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Abstract

Signed logic is a way of expressing the semantics of
many-valued connectives and quantifiers in a formalism
that is well-suited for automated reasoning. In this pa-
per we consider propositional, finitely-valued formulas in
clausal normal form. We show that checking the satisfia-
bility of formulas with three or more literals per clause is
either NP-complete or trivial, depending on whether the
intersection of all signs is empty or not. The satisfiability of
bijunctive formulas, i.e., formulas with at most two literals
per clause, is decidable in linear time if the signs form a
Helly family, and is NP-complete otherwise. We present a
polynomial-time algorithm for deciding whether a given set
of signs satisfies the Helly property. Our results unify and
extend previous results obtained for particular sets of signs.

1 Introduction

Signed logic [14, 16] is a general approach to deal with
many-valued logics. Given the truth tables of arbitrary
finitely-valued or certain infinitely-valued connectives and
quantifiers, it is possible to construct systematically all
kinds of sound and complete calculi – like natural deduc-
tion, tableaux systems, or sequent calculi – based on ex-
pressions of the form S:ϕ, where S is a set of truth values,
called sign, and ϕ is a many-valued formula. Such an ex-
pression is true if the formula ϕ evaluates to a value in S,
and false otherwise. In other words, these expressions are
two-valued atoms that can be used as basic building blocks
of classical two-valued formulas.

Signed formulas can be transformed into conjunctive
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normal form (CNF) using clause formation rules. In the
case of propositional logic, these normal forms are ordi-
nary two-valued CNFs, except that propositional variables
are replaced by atoms of the form S:x, which are true if
the variable x is interpreted by a truth-value in the sign S.
Many-valued resolution can be applied to these clauses to
perform automated deduction similar to classical logic [4].

It is natural to ask for the complexity of deciding the
satisfiability of many-valued CNFs, like in the two-valued
case. Several authors classified the complexity of CNFs de-
pending on the structure of signs and clauses. In this pa-
per we address this problem once more and give a complete
classification with respect to the signs occurring in the CNF.
We unify and extend previous results obtained for particular
sets of signs, show that the polynomial cases can be decided
in linear instead of quadratic time, and give a polynomial al-
gorithm for classifying sets of signs.

In Section 2 we give a precise definition of the prob-
lem and state the main result, namely a theorem classify-
ing the complexity of deciding the satisfiability of signed
formulas based on the signs allowed to occur in the for-
mula. The proof of the theorem is split into several parts
that are covered in the following sections. As application of
our theorem, we discuss some particular families of signs in
Section 7. The final section reviews related work. Due to
space reasons, several proofs are missing; they can be found
in [11].

2 Problem and Main Result

Let D be a finite set of at least two truth values, and let
V be a set of variables. For a variable x ∈ V and a set
S ⊆ D (called sign), the expression S:x is called a signed
literal. A signed clause is a disjunction of signed literals
and of the constant symbols> and⊥ (representing true and
false, respectively). A signed formula is a conjunction of
signed clauses. A clause is called bijunctive if it contains
at most two literals; a formula is called bijunctive if all its
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clauses have this property.
An interpretation is a mapping I : V → D assigning a

domain element I(x) to each variable x ∈ V . It satisfies a
literal S:x, if I(x) ∈ S. It satisfies a clause if it satisfies at
least one of its literals, and it satisfies a formula if it satis-
fies each of its clauses. A formula is D′-satisfiable if it is
satisfied by some interpretation over D′ ⊆ D.

Given a set S of signs over the domain D, a formula us-
ing only signs from S is referred to as an S-formula. In this
paper, we study the complexity of deciding the satisfiability
of S-formulas depending on the set S. More precisely we
are interested in the following decision problem.

Problem: k-MVSAT(S )
Input: An S-formula ϕ with at most k literals per clause.
Question: Is ϕ satisfiable?

