
From Formal Proofs to Mathematical Proofs:
A safe, incremental way for building in first-order decision procedures

Fréd́eric Blanqui
LORIA, UMR , Projet INRIA PROTHEO, Campus Scientifique

BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
Jean-Pierre Jouannaud and Pierre-Yves Strub

LIX, UMR 7161, Project INRIA TypiCal
École Polytechnique, 91128 Plaiseau, FRANCE

Abstract

It is commonly agreed that the success of future proof
assistants will rely on their ability to incorporate computa-
tions within deductions in order to mimic the mathematician
when replacing the proof of a proposition P by the proof of
an equivalent proposition P’ obtained from P thanks to pos-
sibly complex calculations.

In this paper, we investigate a new version of the Cal-
culus of Inductive Constructions (CIC) on which the proof
assistant Coq is based: the Calculus of Congruent Induc-
tive Constructions (CCIC) which incorporates arbitrary de-
cision procedures into deductions via the conversion rule
of the calculus. A major technical innovation of this work
lies in the fact that goals are sent to the decision procedure
together with the set of user hypotheses available from the
current proof context. A major conceptual innovation of this
work is that decision procedures are used as blackboxes,
hence can be obtained from the shelves provided they de-
liver a proof certificate. The soundness of the whole system
becomes an incremental property following from the sound-
ness of the certificate checkers and that of CIC’kernel.

A detailed example shows that the resulting style of
proofs becomes closer to that of the working mathemati-
cian.

Keywords. Calculus of Inductive Constructions, Deci-
sion procedures, Proof assistants

1 Introduction

It is commonly agreed that the success of future proof
assistants will rely on their ability to incorporate computa-
tions within deductions in order to mimic the mathematician
when replacing the proof of a proposition P by the proof of

an equivalent proposition P’ obtained from P thanks to pos-
sibly complex calculations.

Proof assistants based on the Curry-Howard isomor-
phism such as Coq [8] allow to build the proof of a proposi-
tion by applying appropriate proof tactics generating a proof
term that can be checked with respect to the rules of logic.
The proof-checker, also called thekernelof the proof as-
sistant, implements the inference and deduction rules of the
logic on top of a term manipulation layer. Trusting the ker-
nel is vital since the mathematical correctness of a proof
development relies entirely on the kernel.

The (intuitionist) logic on which Coq is based is the Cal-
culus of Constructions (CC) of Coquand and Huet [9], an
impredicative type theory incorporating polymorphism, de-
pendent types and type constructors. As other logics, CC
enjoys a computation mechanism called cut-elimination,
which is nothing but theβ-reduction rule of the underlying
λ-calculus. But unlike logics without dependent types, CC
enjoys also a powerful type-checking rule, calledconver-
sion, which incorporates computations within deductions,
making decidability of type-checking a non-trivial property
of the calculus.

The traditional view that computations coincide withβ-
reductions suffers several drawbacks. A methodological
one is that the user must encode other forms of computa-
tions as deductions, which is usually done by using appro-
priate, complex tactics. A practical one is that proofs be-
come much larger than necessary, up to a point that they
cannot be type-checked anymore. These questions become
extremely important when carrying out complex develop-
ments involving a large amount of computation as the for-
mal proof of the four colour (now proof-checked) theorem
completed by Gonthier and Werner using Coq [15].

The Calculus of Inductive Constructions of Coquand
and Paulin was a first attempt to solve this problem by
introducing inductive types and the associated elimination

rules [10]. The recent versions of Coq are based on a slight
generalization of this calculus [14]. Besides theβ-reduction
rule, they also include the so-calledι-reductions which are
recursors for terms and types. While the kernel of CC is ex-
tremely compact and simple enough to make it easily read-
able -hence trustable-, the kernel of CIC is much larger and
quite complex. Trusting it would require a formal proof,
which was done once [2]. Updating that proof for each new
release of the system is however unrealistic. CIC does not
solve our problem, though, since such a simple function as
reverseof a dependent listcannot be defined in CIC be-
causea :: l and l :: a, assuming:: is list concatenation
and the elementa can be coerced to a list of length 1, have
non-convertible typeslist(n + 1) andlist(1 + n).

A more general attempt was carried out since the early
90’s, by adding user-defined computations as rewrite rules,
resulting in the Calculus of Algebraic Constructions [3].
Although conceptually quite powerful, since CAC captures
CIC [4], this paradigm does not yet fulfill all needs, be-
cause the set of user-defined rewrite rules must satisfy sev-
eral strong assumptions. No implementation of CAC has in-
deed been released because making type-checking efficient
would require compiling the user-defined rules, a complex
task resulting in a kernel too large to be trusted anymore.

The proof assistant PVS uses a potentially stronger
paradigm than Coq by combining its deduction mecha-
nism1 with a notion of computation based on the powerful
Shostak’s method for combining decision procedures [19],
a framework dubbedlittle proof enginesby Shankar [18]:
the little engines of proofare the decision procedures, re-
quired to be convex, combined by Shostak’s algorithm. A
given decision procedure encodes a fixed set of axiomsP .
But an important advantage of the method is that the rele-
vant assumptionsA present in the context of the proof are
also used by the decision procedure to prove a goalG, and
become therefore part of the notion of computation. For
example, in the case where the little proof engine is the
congruence closure algorithm, the fixed set of axiomsP is
made of the axioms for equality,A is the set of algebraic
ground equalities declared in the context, while the goalG
is an equalitys = t between two ground expressions. The
congruence closure algorithm will then processA ands = t
together in order to decide whether or nots = t follows
from P ∪ A. In the Calculus of Constructions, this proof
must be constructed by a specific tactic called by the user,
which applies the inference rules of CC to the axioms in
P and the assumptions inA, and becomes then part of the
proof term being built. Reflexion techniques allow to omit
checking this proof term by proving the decision procedure
itself, but the soundness of the entire mechanism cannot be

1PVS logic is not based on Curry-Howard and proof-checking is not
even decidable making both frameworks very different and difficult to
compare.

guaranteed [11].
Two further steps in the direction of integrating decision

procedures into the Calculus of Constructions are Stehr’s
Open Calculus of Constructions OCC [20] and Oury’s Ex-
tensional Calculus of Constructions [16]. Implemented in
Maude, OCC allows for the use of an arbitrary equation-
nal theory in conversion. ECC can be seen as a particular
case of OCC in which all provable equalities can be used
in conversion, which can also be achived by adding the ex-
tensionality and Stricher’s axiom to CIC, hence the name
of this calculus. Unfortunately, strong normalization and
decidability of type checking are lost in ECC (and OCC),
which shows that we should seek for more restrictive exten-
sions. In a preliminary work, we also designed a new, quite
restrictive framework, the Calculus of Congruent Construc-
tions (CCC), which incorporates the congruence closure al-
gorithm in CC’s conversion [6], while preserving the good
properties of the calculus, including the decidability of type
checking. Further, a preliminary version of this work was
published at theComputer Science Logicconference last
september, describing an instance of CCIC, named CCN, in
which the decision procedure was Presburger arithmetic.

