Fundamental category Abstract setting

Congruences on small categories

A congruence on a small category C is an equivalence relation ~ over Mo(C) such that:
-~y = Oy=0% and Oy =07
-~y ,8~8 and Fy =93¢ = ~qod~~0d

In diagrams we have

5 Y vo8
/X X\ X\
X l y l z = X l z
~—7 ~ ~——~F
6/ "// ’Y/O(s/

Hence the ~-equivalence class of v o § only depends on the ~-equivalence classes of v and § and we have a quotient
category C/ ~ in which the composition is given by

[V]o[s] = [yod]

The quotient map g : v € Mo(C) — [y] € Mo(C)/ ~ induces a functor g : C — C/ ~

1/52



Fundamental category Abstract setting

Natural congruences on a functor P : C — Cat

A natural congruence on a functor P : C — (at is a collection of congruences ~x on PX, for X ranging through the
objects of C, such that for all morphisms f : X — Y of C, for all o, 8 € PX,

an~x = P(f)(a) ~y P(f)(B)

Then we can define the functor 7, : C — Cat as follows:
- forall X € C, m(X) = P(X)/ ~x
- forall f: X =Y inC

mX ——mY
—
mif

The collection of quotient functors gx, for X ranging through the objects of C, provides a natural transformation from P
—
to 7.
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Ll G
Object part

Let X be a locally ordered space.
- The objects of PX are the points of X.
- The homset PX(a, b) is
(U {7 € £po([0, 7], X) | ¥(0) = a and ~(r) = b}

r=0
- For §:[0,r] = X and v : [0, r'] — X with &(r) = ~(0), define the concatenation

v-6: [0,r+r] ——m—= X

o(t) ift<r

t {'y(t—r) ift>r
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L] e e
Morphism part

The (Moore) path category construction gives rise to a functor P from Lpo to Cat since for all f € Lpo(X, Y) and all paths
7 on X, the composite f oy is a path on Y.

P: Lpo ——— Cat
X PX

]

p f(p)
l/'}’ — fc’yl/
q f(a)
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Natural congruences from directed homotopies
Equivalent directed paths on a local pospace X

An elementary homotopy is a finite concatenation of directed and anti-directed homotopies.

If 6:[0,r] — [0, r] is a reparametrization and v € Lpo([0, r], X), then v and ~ o 6 are dihomotopic.

Two directed paths v : [0,r'] — X and § : [0, r""] — X on a local pospace are said to be equivalent (denoted by ~x)
when there exists two reparametrizations 6 : [0, r] — [0, r’] and 1 : [0, r] — [0, r’] such that there is an elementary
homotopy between v 0 6 and ¢ o 9.

The relation ~x is symmetric because if h(s, t) is an elementary homotopy, then so is the mapping (s, t) — h(—s, t).

The relation ~x is transitive because a concatenation of elementary homotopies is an elementary homotopy.

Given x,y € X and r € R, the relation ~x is an equivalence relation on the set

U {7 € po([0, 1, X) | %(0) = x; 7(r) =y}
rE]RJr
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Fundamental category Natural congruences from directed homotopies

Juxtaposition of homotopies

horizontal composition

Let h:[0,r] x [0,q] — X and A" : [0, r'] x [0, q] — X be homotopies
from v to § and from ' to &' with 9"y = 9v'.

The mapping b’ = h: [0,r + r'] x [0, q] — X defined by

h(t,s ifog<t<r
h xh(t,s) = { h’(( )

—rs) ifr<t<r+r

is a homotopy from ~ to 4.

5%
q

If h and h’ are ((weakly) directed) homotopies, then so is their juxtaposition h’ - h .
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Fundamental category Natural congruences from directed homotopies

Godement exchange law

Suppose we have

g g’
(el Yl
S
h h
& ot

then it comes
(g"*h) (gxh)=(g"-g)*(h-h)
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Fundamental category Natural congruences from directed homotopies

Applying Godement exchange law

hy hy
hy id
* *
id h2
hy -id
id - hy
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Fundamental category Natural congruences from directed homotopies

Equivalences are congurences

- his an elementary homotopy between v 06 and 6 o ¢
- K’ is an elementary homotopy between ~’ 0 6’ and &’ o ¢’
- the endpoint of v is the starting point of +/
then h- A’ is an elementary homotopy from (y-+')o (60-0") to (§-8")o (¢ -¢’) .