As to be expected, the complexity of the problem dif-
fers for k = 2 and k ≥ 3. In the latter case, the prob-
lem is either trivial or NP-complete, whereas the classifi-
cation for bijunctive signed formulas is related to a well-
studied property in combinatorics and discrete mathemat-
ics, namely the Helly property. A set S of signs over D is
called a Helly family, or S has the Helly property [8], if ev-
ery subset T ⊆ S satisfying

⋂
T = ∅ contains two signs

S, S′ ∈ T such that S ∩ S′ = ∅. (The expression
⋂
T is

an abbreviation for
⋂

S∈T S.) Now we can state the main
result of this paper.

Theorem 1 For k ≥ 3, k-MVSAT(S) is polynomial (in
fact trivial) if

⋂
S 6= ∅, and NP-complete otherwise.

2-MVSAT(S) is polynomial (in fact linear) if S is a Helly
family, and NP-complete otherwise. Checking whether S is
a Helly family can be done in polynomial time.

The proof of Theorem 1 is split into several parts. First,
Section 3 presents the intractable cases. Note that

⋂
S 6= ∅

implies that k-MVSAT(S) is trivially in P, because every
S-formula is satisfiable by an interpretation assigning to all
variables a value from the intersection

⋂
S. Section 4 links

the completeness of binary resolution for signed formulas
to the Helly property. Section 5 describes polynomial time
algorithms for 2-MVSAT(S) when S is a Helly family. In
particular, it presents a linear-time algorithm for evaluating
2-MVSAT(S)-formulas defined on Helly families, which is
a generalization of the Aspvall-Plass-Tarjan algorithm [2]
for 2-SAT-formulas. Section 6 shows that the distinction
between tractability and intractability, i.e. the Helly prop-
erty, is polynomially decidable.

3 Intractable Cases

The case k ≥ 3. We show that k-MVSAT(S) is NP-
complete if

⋂
S = ∅. We encode 3-SAT as an instance

of 3-MVSAT(S). Let ϕ = C1 ∧ · · · ∧ Ck be a conjunc-
tion of clauses, where each clause is of the form l1 ∨ l2 ∨ l3
and the literals li are Boolean variables or their negations.
Let T be a minimal subset of S satisfying

⋂
T = ∅, and

let T0 and T1 be disjoint non-empty subsets of T such that
T0 ∪ T1 = T . Let f be a function mapping Boolean literals
to signed formulas in the following way:

f(l) =

{∧
T∈T0 T :x for l = ¬x∧
T∈T1 T :x for l = x .

For a clause C, let f(C) be the conjunctive normal form
of f(l1) ∨ f(l2) ∨ f(l3). For a formula ϕ, let f(ϕ) be the
conjunction f(C1) ∧ · · · ∧ f(Ck). Since f(l) consists of at
most |S| conjuncts, f(ϕ) is an S-formula whose length is
O(|ϕ| · |S|3), where |ϕ| is the number of literals in ϕ. It is
straight-forward to show that ϕ is {0, 1}-satisfiable if and
only if f(ϕ) is D-satisfiable.

The case k = 2. We show by a reduction from the color-
ing problem that 2-MVSAT(S) is NP-complete if S is not
a Helly family. An r-coloring of a graph G = (V,E) is a
mapping c : V → C such that |C| = r and c(v) 6= c(w)
whenever v and w are adjacent in G. The elements of the
set C are called the available colors. The r-coloring prob-
lem r-COL asks whether a graph G admits an r-coloring. It
is known to be NP-complete for any r ≥ 3.

Note that S is not a Helly family if and only if there exists
a subset T ⊆ S of cardinality at least 3 such that

⋂
T = ∅

and
⋂

(T − {T}) 6= ∅ for all signs T ∈ T . We use T
as the set of colors, i.e., r = |T |. Consider the bijunctive
S-formula

ϕG,T :=
∧

(x,y)∈E

∧
T∈T

(T :x ∨ T :y).

over the variables V and the signs in T . Then the following
result holds.

Proposition 2 A graph G = (V,E) admits an r-coloring if
and only if the bijunctive S-formula ϕG,T is satisfiable.