Problem. The main question investigated in this paper is
the incorporation of a general mechanism calling a decision
procedure for solving conversion-goals in the Calculus of
Inductive Constructions which uses the relevant informa-
tion available from the current context of the proof.

Theoretical contribution. Our main theoretical contri-
bution is the definition and the meta-theoretical investiga-
tion of the Calculus of Congruent Inductive Constructions
(CCIC), which incorporates arbitraryfirst-order theoriesfor
which entailment is decidable into deductions via an ab-
stract conversion rule of the calculus. A major technical
innovation of this work lies in the computation mechanism:
goals are sent to the decision procedure together with the
set of user hypotheses available from the current context.
Our main result shows that this extension of CIC does not
compromise its main properties: confluency, strong normal-
ization, coherence and decidability of proof-checking are
all preserved. Unlike previous calculi, the main difficulties
here are confluence, which led to a complex definition of
conversion as a fixpoint, and decidability of type checking,
which requires restricting the congruence below recursors.
We refer to Strub’s PhD thesis for more detail about the
meta-theory of CCIC.

Pratical contribution. We give several examples show-
ing the usefulness of this new calculus, in particular for us-
ing dependent types such as dependent lists, which has been
an important weakness of Coq until now. Further studies are

needed to explore other potential applications, to match in-
ductive definition-by-case modulo theories of constructors-
destructors, another very different weakness of Coq. A de-
tailed example shows that the resulting style of proofs be-
comes closer to that of the working mathematician.

Methodological contribution. The safety of proof assis-
tants is based on their kernel, a proof checker that processes
all proofs built by a user with the help of tactics that are
available from existing libraries or can otherwise be devel-
opped for achieving a specific task. In the early days of Coq,
the safety of its proof checker relied on its small size and its
clear structure reflecting the inference rules of the intuition-
istic type theory, the Calculus of Constructions, on which it
was based. The slogan was that of areadable kernel. Mov-
ing later to the Calculus of Inductive Constructions allowed
to ease the specification tasks, making the system very pop-
ular among proof developpers, but resulted in a more com-
plex kernel that can now hardly be read except by a few
specialists. The slogan changed to aprovable kernel, and
indeed one version of Coq’ kernel was once proved with an
earlier version (using strong normalization as an assump-
tion), and a new safe kernel extracted from that proof.

Of course, there has been many changes in the kernel
since then, but its correctness proof was of course not main-
tained. This is a first weakness with thereadable kernel
paradigm: it does not resist changes. There is a second
which relates directly to CCIC: there is no garantee that
a decision procedure taken from the shelf implements cor-
rectly the complex mathematical theorem on which it is
based, since carrying out such a proof may require an en-
tire PhD work. Therefore, these procedurescannotbe part
of the kernel.

Our solution to these problems is a new shift of paradigm
to that of anincremental kernel. The calculus on which a
proof assistant is based should come in two parts: a sta-
ble basic calculus, the Calculus of Inductive Constructions
in our case, which should satisfy thereadableor provable
kernelparadigm; a collection of independant decision pro-
cedures producing proof certificates. These proof certifi-
cates can then either be checked by a certificate checker
which should itself satisfy thereadableor provable code
paradigm, or be used to generate a proof than can then be
checked by the kernel of the basic calculus.

This paradigm has many advantages. First, it allows for a
modular development of the system, once the basic calculus
is stabilised, as it is the case with the Calculus of Inductive
Constructions on which Coq is based. Second, it allows for
an unsafe modein case a decision procedure is used that
does not have a certificate generator yet. Third, it allows to
better trace errors in case the system rejects a proof. Last but
not least, it allows the user herself to use whatever decision
procedure she needs by simply hooking it to the system,

possibly in unsafe mode.
This incremental schema is quite flexible, assuming that

decision procedures come one by one. However, even so,
they are not independent, they must be combined. Combin-
ing first-order decision procedures is not a new problem, it
was considered in the early 80’s by Nelsson and Oppen on
the one hand, by Shostak on the other hand, and has gener-
ated much work since then. We must therefore build in the
combination mechanism, and there are three possibilities:
in the kernel, via a certificate generator and checker again,
or by reflection. We have not made this design decision yet,
although the second possibility seems to better fit with the
spirit of our paradigm.

We assume familiarity with typed lambda calculi [1] and
the Calculus of Inductive Constructions [21, 4].

2 Congruent Inductive Constructions

The Calculus of Congruent of Inductive Constructions
is an extension of the Calculus of Inductive Constructions
which embeds in its conversion rule the validity entailment
of a fixed first order theory. First, we recall the bsics of
the Calculus of Inductive Constructions before to introduce
parametric multi-sorted algebras and then embed these first-
order algebras into the Calculus of Inductive Constructions.
We are then able to define our Calculus of Congruent In-
ductive Constructions relative to a specific congruence that
is defined last. For simplicity, we will only consider here
the particular case of parametric lists and that of the natural
numbers equipped with Presburger arithmetic. This simple
case allows us to build lists of natural numbers, as well as
lists of lists of natural numbers, and so on. It indeed has
the complexity of the whole calculus, which is not at all the
case when natural numbers only are considered as in [5].

2.1 Calculus of Inductive Constructions

Terms. We start our presentation by first describing the
terms algebra of the Calculus of Inductive Constructions.

CIC uses twosorts: ? (or Prop, orobject level universe)
and� (or Type, orpredicate level universe). We denote
{?,�}, the set of CIC sorts, byS.

As usual, following the presentation ofPure Type Sys-
tems[13], we use two classes of variables:X ? andX� are
countably infinite sets ofterm variablesandpredicate vari-
ables) such thatX ? andX� are disjoint. We writeX for
X ? ∪ X�.

