotonic, higher-order semantic path ordering. In LPAR,

Lecture Notes in Computer Science2250:531–547. Springer-Verlag, 2001.
13. V. Breazu-Tannen. Combining algebra and higher-order types. InProc. of the 3rd Symp. on

Logic in Computer Science, IEEE Computer Society, 1988.
14. V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic strong normal-

ization. InProc. of the 16th Int. Colloq. on Automata, Languages, and Programming, LNCS
372, 1989.

15. V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic strong normal-
ization. Theoretical Computer Science, 83(1), 1991.

16. N. Dershowitz. Orderings for term rewriting systems.Theoretical Computer Science,
17(3):279–301, March 1982.

17. Daniel J. Dougherty. Adding algebraic rewriting to the untyped lambda calculus. Research
report, Wesleyan University, USA, 1990.

18. Barry Jay. The Pattern Calculus. To be published.
19. J-P. Jouannaud and M. Okada. A Computation Model for Executable Higher-Order Alge-

braic Specifications Languages. In LICS, pp. 350–361. IEEE Computer Society Press, 1991.
20. J-P. Jouannaud and M. Okada. Abstract data type systems.Theoretical Computer Science,

173(2):349–391, 1997.
21. Jean-Pierre Jouannaud and Albert Rubio. The higher-order recursive path ordering. In

Giuseppe Longo, editor,Fourteenth Annual IEEE Symposium on Logic in Computer Science,
Trento, Italy, July 1999.

22. Jean-Pierre Jouannaud and Albert Rubio. Polymorphic higher-order recursive path orderings.
Journal of the ACM, 2007.

23. J.-P. Jouannaud and A. Rubio. Rewrite orderings for higher-order terms inη-longβ-normal
form and the recursive path ordering.Theoretical Computer Science, 208(1–2):3–31, 1998.

24. J.-P. Jouannaud and A. Rubio. Higher-Order Orderings for Normal Rewriting. In RTA,
Lecture Notes in Computer Science4098:387–399. Springer-Verlag, 2006.

25. C. Loŕıa-Śaenz and J. Steinbach. Termination of combined (rewrite andλ-calculus) systems.
In CTRS,Lecture Notes in Computer Science656:143–147. Springer-Verlag, 1992.

26. M. Okada. Strong normalizability for the combined system of the typed lambda calculus and
an arbitrary convergent term rewrite system. InProc. of the 1989 Int. Symp. on Symbolic and
Algebraic Computation, ACM Press.

27. J. van de Pol. Termination proofs for higher-order rewrite systems. In HOA 1993,Lecture
Notes in Computer Science816:305–325. Springer-Verlag, 1994.

23

28. J. van de Pol.Termination of Higher-Order Rewrite Systems. PhD thesis, Utrecht University,
The Netherlands, 1996.

29. J. van de Pol and H. Schwichtenberg. Strict functional for termination proofs. In TLCA,
Lecture Notes in Computer Science902:350-364. Springer-Verlag, 1995.

30. D. Walukiewicz-Chrzaszcz. Termination of rewriting in the Calculus of Constructions.Jour-
nal Functional Programming, 13(2):339–414, 2003.

24