4 Binary Resolution and the Helly Property

Let C1 = S1:x ∨ D1 and C2 = S2:x ∨ D2 be clauses
such that S1 ∩ S2 = ∅. Then C = D1 ∨ D2 is called
the binary resolvent of the parent clauses C1 and C2. If
the binary resolvent contains literals S1:x and S2:x such
that S1 ⊆ S2, then they are merged to S2:x. If C1 or C2

contains just one literal, we assume D1 = ⊥ or D2 = ⊥,
respectively. A proof of a clause C from a formula ϕ is a
sequence of clauses C1, . . . , Cn such that Cn = C and for
each k, either Ck is a clause of ϕ, or Ck is a binary resolvent
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of Ci and Cj for i, j < k. A refutation of ϕ is a proof of ⊥
from ϕ. Binary signed resolution is sound and, in the case
of a Helly family, also refutationally complete. The base
case of the induction proof of the latter result provides the
link to the Helly property.

Proposition 3 Let S be a Helly family. Then binary reso-
lution is refutationally complete for S-formulas, i.e., every
unsatisfiable S-formula admits a refutation.

Proof: Let e(ϕ) denote the number of excess literals of the
S-formula ϕ, i.e., the total number of literals in ϕ minus
the number of clauses in ϕ. We prove the proposition by
induction on e(ϕ).

Base case: e(ϕ) = 0. All clauses in ϕ are unit clauses,
since the number of literals equals the number of clauses.
For a variable x, we denote by ϕx the unit clauses involv-
ing x. The unsatisfiability of ϕ implies that for some x the
intersection of all signs in ϕx is empty. Since S is a Helly
family, there must be two signs S1 and S2 in ϕx such that
their intersection is empty. By resolving the corresponding
literals we obtain a refutation of ϕ.

Induction step: see e.g. the proof in [6, Section 5.3]. �

5 Tractable Case

In this section we prove that 2-MVSAT(S) is in P if S is a
Helly family. Since binary resolution is sound and complete
in this case, we immediately obtain a polynomial algorithm:
Compute the quadratic number of all binary resolvents and
check for a contradiction (see also [6, Section 5.3]).

We can do better, however, by generalizing the linear al-
gorithm of Aspvall et al. [2] for 2-SAT. Given a 2-SAT-
formula ϕ over the variables V and the clauses C, this algo-
rithm constructs a directed graph G(ϕ) with 2 |V | vertices
v,¬v and 2 |C| arcs ¬u → v and ¬v → u for each clause
u∨v. The formula ϕ is satisfiable if and only if each pair of
vertices u,¬u belong to different strongly connected com-
ponents of the graph G(ϕ). The satisfying assignment for ϕ
can be computed by traversing the strongly connected com-
ponents of G(ϕ) in reverse topological order.

Now, let S be a Helly family defined over a finite do-
main D and let ϕ be a bijunctive S-formula over the vari-
ables V . In order to capture the Helly property of S and the
satisfiability of ϕ, we define the following directed graph
G(ϕ): (a) For each literal S:x, we add two vertices S:x and
¬S:x to G(ϕ) to be interpreted as “S:x is true” and “S:x is
false”, respectively; (b) for each clause S:x∨ T :y of ϕ, add
the arcs ¬S:x → T :y and ¬T :y → S:x to G(ϕ); (c) for
each pair of literals of ϕ of the form S:x and T :x such that
S ∩ T = ∅ we add the arcs S:x→ ¬T :x and T :x→ ¬S:x
to G(ϕ).

As in the case of the 2-SAT problem, the graph G(ϕ) has
the following duality property: G(ϕ) is isomorphic to the

graph obtained by reversing all arcs and all nodes of G(ϕ).
By this property, every strongly connected component H
of G(ϕ) has a dual component H induced by the comple-
ments of the vertices in H (two vertices u, v belongs to the
same strongly connected component if there exist directed
paths from u to v and from v to u).

Suppose that ϕ is satisfied by an interpretation I . We say
that the vertex S:x of G(ϕ) is satisfied by I if I(x) ∈ S;
then ¬S:x is said to be unsatisfied. Otherwise, if I(x) /∈ S,
then we say that ¬S:x is satisfied and S:x is unsatisfied.
Note that (1) exactly one of the vertices S:x and ¬S:x is
satisfied by I , and (2) no arc u → v of G(ϕ) has u satis-
fied and v unsatisfied, or equivalently, no directed path leads
from a satisfied vertex to an unsatisfied vertex.