We use the following notations:
s ranges over S

x, y, . . . − X
X, Y, . . . − X�

We can now define the terms algebra of CIC:

Definition 2.1 (Pseudo-terms).The algebraL of pseudo-
termsof CIC is defined by:
t, u, T, U, . . . := s ∈ S | x ∈ X | ∀(x : T). t | λ[x : T]. t

| t u | Ind(X : t){Ti} | t[n]

| Elim(t : T [ui]→ U){wj}

As a preparation for the embedding of parametric multi-
sorted algebras into CIC, we have given here the symbols in
Σ as particular constants of the calculus.

The notion of free variables is as usual - the binders being
λ, ∀ andInd (in Ind(X : t){Ti}, X is bound in theTi’s). If
t ∈ L, we writeFV(t) for the set of free variables oft. We
say thatt is closed ifFV(t) = ∅. A variablex occurs freely
in t if x ∈ FV(t).

Inductive types. The novelty of CIC was to introduce in-
ductive types, denoted byI = Ind(X : T){Ci} where
the Ci’s decribe the types of theconstructorsof I, and
T the type (orarity) of I which must be of the form
∀(xi : Ti). ?. Thek-th constructor of the inductive typeI,
of typeCk{X 7→ I}, will be denoted byI [k].

As an easy first example, we define natural numbers:

nat := Ind(X : ?){X, X → X}

We shall use0 andS as constructors for natural numbers, of
respective typesnat andnat → nat, obtained by replac-
ing X bynat in the above two expressionsX andX → X.
Elimination rules fornat are as follows:

ElimN(0, Q){v0, vS}
ι−→ v0

ElimN(Sx, Q){v0, vS}
ι−→ vS x(ElimN(x, Q){v0, vNS})

with Q : nat→ s ∈ S.

Similarly, we now define parametric lists:

list := λ[T : ?]. Ind(X : ?){X, T → X → X}

We shall usenil and cons as constructors for param-
eterized lists, of respective types∀(T : ?). list(T) and
∀(T : ?). T → list(T)→ list(T), obtained by replacing
X by list(T) in X andT → X → X, and then abstracting
over the typeT : ?.
Elimination rules forlist are:

ElimL(car, Q){vcar, vcdr}
ι−→ vcar

ElimL(consx l ,Q){vcar, vcdr}
ι−→

vcdr x l (ElimL(l, Q){vcar, vcdr})
with Q : λ[T : ?]. list(T)→ s ∈ S.

Finally, we define dependent words over an alphabetA:

word = Ind(X : nat→ ?){X 0, A→ X (S0),
∀(y, z : nat). X y → X z → X(y + z)}

We shall useε, char andapp for its three constructors,
of respective typesword0, A → word (S0), and
∀(n, m : nat).wordn→ wordm→ word (n + m)
obtained as previously by replacingX by word
in the three expressionsX 0, A→ X (S0), and
∀(y, z : nat). X y → X z → X(y + z).
Elimination rules for dependent words are:

ElimW(ε,Q){vε, vchar, vapp}
ι−→ vε

ElimW(charx,Q){vε, vchar, vapp}
ι−→ vchar x

ElimW(appn m l l′, Q){vε, vchar, vapp}
ι−→ vapp n m l l′

(ElimW(l, Q){vε, vchar, vapp})
(ElimW(l′, Q){vε, vchar, vapp})

with Q = ∀(n : nat).wordn→ s ∈ S

Definitions by induction. We can now define functions
by induction over natural numbers or over words. Using
the CIC syntax being quite painful, we give only a quite
simple example used in the Coq development presented in
Section 3.

toTlist := λ[n : nat][w : wordn].

ElimW(w,Q)


ε,
λ[c : T]. char c,
λ[n p : nat][wn : wordn].

λ[wp : word p][In : Qn wn].
λ[Ip : Qp zp]. append T In Ip


Strong and Weak reductions. CIC distinguishesstrong
ι-elimination when the typeQ of terms constructed by in-
duction is at predicate level, from weakι-elimination when
Q is at object level. Strong elimination is restricted tosmall
inductive types to ensure logical consistency [21].

Typing judgments. A typing environmentΓ is a sequence
of pairsxi : Ti made of a variablexi and a termTi (we
say thatΓ bindsxi to the typeTi), such thatΓ does not
bind a variable twice. The typing judgements are classically
written Γ ` t : T , meaning that thewell formed termt is
a proof of the propositionT (has typeT) under thewell
formed environmentΓ. xΓ will denote the type associated
to x in Γ, and we writedom(Γ) for the domain ofΓ as well.

Typing rules of CIC are made of two subsets: the typing
rules for the Calculus of Constructions given at Figure 1,
and the typing rules for inductive types, given at Figure 2
for the particular case ofnat andlist().

It can be easily verified as an exercice that both sides of
the firstι-reduction fornat have typeQ 0 while they have
typeQ(S t) for the second.

We did not give the general typing elimination rule for
arbitrary inductive types, which is quite complicated. In-
stead, we gave the elimination rules obtained for our three

[A X-1]
` ? : �

Γ ` T : sT Γ, [x : T] ` U : sU
[PROD]

Γ ` ∀(x : T). U : sU

Γ ` ∀(x : T). U : s Γ, [x : T] ` u : U
[A BS]

Γ ` λ[x : T]. u : ∀(x : T). U

Γ ` V : s Γ ` t : T s ∈ {?,�}
x ∈ X s − dom(Γ)

[WEAK]
Γ, [x : V] ` t : T

x ∈ dom(Γ) ∩ X sx Γ ` xΓ : sx
[VAR]

Γ ` x : xΓ

Γ ` t : T Γ ` T ′ : s′ T
βι←→∗ T

[CONV]
Γ ` t : T ′

Figure 1. CIC Typing Rules (CC rules)

inductive typesnat, list andword. We refer to [17, 21] for
the general case, and for the precise typing rule ofElimW.

2.2 Parametric sorted algebras

Signature. Order-sorted algebras were introduced as a
formal framework for the OBJ language in [12], before to
be generalized asmembership equational logicin [7]. We
use here a polymorphic version of a restriction of the latter,
by assuming given: a signatureΛ of sort constructors; a sig-
natureΣ of function symbols made of a set of constructors
for each sort constructor, the corresponding destructors and
totally defined symbols for which equations are not given.
Destructors should be thought of as beeing at the same time
total (at theuniverselevel of membership equational logic),
and partial (by applying to non-empty lists). As an ex-
ample, we describe natural numbers and parametric (non-
dependent) list using an OBJ-like syntax.

nat : ∗
list : ∗ → ∗

0 → nat
S nat → nat
+̇ nat× nat→ nat

` τf : s ∈ S
[SYMB]

` f : τf

Γ ` Q : nat→ s ∈ S Γ ` n : nat Γ ` v0 : Q0
Γ ` v − S : ∀(p : nat). Q p→ Q (S p)

[ELIM]
ElimN(n, Q){v0, vS} : Qn

Γ ` T : ? Γ ` p : nat Γ ` l : listT p

Γ ` Q : ∀(n : nat). listT n→ s ∈ S
Γ ` vnil : Q0 (nilT)

Γ ` vcons :
∀(x : T)(n : nat)(l : listT n).

