
Fast Algorithms for Testing Fault-Tolerance of Sequenced Jobs with

Deadlines

Marek Chrobak∗ Mathilde Hurand† Jǐŕı Sgall‡

Abstract

In queue-based scheduling systems jobs are executed
according to a predefined sequential plan; faults may
occur that cause jobs to re-execute thus delaying the
whole schedule. It is, therefore, important to be
able to determine (in real-time) whether a set of pre-
ordered jobs will always meet their deadlines: it al-
lows for instance to decide online whether to admit a
new urgent job in the queue and still guaranty that
the whole schedule remains fault-tolerant, i.e. that
the remaining jobs still will not miss their deadlines.
Our goal in this work is therefore to efficiently test
whether a given set of sequenced jobs can tolerate
transient faults. We consider different realistic fault
models specifying which fault patterns are allowed
and how soon failed jobs can be restarted. For each
fault model considered we provide efficient algorithms
that, given a set of sequenced jobs, decide on the fea-
sibility of all the jobs in the schedule. Our algorithms
are exact and run in time linear in the number of jobs
and thus can be used to make a real-time decision.

1 Introduction

Previous work. Ghosh, Melhem and Mossé
[GMM95, MMG03] (see also [EKM+99]) introduced
the problem of testing fault-tolerance of a collection
of sequenced jobs. More specifically, we are given a
sequence J of jobs, with release times, deadlines, and
processing times (or lengths). The jobs in J have
already been sequenced, that is, their order of exe-

∗Department of Computer Science, University of California,
Riverside, Research supported by NSF grants CCR-9988360,
CCR-0208856, and OISE-0340752.

†Department d’Informatique (LIX), Ecole Polytechnique,
Palaiseau, France.

‡Mathematical Institute, Academy of Sciences of the Czech
Republic, Partially supported by Institutional Research Plan
No. AV0Z10190503, by Inst. for Theor. Comp. Sci., Prague
(project 1M0545 of MŠMT ČR), and grant 201/05/0124 of GA
ČR.f

cution is known. Transient faults may occur when
jobs are executed. If a fault occurs, the currently
executed job is re-executed. In [GMM95, MMG03]
the authors assume that a fault can be detected only
after the processing of a job is complete. We re-
fer to such faults as hidden faults. The question in-
vestigated in [GMM95, MMG03] is whether all jobs
in J will meet their deadlines in the presence of
faults. The answer is, obviously, negative when ar-
bitrary fault patterns are allowed. However, with
reasonable assumptions on the frequency of faults,
the question becomes meaningful and, in some cases,
non-trivial. In [GMM95, MMG03], the authors as-
sume the fault frequency model in which a gap be-
tween any two faults is at least ∆, where ∆ is at
least twice the maximum job length. For this model,
they present an O(n2)-time fault-tolerance testing al-
gorithm, under the restriction that all jobs are re-
leased at the same time. In addition, they also pro-
pose a linear-time heuristic that approximates a so-
lution for this problem. The authors also extend
this linear-time heuristic to jobs with arbitrary re-
lease times, and discuss its applications and exper-
imental results. A different fault frequency model,
in which the number of faults is bounded by some
constant k, has been suggested by Liberato, Melhem
and Mossé [LMM00]. For this model, the authors
give a O(n2k)-time dynamic programming algorithm
for testing fault-tolerance if jobs are ordered accord-
ing to EDF and preemption is allowed. Substantial
work has also been done on fault tolerant scheduling
in multiprocessor systems. For example, Liberato et
al.[LLMM99] study scheduling of periodic preemp-
tive real-time jobs in the presence of transient faults.
A different model, with processor faults and non-
periodic and non-preemptive tasks was investigated
by Manimaran and Siva Ram Murthy [MM98]. Pruhs
and Kalyanasundaram [KP97] study fault-tolerant
scheduling from the perspective of competitive analy-
sis. (See [LLMM99, MM98, QHJ+00, QJS02, GKS04,
KP97] and references therein for other work on this

1

and related topics.)

Our results. On this paper, the jobs are allready
ordered, and preemption is not allowed. We consider
both fault frequency models from [GMM95, MMG03,
LMM00] in this paper. In addition to the hidden
faults, we also consider another type of faults that
we call exposed. Unlike hidden faults, exposed faults
can be detected immediately, and therefore the job
affected can be stopped and restarted right after the
fault.

Our first algorithm is for the fault frequency model
NUMk, where the number of faults is bounded by k.
This algorithm runs in time O(n) (for both Hidden
faults and exposed faults). In [Ayd04] the fault model
from [LMM00] is extended so that a reexecution of a
job could take time different from its processing time.
Our algorithm can be adapted to handle a similar
case as well.

Then we consider the fault frequency model GAP∆,
introduced in [GMM95, MMG03], in which any two
consecutive faults are separated by a gap at least ∆.
For exposed faults, we give an algorithm that runs in
time O(n). In the case of hidden faults we present an
algorithm with worst case running time O(n2). Our
algorithm applies to jobs with arbitrary release times,
generalizing the work from [GMM95, MMG03]. Fur-
thermore we prove that if that for example the distri-
bution of the jobs is strictly positive on the all inter-
val [0, pmax], then this algorithm’s expected running
time is O(n) with high probability. Our experimental
study confirms that this linear-time performance for
various distributions.