Vice versa, if we partition all vertices of G(ϕ) into satis-
fied and unsatisfied vertices and this assignment obeys the
conditions (1) and (2), then we can define an interpretation
I of ϕ compatible with this assignment. Indeed, for each
variable x, let Sx denote the subset of S consisting of all
signs S such that the vertex S:x is satisfied. We assert that
Sx being non-empty implies

⋂
Sx 6= ∅. In view of the Helly

property, it suffices to show that the sets of Sx pairwise in-
tersect. Indeed, if Sx contains two disjoint signs S and T ,
since S:x → ¬T :x is an arc of G(ϕ) and the vertex S:x is
satisfied, condition (1) implies that ¬T :x must be satisfied
as well, yielding that S:x is not satisfied. This contradicts
the choice of T . Thus

⋂
Sx is indeed non-empty. Now de-

fine an interpretation I of ϕ by letting I(x) ∈
⋂
Sx for all

variables x with nonempty Sx. We assert that the S-formula
is satisfied by I . Pick an arbitrary clause S:x ∨ T :y of ϕ. If
S ∈ Sx, then the first literal of this clause is satisfied, and
we are done. Otherwise, if S /∈ Sx then the vertex ¬S:x
is satisfied. Since ¬S:x → ¬T :y is an arc of G(ϕ), con-
dition (2) yields that the vertex T :y must be satisfied, thus
T ∈ Sy establishing our assertion.

Proposition 4 Given a Helly family S over D, a bijunctive
S-formula ϕ is satisfiable if and only if no vertex S:x is in
the same strong component as its complement ¬S:x. De-
ciding whether a bijunctive S-formula is satisfiable can be
done in time O(|ϕ| · |S|2). Computing a satisfying interpre-
tation requires O(|ϕ| · |D|) extra time.

When we consider 2-MVSAT(S), the family S and the
domain D are not part of the input, but S parameterizes the
problem. We obtain the following complexity result.

Corollary 5 For a Helly family S, 2-MVSAT(S) can be de-
cided and solved in linear time O(|ϕ|).

6 Complexity of Classification

In this section we discuss the complexity of deciding for
a given set S of signs, whether the problem 2-MVSAT(S)
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is in P or is NP-complete. According to Theorem 1 this is
equivalent to recognizing if the set S has the Helly property.
We present two algorithms for this task that are polynomial
in |D| and |S|. They follow from two classical characteri-
zations of Helly families by Berge and Duchet in [8, pp. 22-
23] and [9].

Proposition 6 A set S of signs over D has the Helly prop-
erty if and only if for any three elements a, b, c ∈ D, the
subset S(a, b, c) of all signs S ∈ S containing at least two
of the elements a, b, c has a non-empty intersection.

Hence it suffices to generate the set S(a, b, c) for each
triplet a, b, c ∈ D and to test if

⋂
S(a, b, c) 6= ∅. A straight-

forward way is to construct for all pairs of elements a, b ∈
D the sets S(a, b) consisting of all signs S ∈ S which con-
tain both a and b. This can be done in time O(|D|2 · |S|).
For a fixed pair a, b, we find the intersection

⋂
S(a, b) in

time O(|D| · |S(a, b)|). All such intersections taken over
all pairs of D can be computed in time O(|D|3 · |S|). Now
having the intersections

⋂
S(a, b),

⋂
S(b, c), and

⋂
S(c, a)

at hand, it takes O(|D|) time to find
⋂
S(a, b, c), requiring

time O(|D|4) to compute all such intersections. Accord-
ing to Proposition 6, the algorithm returns “NO” if a set
S(a, b, c) is found where

⋂
S(a, b, c) = ∅. Summarizing

we obtain the following result.

Proposition 7 Given a set S of signs over a domain D, we
can decide in O(|D|4 + |D|3 |S|) time whether S is a Helly
family.

Our second algorithm is of a better complexity than the
first one in the case when the size of D is significantly larger
than the size of S. First we need a few notions from hyper-
graph theory.