Qn l→ Q (Sn)(consT xn l)
[ELIM]

ElimL(l, Q){v0, vS} : Qp l

Figure 2. CIC Typing Rules for nat and list()

var α ∗
nil → list(α)
cons α× list(α)→ list(α)
car list(α) → α
cdr list(α) → list(α)

We use the notationf : ∀α. σ1 × · · · × σn → τ as ex-
amplified above, making the input sort more precise in case
of a destructor.car andcdr appear immediately after the
constructorcons of which they are the destructors. The fact
that they should apply to non-empty lists remains implicit.

In the following, we shall useα, β, . . . for sort variables
andσ, τ, . . . for sort expressions.

Terms, Equations.

Definition 2.2 (Terms). For any sortσ, letX σ be a count-
ably infinite set ofvariables of sortσ, s.t. all theX σ ’s are
pairwise disjoint. LetX =

⋃
σ X σ. For anyx ∈ X , we say

thatx has sortσ if x ∈ X σ.
For any sortσ, the setTσ(Σ,X) of terms of sortsσ with

variablesX is the smallest set s.t.:
1. if x ∈ X τ , thenx ∈ Tτ (Σ),

2. (a) if t1, · · · , tn ∈ Tσ1ξ(Σ,X) × · · · × Tσ2ξ(Σ,X)
whereξ is a sort substitution, and

(b) f : ∀α. σ1 × · · · × σn → τ ,

thenf(t1, . . . , tn) ∈ Tτξ(Σ,X).

We denote byT (Σ,X) the set
⋃

σ(Tσ(Σ,X)). A term t
has sortσ if t ∈ Tσ(Σ,X).

Note that the setsX σ play the role of a typing context.

Example 2.1. Assumingx is a variable of sortnat, then
0 and0 + x are of sortnat, andnil is of sortlist(α) and
list(nat).

Equationst =σ u are pairs of terms of the same sortσ.
For example, ifx is a variable of sortnat, x + 0 =nat x is
an equation of sortnat, and if l is of sortlist(list((nat)),
thencons(x, nil) =list(nat) car(l) is an equation of sort
list(nat). Type supersripts may be omitted when they can
be infered from the context.

We can therefore as usual build parameterized algebras
for list, algebras fornat and therefore get algebras fornat,
list(nat), etc. Satisfaction of an equation in these algebras
is defined as usual.

2.3 Embedding parametric algebras in CIC

Our purpose here is to embed our parametric muti-sorted
algebra into CIC. As a result, two different, but related kinds
of symbols will coexist, in the Calculus of Inductive Con-
structions, and in the embedded albegraic subworld. We
shall distinguish them by underlying symbols in the Calcu-
lus of Inductive Constructions.

The first step of the translation maps resp. sort construc-
tors and constructor symbols to CIC inductive types and
constructors. We start with natural numbers and its sort con-
structornat. Constructor symbols ofnat are simply all the
constructors symbols whose codomain isnat, i.e. here0
andS. We thus definenat (the CIC inductive type attached
tonat) as an inductive type with two constructor types (one
for 0, and one forS):

nat := Ind(X : ?){C1(X), C2(X)}.
The constructor types ofnat are simply the arities of0

andS wherenat is replaced with the constructor type vari-
able: C1(X) = X andC2(X) = X → X. As expected,
we obtain here the standard inductive definition of natural
numbers given in Section 2.1:Ind(X : ?){X, X → X}.
The translation0 of 0 (resp.S of S) is then simplynat[1]

(resp.nat[2]).
Translatinglist is not very different. Being of arity 1,

with two associated constructor symbols (nil and cons),
list is mapped to the already seen parameterized inductive
type list = λ[A : T]. Ind(?){X, A→ X → X}. Transla-
tion of constructor types is done the same way. We just
need to care about curryfication of symbols, and to replace
sort variables with CIC types variables. For instance, the
constructor types forcons : ∀α. α × list(α) → list(α) is
cons = λ[A : ∗]. (listA)[2].

The next step is the translation of destructors. They are
simply mapped to CIC functions with a guard requiring that
the input value has the right form. For this, we use the usual
encoding - a generalisation of the product following Heyt-
ing’s semantics - of the existential quantifier in CIC:

∃̇ :=
λ[A : ?][P : A→ ?]. Ind(X : ?){∀(x : A). P x→ X}

Notation 2.1. We write∃(x : A). P for ∃̇A (λ[x : A]. P),
and∃A,P,Q

e (t, f) (or ∃e(t, f) whenA,P, Q can be deduced
from the context) for the elimination principle associated to
∃̇:

∃A,P,Q
e (t, f) = Elim(t : ∃̇A P []→ Q){f}

Returning to our example, the translationcar of car is
defined as:

car :=λ[T : ?][l : listT][
p : ∃(x : T)(l′ : listT).

l = consT x l′
].

∃e(p, λ[x : T][l′ : listT][p :]. x)

Defined symbols are mapped to CIC defined symbols.

2.4 Building in a first-order theory

We now start describing our new calculus CCIC.

Terms. CCIC uses the same set of sortsS = {?,�} and
sets of variablesX = X ?∪X� of CIC. For any sortσ ∈ Λ,
letXσ ⊆ X ? a infinite set of variables of sortσ s.t. {Xσ}σ
is a family of pairwise disjoint sets. We also suppose that
X −

⋃
σ Xσ is infinite.

LetA = {r, u} a set of two constants, calledannotations,
totally ordered by u≺A r, where r stands forrestrictedand
u for unrestricted. We usea for an arbitrary annotation. The
role of annotations will be explained later.

Definition 2.3 (Pseudo-terms of CCIC).The algebraL of
pseudo-termsof CCIC is defined by:
t, u, T, U, . . . := s ∈ S | x ∈ X | ∀(x :a T). t | λ[x :a T]. t

| t u | f ∈ Σ | σ ∈ Λ | =̇ | EqT (t)

| Ind(X : t){Ti}
| t[n] | Elim(t : T [ui]→ U){wj}

In order to make definitions more convenient, we shall
assume in the following thatΛ contains the symbolṡ=,nat
andlist, and thatΣ contains the symbols0,S andEq.