We eventually generalize this algorithm to take into
account novel fault model, GAPk

∆, where two faults
must be separated by at a time at least ∆, but for a
fixed number of k faults that can happen at any time.
Our algorithm has a worst case performance Ω(kn2)
and in practice runs in Ω(kn).

Outline We will start by some definitions and no-
tations. Then, in Section 3 we prove that it is only
necessary to restrict our attention to greedy sched-
ules only. Then, we detail our several algorithms
for testing fault-tolerance for each of the three fault
model. The basic idea behind all these algorithms is
similar: for each fault model we first show that one
needs to consider only some model-specific worst-case
fault sequencess, termed ”cruel”. With this restric-
tion, using dynamic programming, we design algo-
rithms that computes for each job its latest comple-
tion time under ”cruel” fault sequences. Comparing

these completion times with the deadlines, we deter-
mine whether the given set of jobs is fault-tolerant.
Due to space constraints most of the proofs of lemmas
and theorems are omitted.

2 Terminology and Notation

Jobs and Schedules. By J we denote the se-
quence of n jobs on input, which are given by triples
(rj , dj , pj), where rj is the release time, dj is the dead-
line, and pj is the processing time of job j. Without
loss of generality, we assume that 0 ≤ ri < ri+pi ≤ di

for all i. By pmax = maxj pj we denote the maximum
processing time. A schedule of J is any sequence
s = (s1, . . . , sn), such that si ≥ ri for all i, and
si+1 ≥ si + pi for i < n. We refer to sj as the sched-
uled start time of job j. Without loss of generality,
throughout the paper, we assume that ri+1 ≥ ri + pi

for all i < n. For any set of jobs J we can easily
modify, in linear time, the release times in J to sat-
isfy this property, without affecting job completion
times. The greedy schedule for J is then defined sim-
ply by si = ri, for all i.

Faults. Each fault is specified by a real number,
namely the time of the fault. Fault sequences are
denoted by letters f , g, h. We assume that the faults
in these sequences are listed in increasing order.

A fault frequency model is a set F of potential fault
sequences. F is called sparsifiable if for all f ∈ F ,
any 1 ≤ a ≤ b ≤ |f |, and any fault sequence g with
|g| = b − a + 1, if fa+i−1 − fa+i−2 ≤ gi − gi−1 for
i = 2, ..., b−a+1, then g ∈ F as well. Intuitively, this
means that any sequence “sparser” than a sequence
in F is also in F . The three particular models we
consider are: GAP∆: the set of all sequences f in
which fi − fi−1 ≥ ∆ for each i; NUMk: the set of
all sequences f with at most k faults; GAPk

∆: the set
of all sequences f where at most k faults fi satisfy
fi − fi−1 < ∆. All three models are sparsifiable. As
we show later, for sparsifiable models, we can restrict
ourselves to studying only greedy schedules.

Completion times. Next, we explain how a job’s
execution is affected when a fault occurs. This de-
pends on the type of faults under consideration. Fix
a sequence of n jobs J and a fault model F . By
Sj(s, f) and Cj(s, f) we denote the start time and
completion time of job j, if we execute the jobs ac-
cording to schedule s and the fault sequence is f . In-
formally, Sj(s, f) is either sj or the completion time
of job j − 1, whichever is greater. If no fault oc-

2

curs between Sj(s, f) and Sj(s, f)+pj , then Cj(s, f)
equals Sj(s, f) + pj . If a fault occurs in this interval,
j will need to be reexecuted, starting either at the
fault time or at Sj(s, f) + pj , depending on whether
we consider exposed or hidden faults. The comple-
tion time is the time when j has been fully processed
without faults.

We now give a rigorous definition. Initially, set
S1(s, f) = s1. Then, for j = 1, ..., n, assume that Sj

has been defined, and proceed as follows:
(C) The completion time Cj(s, f) depends on the
fault type: (CE) For exposed-faults, Cj(s, f) is the
smallest τ ≥ Sj(s, f)+pj such that f∩(τ−pj , τ] = ∅,
that is, the interval (τ − pj , τ] contains no faults;
(CH) For hidden-faults, Cj(s, f) is the smallest τ ≥
Sj(s, f) + pj such that f ∩ (τ − pj , τ] = ∅ and
τ − Sj(s, f) is an integer multiple of pj .
(S) If j < n, then the start time of job j + 1 is
Sj+1(s, f) = max {sj+1, Cj(s, f)}.

By Cj(s, F) we denote the maximum completion
time of job j if the faults are from F , that is
Cj(s, F) = maxf∈F Cj(s, f). Throughout the paper,
we will simplify notation by omitting the arguments
that are understood from context, for example Sj(s),
Cj(F), Cj , etc.

For either fault type, exposed or hidden, a sched-
ule s of J is called F -tolerant, if each job completes
by its deadline, that is Cj(s, F) ≤ dj for all j. All
algorithms we present will actually compute, for all
j, the maximum completion times Cj(s, F). Testing
fault-tolerance, that is, whether Cj(s, F) ≤ dj for all
j, can then be done trivially in linear time.

3 Fault Tolerance and Greedy
Schedules

In this section we show that we can restrict ourselves
to greedy schedules only. For two schedules s, t, we
write s≺t if si ≤ ti for all i.

