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Abstract. We determine the complexity of an optimization problem
related to information theory. Taking a conjunctive propositional formula
over some finite set of Boolean relations as input, we seek a satisfying
assignment of the formula having minimal Hamming distance to a given
assignment that is not required to be a model (NearestSolution, NSol).
We obtain a complete classification with respect to the relations admit-
ted in the formula. For two classes of constraint languages we present
polynomial time algorithms; otherwise, we prove hardness or complete-
ness concerning the classes APX, poly-APX, NPO, or equivalence to
well-known hard optimization problems.

1 Introduction

We investigate the solution spaces of Boolean constraint satisfaction problems
built from atomic constraints by means of conjunction and variable identifica-
tion. We study the following minimization problems in connection with Hamming
distance: Given an instance of a constraint satisfaction problem in the form of
a generalized conjunctive formula over a set of atomic constraints, the problem
asks to find a satisfying assignment with minimal Hamming distance to a given
assignment (NearestSolution,NSol). Note that we do not assume the given assign-
ment to satisfy the formula nor the solution to be different from it as was done
in [4], where NearestOtherSolution (NOSol) was studied. This would change the
complexity classification (e.g. for bijunctive constraints), and proof techniques
would become considerably harder due to inapplicability of clone theory.
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This problem appears in several guises throughout literature. E.g., a common
problem in AI is to find solutions of constraints close to an initial configuration;
our problem is an abstraction of this setting for the Boolean domain. Bailleux and
Marquis [3] describe such applications in detail and introduce the decision prob-
lem DistanceSAT: Given a propositional formula ϕ, a partial interpretation I,
and a bound k, is there a satisfying assignment differing from I in no more than
k variables? It is straightforward to show that DistanceSAT corresponds to the
decision variant of our problem with existential quantification (called NSoldpp
later on). While [3] investigates the complexity of DistanceSAT for a few rele-
vant classes of formulas and empirically evaluates two algorithms, we analyze
the decision and the optimization problem for arbitrary semantic restrictions on
the formulas.

As is common, these restrictions are given by the set of atomic constraints
allowed to appear in the instances of the problem. We give a complete classifica-
tion of the complexity of approximation with respect to this parameterization,
applying methods from clone theory. Despite being classical, for NSol this step
requires considerably more non-trivial work than for e.g. satisfiability problems.
It turns out that our problem can either be solved in polynomial time, or it
is complete for a well-known optimization class, or else it is equivalent to a
well-known hard optimization problem.

Our study can be understood as a continuation of the minimization problems
investigated by Khanna et al. in [10], especially that of MinOnes. The MinOnes

optimization problem asks for a solution of a constraint satisfaction problem
with minimal Hamming weight, i.e., minimal Hamming distance to the 0-vector.
Our work generalizes this by allowing the given vector to be arbitrary.

Moreover, our work can also be seen as a generalization of questions in
coding theory. Our problem NSol restricted to affine relations is the problem
NearestCodeword of finding the nearest codeword to a given word, which is the
basic operation when decoding messages received through a noisy channel. Thus
our work can be seen as a generalization of these well-known problems from
affine to general relations.

2 Preliminaries

An n-ary Boolean relation R is a subset of {0, 1}n; its elements (b1, . . . , bn) are
also written as b1 · · · bn. Let V be a set of variables. An atomic constraint, or an
atom, is an expression R(x ), where R is an n-ary relation and x is an n-tuple
of variables from V . Let Γ be a non-empty finite set of Boolean relations, also
called a constraint language. A (conjunctive) Γ -formula is a finite conjunction
of atoms R1(x1) ∧ · · · ∧ Rk(x k ), where the Ri are relations from Γ and the x i

are variable tuples of suitable arity.
An assignment is a mapping m : V → {0, 1} assigning a Boolean value m(x)

to each variable x ∈ V . If we arrange the variables in some arbitrary but fixed
order, say as a vector (x1, . . . , xn), then the assignments can be identified with
vectors from {0, 1}n. The i-th component of a vector m is denoted by m[i] and
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Table 1. List of Boolean functions and relations

x⊕ y = x+ y (mod 2) ork = {0, 1}k � {0 · · · 0}

x ≡ y = x+ y + 1 (mod 2) nandk = {0, 1}k � {1 · · · 1}

dup3 = {0, 1}3 � {010, 101} even4 = {(a1, a2, a3, a4) ∈ {0, 1}4 |
∑

4

i=1
ai is even}

nae3 = {0, 1}3 � {000, 111}

corresponds to the value of the i-th variable, i.e., m[i] = m(xi). The Hamming
weight hw(m) = |{i | m[i] = 1}| of m is the number of 1s in the vector m. The
Hamming distance hd(m,m′) = |{i | m[i] �= m′[i]}| of m and m′ is the number
of coordinates on which the vectors disagree. The complement m of a vector m
is its pointwise complement, m[i] = 1−m[i].

An assignment m satisfies a constraint R(x1, . . . , xn) if (m(x1), . . . ,m(xn)) ∈
R holds. It satisfies the formula ϕ if it satisfies all of its atoms; m is said to be a
model or solution of ϕ in this case. We use [ϕ] to denote the set of models of ϕ.
Note that [ϕ] represents a Boolean relation. In sets of relations represented this
way we usually omit the brackets. A literal is a variable v, or its negation ¬v.
Assignments m are extended to literals by defining m(¬v) = 1−m(v) (Table 1).