Compared with CIC, the differences are:

• annotations in products and abstractions, we will soon
see their use in the modified typing rules

• the internalization of the equality predicate:

1. t =̇T u (or t =̇u when T is not relevant or can
deduced from the context) denotes the equality
of the two terms (of typeT) t andu,

2. EqT (t) will represent a proof by reflexivity of
t =̇T t.

• the internalization of the function symbolsf ∈ Σ and
sort constructorσ ∈ Λ of T .

O ::= X ? | f ∈ Σ | OO | OP | λ[x? :a P].O |
λ[x� :a K].O | Elim(O : P [O]→ O){O}

P ::= X� | σ ∈ Λ | P O | P P | λ[x? :a P].P |
λ[x� :a K].P | Elim(O : P [O]→ P){P} |
∀(x? :a P).P | ∀(x� :a K).P

K ::= ? | KO | KP | λ[x? :a P].K | λ[x� :a K].K |
∀(x? :a P).K | ∀(x� :a K).K

� ::= �

Figure 3. CCIC term classes

Notation 2.2. Whenx in not free int, ∀(x :a T). t will be
writtenT →a t. The default annotation, when not specified
in a product or abstraction, is theunrestricted(u) one.

As usual, it is possible to define a layered set of syntactic
classes forL:

Definition 2.4 (Syntactic classes).The pairwise disjoint
syntactic classes of CCIC calledobjects (O), predicates
(P), kinds(K), � are defined in Figure 3.

This enumeration defined a postfixed successors function
+1 on classes (O + 1 = P, P + 1 = K, · · · , � + 1 = ⊥).
We also defineClass(t) = D if tD andD ∈ {O,P,K,�},
andClass(t) = ⊥ otherwise.

From now on, we only considerwell-constructed terms
(i.e. terms whose class is not⊥) andwell-constructed sub-
stitution (i.e. substitutions s.t.Class(x) = Class(xθ) for
any x in its domain). It is easy to check that ift is a
well-constructed term andθ a well-constructed substitution,

thenClass(t) = Class(tθ). It is also well-known that
β−→-

reduction preserves term classes.

Typing judgement.

Definition 2.5 (Pseudo-contexts of CCIC).The typing en-
vironments of CIC are defined asΓ,∆ ::= [] | Γ, [x :a T]
s.t. a variable cannot appear twice. We usedom(Γ) for the
domain ofΓ andxΓ for the type associated tox in Γ.

The rules defining the CCIC typing judgementΓ ` t : T
are the same as for CIC except the rules for application and
conversion given at Figure 4.

2.5 Conversion

We are now left to define our conversion relation∼Γ.

• Our notion of algebraisation will be relative to the ex-
pected sort of the resulting first-order term. This is the
aim of our next section.

Γ ` t : ∀(x :a U). V Γ ` u : U

if a = r andU
β−→∗ t1 =̇T t2 with t1, t2 ∈ O

thent1∼Γ t2 must hold
[A PP]

Γ ` t u : V {x 7→ u}

Γ ` t : T Γ ` T ′ : s′ T ∼Γ T ′
[CONV]

Γ ` t : T ′

Figure 4. CCIC Modified Typing Rules

• The conversion∼Γ will operate on weak terms only,
a notion introduced in Section 2.5. Non-weak terms
will be converted withβι-reduction only, to forbid lift-
ing up inconsistencies from the object level to the type
level.

We start with our new notion of algebraisation.

Algebraisation. Our calculus has a complex notion of
computation reflecting its rich structure made of three ingre-
dients: the typed lambda calculus, the inductive types with
their recursors and the integration of the first order theory
T in its conversion. For this last point, goals are sent to the
first order theoryT together with a set of proof hypotheses
extracted from the current context.

Algebraisation is the first part of this hypotheses extrac-
tion: it allows transforming a CCIC term into its first-order
counterpart. We illustrate this on a example forT being
Presburger’s arithmetic.

We begin by the simplest case, directly taken from CCN,
the extraction of pure algebraic, non parametric, equations.
Suppose that the proof environment contains equations of
the formc =̇ 1 + d andd =̇ 2 with c andd variables of sort
nat. What is expected is that the set of hypotheses sent
to the theoryT contains the two well formedT -formulas
c = 1 + d andd = 2. This leads to a first definition of
equations extraction:

1. a term is algebraic if it is of the form0, orS t, or t+u,
or x ∈ XN. ThealgebraisationA(t) of an algebraic
term is then defined by induction:A(0) = 0,A(S t) =
S(A(t)),A(t + u) = A(t) +A(u) andA(xN) = xN,

2. a term is an extractable equation if it is of the form
t =̇u with t andu algebraic terms. The extracted equa-
tion is thenA(t) = A(u).

The definition becomes a little harder for parametric sig-
natures. The theory of lists give us a canonical example.
From the definition of conversion of a polymorphic multi-
sorted algebra to CIC, we know that thecar symbol has
type

∀(T : ?)(l : listT). (∃(x : T)(l′ : listT). l =̇ consT x l)
→ T

Thus, a fully applied, well formed term having the sym-
bol car at head position must be of the formcarT l p, T
being the type of the elements of the list andp a proof that
l is non-empty. Algebraisation of such a term will erase
all type parameters and retraction proofs: in our example,
A(carT l p) = car(A(l)).

Algebraisation of non-pure algebraic terms is done by
abstracting non-algebraic subterms with fresh variables.
For example, algebraisation of1 + t with t non-algebraic
will lead to 1 + xnat wherexnat is an abstraction variable
of sortnat for t. Of course, if the proof context contains
two equations of the formc =̇ 1 + t and d =̇ 1 + u with
t andu βι-convertible,t andu should be abstracted by a
unique variable so thatc = d can be deduced inT from
c = 1 + ynat andd = 1 + ynat. The problem is harder for:

• parametric symbols: in (consT t (nilU)) with t non
algebraic, shouldt be abstracted by a variable of sort
nat or list(nat) ?

• ill-formed terms: should
(consT (0 consT (nilU) (nilT))) be abstracted as
a list of natural numbers or as a list of lists ?

The solution adopted here is to postpone decisions:A(t)
will be a function fromΛ to the terms ofT s.t. A(t)(σ)
will be the algebraisation oft under the condition thatt is a
CCIC representation of a first order term of sortσ.