Lemma 1. For exposed faults, for any fault frequency
model F , if J has any F -tolerant schedule then the
greedy schedule for J is F -tolerant.

sketch. Let a fault f , by induction on the jobs in the
sequence, we show that delaying the starting time of
a job either does not affect its completion time (since
the job will complete a full processing time after the
date of the last fault), either delays it if the jobs waits
after the last fault to start its execution.

Lemma 2. For hidden faults, for any sparsifiable
fault frequency model F , if J has any F -tolerant
schedule then the greedy schedule for J is F -tolerant.

Idea of the proof. Suppose we have a fault sequence f
and a schedule t that differs from the greedy schedule
s by one starting date: a job b waits a time ε before
starting in t. Then, since the fault frequency model
is ”spartisifiable”, we can also delay the faults that
would affect jobs b and after by this same amount
of time, so that the faults keep hitting jobs b and
after exactly at the same relative time, leading to
the same completion times as in s, only shifted by
ε to the right. If the two schedule differ by more
than one starting date, we decompose the process into
elementary steps where they differ only by one, and
the proof generalizes.

Lemma 3. All three fault frequency models, NUMk,
GAP∆, and GAPk

∆, are sparsifiable.

From the lemmas above, we can assume that the
jobs are scheduled greedily, and we will use notation
Sj(f), Cj(f), etc., for the start time and completion
time in the greedy schedule. Also, we will say that
a job sequence J is F -tolerant if the greedy schedule
for J is F -tolerant.

4 Sequences with at Most k
Faults

In this section we give a linear-time algorithm for
testing fault tolerance when F = NUMk, that is, F
consists of all sequences with at most k faults, where k
is a given parameter. By the results from the previous
section, we can assume that the jobs are scheduled
according to the greedy schedule. The general idea
of the algorithm is that in the worst case all faults
will affect just one “critical” job.

Lemma 4. For both exposed and hidden faults, for
each b ∈ J and f ∈ NUMk, there is g ∈ NUMk that
causes one job in J to execute k + 1 times, and for
which Cb(g) ≥ Cb(f).

Idea of the proof. First note that in this case, the
worst pattern for exposed faults is when the faults
happen at the end of jobs, and thus the exposed fault
case comes down to the hidden fault case. For hid-
den fault, the worst delay that can happen for a job
is if the biggest job scheduled in front of it is made
to restart k + 1 times.

3

Algorithm 1 — Computing the C∗
j = Cj(NUMk)

C∗
0← r1

for j from 1 to n do
C∗

j ← max {C∗
j−1 + pj , rj + (k + 1)pj }.

Algorithm 2 : C∗
j = Cj(GAP∆) for exposed faults

Compute the numbers αj , πj using algorithm 3
C∗

0← r1

for j = 1, . . . , n do

C∗
j ← max

C∗

j−1 + pj

rj + 2pj

C∗
α(j)−1 + π(j) + pj

Algorithm 1 given above will compute the latest
completion time C∗

j = Cj(NUMk) for each job j. To
test fault-tolerance, one then only needs to check if
C∗

j ≤ dj for all j.

Theorem 5. For both fault types, Algorithm 1 com-
putes in time O(n) the latest completion times for all
jobs j, in the presence of up to k faults (that is, for
the fault model NUMk.)

5 Exposed ∆-Faults

We now consider the fault model F = GAP∆, in
which all fault sequences f satisfy fi−fi−1 ≥ ∆ for all
i, where ∆ is some parameter of the problem. Recall
that, as in [GMM97], we assume that ∆ ≥ 2pmax.

As in the previous section, the idea is to show
that only some special fault sequences, the cruel fault
sequence for GAP∆ need to be considered. Define
CEGAPJ

∆ to be the set of fault sequences f ∈ GAP∆

in which each fault occurs at the completion time of
the first execution of some job.

Lemma 6. In the greedy schedule, for each b ∈ J and
f ∈ GAP∆, there is g ∈ CEGAPJ

∆ for which Cb(g) ≥
Cb(f).

Proof intuition without release dates: Suppose we
have a fault sequence f where a fault fk hits a job
k just ε before its first scheduled completion time.
If we shift all faults after fk (included) by ε the
created fault sequence is still in GAP∆ and the final
completion time of job k is delayed by epsilon. Jobs

Algorithm 3 — Computing the auxiliary numbers
α(j) and π(j)

α(1)← 1
π(1)← p1

for j from 2 to n do
a← α(j − 1)
x← π(j − 1) + pj

while x > ∆ do
x← x− pa

a← a + 1
α(j)← a
π(j)← x

after k are also delayed by ε since they get hit by
the new faults at the same relative time as before.
The complete proof is adapted to handle release
dates.

For each j, we first define α(j) as the minimum
index a such that

∑j
i=a pi ≤ ∆. (In other words,∑j

i=a pi ≤ ∆ and either a = 1 or
∑j

i=a−1 pi > ∆.)
Let also π(j) =

∑j
i=α(j) pi. The numbers α(j) and

π(j) can be pre-computed as in Algorithm 3. By a
standard amortization argument, Algorithm 3 runs
in linear time. Our algorithm, Algorithm 2, uses the
numbers α(j) and π(j) computed above, to calculate
C∗

j (CEGAPJ
∆), the worst time completion time for job

j over all cruel sequences. Its linear-time complexity
is obvious. Then, according to Lemma 6, for all j,
C∗

j (CEGAPJ
∆) = C∗

j (GAP∆).