A domain element d dominates another domain element
d′ if for all S ∈ S , d′ ∈ S implies d ∈ S; in this case, the
element d′ is called redundant. A set of signs S is called
reduced if it contains no redundant domain elements. By
the following lemma we may assume that the set of signs S
is reduced.

Lemma 8 Let d and d′ be distinct domain elements such
that d dominates d′. Let h be a homomorphism defined by
h(d′) = d and h(x) = x for x 6= d′. An S-formula ϕ
is satisfiable if and only if the corresponding h(S)-formula
h(ϕ) is satisfiable.

For a set of signs S over D, let S = {D − S | S ∈ S}.
The dual of S, denoted by S∗, is the family of sets {S ∈ S |
d ∈ S} for all d ∈ D. A set T ⊆ D is a transversal of S
if it intersects all sets of S, i.e., T ∩ S 6= ∅ for all S ∈ S.
The family of all transversals of S that are minimal with
respect to inclusion is denoted by Tr(S). Then the second

characterization of Helly families by Berge and Duchet can
be rephrased in the following way:

Proposition 9 A set S of non-empty signs over D has the
Helly property if and only if all minimal transversals of the
set family S∗ = {{S ∈ S | d /∈ S} | d ∈ D} have size 2.

For the sake of notational simplicity, we set n = |D|
and m = |S|. Then S∗ and S∗ contain n sets each and
are defined on the domain S of size m. The set family
S∗ can be constructed in time O(n · m) by first transpos-
ing the (0, 1) incidence matrix of S (this defines the dual
family S∗) and then switching the 0 and the 1 values of
the resulting matrix. Next we compute in time O(m2 · n)
the set E of all minimal transversals of size 2 of S∗. Let
G = (S, E) be the non-oriented simple graph defined by
the set E. According to Proposition 9, S is a Helly fam-
ily if and only if Tr(S∗) = E holds. The following re-
sult shows that instead of checking Tr(S∗) = E it suf-
fices to check if Tr(E) = S∗. Its proof relies on the result
Tr(Tr(S∗)) = S∗ by Edmonds and Fulkerson [13].

Lemma 10 Tr(S∗) = E if and only if Tr(E) = S∗.

Note that Tr(E) consists of all subsets of the vertices of
the graph G that are minimal w.r.t. inclusion and that meet
all edges of E (i.e., Tr(E) is the set of all minimal vertex
covers of G). The complements of minimal vertex covers
are the stable sets of the graph G that are maximal w.r.t. in-
clusion. Johnson, Yannakakis, and Papadimitriou [15] de-
veloped an algorithm which enumerates all maximal inde-
pendent sets of a graph with m vertices with delay O(m3)
between two subsequent maximal independent sets. We run
this algorithm on the graph G until it has computed the first
n + 1 =

∣∣S∗∣∣+ 1 maximal independent sets of G; this can
be done in time O(m3 · n). Let I be the collection of these
independent sets. If I = S∗ (or, more simply, if I = S∗),
then Tr(S∗) = E and S is a Helly family. Otherwise, by
the considerations above, S∗ has a minimal transversal of
size at least 3 and therefore S is not Helly. The last test can
be performed in O(n2 ·m) time. Hence the total complexity
of the algorithm is O(m3 · n + n2 ·m).

Summarizing, we obtain the following algorithm for test-
ing S for the Helly property. First, construct the dual family
S∗ and its complement S∗, and compute the set E of mini-
mal transversals of size 2 of S∗. Then, using the algorithm
of Johnson et al. [15], compute

∣∣S∗∣∣+ 1 maximal indepen-
dent sets of the graph G = (S, E). If the returned family of
independent sets coincides with S∗, then return the answer
“S is Helly”, otherwise return the answer “S is not Helly.”
We obtain the following result.