We now give the formal definition ofA(·).
Let {Yσ}σ be a Λ-sorted family of pairwise disjoint

countable infinite sets of variables of sortσ. Let Y =⋃
σ Yσ.
For any equivalence relationR and sortσ ∈ Λ, we sup-

pose the existence of a functionπσ
R : CCIC(X) → Yσ s.t.

πσ
R(t) = πσ

R(u) if and only if t R u (i.e. πσ
R(t) is the

element ofYσ representing the class oft moduloR).

Definition 2.6 (Well applied term). A term is well applied
if it is of one of the following forms:

• f [Tα]α∈α t1 · · · tn with f : ∀α. σ1 × · · · × σn → σ
andf ∈ Σ− ΣD.

• f [Tα]α∈α t p with f : ∀α. σ → τ andf ∈ ΣD.

Example 2.2. Example of well applied terms are0, S t, or
carT l p - T being the type parameter andp the destruc-
tor guard. Note that we do not require the term to be well
formed.

Definition 2.7 (Algebraisation). Let a termt ∈ CCIC and
R an equivalence relation. Thealgebraisation oft modulo
R is the functionAR(t) : Λ→ T (X ? ∪ Y) defined by:

AR(xσ)(σ) = xσ

AR(f T [ui]i∈n p)(τξ) =
f(AR(u1)(σ1ξ), . . . ,AR(un)(σnξ)) if (∗)

AR(t)(τ) = Πτ
R(t) otherwise

where (∗)

1. f T [ui]i∈n p is well applied,

2. f is of arity∀α. σ1 × · · ·σn → σ,

3. ξ is aΛ-substitution.

For any relationR, AR is defined asAR whereR is
the smallest equivalence relation containingR. We callσ-
alien (or alien when the context is clear) the subterms oft
abstracted by a variable inYσ.

Example 2.3. Let t ≡ consT 0 (consU (nilV) (nilU))
andR a relation on the terms of CCIC. Then, assuming
σ = list(nat), we have (xnat, ylist, znat being abstraction
variables)

AR(t)(σ) = cons(
AR(0)(nat),
AR(consU(nilV) (nilU))(σ))

= cons(0, cons(
AR(nilV)(nat),
AR(nilU)(σ)))

= cons(0, cons(xnat,nil))

whereas

AR(t)(list(σ)) = cons(
AR(0)(σ),AR(cons
U(nilV) (nilU))(list(σ)))

= cons(
ylist, cons(AR(nilV)(σ),
AR(nilU)(list(σ))))

= cons(ylist, cons(nil,nil))

andAR(t)(nat) = znat.
Note that, as explained before, the algebraisation does

not only depend on the terms being transformed, but also
on the expected sort of the result. This is clearly visible
on the example: when abstracting the (heterogeneous and
ill-formed) list 0 :: nil :: nil as a list of lists,0 is then
seen as an alien which must be abstracted. When this list
is abstracted as a list of natural numbers,0 is considered
algebraic butnil is then seen as an alien and abstracted. Of
course, as seen in the last case, if the list is algebraised as a
natural number, it is directly abstracted by a variable.

Also, the algebraisation of the previous list w.r.t. the sort
list(α) results in the abstraction of all its elements (0 and
nil):

AI(t)(list(α)) = cons(xα, cons(yα,nil))

Weak and neutral terms. We first distinguish a class of
terms calledweak. This class of terms will play an im-
portant role in the following as they restrict the interac-
tion between the conversion at object level and the strong
ι-reduction.

An example of what will be a non weak term is

t = λ[x : nat].ElimS(x : nat []→ Q){nat, B} where
B = λ[x : nat][T : Qx].nat→ nat.

Such a term is problematic in the sense that when applied to
convertible terms, it canβι-reduce to type-level terms that
are notβι-convertible. Suppose that the conversion relation
is canonically extended to CCIC. We know that there ex-
ists a typing environmentΓ s.t. 0∼Γ S0, and hence, by
congruence,t0∼Γ t (S0). Now, it is easy to check that

t0
βι−→∗ nat and t (S0)

βι−→∗(nat → nat). Strong nor-
malization ofβ-reduction is then broken by encoding the
termω = λ[x : nat]. x x.

On the contrary,weakterms are defined s.t. they cannot
lift inconsistencies from object level to a higher level.

Definition 2.8 (Weak terms). A term is said weak if i) it
does not contain an applied type level variable, and ii) it
does not contain open strong elimination (i.e. does not con-
tain a term of the formElimS(t : I [u] → Q){f} with t
open).

We also distinguish a subclass of weak terms, based on
the same restriction, but for weak elimination. The notion
will play a crucial role is the decidability of our calculus.

Definition 2.9 (Neutral terms). A term is said neutral if
i) it does not contain an applied variable, ii) it does not con-
tain open (strong or weak) elimitation.

Extractable terms. From now on, letO+ be an arbitrary
set of CCIC terms. This set will be used in the conversion
definition to restrict the set ofextractable equationsof a
given environment: only equation of the formt =̇u with t
andu in O+ will be considered.

At the moment, we only requireO+ to be a subset of
O. Note that takingO+ = O does not compromise the
standard calculus properties (subject reduction, type unic-
ity, strong normalization ofβι-reduction,. . .) but the decid-
ability. E.g., ifT is the Presburger arithmetic, allowing the
extraction of

λ[x :a nat]. f x =̇λ[x :a nat]. f (x +̇ 2)

would require - in the conversion check algorithm - to de-
cide any statement of the form

T � (∀x. f(x) = f(x + 2))→ t = u,

which is well known to be impossible.

Reduction. Our calculus contains the standard notion of
βι-reduction of CIC, but in our case, we need to sightly
modify the definition ofι-reduction in order to take into
account the first order construction symbols by adding ex-
plicitely the corresponding elimination rules.

Conversion relation. We have now all necessary ingredi-
ents to define our conversion relation∼Γ:

Definition 2.10 (Conversion relation). Rules of Figure 5
defines a family{∼Γ} of CCIC binary relations indexed by
a (non-necessarily well-formed) contextΓ.

Note that the rule DED performing deductions in the
first order theory, here Presburger arithmetic, outputs a cer-
tificate [, ,] made of the environment and the two terms
to be proved equivalent under this environment, each time it
is called. While this certificate must depend on these three
datas, it may of course carry additional information depend-
ing on the considered first-order theory.