The relation ~x is a congruence on P(X)
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el
Naturality

If his a homotopy from 7 to 4/ on the topological space X and f : X — Y is a continuous map, then f o h is a homotopy
from f o~y to f o+’ on the topological space Y.

If his a (weakly) directed homotopy from ~ to ' on the local pospace space X and f : X — Y is a local pospace
morphism, then f o his a (weakly) directed homotopy from f oy to f o4 on the local pospace space Y.

If v,~4" : [0, r] = X are ((weakly) di)homotopic, then so are fo~y,fo~' :[0,r] = Y.
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Fundamental category Natural congruences from directed homotopies

Conclusion

- The relations ~x form a natural congruence on the directed path functor P : Lpo — (Cat.
- The fundamental category functor ol Lpo — Cat is defined accordingly.

- The fundamental groupoid functor I, : Top — Grd is obtained by substituting “paths” and “homotopies” to
“directed paths” and “elementary homotopies” .
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Fundamental category Basic properties and computations

- The fundamental category of the locally ordered real line is the corresponding partial order.

- For all local pospaces X and Y we have

TMXXY) =2 WBXx®Y

- Given a pospace X, mX is loop-free i.e.

TX(x,y) #0 and TX(y,x) # 0 = x=y and mX(x,x) = {idx}

- The fundamental category of a local pospace has no nontrivial null homotopic directed paths i.e. any directed loop
that is related to a constant path by an elementary homotopy is actually a constant.

- In particular the fundamental category of a local pospace has no isomorphism but its identities.
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Fundamental category Basic properties and computations

The fundamental category of the locally ordered circle

- Given x, y, xy is the anticlockwise arc from x to y.
It is a singleton if x = y.

- RS (x,y) = {x} x N x {y}
- the identities are the tuples (x, 0, x)
- the composition is given by

C (12pr2) 0 () = (x,n+ p,2) if Xy U gz # 51
- (P 2) o, ny) = (x,n+p+1,2)if xyUyz =St
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Fundamental category Basic properties and computations

Plane without a square
x =R2\]0, 1[?

117777777

777777777
b2222225%%

If x <?y, then 7T_>1X(x,y) only depends on the elements of the partition x and y belong to.

- | A C D
Al o « /B:O/B
a' oa
B B’
C o o’
D o
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Category of components Motivation

Skeleta and equivalences of categories

- A skeleton of C is a full subcategory of C whose class of objects meets every isomorphism class of C exactly once.

- The skeleton of C is unique up to isomorphism, it is denoted by skC.

- Two categories are equivalent (i.e. there exists an equivalence of categories between them) iff their skeleta are
isomorphic.

- The skeleton of the category of finite sets is the full subcategory whose objects are {0,...,n— 1} for n € N.

- The skeleton of the fundamental groupoid of a path-connected space is the fundamental group of this space.

- Problem: The fundamental category of a local pospace has no isomorphisms but its identities, hence it is its own
skeleton.
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Loop-free and one-vay categores
The categories LfCat and Ow(Cat

- A category C is said to be one-way when all its endomorphisms are identities i.e. C(x, x) = {idx} for all x
Every Grothendieck topos has a one-way site. C. MacLarty. Theor. Appl. of Cat. 16(5) pp 123-126 (2006).

- A one-way category C is said to be loop-free when for all x, y

C(x,y) # 0 and C(y,x) # 0 implies x = y

Complexes of groups and orbihedra in Group theory from a geometrical viewpoint.
A. Haefliger. World Scientific (1991).

- A loop-free category is its own skeleton

- A category is one-way iff its skeleton is loop-free
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Category of components Loop-free and one-way categories

Generalized congruences
M. A. Bednarczyk, A. M. Borzyszkowski, W. Pawlowski. Theor. Appl. Cat. 5(11). 1999

Given a binary relation R on the set of morphisms of a category C, there is a unique category C/R and a unique
functor g : C — C/R such that for all functors f : C — D, if aRS = f(a) = f(3), then there is a unique functor

g:C/R — Dsuchthat f =gogq
C/R

I

C*f>D

- Examples
- any congruence is a generalized congruence.