Theorem 7. Algorithm 2 computes in linear time the
maximum completion times for all jobs, for exposed
faults, if all faults are separated by gaps of length at
least ∆.

6 Hidden ∆-Faults

The algorithm from [GMM97] verifies fault-tolerance
if all jobs are ready at the same time. It can be shown
that the method from [GMM97] does not work for ar-
bitrary release times. Our general approach is similar
to those in the previous section. We identify certain
“cruel” fault sequences on which completion times of
jobs are maximized. Focusing on these sequences, we
derive a dynamic programming algorithm.

Let J be a set of jobs. A fault sequence f ∈ GAP∆

is called cruel for J if for all fi ∈ f , fi − fi−1 = ∆,

4

or fi occurs at a beginning of some job. The above
conditions imply that each cruel fault sequence can
be divided into chains, where in each chain the faults
are at distance exactly ∆. We define CRUEL0

J to be
the set of fault sequences in GAP∆ that are cruel for
J .

Lemma 8. In the greedy schedule, for each b ∈ J and
f ∈ GAP∆, there is g ∈ CRUEL0

J for which Cb(g) ≥
Cb(f).

Proof intuition without the release dates. The idea is
the same as in the previous case. Take a fault se-
quence f that is not in CRUEL0

Jand take the first
fault of the sequence that is neither at a distance ∆
from the previous fault nor at the begining of a job.
Then we can move this fault leftwards until one of
those condition is reached, and it does not affect the
completion times of the jobs. The created fault se-
quence is still in GAP∆. By repeating the process,
we turn f into a fault from CRUEL0

Jthat leads to the
same completion times as f .

For a fixed cruel sequence up to fi, there are only
two ways to extend it: fault again after time ∆ or af-
ter a time bigger than ∆, at the starting time of a new
job. This has two consequences : First, this gives us a
dynamic algorithm to compute cruel sequences recur-
sively: to know where cruel sequence f may or may
not fault during the execution of job j + 1 we really
only need to keep track of when f last faulted, and at
what time it made job j finish: we need to keep track
of the two values Cj(f) and δj(f) = Cj(f)−fi, where
fi is the last fault so far. Second, we can not recur-
sively compute all cruel sequences in polynomial time
since there are exponentially many of then. We then
prove that we can consider only a subset of CRUEL0

J .
Intuitively, here is how we discard some of the cruel

sequences: suppose that we have computed how two
cruel sequences f and g behave up to job j. Suppose
that Cj(f) > Cj(g), and that the last fault in f hap-
pened before the last fault in g (i.e. δj(f) ≥ δj(g)).
Then intuitively, we can discard g from further com-
putation because for any extension of g there is an
extension of f where the completion times are at least
as large.

Formally, a pair (c̃, δ̃) is said to dominate a pair
(c, δ) iif c̃ ≥ c, δ̃ ≥ δ and at least one of these
two inequalities is strict. We further extend the def-
inition of dominance to fault sequences. For two
faults sequence f, g ∈ CRUEL0

J and a job k, we
say that f k-dominates g if (Ck(f), δk(f)) domi-
nates (Ck(g), δk(g)). For each k, the k-dominance

Algorithm 4 Computing the sets Hj

H0 ← {(r0,∆)}
for each (c, δ) ∈ Hj−1 such that c ≥ rj do

if δ + pj < ∆ then
add (c + pj , δ + pj) to Hj

else
add (c + 2pj , δ + 2pj − ∆) and (c + pj ,∆) to
Hj

Eliminate dominated pairs from Hj

if ∃(c, δ) ∈ Hj−1|c < rj then
Hj ← Hj ∪ {(rj + pj ,∆), (rj + 2pj , 2pj)}.

C∗
j ← max {c : (c, δ) ∈ Hj}

relation is a partial strict order on CRUEL0
J . By

CRUELk
J ⊆ CRUEL0

J we denote the set of cruel se-
quences that are not j-dominated by another se-
quence, for any j = 1, 2, ..., k. In other words, for
k > 0, CRUELk

J is the set of all f ∈ CRUELk−1
J such

that f is not k-dominated by any g ∈ CRUELk−1
J . We

now prove that, in order to compute the worst-case
completion time of job k, it is sufficient to consider
only the sequences in the set CRUELk

J .

Lemma 9. For any f ∈ CRUELk−1
J − CRUELk

J and
b ≥ k, there exists g ∈ CRUELk

J such that Cb(f) ≤
Cb(g).

Corollary 10. If a job b from J is CRUELb
J -tolerant,

then it is CRUEL0
J -tolerant.

The algorithm. We compute all values C∗
j =

Cj(GAP∆) for each j. By Lemma 8, for each j we
have C∗

j = maxf Cj(f), where the maximum is over
all cruel sequences, and according to corollary 10,
C∗

j = Cj(CRUELj
J). Let Hj = {(Cj(f), δj(f)), f ∈

.CRUELj
J}: for any set CRUELj

J , Hj is the set of
pairs (c, δ) such that for some fault sequence f ∈
CRUELj

J , c = Cj(f) and δ = δj(f). Therefore
C∗

j = max(c,δ)∈Hj
(c). Initially we have H0 ← (0,∆),

and since CRUELj+1
J ⊂ CRUELj

J , Hj+1 can be built
dynamically from set Hj . Note that in the sets Hj ,
we can assume that δ ≤ ∆, since for δ ≥ ∆ it does not
matter what the exact value of δ is, so we can use the
value δ = ∆ to indicate that there is no restriction
on the next fault. The pseudocode for computing the
sets Hj is given in Algorithm 4.