The main differences with the calculus CCN defined
in [5] are the following:

• The [APP] rule has been splited into two rules: [APPS]
and [APPW]. Conversion for strong terms is restricted
to theβι-conversion.

• Following the same restriction as for the [APP] rule,
conversion for terms being strongly destructed is re-
stricted toβι-conversion.

• The rules for transitivity and symmetry have been re-
moved, which eases the proofs, notably that the de-
duction part of the conversion relation works at object
level only. We prove later that the conversion relation
is transitive and symmetric on well formed terms, thus
recovering type unicity.

• The rules forβι-conversion now only do one reduc-

tions step, which also eases proofs. Thereforeu
βι←→∗ v

should be understood as∃w s.t.u
βι−→w andv

βι−→w.

2.6 Metatheoretical properties

CCIC enjoys all metatheoretrical properties needed
(strong normalization, confluence, subsject reduction, etc),
so that

Theorem 2.1. There is no proof of∀(x : ?). x in the empty
environment.

Theorem 2.2. AssumingO+ to be the set of terms which
are βι-convertible to an algebraic term, then∼Γ is decid-
able for any environmentΓ.

[REFL]
t∼Γ t

[x :r T] ∈ Γ T
βι−→∗ t =̇u t, u ∈ O+

[EQ]
t∼Γ u

E � cap∼Γ
(t)(τ) = cap∼Γ

(u)(τ) t, u ∈ O

E = { cap∼Γ
(w1)(σ) = cap∼Γ

(w2)(σ) |
w1∼Γ w2, σ ∈ Λ, w1, w2 ∈ O

}
[DED]

t∼Γ u [Γ, t, u]

t
βι−→ t′ t′∼Γ u

[βι-LEFT]
t∼Γ u

u
βι−→u′ t∼Γ u′

[βι-RIGHT]
t∼Γ u

T ∼Γ U t∼Γ,[x:aT] u
[L AM]

λ[x :a T]. t∼Γ λ[x :a U]. u
T ∼Γ U t∼Γ,[x:aT] u

[PROD]
∀(x :a T). t∼Γ ∀(x :a U). u

t1∼Γ u1 t2
βι←→∗ u2

[A PPS]
t1 t2∼Γ u1 u2

t1∼Γ u1 t2
βι←→∗ u2 t1, u1 are weak

[A PPW]
t1 t2∼Γ u1 u2

t1∼Γ u1 t2∼Γ u2 t1, u1 are neutral
[A PPN]

t1 t2∼Γ u1 u2

t
βι←→∗ t′ I ∼Γ I ′ Q∼Γ Q′ v∼Γ v′ f ∼Γ f

′

[S]
ElimS(t : I [v]→ Q){f}∼Γ ElimS(t′ : I ′ [v′]→ Q′){f ′}

t∼Γ t′ I ∼Γ I ′ Q∼Γ Q′ v∼Γ v′ f ∼Γ f
′

[W]
ElimW(t : I [v]→ Q){f}∼Γ ElimS(t′ : I ′ [v′]→ Q′){f ′}

Figure 5. CCIC conversion relation

Seehttp://strub.nu for proofs (thesis draft).
There are other possibilities forO+ that we are still ex-

ploring, which, we expect, allow forβι-reductions in the
first argument of weak-eliminations. This would allow to
enhance pattern matching definitions in CCIC, a feature
much desired by Coq users.

3 Using CCIC

We give here a detailed example illustrating the advan-
tages of CCIC, based on the inductive type of words intro-
duced in Section 2.1.

in Coq. First, we give a development in Coq, therefore
based on CIC. Indentations have been modified by hand to
make it fit.

Variable T : Set .

Inductive word : nat -> Set :=
| epsilon : word 0
| char : T -> word 1
| append : forall (n p: nat),

word n -> word p -> word (n+p) .
Implicit Arguments append [n p] .

Lemma plus_n_0_transparent :
forall n , n + 0 = n .

Proof .
induction n as [| n IHn]; simpl;

[idtac | rewrite -> IHn]; trivial .
Defined .

Lemma plus_n_Sm_transparent :
forall n m, n + (S m) = S (n + m) .

Proof .
intros n m; induction n as [| n IHn];

simpl; [idtac | rewrite -> IHn];
trivial .

Defined .

Lemma plus_assoc_transparent :
forall n p q, (n + p) + q = n + (p + q) .

Proof .
intros n p q; elim n;

[trivial | intros k] .
simpl; intros H; rewrite -> H; trivial .

Defined .

Definition _reverse_acc :
forall n, word n ->
forall p, word p -> word (p + n) .
intros n wn;

induction wn as
[| c | n p wn IHwn wp IHwp];

intros k wk .
rewrite plus_n_0_transparent;

exact wk .
rewrite plus_n_Sm_transparent;

rewrite plus_n_0_transparent;
exact (append (char c) wk) .

rewrite <- plus_assoc_transparent;
exact (IHwp _ (IHwn _ wk)) .

Defined .

Fixpoint reverse (n : nat) (w : word n)
{struct w} : word n

:= match w in word k return word k with
| epsilon => epsilon
| char c => char c
| append n1 n2 w1 w2 =>

reverse_acc _ w2 _ w1
end .
Implicit Arguments reverse [n] .

(* Test *)
Require Import List .

Definition Tlist := (list T) .

Fixpoint to_Tlist (n : nat) (w : word n)
{struct w} : Tlist

:= match w with
| epsilon => nil
| char c => c :: nil
| append n1 n2 w1 w2 => (to_Tlist _ w1)

++ (to_Tlist _ w2)
end .
Implicit Arguments to_Tlist [n] .

Variables a b c : T .

Eval compute in (
to_Tlist (reverse

(append (append epsilon (char a))
(append (char b) (char c))))

) .

(* Print c :: b :: a :: nil *)

The example ofpalindromsas words satisfying the prop-
erty Eqword m reverse m\verb is carried out in
Strub’s thesis (see website). It yields a much more com-
plex Coq development than the above, since it involves the
equality over (quotients) of words.

In CCIC. We now make the similar development in
CCIC, using a self-explanatory syntax.

First, the parameterized algebra:

Variable T : Set .

Inductive word : nat -> Set :=
| epsilon : word 0
| char : T -> word 1
| append : forall (n p : nat),

word n -> word p -> word (n + p) .

Fixpoint reverse (n : nat) (w : word n)
{struct w} : word n := match w with

| epsilon => epsilon
| char c => char c
| append n1 n2 w1 w2 => append n2 n1 w2

w1
end .