Proposition 11 Given a set S of signs over a domain D,
we can decide in time O(|S|3 · |D|+ |D|2 · |S|) whether S
is a Helly family.
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7 Examples

We first need some basic definitions from lattice theory.
Let L = 〈D;∧,∨〉 be a finite lattice with the induced or-
dering ≤ defined by a ≤ b if a ∨ b = b. For each ele-
ment a ∈ D, the up-set (or principal filter) of a is given
by ↑a = {d ∈ D | d ≥ a} and the down-set (or principal
ideal) of a by ↓a = {d ∈ D | d ≤ a}. The complements of
the up- and down-set with respect to D are denoted by ↑a
and ↓a, respectively. For a pair of elements a, b ∈ D, the
interval [a, b] is the set {d ∈ D | a ≤ d ≤ b}. A lattice L
is called distributive if it satisfies the distributive identity
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all elements a, b, c ∈ D.
L is called modular if it satisfies the modular condition that
a ≥ c implies the identity a ∧ (b ∨ c) = (a ∧ b) ∨ c.

Proposition 12 Let 〈D;∨,∧〉 be a finite lattice with the
induced ordering ≤. Then the set of non-empty intervals
over D is a Helly family.

Corollary 13 2-MVSAT(S) can be decided in linear time
if S is a set of intervals with respect to some lattice.

This corollary subsumes two previous results. Beckert et
al. [6] showed that the satisfiability of bijunctive clause sets
is polynomially decidable, if the signs are up- and down-
sets in a lattice. Ansótegui and Manyà [1] showed an anal-
ogous result for signs that are intervals in a totally ordered
domain.

Problem: 2-MVSAT-CUD(L)
Input: A bijunctive S-formula ϕ, where S is the set of com-
plements of up- and down-sets wrt. lattice L.
Question: Is ϕ satisfiable?

Proposition 14 2-MVSAT-CUD(L) is NP-complete if the
lattice L contains at least two incomparable elements, oth-
erwise it is in P.

Proof: Let E be a set of pairwise incomparable elements
(containing at least two elements) that is maximal in the
following sense: (1) every other element in the domain is
comparable to some element in E, and (2) every domain
element greater than some element in E is in fact greater
than at least two elements in E. Such a maximal set al-
ways exists if the lattice contains at least two incompara-
ble elements. Consider the set of signs S = {↓e | e ∈
E} ∪ {↑(e ∨ e′) | e, e′ ∈ E, e 6= e′}; it contains at least
three signs since E has at least two elements. We have
E − {e} ⊆ ↓e, E ⊆ ↑(e ∨ e′), > ∈ ↓e, and ⊥ ∈ ↑(e ∨ e′)
for all e 6= e′.1 Hence the pairwise intersection of any two
signs in S is non-empty. The intersection of all signs, how-
ever, is empty: every domain element is either less than or

1⊥ and > denote the bottom and top element, respectively.

Signs S ordering complexity why?
↑, ↓ any P triv. sat. by >
↑, ↓ any P triv. sat. by ⊥
↑, ↓ any P Cor. 13
↑, ↓, ↑, ↓ linear P Cor. 13
↑, ↑ non-linear NP Prop. 15
↓, ↓ non-linear NP Prop. 15, dual
↑, ↓ non-linear NP Prop. 14

Figure 1. Classification of 2-MVSAT(S)

equal to some e ∈ E and therefore does not occur in ↓e,
or it is greater than some e ∈ E and therefore does not oc-
cur in ↑(e ∨ e′) for some e′ ∈ E. Hence S is not a Helly
family, and by Theorem 1 we conclude that 2-MVSAT(S)
and therefore 2-MVSAT-CUD(L) is NP-complete. Other-
wise, if every two elements are comparable, the domain
is linearly ordered and the complements of up- and down-
sets can be regarded as intervals. Hence, by Corollary 13,
2-MVSAT-CUD(L) is in P. �

As a corollary we obtain that 2-MVSAT-CUD(L) is NP-
complete for arbitrary modular non-distributive lattices L:
By the M3-N5 theorem (see e.g. [12, Theorem 6.10]) a
modular non-distributive lattice contains the sublattice M3,
i.e., it contains at least three incomparable elements. Propo-
sition 14 subsumes the result in [6] that shows the NP-
completeness of 2-MVSAT-CUD(M3).