Correctness. Take f ∈ CRUELj
J . We want to prove

that (Cj(f), δj(f)) ∈ Hj . Given our definition of H0

5

H j

H j+1

∆−p
j+1

c

δ
∆

Figure 1: Building Hj+1 from Hj

the basis case is trivial. Suppose that the claim is
true at rank j − 1 and take f ∈ CRUELj

J . Since
CRUELj

J ⊂ CRUELj−1
J , f is in CRUELj−1

J as well and
(Cj−1(f), δj−1(f)) ∈ Hj−1. Our algorithm consid-
ers every pair in Hj−1 and computes the exhaustive
undominated corresponding pairs in Hj . Since f is
in CRUELj

J , (Cj(f), δj(f)) is not dominated and will
therefore be added to Hj .

For (c, δ) ∈ Hj−1, several things can happen for
the creation of corresponding pair(s) in Hj : If rj 6 c,
the limiting factor for the scheduling of the new job
is not its release time but the current schedule. If
δ+pj ≤ ∆ (line 3), no fault can occur on j. The only
way of continuing the cruel sequence is to put the job
back to back with the last one and change the δ and
c according to this. The new pair will therefore be
(c+ pj , δ + pj) If δ + pj > ∆ (line 5), we can continue
the cruel sequence in two ways. Either we fault on j,
in that case the processing time will increase by 2pj

and the last fault will be closer by ∆−2pj . Or, we can
decide not to fault on j. In that case the processing
time will increase only by pj but next fault might
occur anywhere, so we add the pair (c+pj ,∆) to Hj .

During the construction of Hj at least a pair (c,∆)
will be added. Also, since ∆ is maximal, note that a
pair (c̃,∆) will not be discarded during the elimina-
tion process where c̃ is minimal over all c in Hj .

If c < rj , since a job cannot start before its re-
lease date, the only way to continue the cruel se-
quence would be to execute the next job at its re-
lease date, with or without a fault at its beginning.
But, if there is a c < rj ∈ Hj−1, then by minimality
of c̃, c̃ 6 c < rj with (c̃,∆) ∈ Hj−1. For this pair
we therefore create in Hj the pairs (rj + pj ,∆) and
(rj + 2pj , 2pj). Those two pairs dominates all the
ones we could create for the other c < rj .

Then, since we only keep the pairs that correspond

to faults from CRUELj
J , we need to eliminate all pairs

that correspond to fault sequences dominated at rank
j, i.e. pairs (c, δ) for which there exists a pair (c′, δ′)
in Hj such that c′ ≥ c and δ′ ≥ δ. This elimination
can be implemented in time linear O(|Hj |) by main-
taining two list of ordered pairs to be added (accord-
ing to the case) and merging them in the end.

Lemma 11. The size of Hj increases at most by 1
at each step. Therefore the procedure to build the set
Hj can be implemented in time O(j). So the overall
algorithm works in time O(n2).

The idea of the proof is that even though it seems
that the size of Hj could double at each step, since
we eliminated dominated pairs, of all pairs type (c,∆)
only the one with the biggest c remains, and the size
of Hj increases at most by 1 at each step.

6.1 Experimental Results

As we showed in the previous section, the algo-
rithm for ∆-faults runs in time O(n2), in the worst
case. Note, however, that the algorithm is not data-
oblivious, and that its running time depends on the
size of the sets Hj . For the overall running time to be
quadratic, the size of Hj would have to increase by 1
in most steps, which means in most steps no elimina-
tion would occur – a scenario that seems very unlikely
in random data sequences. We confirm this intuition
through experimental studies. We performed three
types of experiments, for various probability distribu-
tions. In the first one, we show the expected running
time to grow linearly with n. Next, we confirm this
further by showing that the total size of the sets Hj

is linear, in expectation. Finally, we show that, for
the uniform distribution, with high probability the
size of the sets Hj is constant. (Indeed, we prove this
fact in the next section.)
Running time. We tested our algorithm for several
random distributions of job length. The experimental
running time is obviously linear, results are presented
in Figure 2.

Total size of the sets Hj. The running time of
the algorithm is proportional to

∑n
j=0 |Hj |, the total

number of pairs (c, δ) in the sets Hj . In the second
batch of experiments we measured the expectation of
the total size of sets Hi for instances of different size
n ranging from 1 to 20000. In our experiments, this
value also grows linearly with n.

6

Figure 2: Running time of Algorithm 4

Maximal size of sets Hj. We also considered the
maximum cardinality reached by sets Hj , for various
values of n, ranging from 0 to 120000, and for the
uniform distribution of job lengths. The results show
that this quantity grows very slowly, and appears to
level off at around 11. The result is represented in fig-
ure 3. Even for very large values of n, we did not find

 2

 4

 6

 8

 10

 12

 14

 0 20000 40000 60000 80000 100000 120000

N
um

be
r

of
 e

le
m

en
ts

 in
 th

e
bi

gg
es

t s
et

N

"numMaxSet.dat" using 1:5

Figure 3: Maximum size of the sets Hj .

any sets Hj with more than 13 pairs. In the next sec-
tion, we will prove that for the uniform distribution
the expected size of the sets Hj is O(1).