- C freely generated by x — > y with idxRidy (resp. with aRidx).
- (N, +,0) with ORn for some n € N.
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[EITTLTVRI NSNS  Systems of weak isomorphisms

Let C be a one-way category:
- Define a class X of morphisms of C so we can keep one representative in each class of X-related objects without loss

of information
- To do so, we are in search for a class that behaves much like the one of isomorphisms

- From now on C denotes a one-way category
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[EITTLTVRI NSNS  Systems of weak isomorphisms

Potential weak isomorphisms

Let C be a one-way category

- For all morphisms ¢ and all objects z define
- the o, z-precomposition as v € C(9'0,z) — ~oo € C(80,z)
- the z, o-postcomposition as 6 € C(z,0¢) — o00d € C(z,00)

- One may have C(8*c,z) =0 or C(z,00) =0
- Note that o is an isomorphism iff for all z both precomposition and postcomposition are bijective.

- The latter condition is weakened: o is said to preserve the future cones (resp. past cones) when for all z if
C(0%o,z) # 0 (resp. C(z,0 ) # D) then the precomposition (resp. postcomposition) is bijective.

- Then o is a potential weak isomorphism when it preserves both future cones and past cones. Potential weak
isomorphisms compose.

- If C(x,y) contains a potential weak isomorphism, then it is a singleton

Requires the assumption that C is one-way
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[EITTLTVRI NSNS  Systems of weak isomorphisms

An example of potential weak isomorphism

Due to the lower dipath, the o, z-precomposition is not bijective; yet o’ is a potential weak isomorphism.
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[EITTLTVRI NSNS  Systems of weak isomorphisms

An unwanted example of potential weak isomorphism

Note that o’/ is a potential weak isomorphism though there exists a morphism from 9'¢’’ to z but none from 9'c’ to z.
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S ST e T
Stability under pushout and pullback

- A collection of morphisms X is said to be stable under pushout when for all o € ¥, for all v with 9y = 0 o, the
pushout of o along ~ exists and belongs to

- A collection of morphisms X is said to be stable under pullback when for all o € X, for all v with 9y = 970, the
pullback of o along v exists and belongs to
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[EITTLTVRI NSNS  Systems of weak isomorphisms

Greatest inner collection stable under pushout and pullback

- Any collection X~ of morphisms of a category C admits a greatest subcollection that is stable under pushout and
pullback

- Construction:

- Start with g = X
- For n € N define X1 as the collection of morphisms o € ¥, s.t. the pushout and the pullback of o along
with all morphisms exist (when sources or targets match) and belong to X,

T2 X1 22X DXy D

- The expected subcollection is the decreasing intersection

Yoo i= ﬂ ‘s,

- The collection ¥ is stable under the action of Aut(C)
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el e e s
Systems of weak isomorphisms

- The class of isomorphisms of any category is stable under pushout and pullback

- A system of weak isomorphisms is a collection of potential weak isomorphisms that is stable under pushout and
pullback

- The class of all isomorphisms of any category is a system of weak isomorphisms
- If X is a system of weak isomorphisms, then so is its closure under composition

- Hence we suppose the systems of weak isomorphisms are closed under composition
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[EITTLTVRI NSNS  Systems of weak isomorphisms

Examples of systems of weak ismorphisms

- Given a partition P of R into intervals, the following collection is a system of weak isomorphisms

{(x,y) | x<y; P, [x,y] C I}

- In the preceding example, R can be replaced by any totally ordered set

- Let X; C C; be a family of collections of morphisms, then

I1; i is a swi of [];C; iff each X; is a swi of C;

- The inverse image (resp. the direct image) of a system of weak isomorphisms by an equivalence of categories is a
system of weak isomorphisms.
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[EITTLTVRI NSNS  Systems of weak isomorphisms

Pureness

- A collection X of morphisms is said to be pure when

YyodEXL = v,0€X

- Given a one-way category C we have:

All the systems of weak isomorphisms of C are pure
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[EITTLTVRI NSNS  Systems of weak isomorphisms

The locale of systems of weak isomorphisms

- A locale is a complete lattice whose binary meet distributes over arbitrary join i.e.

x A (\/y;) :\/(X/\y,-)

- The collection X open subsets of a topological space X form a locale and we have the functor L : Top — Loc (that
admits a left adjoint) defined by
- L(X) =X
- L(A)(W) =FfY(W) forall f: X — Y and W € QY

- The collection of systems of weak isomorphisms of a category has a greatest element

- Given a one-way category C we have:

- ’ The collection of systems of weak isomorphisms of C forms a locale ‘

- ’ The greatest swi is invariant under the action of Aut(C) ‘

27 /52



Category of components Construction

Components of a one-way category C

- From now on C is a one-way category and X is a system of weak isomorphisms on it