Throughout the text we refer to different types of Boolean constraint rela-
tions following Schaefer’s terminology [11] (see also the monograph [8] and the
survey [6]). A Boolean relation R is (1) 1-valid if 1 · · · 1 ∈ R and it is 0-valid if
0 · · · 0 ∈ R, (2) Horn (dual Horn) if R can be represented by a formula in con-
junctive normal form (CNF) having at most one unnegated (negated) variable
in each clause, (3) monotone if it is both Horn and dual Horn, (4) bijunctive
if it can be represented by a CNF having at most two variables in each clause,
(5) affine if it can be represented by an affine system of equations Ax = b over Z2,
(6) complementive if for each m ∈ R also m ∈ R. A set Γ of Boolean relations
is called 0-valid (1-valid, Horn, dual Horn, monotone, affine, bijunctive, comple-
mentive) if every relation in Γ is 0-valid (1-valid, Horn, dual Horn, monotone,
affine, bijunctive, complementive). See also Table 3.

A formula constructed from atoms by conjunction, variable identification,
and existential quantification is called a primitive positive formula (pp-formula).
We denote by 〈Γ 〉 the set of all relations that can be expressed using relations

Table 2. Some Boolean co-clones with bases

iM2{x → y,¬x, x} iD2{x⊕ y, x → y} iE2{¬x ∨ ¬y ∨ z,¬x, x}

iSk

0{or
k} iL{even4} iN{dup3}

iSk

1{nand
k} iL2{even

4,¬x, x} iN2{nae
3}

iSk

00{or
k, x → y,¬x, x} iV{x ∨ y ∨ ¬z} iI0{even

4, x → y,¬x}

iSk

10{nand
k,¬x, x, x → y} iV2{x ∨ y ∨ ¬z,¬x, x} iI1{even

4, x → y, x}

iD1{x⊕ y, x} iE{¬x ∨ ¬y ∨ z}



44 M. Behrisch et al.

from Γ ∪{=}, conjunction, variable identification (and permutation), cylindrifi-
cation, and existential quantification. The set 〈Γ 〉 is called the co-clone generated
by Γ . A base of a co-clone B is a set of relations Γ , such that 〈Γ 〉 = B. All co-
clones, ordered by set inclusion, form a lattice. Together with their respective
bases, which were studied in [7], some of them are listed in Table 2. In particu-
lar the sets of relations being 0-valid, 1-valid, complementive, Horn, dual Horn,
affine, bijunctive, 2affine (both bijunctive and affine) and monotone each form
a co-clone denoted by iI0, iI1, iN2, iE2, iV2, iL2, iD2, iD1, and iM2, respectively.
See also Table 3.

We assume that the reader has a basic knowledge of approximation algo-
rithms and complexity theory, see e.g. [2,8]. For reductions among decision
problems we use polynomial-time many-one reduction denoted by ≤m. Many-one
equivalence between decision problems is written as ≡m. For reductions among
optimization problems we employ approximation preserving reductions, also
called AP-reductions, represented by ≤AP. AP-equivalence between optimization
problems is stated as ≡AP. Moreover, we shall need the following approximation
complexity classes in the hierarchy PO ⊆ APX ⊆ poly-APX ⊆ NPO.

An optimization problem P1 AP-reduces to another optimization problem P2

if there are two polynomial-time computable functions f , g, and a constant α ≥ 1
such that for all r > 1 on any input x for P1 the following holds:

– f(x) is an instance of P2;
– for any solution y of f(x), g(x, y) is a solution of x;
– whenever y is an r-approximate solution for the instance f(x), then g(x, y)

provides a (1 + (r − 1)α+ o(1))-approximate solution for x.

If P1 AP-reduces to P2 with constant α ≥ 1 and P2 has an f(n)-approximation
algorithm, then there is an αf(n)-approximation algorithm for P1.

We will relate our problems to well-known optimization problems. To this
end we make the following convention: For optimization problems P and Q we
say that Q is P-hard if P ≤AP Q, i.e. if P reduces to it. Moreover, Q is called
P-complete if P ≡AP Q.

To prove our results, we refer to the following optimization problems defined
and analyzed in [10]. Like our problems they are parameterized by a constraint
language Γ .

Problem MinOnes(Γ ). Given a conjunctive formula ϕ over relations from Γ , any
assignment m satisfying ϕ is a feasible solution. The goal is to minimize the
Hamming weight hw(m).

Problem WeightedMinOnes(Γ ). Given a conjunctive formula ϕ over relations
in Γ and a weight function w : V → N on the variables V of ϕ, solutions are
again all assignments m satisfying ϕ. The objective is to minimize the value
∑

x∈V :m(x)=1 w(x).
We now define some well-studied problems to which we will relate our prob-

lems. Note that these problems do not depend on any parameter.

Problem NearestCodeword. Given a matrix A ∈ Z
k×l
2 and m ∈ Z

l
2, any vector x ∈

Z
k
2 is a solution. The objective is to minimize the Hamming distance hd(xA,m).
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Problem MinHornDeletion. For a given conjunctive formula ϕ over relations from
the set {[¬x ∨ ¬y ∨ z], [x], [¬x]}, an assignment m satisfying ϕ is sought. The
objective is given by the minimum number of unsatisfied conjuncts of ϕ.

NearestCodeword and MinHornDeletion are known to be NP-hard to approxi-
mate within a factor 2Ω(log1−ε(n)) for every ε > 0 [1,10]. Thus if a problem P is
equivalent to any of these problems, it follows that P /∈ APX unless P = NP.

We also use the classic satisfiability problem SAT(Γ ), given a conjunctive
formula ϕ over relations from Γ , asking if ϕ is satisfiable. Schaefer presented
in [11] a complete classification of complexity for SAT. His dichotomy theorem
proves that SAT(Γ ) is polynomial-time decidable if Γ is 0-valid (Γ ⊆ iI0), 1-valid
(Γ ⊆ iI1), Horn (Γ ⊆ iE2), dual Horn (Γ ⊆ iV2), bijunctive (Γ ⊆ iD2), or affine
(Γ ⊆ iL2); otherwise it is NP-complete.