6.2 Probabilistic Analysis – Uniform
Distribution

In this section, we are going to show that under
the uniform distribution of the lengths pj , our al-
gorithm’s expected running time is linear. In fact,
we will prove something stronger – namely that the
running time of the algorithm is O(n) with very high

probability. The proof is made for convenience on a
uniform distribution over the pj , it is easy to check
that the same proof holds for any distribution where
there is a strictly positive probability for p to fall
in each of the following intervals: [5

26 , 6
26]] 1352 , 15

52 [,
[1552 , 17

52], and] 6
13 , 1

2]. Therefore, a fortiori, the proof
works for a distribution that is strictly positive ev-
erywhere. Only the analysis would then result in
different constants. This is consistent with our ex-
perimental results, we verify that the constant varies
with the distribution. The idea of the proof is based
on the intuition from the previous section. We prove
that, with high probability, the size of the sets Hj

remains constant throughout the computation. To
simplify the analysis, we only exploit certain types of
elimination in the proof. As a result, the constant
bound we get is higher than the one from the empir-
ical study.
Random sets Qi. The idea of the proof is to de-
fine a sequence of random sets Qi, which are essen-
tially supersets of the sets Hi, but appropriately offset
leftwards so that they are contained in the rectangle
[0,∆/2] × [0,∆]. The reason Qi is not the same as
Hi is that when computing Qi we only do one type
of elimination, and thus more points from Qi−1 may
survive than when Hi is computed in the actual al-
gorithm. Nevertheless, we still show that with high
probability the size of the Qi remains constant.

Without loss of generality, we can assume that ∆ =
1. Let Z = [0, 1

2] × [0, 1]. We say that (α, β) ∈ Z
dominates (γ, δ) ∈ Z if and only if α ≥ γ and β ≥ δ.

We define first two auxiliary functions F (·) and
φ(·). For all p ∈ [0, 1

2] and α, β ∈ Z, define

F (p, α, β) =
{

(α + p, β + 2p− 1) if β ≥ 1− p
(α, β + p) if β ≤ 1− p

and for Q ⊆ Z and p ∈ [0, 1
2], let φ(Q, p) =

max {α : (α, β) ∈ Q & β ≥ 1− p}. Observe that, by
definition, the point (φQ,p, 1) dominates all points
(α, β) ∈ Q with α ≤ φ(Q, p).

In the rest of the proof we consider a random
sequence p1, p2, ..., pn of job lengths, where each pi

is chosen uniformly from [0, 1
2], and we prove that

for this sequence the size of all sets Hi remains
constant with high probability. To avoid cumber-
some notation, from now on we fix the values of
p1, p2, ..., pn. For each i, let Fi(α, β) = F (pi, α, β)
and qi = φ(Qi, pi). The reader needs to keep in mind
though that Fi, qi, as well as all other notions de-
pendent on the sequence {pi} are actually random
variables.

7

The sets Qi are defined recursively. For i = 0, let
Q0 = {(0, 1)}. Suppose that Qi is defined, and let
qi = φ(Qi, pi). Then

Q′
i+1 = Fi(Qi) ∪ {(qi, 1)}

Q′′
i+1 = Q′

i+1 −
{

(α, β) ∈ Fi(Qi) | (α ≤ qi)
or (α ≤ pi and β ≤ 2pi)

}
Qi+1 = Q′′

i+1 − {(qi, 0)}
= {(α− qi, β) | (α, β) ∈ Q”i+1}

In other words, Q′
i+1 is the union of Fi(Qi) and the

point (qi, 1). In Q′′
i+1, we remove the points domi-

nated either by Fi

(
(0, 1)

)
= (pi, 2pi) or by (qi, 1). In

Qi+1 we offset Q′′
i+1.

Lemma 12. For all i and for any (α′, β′) ∈ Fi(Qi)
we have α′ ≤ qi + 1/2

Proof. Choose (α, β) ∈ Qi such that (α′, β′) =
Fi(α, β). We have two cases. If β < 1 − pi, then
α′ = α ≤ qi+ 1

2 , since both qi, α ∈ [0, 1
2]. If β ≥ 1−pi,

then α′ = α + pi ≤ qi + pi ≤ qi + 1
2 , by the choice of

qi.

Observe that, according to Lemma 12 and from the
definition of Fi, we have Qi ⊆ Z for all i.

Theorem 13. |Hi| ≤ |Qi| for all i.

Proof omitted. The idea is to map each point that
survives in Hi to a point that survives in Qi.

We now count how many points from Qi won’t have
an image in Qi+1 because of the condition α < p
and β < 2p. We will say of these points they are
”eliminated” from step i to step i + 1. And then
we will demonstrate that with constant probability,
1
9

th of the points in Qi are eliminated in Qi+4. We
partition Z into five zones A,B1, B2, C, D defined as
in Fig 4:

Lemma 14. Fix some step i. Then: [(a)] With prob-
ability at least 1

13 , all points in Qi ∩ A will be elim-
inated. [(b1)] With probability at least 1

13 , all points
in Qi ∩ B1 will migrate to Qi+1 ∩ A. [(b2)] With
probability at least 1

13 , all points in Qi ∩ B2 will mi-
grate to Qi+1 ∩ A. [(c)] With probability at least 1

13 ,
all points in Qi ∩ C will migrate to Qi+1 ∩ B. [(d)]
With probability at least 1

13 , all points in Qi ∩D will
migrate to Qi+1 ∩ (B ∪ C).