- Recall that if C(x,y) meets ¥, then C(x, y) is a singleton, a fact that we represent on diagrams by: x T y

- Given two objects x and y of C t.f.a.e.:

- there exists a X-zigzag between x and y

. x P
- there exists z such that x <——z ——=y

. ¥ b
- there exists z such that x ——=z<——y

- When any of the following property is satisfied x and y are said to be X-connected
- X-connectedness is an equivalence relation on the objects of C

- The equivalence classes are called a X-components
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Category of components Construction

Structure of the X-components

> system of weak isomorphisms of C one-way category

A prelattice is a preordered set in which x A y and x V y exist for all x and y.
However they are defined only up to isomorphism

Let K be a X-component of C and K be the full subcategory of C whose objects are the elements of K. The following
properties are satisfied:

1. The category K is isomorphic with the preorder (K, <) where x < y stands for C[x, y] # 0. In particular, every
diagram in C commutes.

2. The preordered set (K, <) is a prelattice.

If d and u are respectively a greatest lower bound and a least upper bound of the pair {x, y}, then Diagram 1 is

both a pullback and a pushout in C, and all the arrows apprearing on the diagram belong to ¥.

C = K iff C is a prelattice, and X is the greatest system of weak isomorphisms of C i.e. all the morphisms in this
case.

4.
u u
7N AN
X y X y X y
A N A
d d
Diagram 1 Diagram 2 Diagram 3
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Category of components Construction

Equivalent morphisms with respect to X

- Let § € C(x,y) and &’ € C(x’,y’"). Then write § ~ &’ when
- x~x"and y ~y’, and
- the inner hexagon of the next diagram commutes

x—2>y
b
x
d

/i

T xAX yVy —~—u
b ba
b2 / b=
X/ 6/ y/

- Note that if d &2 x A x’ and u 2 y V y’ then the outter hexagon also commutes, hence the relation ~ is well
defined.

- If vy~ 4 then Oy ~ 96 and Oy ~ 09
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Category of components Construction

The relation ~ is an equivalence

- The relation ~ is:
- reflexive since X contains all identities
- symmetric by definition
- transitive

" pullback
-

@

=

x
R

commute
it - -
e pushout 2

2’

™,
o

o
commutes

al
™

—
5

31/52



Category of components Construction

The relation ~ fits with composition

- Suppose Oy = 06, Oy =06 and y ~~' and § ~ §'.
- Then we have yod ~ v 0§’

§ ol

> X b 4 > z >

/5,, /pushout\ ’Y”\
XAX ———>y Ay and yVy ————————>2zv 7

*\\\\S\ \\\\ifmbaii//;f ////27
> > > >
X/ - y/ - z/

¥

)
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e
The category of components C/%

- The quotient category C/% (obtained by turning each morphism of X into an identity) can be defined as follows:

- The objects are the X-components
- The morphisms are the ~-equivalence classes

S f O~y ~ O then
- there exists v/ and §’ such that 4/ ~~, §' ~ ¢, and O+ = 9§’

b ¥
— s >
//T LT
b3 bx
6/
—
p”

- so we define [y] o [6] = [/ 0 &’]
- We have the quotient functor Q : C — C/X
- The category of components is C/X with X being the greatest swi of C
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Propertis
Characterizing the identities of C/%

For any morphism ¢ of C t.f.a.e.
-dex
- plcs
- [8] is an identity of C/%

The quotient functor Q : C — C/X satisfies the following universal property:
for all functors F : C — D s.t. F(X) C {identities of D}
there exists a unique G :C/X - Dst. F=GoQ
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isici
The fundamental properties of C/¥

with X being a system of weak isomorphisms of a one-way category C

- The quotient functor Q : C — C/X is surjective on morphisms
- The quotient category C/X is loop-free
- If C(x,y) # 0 then the following map is a bijection.

5 €C(x,y) = Q) € C/X(Q(x), Q(y))

- £ C/Z(Q(x), Q(y)) # 0 then there exist x’ and y’ such that ¥(x’, x), Z(y, y’), C(x’,y), and C(x, y’) are nonempty.

’8 !