3 Results

This section presents the formal definition of the considered problem, parame-
terized by a constraint language Γ , and our main result; the proofs follow in
subsequent sections.

Problem NearestSolution(Γ ), NSol(Γ )
Input: A conjunctive formula ϕ over relations from Γ and an assignment m of
the variables occurring in ϕ, which is not required to satisfy ϕ.
Solution: An assignment m′ satisfying ϕ (i.e. a codeword of the code described
by ϕ).
Objective: Minimum Hamming distance hd(m,m′).

Theorem 1 (illustrated in Fig. 1). For a given Boolean constraint language Γ
the optimization problem NSol(Γ ) is

(i) in PO if Γ is
(a) 2affine (Γ ⊆ iD1) or
(b) monotone (Γ ⊆ iM2);

(ii) APX-complete if
(a) 〈Γ 〉 contains the relation [x ∨ y] and Γ ⊆ 〈x1 ∨ · · · ∨ xk, x → y,¬x, x〉

(iS20 ⊆ 〈Γ 〉 ⊆ iSk00) for some k ∈ N, k ≥ 2, or
(b) Γ is bijunctive and 〈Γ 〉 contains the relation [x ∨ y] (iS20 ⊆ 〈Γ 〉 ⊆ iD2),

or
(c) 〈Γ 〉 contains the relation [¬x∨¬y] and Γ ⊆ 〈¬x1∨· · ·∨¬xk, x → y,¬x, x〉

(iS21 ⊆ 〈Γ 〉 ⊆ iSk10) for some k ∈ N, k ≥ 2, or
(d) Γ is bijunctive and 〈Γ 〉 contains the relation [¬x∨¬y] (iS21 ⊆ 〈Γ 〉 ⊆ iD2);

(iii) NearestCodeword-complete if Γ is exactly affine (iL ⊆ 〈Γ 〉 ⊆ iL2);
(iv) MinHornDeletion-complete if Γ is
(a) exactly Horn (iE ⊆ 〈Γ 〉 ⊆ iE2) or
(b) exactly dual Horn (iV ⊆ 〈Γ 〉 ⊆ iV2);

(v) poly-APX-complete if Γ does not contain an affine relation and it is
(a) either 0-valid (iN ⊆ 〈Γ 〉 ⊆ iI0) or
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(b) 1-valid (iN ⊆ 〈Γ 〉 ⊆ iI1); and
(vi) NPO-complete otherwise (iN2 ⊆ 〈Γ 〉).

The considered optimization problem can be transformed into a decision
problem in the usual way. We add a bound k ∈ N to the input and ask if the
Hamming distance satisfies the inequality hd(m,m′) ≤ k. This way we obtain
the corresponding decision problem NSold. Its complexity follows immediately
from the theorem above. All cases in PO become polynomial-time decidable,
whereas the other cases, which are APX-hard, become NP-complete. This way
we obtain a dichotomy theorem classifying the decision problem as polynomial
or NP-complete for all finite sets Γ of Boolean relations.

4 Applicability of Clone Theory and Duality

We show that clone theory is applicable to the problem NSol, as well as a pos-
sibility to exploit inner symmetries between co-clones, which shortens several
proofs as we continue.

There are two natural versions of NSol(Γ ). In one version the formula ϕ is
quantifier free while in the other one we do allow existential quantification. We
call the former version NSol(Γ ) and the latter NSolpp(Γ ). Fortunately, we will
now see that both versions are equivalent.

Let NSold(Γ ) and NSoldpp(Γ ) be the decision problems corresponding to
NSol(Γ ) and NSolpp(Γ ), asking whether there is a satisfying assignment within
a given bound.

Lemma 2. For finite sets Γ we have the equivalences NSold(Γ ) ≡m NSoldpp(Γ )
and NSol(Γ ) ≡AP NSolpp(Γ ).

Proof. The reduction from left to right is trivial in both cases. For the other
direction, consider first an instance with formula ϕ, assignment m, and bound k
for NSoldpp(Γ ). Let x1, . . . , xn be the free variables of ϕ and let y1, . . . , yℓ be the
existentially quantified variables, which can be assumed to be disjoint. For each
variable z we define a set B(z) as follows:

B(z) =

{

{xj
i | j ∈ {1, . . . , (n+ ℓ+ 1)2}} if z = xi for some i ∈ {1, . . . , n},

{yi} if z = yi for some i ∈ {1, . . . , ℓ}.

We construct a quantifier-free formula ϕ′ over the variables
⋃n

i=1 B(xi) ∪
⋃ℓ

i=1 B(yi) that contains for every atom R(z1, . . . , zs) from ϕ the atom
R(z′1, . . . , z

′
s) for every combination (z′1, . . . , z

′
s) from B(z1)× · · · ×B(zs). More-

over, we construct an assignment B(m) of ϕ′ by assigning to every variable xj
i

the value m(xi) and to yi the value 0. Note that because there is an upper bound
on the arities of relations from Γ , this is a polynomial time construction.