A = [0, 12
26]× [0, 12

26]

α

A D

C

β

21/26

37/52

12/26

12/26 1/2

1

0

B2

B1

B2 = [0, 1
2]×]37

52, 21
26]

C = [0, 1
2]×]12

26, 37
52]

B = B1 ∪B2

D =]12
26, 1]× [0, 12

26]

B1 = [0, 1
2]×]21

26, 1]

Figure 4: Zones of elimination

Proof. Let p = pi+1. (a) A point (α, β) ∈ Qi will
be eliminated as long as max(α, β) ≤ p ≤ 1

2 . So for
p ∈ [1226 , 1

2], all points in Qi ∩ A will be eliminated.
The probability that p falls in this range is 1

13 . (b1)
A point (α, β) ∈ Qi ∩B1 will migrate to Qi+1 ∩A as
long as:β ≥ 1− p, β − 1 + 2 ∗ p ≤ 12

26 and p ≤ 12
26 . So

for p ∈ [5
26 , 6

26], all points in Qi ∩ B1 will migrate to
Qi+1 ∩ A. The probability that p falls in this range
is 1

13 . (b2) A point (α, β) ∈ Qi ∩ B2 will migrate to
Qi+1 ∩ A as long as: β ≥ 1 − p, β − 1 + 2 ∗ p ≤ 12

26
and p ≤ 12

26 . So for p ∈ [1552 , 17
52], all points in Qi ∩B2

will migrate to Qi+1∩A. The probability that p falls
in this range is 1

13 . (c) A point (α, β) ∈ Qi ∩ C will
migrate to Qi+1 ∩ B as long as: p ≤ 1 − β and
β + p ≥ 37

52 . So for p ∈ [1352 , 15
52], all points in Qi ∩ C

will migrate to Qi+1∩B (d) A point (α, β) ∈ Qi∩B2

will migrate to Qi+1 ∩ A as long as β + p ≥ 12
26 . So

for p ∈ [1226 , 1
2], all points in Qi ∩ D will migrate to

Qi+1 ∩ (B ∪ C). The probability that p falls in this
range is 1

13 .

Theorem 15. In Qi+4, with probability at least χ =
1

134 , 1
9 -th of the points in Qi will be eliminated.

proof idea. We start from the constat that we must
have at least 1

9

th of the points of Qi in A, B1 or B2,

or 2
9

th in C or 4
9

th in D. And then we proceed by case
and subcase analysis. The worst case being the last
one, but it is easily shown that in the worst sub-case
at least one fourth of those 4

9

th points are eliminated
in four rounds (after moving to C, then to B1 or B2

and finally to A), and this with probabilty at least
1
13

4. In the other cases, a similar number of points

8

is eliminated but in less rounds and with a higher
probability.

6.3 An Upper Bound on |Hi|
Theorem 16. For t ≤ n/4, let Pt(k) = Prob[|Q4t| ≥
k]. Then Pt(k) ≤ (1 − χ

2)
k−k0

4 where k0 =
32 (−ln(2)/ln(1− χ/2)) + 4.

Proof. (Draft) For k ≤ k0 we have (1 − χ
2)

k−k0
4 ≥ 1,

so the condition is trivially satisfied. Assume now
that k ≥ k0. In this case the proof is by induction on
t. In the base case, for t < k0

4 we have k ≥ 4t and
Pt(k) = Q4t(k) = 0 by construction and the theorem
holds.

In the inductive step, let t ≥ k0
4 and suppose

the property is true for all k at t − 1. Then
Pt(k) ≤ Pt−1(k − 4)(1 − χ) + Pt−1

(
9
8 (k − 4)

)
∗ χ ≤

(1−χ)
(
1− χ

2

)(k−4−k0)/4+χ
(
1− χ

2

)(9(k−4)−8k0)/32 ≤(
1− χ

2

)(k−k0)/4
, and the theorem follows.

Corollary 17. (a) The size of each set Hi is con-
stant with very high probability. Specifically, we have
Prob(|Hi| ≥ k) ≤ C1(C2)k where C1 and C2 are con-
stants, and C2 < 1. (b) Consequently, the expected
running time of Algorithm 4 is O(n).

Proof. (a) Since |Hi| ≤ |Qi|, this follows from the
previous theorem with constants C1 = (1−χ/2)−k0/4

and C2 = (1 − χ/2)1/4, where χ and k0 are con-
stants defined earlier. Since χ is very small, we get
C2 < 1. (b) From part (a) we get Exp(|Hj |) ≤
C1C2/(1−C2)2. Therefore each step of the algorithm
takes constant time in expectation, so the overall run-
ning time is O(n). As mentioned previously, if the
distribution is strictly positive but not uniform, then
the proof holds; the resulting C1 and C2 depend on
the distribution.