X y

T il
b hx
XA a = a < b = yVb
ZT T):

]
X 5 y

- The quotient functor Q preserves and reflects potential weak isomorphisms
- If C is finite then so is the quotient C/X
- C is a preorder iff C/X is a poset 35/52



S
Describing the localization of C by ¥

with X being a system of weak isomorphisms of a one-way category C

- The objects of C[Z71] are the objects of C

- The morphisms are the equivalence classes of ordered pairs of coinitial morphisms (v, ) with o € X,
- Two pairs (v,0) and (v, 0’) being equivalent when 80 = 8¢’, v =9+, and Q(v) = Q(v’)
- In the diagram below we have Q(7' o v") = Q(v') o Q(y") = Q(7’) o Q(~) hence the composite
(7' 0,0 0 ") neither depend on the choice of the pushout nor on the representatives (v, o) and (7', 0’).

pushout

NN
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Propertis
The canonical comparison P : C[X '] — C/*

with X being a system of weak isomorphisms of a one-way category C

- Define I by I(v) := (7,ido-~) and the identity on objects

- Given a functor F : C — D s.t. F(X) C {isomorphisms of D} define
- G(x) := F(x) for all objects x of C[X~!] and
- G(v,0) := F(v) o (F(c))~! for any representative (y, ) of a morphism of C[X 1]
- The functor | : C — C[Z 1] then satisfies the universal property: for all functors F : C — D there exists a unique
G:C—C[Z st F=Gol
- In particular there is a unique functor P s.t. @ = P o/ with Q : C — C/X and we have

’ The functor P is an equivalence of categories

- The skeleton of C[£~!] is C/¥ and C[£ 1] is one-way.
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Propertis
Embeding C/X into C

- Let ¢ : X-components of C — Ob(C) such that

- for all ¥-components K, K’, if there exists x € K and x’ € K’ such that C(x, x’) # 0, then
C(o(K), o(K")) # 0

- in this case C/X is isomorphic with the full subcategory of C whose set of objects is im(¢).
- the mapping ¢ is called an admissible choice (of canonical objects)

- Write ¢ < ¢’ when C(¢(K), ¢'(K)) # 0 for all X-components K
- The collection of admissible choice then forms a (pre)lattice
- If C/X is finite then there exists an admissible choice
- If C/X is infinite the existence of an admissible choice is a open question
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Category of components Examples

Plane without a square
x =R2\]0, 1[?

B—©

Let x, y such that x <? y, then 7T_)1X(X,y) only depends on which elements of the partition x and y belong to

—|A|B|C D

Alo | B |~ |BoB

o' oa

B o B8

C o 5

D p 39/52




Category of components Examples

Two rectangles
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Swiss Flag
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Category of components Examples

Achronal overlaping square

O—
i

s
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i
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Category of components Examples

Diagonal overlaping squares
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=
The floating cube

boundaries of the components
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Category of components Finite connected loop-free categories

Commutative monoid

of nonempty finite connected loop-free categories

- The Cartesian product of categories A X B is non-empty iff so are A and B.
If A and B are indeed nonempty then we also have

- A x B finite iff so are A and B
- A x B connected iff so are A and B
- A x B loop-free iff so are A and B

- A~ A" and B~ B’ implies A x A’ 2 B x B’
- (AXB)xC=2Ax(BxC)

S IXxAXA2AXL

- AxB2Bx A

- The collection of isomorphism classes of nonempty finite connected loop-free categories is thus a commutative
monoid M

The commutative monoid M is free.
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Category of components Finite connected loop-free categories

Criteria for primality

- The monoid M is graded by the following morphisms
- #0b:C e M — card(0Ob(C)) € (N\ {0}, x,1)
- #Mo : C € M+ card(Mo(C)) € (N\ {0}, x,1)
- #Mo(C) =2 x #0b(C) — 1, for all C € M
- In particular if #0b(C) or #Mo(C) is prime, then so is C.
The converse is false.

- Any element of M freely generated by a graph, is prime
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Category of components Finite connected loop-free categories

Comparing decompositions

- The mappingC € M — 7 (C) € M is a morphism of monoids

- We would like to know which prime element of M are preserved by it

- We known that 73(C) is null iff C is a lattices (e.g. T(0 < 1) = {0} though {0 < 1} is prime in M)
- For all d-spaces X and Y, 7r1(X X Y) mX X TY

- Hence N’ := {X € Hf|G| | T X is nonempty, connected, and loop-free}
is a pure submonoid of Hr|G|

- Then N :={X € N’ | T (T X) is finite} is a pure submonoid of N’

- Therefore it is free commutative and we would like to know which prime elements are preserved by
X eN = m(mX) e M

- Conjecture

If P € N is prime and 71 (P) is not a lattice, then (71 (P)) is prime

52 /52