We claim that ϕ has a solution m′ with hd(m,m′) ≤ k if and only if ϕ′ has a
solution m′′ with hd(B(m),m′′) ≤ k(n+ℓ+1)2+ℓ. First, observe that if m′ with
the desired properties exists, then there is an extension m′

e of m′ to the yi that
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satisfies all atoms. Define m′′ by setting m′′(xj
i ) := m′(xi) and m′′(yi) := m′

e(yi)
for all i and j. Then m′′ is clearly a satisfying assignment of ϕ′. Moreover, m′′

and B(m) differ in at most k(n+ℓ+1)2 variables among the xj
i . Since there exist

only ℓ other variables yi, we get hd(m′′, B(m)) ≤ k(n+ ℓ+ 1)2 + ℓ as desired.
Now suppose m′′ satisfies ϕ′ with hd(B(m),m′′) ≤ k(n+ ℓ+1)2+ ℓ. We may

assume for each i that m′′(x1
i ) = · · · = m′′(x

(n+ℓ+1)2

i ). Indeed, if this is not the

case, then setting all xj
i to B(m)(xj

i ) = m(xi) will give us a satisfying assignment
closer to B(m). After at most n iterations we get some m′′ as desired. Now
define an assignment m′ to ϕ by setting m′(xi) := m′′(x1

i ). Then m′ satisfies ϕ,
because the variables yi can be assigned values as in m′′. Moreover, whenever
m(xi) differs from m′(xi), the inequality B(m)(xj

i ) �= m′′(xj
i ) holds for every j.

Thus we obtain (n + ℓ + 1)2 hd(m,m′) ≤ hd(B(m),m′′) ≤ k(n + ℓ + 1)2 + ℓ.
Therefore, we have the inequality hd(m,m′) ≤ k + ℓ/(n + ℓ + 1)2 and hence
hd(m,m′) ≤ k. This completes the many-one reduction.

We claim that the above construction is an AP-reduction, too. To this
end, let m′′ be an r-approximation for ϕ′ and B(m), i.e., hd(B(m),m′′) ≤
r · OPT(ϕ′, B(m)). Construct m′ as before, so (n + ℓ + 1)2 hd(m,m′) ≤
hd(B(m),m′′) ≤ r ·OPT(ϕ′, B(m)). Since OPT(ϕ′, B(m)) is at most (n+ℓ+1)2

OPT(ϕ,m) + ℓ as before, we get (n + ℓ + 1)2 hd(m,m′) ≤ r((n + ℓ + 1)2

OPT(ϕ,m) + ℓ). This implies the inequality hd(m,m′) ≤ r · OPT(ϕ,m) + r ·
ℓ/(n + ℓ + 1)2 = (r + o(1)) · OPT(ϕ,m) and shows that the construction is an
AP-reduction with α = 1. ⊓⊔

Remark 3. Note that in the reduction from NSoldpp(Γ ) to NSold(Γ ) we construct
the assignment B(m) as an extension of m by setting all new variables to 0.
In particular, if m is the constant 0-assignment, then so is B(m). We use this
observation as we continue.

We can also show that introducing explicit equality constraints does not
change the complexity of our problem.

Lemma 4. For constraint languages Γ we have NSold(Γ ) ≡m NSold(Γ ∪ {=})
and NSol(Γ ) ≡AP NSol(Γ ∪ {=}).

Although a proof of this statement can be established by similar methods as
those used in Lemma2, it is a technically rather involved case distinction whose
length exceeds the scope of this presentation. The proof is therefore omitted.

Lemmas 2 and 4 are very convenient, because they allow us to freely switch
between formulas with quantifiers and equality and those without. This allows
us to give all upper bounds in the setting without quantifiers and equality while
freely using them in all hardness reductions. In particular it follows that we
can use pp-definability when implementing a constraint language Γ by another
constraint language Γ ′. Hence it suffices to consider Post’s lattice of co-clones to
characterize the complexity of NSol(Γ ) for every finite set of Boolean relations Γ .

Corollary 5. For constraint languages Γ , Γ ′ such that Γ ′ ⊆ 〈Γ 〉, we have
the reductions NSold(Γ ′) ≤m NSold(Γ ) and NSol(Γ ′) ≤AP NSol(Γ ). Thus, if
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〈Γ ′〉 = 〈Γ 〉 is satisfied, then the equivalences NSold(Γ ) ≡m NSold(Γ ′) and
NSol(Γ ) ≡AP NSol(Γ ′) hold.

Next we prove that, in certain cases, unit clauses in the formula do not change
the complexity of NSol.

Lemma 6. We have the equivalence NSol(Γ ) ≡AP NSol(Γ ∪{[x], [¬x]}) for any
constraint language Γ where the problem of finding feasible solutions of NSol(Γ )
is polynomial-time decidable.

Proof. The direction from left to right is obvious. For the other direction, we
show an AP-reduction from NSol(Γ ∪ {[x], [¬x]}) to NSol(Γ ∪ {[x ≡ y]}). Since
[x ≡ y] is by definition in every co-clone and thus in 〈Γ 〉, the result follows from
Corollary 5.

The idea of the construction is to introduce two sets of variables y1, . . . , yn2

and z1, . . . , zn2 such that in any feasible solution all yi and all zi take the same
value. Then setting m(yi) = 1 and m(zi) = 0 for each i, any feasible solution m′

of small Hamming distance to m will have m′(yi) = 1 and m′(zi) = 0 for all i as
well, because deviating from this would be prohibitively expensive. Finally, we
simulate unary relations x and ¬x by x ≡ y1 and x ≡ z1, respectively. We now
describe the reduction formally.