Problem: 2-MVSAT-UCU(L)
Input: A bijunctive S-formula ϕ, where S is the set of up-
sets in lattice L and of their complements.
Question: Is ϕ satisfiable?

Proposition 15 2-MVSAT-UCU(L) is NP-complete if the
lattice L contains at least two incomparable elements, oth-
erwise it is in P.

Proof: Let a and b be incomparable elements, and con-
sider the signs S = {↑a, ↑b, ↑(a ∨ b)}. The pairwise in-
tersections are non-empty, since a ∈ ↑a ∩ ↑(a ∨ b), b ∈
↑b∩↑(a ∨ b) and a∨b ∈ ↑a∩↑b. On the other hand, the in-
tersection of all signs in S is empty since ↑a∩↑b = ↑(a∨b).
Hence S is not a Helly family, and by Theorem 1 we con-
clude that 2-MVSAT(S) and therefore 2-MVSAT-UCU(L)
is NP-complete. Otherwise, if every two elements are com-
parable, the domain is linearly ordered and the up-sets and
their complements can be regarded as intervals. Hence, by
Corollary 13, 2-MVSAT-UCU(L) is in P. �

Proposition 15 subsumes the result in [6] that shows the
NP-completeness of 2-MVSAT-UCU(M2).
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The above results lead to a complete classification
of 2-MVSAT(S), when S consists of up-sets, down-
sets, and/or complements thereof (Fig. 1). Note that
not all sets of signs possessing the Helly property
can be viewed as sets of intervals. E.g., the set S =
{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {1, 6}, {2, 5}, {3, 6}}
is a Helly family but there exists no lattice such that the
signs in S can be interpreted as intervals with respect to this
lattice. In fact, hypergraph theory knows many instances
of Helly families that are not related to lattices; see e.g. [8]
for several examples. This shows that the complexity of
bijunctive formulas depends on a combinatorial property of
the signs rather than on the algebraic structure of the set of
truth values motivated by the logical interpretation.

8 Related Work

The study of k-MVSAT(S) was started in [17] and fur-
ther continued in [1, 5–7, 10]. Manyà [17] established that
2-MVSAT is NP-complete using a reduction from the 3-
coloring problem. He also established that 2-MVSAT(S)
is polynomially solvable if S consists of regular signs of
the form ↑a and ↓a of a totally ordered domain D. Béjar,
Hähnle, and Manyà [7] reduced the problem of satisfiabil-
ity of regular signed formulas on totally ordered domains
to satisfiability of classical formulas. In particular, a reg-
ular 2-MVSAT(S) formula ϕ is reduced to a 2-CNF for-
mula of size O(|ϕ| log |ϕ|) [7], which leads to an algo-
rithm of complexity O(|ϕ| log |ϕ|) to test the satisfiability
of a regular 2-MVSAT(S) formula ϕ in using the linear
time algorithm of Aspvall et al. for 2-SAT [2]. Baaz and
Fermüller [3] established that the 2-MVSAT(S) problem for
monosigned CNF formulas ϕ (S consisting of signs of the
form {d}, d ∈ D) is polynomially solvable and Manyà [17]
presented a O(|ϕ| · |D|) time algorithm for this problem.
Using the binary resolution method, Beckert, Hähnle and
Manyà [6] showed that the problem 2-MVSAT(S) is poly-
nomially solvable if D is a lattice and S consists of reg-
ular signs ↑a and ↓a of D. More recently, Charatonik
and Wrona [10] showed that this problem can be solved in
quadratic time and in linear time in the size of the formula,
if the lattice is fixed. For this, they used a reduction of a
many-valued satisfiability problem on a lattice to a classical
one. Extending the intractability result of [17], Beckert et
al. [6] showed that 2-MVSAT(S) is NP-complete (1) if the
domain D is a modular lattice and S consists of comple-
ments of regular signs ↑a and ↓a of D or (2) if the domain D
is a distributive lattice and S consists of regular signs of D
and their complements.

Acknowledgment. The second algorithm for testing the
Helly property results from discussions of the authors with
Gérard Cornuejols and Yann Vaxès.
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