7 Sequences with Few
non-∆-faults

We now focuss on a more realistic model, where we
allow a bounded number of faults to happen within
an interval less than ∆. Such faults will be called
non-∆-faults . This fault model is denoted GAPk

∆ if
no more than k non-∆-faults are allowed.

Idea of the algorithm (not given here). The
worst sequence for a given set of jobs is such that
every ∆-fault fi is either at the beginning of a new

job or exactly ∆ away from the previous one, and ev-
ery non-∆-fault is at the beginning of a new job. To
adapt the algorithm for GAP∆to the present problem,
we augment the number of sets we are going to cal-
culate. We now introduce Hi

j to be the set of pairs
(c, δ) such that there exists a cruel sequence fi where
fi contains exactly i non-∆-faults up to job j, job j
completes at time c with the last fault at time c− δ.
We then dynamically compute all these sets in worst-
casee time O(n2k). Also we do not prove it formally,
the intuition is that by similarity with what happens
in the GAP∆fault model, the practical running time
is actually much faster, more like O(kn). We present
in fig 5 and fig 6 the graphics showing the actual run-
ning time of our algorithm as a function of N and
k, for diverse distribution over p. Indeed this results
corroborate the intuition.

Figure 5: Average running time increases lin-
early with N

8 Final Comments and conclu-
sion.

In this paper, we present linear-time algorithms for
testing fault tolerance for the NUMk fault model (for
both hidden and exposed faults) and for the GAP∆

fault model for exposed faults. For hidden faults
in the GAPk

∆ model, we give an exact algorithm of
worst case running time Ω(kn2), but that runs in time
Ω(kn). In particular, for k = 1, this algorithms gives
us an expected linear running time in the GAP∆ fault-
model. All our algorithms support release dates for
the jobs. Whether the worst-case running time in the
GAP∆ fault model can be improved remains an open

9

Figure 6: Average running time increases lin-
early with k

question. However, in the full version of the paper
we provide evidence that such an improvement is un-
likely, by showing that a slight generalization of this
problem cannot be solved faster than in time Ω(n2)
in the algebraic decision tree model. We eventually
want to stress that the methodology used through-
out the paper, of carefully dynamically constructing
instance-specific worst-case fault scenarios seems to
be extremely well adapted to the problem at hand.

References

[Ayd04] Hakan Aydin. On fault-sensitive feasi-
bility analysis of real-time task sets. In
RTSS ’04: Proceedings of the 25th IEEE
International Real-Time Systems Sympo-
sium (RTSS’04), pages 426–434, Wash-
ington, DC, USA, 2004. IEEE Computer
Society.

[EKM+99] E. Egan, D. Kutz, D. Mikulin, R. Mel-
hem, and D. Mossé. Fault-tolerant rt-
mach (ft-rt-mach) and an application to
real-time train control. Software: Prac-
tice and Experience, 29:379–395, 1999.

[GKS04] A. Girault, H. Kalla, and Y. Sorel. A
scheduling heuristics for distributed real-
time embedded systems tolerant to pro-
cessor and communication media failures.
International Journal of Production Re-
search, 42(14):2877–2898, July 2004.

[GMM95] S. Ghosh, R. Melhem, and D. Mossé.
Enhancing real-time schedules to toler-
ate transient faults. In Proc. IEEE Real-
Time Systems Symposium, pages 120–
129, 1995.

[GMM97] S. Ghosh, R. Melhem, and D. Mossé.
Fault-tolerance through scheduling of
aperiodic tasks in hard-real time multi-
processor systems. IEEE Trans. on Par-
allel and Distributed Systems, 8:272–284,
1997.

[KP97] B. Kalyanasundaram and K. Pruhs.
Fault-tolerant real-time scheduling. In
ESA, pages 296–307, 1997.

[LLMM99] F. Liberato, S. Lauzac, R. Melhem, and
D. Mossé. Fault tolerant real-time global
scheduling on multiprocessors. In Proc.
Euromicro Workshop in Real-Time Sys-
tems, 1999.

[LMM00] F. Liberato, R. Melhem, and D. Mosse.
Tolerance to multiple transient faults for
aperiodic tasks in hard real-time sys-
tems. IEEE Transactions on Computers,
49:906–914, 2000.

[MM98] G. Manimaran and C. Siva Ram Murthy.
A fault-tolerant dynamic scheduling al-
gorithm for multiprocessor real-time sys-
tems and its analysis. IEEE Trans. Paral-
lel Distrib. Syst., 9(11):1137–1152, 1998.

[MMG03] D. Mosse, R. Melhem, and S. Ghosh. A
nonpreemptive real-time scheduler with
recovery from transient faults and its
implementation. IEEE Transactions on
Software Engineering, 29:752–767, 2003.

[QHJ+00] X. Qin, Z. Han, H. Jin, L. Pang, and S. Li.
Realtime fault-tolerant scheduling in het-
erogeneous distributed systems. In Proc.
Int. Conference on Parallel and Dis-
tributed Processing Techniques and Appli-
cations, pages 421–427, 2000.

[QJS02] X. Qi, H. Jiang, and D.R. Swanson.
An efficient fault-tolerant scheduling al-
gorithm for real-time tasks with prece-
dence constraints in heterogenous sys-
tems. In Proc. 13th Int. Conference on
Parallel Processing, pages 360–368, 2002.

10