Let the formula ϕ and the assignment m be a Γ ∪ {[x], [¬x]}-formula over
the variables x1, . . . , xn with a feasible solution. We construct a Γ ∪ {[x ≡ y]}-
formula ϕ′ over the variables x1, . . . xn, y1, . . . , yn2 , z1, . . . , zn2 and an assign-
ment m′. We get ϕ′ from ϕ by substituting every occurrence of a constraint [xi]
for some variable xi by xi ≡ y1 and substituting every occurrence [¬xi] for every
variable xi by xi ≡ z1. Finally, add yi ≡ yj for all i, j ∈ {1, . . . , n2} and zi ≡ zj
for all i, j ∈ {1, . . . , n2}. Let m′ be the assignment of the variables of ϕ′ given
by m′(xi) = m(xi) for each i ∈ {1, . . . , n}, and m′(yi) = 1 and m′(zi) = 0 for
all i ∈ {1, . . . , n2}. To any feasible solution m′′ of ϕ′ we assign g(ϕ,m,m′′) as
follows.

1. If ϕ is satisfied by m, we define g(ϕ,m,m′′) to be equal to m.
2. Else if m′′(yi) = 0 holds for all i ∈ {1, . . . , n2} or m′′(zi) = 1 for all i in

{1, . . . , n2}, we define g(ϕ,m,m′′) to be any satisfying assignment of ϕ.
3. Otherwise, m′′(yi) = 1 for all i ∈ {1, . . . , n2} and m′′(zi) = 0, we define

g(ϕ,m,m′′) to be the restriction of m′′ onto x1, . . . , xn.

Observe that all variables yi and all zi are forced to take the same value in
any feasible solution, respectively, so g(ϕ,m,m′′) is always well-defined. The
construction is an AP-reduction. Assume that m′′ is an r-approximate solution.
We will show that g(ϕ,m,m′′) is also an r-approximate solution.

Case 1: g(ϕ,m,m′′) computes the optimal solution, so there is nothing to show.

Case 2: Observe first that ϕ has a solution by assumption, so g(ϕ,m,m′′) is
well-defined and feasible by construction. Observe that m′ and m′′ disagree on
all yi or on all zi, so hd(m′,m′′) ≥ n2 holds. Moreover, since ϕ has a feasible
solution, it follows that OPT(ϕ′,m′) ≤ n. Sincem′′ is an r-approximate solution,
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we have that r ≥ hd(m′,m′′)/OPT(ϕ′,m′) ≥ n. Consequently, the distance
hd(m, g(ϕ,m,m′′)) is bounded above by n ≤ r ≤ r ·OPT(ϕ,m), where the last
inequality holds because ϕ is not satisfied by m and thus the distance of the
optimal solution from m is at least 1.

Case 3: The variables xi for which [xi] is a constraint all have g(ϕ,m,m′′)(xi) = 1
by construction. Moreover, we have g(ϕ,m,m′′)(xi) = 0 for all xi for which [¬xi]
is a constraint of ϕ. Consequently, g(ϕ,m,m′′) is feasible. Again, OPT(ϕ′,m′) ≤
n, so the optimal solution to (ϕ′,m′) must set all variables yi to 1 and all zi
to 0. It follows that OPT(ϕ,m) = OPT(ϕ′,m′). Thus we get

hd(m, g(ϕ,m,m′′)) = hd(m′,m′′) ≤ r ·OPT(ϕ′,m′) = r ·OPT(ϕ,m),

which completes the proof. ⊓⊔

Given a relation R ⊆ {0, 1}n, its dual relation is dual(R) = {m | m ∈ R},
i.e., the relation containing the complements of vectors from R. Duality natu-
rally extends to sets of relations and co-clones. We define dual(Γ ) = {dual(R) |
R ∈ Γ} as the set of dual relations to Γ . Duality is a symmetric relation. If a
relation R′ (a set of relations Γ ′) is a dual relation to R (a set of dual relations
to Γ ), then R (Γ ) is also dual to R′ (to Γ ′). By a simple inspection of the bases
of co-clones in Table 2, we can easily see that many co-clones are dual to each
other. For instance iE2 is dual to iV2. The following lemma shows that it is
sufficient to consider only one half of Post’s lattice of co-clones.

Lemma 7. For any set Γ of Boolean relations we have NSold(Γ ) ≡m

NSold(dual(Γ )) and NSol(Γ ) ≡AP NSol(dual(Γ )).

Proof. Let ϕ be a Γ -formula and m an assignment to ϕ. We construct a dual(Γ )-
formula ϕ′ by substitution of every atom R(x ) by dual(R)(x ). The assignmentm
satisfies ϕ if and only ifm satisfies ϕ′, wherem is the complement ofm. Moreover,
hd(m,m′) = hd(m,m′). ⊓⊔

5 Finding the Nearest Solution

This section contains the proof of Theorem1. We first consider the polynomial-
time cases followed by the cases of higher complexity.

5.1 Polynomial-Time Cases

Proposition 8. If a constraint language Γ is both bijunctive and affine (Γ ⊆
iD1), then NSol(Γ ) can be solved in polynomial time.

Proof. Since Γ ⊆ iD1 = 〈Γ ′〉 with Γ ′ := {[x ⊕ y], [x]}, we have the reduction
NSol(Γ ) ≤AP NSol(Γ ′) by Corollary 5. Every Γ ′-formula ϕ is equivalent to a
linear system of equations over the Boolean ring Z2 of the type x ⊕ y = 1 and
x = 1. Substitute the fixed values x = 1 into the equations of the type x⊕ y = 1
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and propagate. After an exhaustive application of this rule only equations of the
form x⊕ y = 1 remain. For each of them put an edge {x, y} into E, defining an
undirected graph G = (V,E), whose vertices V are the unassigned variables. If
G is not bipartite, then ϕ has no solutions, so we can reject the input. Otherwise,
compute a bipartition V = L∪̇R. We assume that G is connected; if not perform
the following algorithm for each connected component. Assign the value 0 to
each variable in L and the value 1 to each variable in R, giving the satisfying
assignment m1. Swapping the roles of 0 and 1 w.r.t. L and R we get a model m2.
Return min{hd(m,m1), hd(m,m2)}. ⊓⊔

Proposition 9. If a constraint language Γ is monotone (Γ ⊆ iM2), then
NSol(Γ ) can be solved in polynomial time.