Typing of the third clause of reverse
will use here Presburger’s arithmetic, since
append n1 n2 w1 w2 has typeword (n1 + n2) ,
while append n2 n1 w2 w1 has type
word (n2 + n1) , two types that are not convert-
ible in CIC, but which become convertible in CCIC. We can
easily see with this example the immense benefit brought
by internalizing Presburger’s arithmetic. Note that a single
certificate is generated for this conversion:
({n1 : \nat, n2: \nat, w1 : word n1,

w2: word n2}, n1 + n2, n2 + n1)

We now introduce palidroms and prove that reverse is the
identity on palindroms.

Variables M : Set .
Variables f : forall n, word n -> M .
Implicit Arguments f [n] .

Definition word_eq
n1 n2 (w1 : word n1) (w2 : word n2)
:= (f w1) = (f w2) .

Implicit Arguments word_eq [n1 n2] .
Notation "w1 == w2" := (word_eq w1 w2)

(at level 70, no associativity) .

Lemma reverse_invol :
forall n (w : word n),

reverse (reverse w) = w.
Proof .

intros w; induction w; simpl; trivial .
rewrite -> IHw1; rewrite -> IHw2 .
trivial .

Qed .

Definition is_pal n (w : word n) :=
w == (reverse w) .

Implicit Arguments is_pal [n] .

Lemma is_pal_reverse :
forall n (w : word n),

is_pal w -> is_pal (reverse w) .
Proof .

intros n w H .
unfold is_pal; unfold is_pal in H .
unfold word_eq; unfold word_eq in H .
rewrite <- H;

rewrite -> (reverse_invol w) .
trivial .

Qed .

4 Conclusion

CCIC is an extension of CIC by arbitrary first-order de-
cision procedures for equality. We have shown here with a
detailed example using Presburger’s arithmetic the benefit
of the approach with respect to the current implementation
of Coq based on CIC: more terms can be types especially
in presence of types such as dependent lists which become
easy to use; many proofs become automated, making the
life of the user easier (developping the example of reverse
for dependent lists in Coq took us a day of work); and proofs
become much smaller, some seemingly complex proofs be-
coming simple reflexivity proofs. We believe that the re-
sulting style of proofs becomes much closer to that of the
working mathematician.

So far, we have considered only decidable equality the-
ories. But it is well-known that a decidable non-equality
theory can always be transformed into a decidable equal-
ity theory over the type Bool of truth values equipped with
its usual operations. This is so because of the decidability
assumption.

There are still many directions to be investigated. A first
is to embedd membership equational logic in CIC along the
lines of the simpler embedding described here. A second
is to consider the case of dependent algebras instead of the
simpler parametric algebras. This is a more difficult ques-
tion, which requires using our generalized notion of con-
version in the main argument of an elimination, but would
further help us addressing other weaknesses of Coq. This
question was already mentionned in Section 2.6.

References

[1] H. Barendregt. Lambda calculi with types. In S. Abram-
ski, D. Gabba, and T. Maibaum, editors,Handbook of Logic
in Computer Science, volume 2. Oxford University Press,
1992.

[2] B. Barras. Auto-validation d’un système de preuves avec
familles inductives. PhD thesis, University of Paris VII,
1999.

[3] F. Blanqui. Definitions by rewriting in the calculus of con-
structions. Mathematical Structures in Computer Science,
15(1):37–92, 2005. Journal version of LICS’01.

[4] F. Blanqui. Inductive types in the calculus of algebraic con-
structions.Fundamenta Informaticae, 65(1-2):61–86, 2005.
Journal version of TLCA’03.

[5] F. Blanqui, J. Jouannaud, and P. Strub. Building decision
procedures in the calculus of inductive constructions. In
Proceedings 16th CSL 2007, Lausanne, Switzerland. LNCS
4646, 2007.

[6] F. Blanqui, J.-P. Jouannaud, and P.-Y. Strub. A Calculus of
Congruent Constructions. Unpublished draft, 2005.

[7] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specifica-
tion and proof in membership equational logic.Theoretical
Comput. Sci., 236:35–132, 2000.

[8] Coq-Development-Team.The Coq Proof Assistant Refer-
ence Manual - Version 8.0. INRIA, INRIA Rocquencourt,
France, 2004. At URLhttp://coq.inria.fr/ .

[9] T. Coquand and G. Huet. The Calculus of Constructions.
Information and Computation, 76(2-3):95–120, 1988.

[10] T. Coquand and C. Paulin-Mohring. Inductively defined
types. In Martin-L̈of and G. Mints, editors,Colog’-88, In-
ternational Conference on Computer Logic, volume 417 of
LNCS, pages 50–66. Springer-Verlag, 1990.

[11] P. Corbineau.Démonstration automatique en Théorie des
Types. PhD thesis, University of Paris IX, 2005.

[12] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer.
Principles of OBJ2. In B. Reid, editor,Proceedings of 12th
ACM Conference on Principles of Programming Languages.
ACM, 1985.

[13] J. H. Geuvers and M. Nederhof. A modular proof of strong
normalization for the calculus of constructions.J. of Func-
tional programming, 1,2:155–189, 1991.

[14] E. Giménez. Structural recursive definitions in type theory.
In Proceedings of ICALP’98, volume 1443 ofLNCS, pages
397–408, July 1998.

[15] G. Gonthier. The four color theorem in coq. InTYPES 2004
International Workshop, 2004.

[16] N. Oury. Extensionality in the calculus of constructions. In
Proceedings 18th TPHOL, Oxford, UK. LNCS 3603, 2005.

[17] C. Paulin-Mohring. Inductive definitions in the system
COQ. In Typed Lambda Calculi and Applications, pages
328–345. Springer Verlag, 1993. LNCS 664.

[18] N. Shankar. Little engines of proof. In G. Plotkin, edi-
tor, Proceedings of the Seventeenth Annual IEEE Symp. on
Logic in Computer Science. IEEE Computer Society Press,
2002. Invited Talk.

[19] R. E. Shostak. An efficient decision procedure for arithmetic
with function symbols.J. of the Association for Computing
Machinery, 26(2):351–360, 1979.

[20] M. Stehr. The Open Calculus of Constructions: An equa-
tional type theory with dependent types for programming,
specification, and interactive theorem proving (part I and II).
To appear in Fundamenta Informaticae, 2007.

[21] B. Werner.Une Th́eorie des Constructions Inductives. PhD
thesis, University of Paris VII, 1994.