Proof. We have iM2 = 〈Γ ′〉 where Γ ′ := {[x → y], [¬x], [x]}. Thus Corollary 5
and Γ ⊆ 〈Γ ′〉 imply NSol(Γ ) ≤AP NSol(Γ ′). The relations [¬x] and [x] determine
the unique value of the considered variable, therefore we can eliminate the unit
clauses built from the two latter relations and propagate. We consider formu-
las ϕ built only from the relation [x → y], i.e., formulas containing only binary
implicative clauses of the type x → y.

Let V the set of variables of the formula ϕ. According to the value assigned
to the variables by the vector m, we can divide V into two disjoint subsets V0

and V1, such that Vi = {x ∈ V | m(x) = i}. We transform the formula ϕ to
an integer programming problem P . First, for each clause x → y from ϕ we
add to P the relation y ≥ x. For each variable x ∈ V we add the constraints
x ≥ 0 and x ≤ 1, with x ∈ {0, 1}. Finally, we construct the linear function fϕ
by defining

fϕ(m
′) =

∑

xi∈V0

m′(xi) +
∑

xj∈V1

(1−m′(xj))

for assignments m′ of ϕ. Obviously, fϕ(m
′) counts the number of variables

changing their parity between m and m′, i.e., fϕ(m
′) = hd(m,m′). As P is

totally unimodular, the minimum of fϕ can be computed in polynomial time
(see e.g. [12]). ⊓⊔

5.2 Hard Cases

We start off with an easy corollary of Schaefer’s dichotomy.

Lemma 10. Let Γ be a finite set of Boolean relations. If iN2 ⊆ 〈Γ 〉, then
NSol(Γ ) is NPO-complete; otherwise, NSol(Γ ) ∈ poly-APX.

Proof. If iN2 ⊆ 〈Γ 〉 holds, finding a solution for NSol(Γ ) is NP-hard by Schaefer’s
theorem [11], hence NSol(Γ ) is NPO-complete.

We give an n-approximation algorithm for the other case. Let a formula ϕ
and a model m be an instance of NSol(Γ ). If m is a solution of ϕ, return m.
Otherwise, compute an arbitrary solutionm′ of ϕ, which is possible by Schaefer’s
theorem, and return m′.
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The approximation ratio of this algorithm is n. Indeed, if m satisfies ϕ, this
is obviously true, because we return the exact solution. Otherwise, we have
OPT(ϕ,m) ≥ 1 and so, trivially, hd(m,m′) ≤ n whence the claim follows. ⊓⊔

We start with reductions from the optimization version of vertex cover. Since
the relation [x ∨ y] is a straightforward Boolean encoding of vertex cover, we
immediately get the following result.

Proposition 11. NSol(Γ ) is APX-hard for every constraint language Γ sat-
isfying the inclusion iS20 ⊆ 〈Γ 〉 or iS21 ⊆ 〈Γ 〉.

Proof. We have iS20 = 〈{[x ∨ y]}〉, whereas iS21 = 〈{[¬x ∨ ¬y]}〉. So we discuss
the former case, the latter one being symmetric and provable from the first one
by Corollary 5.

We encode VertexCover into NSol({[x ∨ y]}) ≤AP NSol(Γ ) (see Corollary 5).
For each edge {x, y} ∈ E of a graph G = (V,E) we add the clause (x∨ y) to the
formula ϕG. Every modelm′ of ϕG yields a vertex cover {v ∈ V | m′(v) = 1}, and
conversely, the characteristic function of any vertex cover satisfies ϕG. Taking
m = 0, then hd(0,m′) is minimal if and only if the number of 1s inm′ is minimal,
i.e., if m′ is a minimal model of ϕG, i.e., if m

′ represents a minimal vertex cover
of G. Since VertexCover is APX-complete (see e.g. [2]), the result follows. ⊓⊔

Proposition 12. We have NSol(Γ ) ∈ APX for constraint languages Γ ⊆ iD2.

Proof. As {x ⊕ y, x → z} is a basis of iD2, it suffices to show that
NSol({x⊕ y, x → y}) is in APX by Corollary 5. Let (ϕ,m) be an input of this
problem. Feasibility for ϕ can be written as an integer program as follows:
Every constraint xi ⊕ xj induces a linear equation xi + xj = 1. Every con-
straint xi → xj can be written as xi ≤ xj . If we restrict all variables to
{0, 1} by the appropriate inequalities, it is clear that any assignment m′ sat-
isfies ϕ if it satisfies the linear system with inequality side conditions. We com-
plete the construction of the linear program by adding the objective function
c(m′) :=

∑

i:m(xi)=0 m
′(xi) +

∑

i:m(xi)=1(1 − m′(xi)). Clearly, for every m′ we

have c(m′) = hd(m,m′). The 2-approximation algorithm from [9] for integer
linear programs, in which in every inequality at most two variables appear, com-
pletes the proof. ⊓⊔

Proposition 13. We have NSol(Γ ) ∈ APX for constraint languages Γ ⊆ iSℓ00
with ℓ ≥ 2.

Proof. Due to {x1 ∨ · · · ∨ xℓ, x → y,¬x, x} being a basis of iSℓ00 and Corollary 5,
it suffices to show NSol({x1 ∨ · · · ∨ xℓ, x → y,¬x, x}) ∈ APX. Let formula ϕ
and assignment m be an instance of that problem. We will use an approach
similar to that for the corresponding case in [10], again writing ϕ as an inte-
ger program. Every constraint xi1 ∨ · · · ∨ xiℓ is translated to an inequality
xi1 + · · · + xiℓ ≥ 1. Every constraint xi → xj is written as xi ≤ xj . Each
¬xi is turned into xi = 0, every constraint xi yields xi = 1. Add xi ≥ 0 and
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xi ≤ 1 for each variable xi. Again, it is easy to check that feasible Boolean solu-
tions of ϕ and the linear system coincide. Defining again the objective function
c(m′) =

∑

i:m(xi)=0 m
′(xi)+

∑

i:m(xi)=1(1−m′(xi)), we have hd(m,m′) = c(m′)

for every m′. Therefore it suffices to approximate the optimal solution for the
linear program.

To this end, let m′′ be a (generally non-integer) solution to the relaxation of
the linear program which can be computed in polynomial time. We construct m′

by setting m′(xi) = 0 if m′′(xi) < 1/ℓ and m′(xi) = 1 if m′′(xi) ≥ 1/ℓ. As ℓ ≥ 2,
we get hd(m,m′) = c(m′) ≤ ℓc(m′′) ≤ ℓ ·OPT(ϕ,m). It is easy to check that m′

is a feasible solution, which completes the proof. ⊓⊔

Lemma 14. We have MinOnes(Γ ) ≤AP NSol(Γ ) for any constraint language Γ .

Proof. MinOnes(Γ ) is a special case of NSol(Γ ) where m is the constant 0-as-
signment. ⊓⊔

Proposition 15 (Khanna et al. [10, Theorem2.14]). The problem MinOnes(
Γ ) is NearestCodeword-complete for constraint languages Γ satisfying 〈Γ 〉 = iL2.

Corollary 16. For a constraint language Γ satisfying iL ⊆ 〈Γ 〉, the problem
NSol(Γ ) is NearestCodeword-hard.

Proof. Let Γ ′ := {even4, [x], [¬x]}. Since 〈Γ ′〉 = iL2, NearestCodeword is equiva-
lent to MinOnes(Γ ′), which reduces to NSol(Γ ′) by Lemma14. We have now
the AP-equivalence NSol(Γ ′) ≡AP NSol({even4}) by appealing to Lemma6
and the reduction NSol({even4}) ≤AP NSol(Γ ) due to even4 ∈ iL ⊆ 〈Γ 〉 and
Corollary 5. ⊓⊔

Proposition 17. We have NSol(Γ ) ≤AP MinOnes({even4, [¬x], [x]}) for any
constraint language Γ ⊆ iL2.

Proof. The set Γ ′ := {even4, [¬x], [x]} is a basis of iL2, therefore by Corollary 5
it is sufficient to show NSol(Γ ′) ≤AP MinOnes(Γ ′).

We proceed by reducing NSol(Γ ′) to a subproblem of NSolpp(Γ
′), where only

instances (ϕ,0) are considered. Then, using Lemma2 and Remark 3, this reduces
to a subproblem of NSol(Γ ′) with the same restriction on the assignments, which
is exactly MinOnes(Γ ′). Note that [x ⊕ y] is equal to [∃z∃z′(even4(x, y, z, z′) ∧
¬z ∧ z′] so we can freely use [x ⊕ y] in any Γ ′-formula. Let formula ϕ and
assignment m be an instance of NSol(Γ ′). We copy all clauses of ϕ to ϕ′. For
each variable x of ϕ for which m(x) = 1, we take a new variable x′ and add the
constraint x ⊕ x′ to ϕ′. Moreover, we existentially quantify x. Clearly, there is
a bijection I between the satisfying assignments of ϕ and those of ϕ′: For every
solution s of ϕ we get a solution I(s) of ϕ′ by setting for each x′ introduced in
the construction of ϕ′ the value I(s)(x′) to the complement of m(x). Moreover,
we have that hd(m, s) = hd(0, I(s)). This yields a trivial AP-reduction with
α = 1. ⊓⊔
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Proposition 18 (Khanna et al. [10]). The problems MinOnes({x ∨ y ∨
¬z, x,¬x}) and WeightedMinOnes({x ∨ y ∨ ¬z, x ∨ y}) are MinHornDeletion-
complete.

Lemma 19. NSol({x ∨ y ∨ ¬z}) ≤AP WeightedMinOnes({x ∨ y ∨ ¬z, x ∨ y}).

Proof. Let formula ϕ and assignment m be an instance of NSol(x ∨ y ∨ ¬z)
over the variables x1, . . . , xn. If m satisfies ϕ then the reduction is trivial. We
assume in the remainder of the proof that OPT(ϕ,m) > 0. Let T (m) be the
set of variables xi with m(xi) = 1. We construct a {x ∨ y ∨ ¬z, x ∨ y}-formula
from ϕ by adding for each xi ∈ T (m) the constraint xi ∨ x′

i where x′
i is a new

variable. We set the weights of the variables of ϕ′ as follows. For xi ∈ T (m) we
set w(xi) = 0, all other variables get weight 1. To each satisfying assignment
m′ of ϕ′ we construct the assignment m′′ which is the restriction of m′ to the
variables of ϕ. This construction is an AP-reduction.

Note that m′′ is feasible if m′ is. Let m′ be an r-approximation of OPT(ϕ′).
Note that whenever for xi ∈ T (m) we have m′(xi) = 0 then m′(x′

i) = 1. The
other way round, we may assume that whenever m′(xi) = 1 for xi ∈ T (m) then
m′(x′

i) = 0. If this is not the case, then we can change m′ accordingly, decreasing
the weight that way. It follows that w(m′) = n0 + n1 where we have

n0 = |{i | xi ∈ T (m),m′(xi) = 0}| = |{i | xi ∈ T (m),m′(xi) �= m(xi)}|

n1 = |{i | xi /∈ T (m),m′(xi) = 1}| = |{i | xi /∈ T (m),m′(xi) �= m(xi)}| ,

which means that w(m′) equals hd(m,m′′). Analogously, the optima in both
problems correspond, that is we have OPT(ϕ′) = OPT(ϕ,m). From this we
deduce the final inequality hd(m,m′′)/OPT(ϕ,m) = w(m′)/OPT(ϕ′) ≤ r. ⊓⊔

Table 3. Sets of Boolean relations with their names determined by co-clone inclusions

Γ ⊆ iI0 ⇔ Γ is 0-valid Γ ⊆ iI1 ⇔ Γ is 1-valid

Γ ⊆ iE2 ⇔ Γ is Horn Γ ⊆ iV2 ⇔ Γ is dual Horn

Γ ⊆ iM2 ⇔ Γ is monotone Γ ⊆ iD2 ⇔ Γ is bijunctive

Γ ⊆ iL2 ⇔ Γ is affine Γ ⊆ iD1 ⇔ Γ is 2affine

Γ ⊆ iN2 ⇔ Γ is complementive Γ ⊆ iI ⇔ Γ is both 0- and 1-valid

Proposition 20. For every dual Horn constraint language Γ ⊆ iV2 we have the
reduction NSol(Γ ) ≤AP WeightedMinOnes({x ∨ y ∨ ¬z, x ∨ y}).

Proof. Since {x∨y∨¬z, x,¬x} is a basis of iV2, by Corollary 5 it suffices to prove
the reduction NSol({x∨y∨¬z, x,¬x}) ≤AP WeightedMinOnes({x∨y∨¬z, x∨y}).
To this end, first reduce NSol({x∨y∨¬z, x,¬x}) to NSol(x∨y∨¬z) by Lemma6
and then use Lemma19. ⊓⊔
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Proposition 21. NSol(Γ ) is MinHornDeletion-hard for finite Γ with iV2 ⊆ 〈Γ 〉.

Proof. For Γ ′ := {x∨ y ∨¬z, x,¬x} we have MinHornDeletion ≡AP MinOnes(Γ ′)
by Proposition 18. Now it followsMinOnes(Γ ′) ≤AP NSol(Γ ′) ≤AP NSol(Γ ) using
Lemma14 and Corollary 5 on the assumption Γ ′ ⊆ iV2 ⊆ 〈Γ 〉. ⊓⊔

Proposition 22. The problem NSol(Γ ) is poly-APX-hard for constraint lan-
guages Γ verifying iN ⊆ 〈Γ 〉.

Proof. The constraint language Γ1 := {even4, x → y, x} is a base of iI1.
MinOnes(Γ1) is poly-APX-hard by Theorem 2.14 of [10] and reduces to NSol(Γ1)
by Lemma14. Since (x → y) = dup3(0, x, y) = ∃z(dup3(z, x, y)∧¬z), we have the
reductions NSol(Γ1) ≤AP NSol(Γ1 ∪ {¬x,dup3}) ≤AP NSol({even4, dup3, x,¬x})
by Corollary 5. Lemma6 implies NSol({even4, dup3, x,¬x}) ≡AP NSol({even4,
dup3}); the latter problem reduces to NSol(Γ ) because of {even4, dup3} ⊆ iN ⊆
〈Γ 〉 and Corollary 5 ⊓⊔

6 Concluding Remarks

Considering the optimization problem NSol is part of a more general research
program (cf. [4,5]) studying the approximation complexity of Boolean constraint
satisfaction problems in connection with Hamming distance. The studied prob-
lems fundamentally differ in the resulting complexity classification as well as in
the methods applicable to them (e.g. stability under pp-definitions and applica-
bility of classical Galois theory for Boolean clones vs. the need for minimal weak
bases for weak co-clones).

The problem NSol is in PO for constraints, which are both bijunctive and
affine, or both Horn and dual Horn (also called monotone). In the interval of
constraint languages starting from those encoding vertex cover up to those encod-
ing hitting set for fixed arity hypergraphs or up to bijunctive constraints, NSol
becomes APX-complete. This indicates that the solution structure for these types
of constraints is more complex, and it becomes even more complicated for Horn
or dual Horn constraints. The next complexity stage of the solution structure is
characterized by affine constraints. In fact, these represent the error correcting
codes used in real-word applications. Even if we know that the given assignment
satisfies the constraint – contrary to the real-word situation in the case of nearest
neighbor decoding – the optimization problem NSol is surprisingly equivalent to
the one of finding the nearest codeword. The penultimate stage of solution struc-
ture complexity is given by 0-valid or 1-valid constraint languages, where one
finds poly-APX-completeness. This implies that we cannot get a suitable approx-
imation for these problems. It is implicit in NSol to check for the existence of at
least one solution. For the last case, when the constraint language is equivalent
to NAESAT, this is hard, where membership in iN2 implies intractability of the
SAT problem. Hence, a polynomial-time approximation is not possible at all.

It can be observed that NSol has a similar complexity classification as the
problem MinOnes. However, the relations inhabiting these classification cases
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are different. For instance, the Horn case is in PO for MinOnes, whereas it is
MinHornDeletion-complete for NSol. Another diffence w.r.t. MinOnes is that our
complexity classification preserves duality, i.e. that NSol(Γ ) and NSol(dual(Γ ))
always have the same complexity.
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